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ABSTRACT

ISOMORPHIC CLASSIFICATION PROBLEM AND
LINEAR TOPOLOGICAL INVARIANTS

Bora Arslan
M.S. in Mathematics
Supervisor: Prof. Dr. Mefharet Kocatepe
May 1995

We consider all possible isomorphisms of cartesian products of Dragilev
spaces, and thanks to relations between the Dragilev functions of each factor
try to show that if there exists such an isomorphism, then any factor on the
left of the isomorphism is nearly isomorphic to the corresponding factor on
the right. We also try to get a necessary condition for the isomorphisms of
the tensor products of infinite type Dragilev spaces by the dual of an infinite

type Montel power series space.

Keywords : Dragilev space, Montel power series space, rapidly increasing

function, nearly isomorphic, weakly equivalent, different lacunarity.
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OZET

IZOMORFIK SINIFLANDIRMA PROBLEMI VE LINEER
TOPOLOJIK INVARYANTLAR

Bora Arslan
Matematik Yiksek Lisans
Tez Yoneticisi: Prof. Dr. Metharet Kocatepe
Mayis 1995

Dragilev uzaylarinin kartezyen ¢arpimlarinin miimkiin olan biittiin isomor-
fizmlerini ele aldik ve boyle bir isomorfizmin varligi halinde ¢arpanlarin Drag-
ilev fonksiyonlar: arsindaki iligkiler yardimiyla izomorfizmin sol tarafindaki
carpanlarin her birinin sag tarafta karsihk gelen bir carpana hemen hemen
izomorf oldugunu gosterdik. Ayrica, sonsuz tipteki bir Dragilev uzay: ile
gene sonsuz tipteki bir Montel kuvvet serisi uzayinin tensér carpimlarinin

izomorfizmi i¢in gerek kosul bulmaya cahigtik.

Anahtar Kelimeler :Dragilev uzay1, Montel kuvvet serisi uzayi, hizli artan

fonksiyon, hemen hemen izomorf, zayif esdegerlilik, degisik artig hiz.
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Chapter 1

Introduction

Linear topologic invariants (such as approximative and diametral dimensions)
as a tool of isomorphic classification of non-normed linear topological spaces
appeared in investigations of Pelczynski [14], Kolmogorof [9], Bessaga, Pel-
czynski, Rolewicz [15], Mitiagin [11], et al: they were also initiated by Gelfand

[5].

Linear topological invariants are quite strong. Many of the results (some
of which can also be proved by Riesz theory or some other methods) were

proved by linear topological invariants.

V.P. Zahariuta has proved a number of theorems in [20]. But he achieved
this by using Riesz theory. In [19], M. Yurdakul and V.P. Zahariuta have
considered the cartesian products of Montel power series spaces and proved
the already known property that if Eo(a) X Eo(b), Eo(@) X Eoo(b) are isomor-
phic, then Eo(a) is near isomorphic to Eo(@) and F,,(b) is near isomorphic
to E.(b) by using linear topological invariants. This gave us the idea that
we may do the same thing for Ls(a,0) and L,(b, 00) spaces.

Most of the results in this work are not new, because they proved in [20].
Our aim here is to give new proofs of these results by means of geometric
invariants instead of Riesz theory. Also, in this work, there are some more
results which are not covered in {20]. All these will enable us to test and

understand the scope of using invariants to some extent.

On the other hand Ahonen introduced some properties of Dragilev spaces

(for their different types) in [1]. By using these properties we tried to consider
all possibile isomorphisms of cartesian products of different or same types of

1



Chapter 2

Preliminaries and Linear Topological

Invariants

2.1 Definitions and Some Preliminary

Results

Definition 1 Let X and Y be locally convex spaces (Ics’s). A linear operator
T : X — Y is called a near-isomorphism ( as defined in [20}), if the following

conditions are satisfied:

a)T(X) is closed in Y and T is an open map from X onto T'(X),
b)a(T) = dim KerT < oo,
c)B(T) = codim T(X) = dimY/T(X) < oo (see [16]).

The lcs’s X and Y are said to be nearly isomorphic if there exists a near

isomorphism T from X onto Y.

If the locally convex spaces X and Y are isomorphic , we write X ~ Y
and if they are nearly isomorphic we write X ~ Y. N = {1,2, ...} denotes

the set of all positive integers .

Let A = (aip);c;,eN be a matrix of real numbers such that 0 < a;p <
a;p+1 for each p and for each index ¢ in the countable set I (most of the
time we shall let ] = N). The Koéthe space K(A), defined by the matrix A

is the locally convex spaces of all sequences z = (z;) of scalars such that

)



It is well known that (see [4]), if f is an increasing logarithmically convex
function, then f is either rapidly increasing or slowly increasing and Ls(e, )
is isomorphic to a power series space if and only if f is slowly increasing.
So we shall assume that f is rapidly increasing. In this case, there are four
classes of Dragilev spaces corresponding to r = 0o, 1, 0, —1. If ¢ is a rapidly

increasing function , then for each A > 0,

¢~'(At)

lim ————= = 1.

= §1(2)

Lemma 2.1 (Dragilev [{]) Let f be an increasing, logarithmically convezx
function. Then, for everya > 1,

 f(at)
ZENI0)

= 74(a)

exists. Moreover, either
a)r(a) = oo, or
b)r(a) < 0o for 1 < a < oo and 7(a) < 7(b) fora < b,

and limr(a) = co.

Lemma 2.2 Let h be a (not necessarily logarithmically convez) slowly in-

creasing, odd function. Then

lim mh(a) = L.

We shall use the relations ”<” and ”"~” between f;, f, where f; and f,
are functions satisfying the conditions of Definition 2 and —oco < r < co. We
shall say fi < fz, if f{’! f; is rapidly increasing, and f; & f2, if both f{! f2

and f;! f are slowly increasing.

Theorem 2.1 Let f, g be rapidly increasing, logarithmically convez Dragilev
functions, and f~' g be logarithmically convez and slowly increasing function.

Let r =00 or 0. Then
Ls(a,r) ~ Ly(b,r) if and only if f~' g(b) < a.

Letr =1 or =1. Then
-1 i
f g(bl) — ]..

:

Ly(a,r) =~ Ly(b,r) if and only if llrglo

5



Therefore we have shown that if we have the isomorphism Ls(a,r) ~ L,(b,7),
then Vp 3¢ 3C > 0 such that

a;p S C b,',q and b,"p S Ca,-‘q.
Then with D =1InC,

aip X Cbiy = f((1=3)ai) <D +g((1-2)b) <g((1— =7)b:)
= 1-1« St a((— g )bi) < 71 a(bi)
P = a =
bip <Caig = g((1-7)b:) <D+ f((1-1)a;) < f((1 - Z7)a)
= S a((1=2)5) £=1 g3, <1— ___1_1 <1
ai - g+l —

1 a(b)
1 flg(b)d 1 v
Thus 1 — - < < S iMy_y T —
us i o S oo :_7) Since lim_,; 74-1,(t) = 1, by
choosing p large enough, we get
i—00 a;

Conversly, let lim;_, %(M = 1. We will show Vp 3¢ 3C such that

I ((1-3)2) < 0 (=08 apg 9((=3%) < ¢ f((1=3)e)

Assume the contrary. Then there exists p, for any ¢, there exist subse-

quences (a;, ), (b;,) such that
1
F((1=2)as) > D+((1 = D)

Then
F((1=2)ai) > g((1 = 1)bi,)

1 ST e(=20b,) £ g(biy)
= 1 P flg(bi,) a;

k
f1g((1 = 1by,) 1
= 1-1>1 a = 741 ,(1 — =).

p = 20 f-1 g(b;,) Ti-14( q)

But this is not possible. Because, limg_o 74-14(1 — ;—) =1.,

Let a = (a;) be a positive sequence and 1 < 7 <t < co. Then
M,(t,7) := |[{¢ : 7 < a; < t}| and mq(t) := |{i : a; < t}| where |- | denotes
the cardinality of the set. If a; /* oo, then M,(t,7) = mq(t) — mo(7). Let
b = (b;) be another positive sequence. If there is a constant A > 0 such that
T

&) and My(t,7) < Ma(At, =),

M,(t,7) < My(At

7



then the counting functions A,, M, are said to be equivalent and we write

M, =~ M, (see e.g. [12].[13]).

The following tecnical lemma will be used throughout this thesis. It was
proved in [19]. Since it plays a crucial role in our work, we present its proof

here.

Lemma 2.3 Let a = (a;) and & = (a;) be increasing sequences such that
a; /200, @ / 0o. Assume 3C > 1319 >0 : 70 <7 <t = M,(t,7) <
M;(Ct,5) and Ms(t,7) < Mo(Ct,5). Then there is k € Z such that a;y <

a;.

Proof Since (a;) and (&;) are increasing, the inequalities are equivalent

to:

IC>13rp : <7<t > ma(t) — ma(7) < ma(Ct) —ma(5)  (2)
<m (%

mg(t) — ma(r)
Putting 7 = 70 in (2), we get
70

Vit > 710 @ mg(t) — ma(Ct) < my(m0) — ma(C

So, m(-) —ms(C") is an integer valued function which is bounded above. So

it attains its maximum k at some t = ¢t; > 19. Thus
ma(t1) —ma(Ct)) =k ...(A)
and
Vi> 10 me(t) <ms(Ct)+k ..(1).
Putting 7 = Ct, in (22), we get
Vi>Cty ma(t)+k <my(Ct) ..(I1)

Since the inequalities (/) and (/1) are symmetrical in k and —k, we may

assume k > 0. () can be written as
(i : aipr < t}] = ma(t) =k <ma(Ct) = |{j : &; < Ct}|.

Now let n be large enough so that a,4x > 7o and let ¢ = anqx. Then
the set on the left hand side has n elements. Thus the set on the right hand

8



side has at least n elements. Since (d;) is increasing, we have a, < Ct, i.e.

1 Antk
C S an

(IT) means |{z: @; <t}|+ k < |{5 : a; < Ct}|. Let n be large enough so
that @, > Ct; and let t = @,. Then left hand side of (/1) is n+k. So the set
on the right hand side has at least n + k elements. Since (a;) is increasing,
we get @,k > Ct, i.e. 5;}"& <C.

Let X be a Ics with an absolute basis e = (¢;) and a = (a;) be a positive
sequence of reals. For 1 < p < oo, we denote by B;(a) the weighted I?-ball
in it with respect to the basis e and by B¢(a) the ball Bf(a). If (e;) is the
sequence which is zero at each coordinate except the ith where it is 1, we

omit e and simply write B,(a) or B(a). So

Bi(a) = By(a:) = {z = (&) € X : T|&lPa? < 1.

2.2 Linear Topological Invariants

We will use the following simplest characteristic function for a pair of

absolutely convex subsets in X :
B(V,U) =sup{dimL:LNU CV}

where L stands for a finite dimensional subspace of X (i.e. L € F(X) where
F(X) is the set of all finite dimensional subspaces of X). If j C V2 and

U2 C U] then ,B(Vl, U]) S ,B(Vz,Uz)

Lemma 2.4 Let the positive sequences a = (a;),b = (b;) be such that ;’% —

1

b;
oo and V = By(b),U = Bp(a). Then p(V,U) = |{i: = <1}].

Lemma 2.5 Let U = B(a), V = B(b) and ¢ = (¢;), d = (d;) where
¢; = max{a;, b;}, di = min{a;, b;}.
Then B(c) CUNV C B(c/2) and B(d) =T(U U V).
In Chapter 2 we will use basic invariants together with interpolation

methods, i.e. for a given pair of neighborhoods U,, U, in the Kothe space
K(A), A = (aiy) we consider an intermediate interpolative neighborhood

9



U;"“U;’ ={z=(z;) € K(A): ¥; Ia:,]al @ agy < 1}, 0<a<ll.

To construct such neighborhoods, the following very simple interpolation

lemma is applicable (see e.g. [2]);

Lemma 2.6 If T € L (I"(a%), I"(8°)) N L (I'(a?),1*(b")) then

T € L{l'(a*), I'(b%)) where 0 < o < 1, af = (a9)'7%(a})* and b} =
(8)'==(8)°. Further |Tlla < max{ITllo, T}

Lemma 2.7 Consider the balls B(a?), a® = (aip), p = 1,2,3,4 in a lcs
X.Then

a3 a:2

max{ai, 4z} 1y, o, Sho-< bl
ai1

(®) I min{a;z, a1 }
< B (B*(a®) N B*(a%), T(B*(a') U B*(a?))) .
(i3) B (B(a®) N B*(a?), T(B*(a') U B*(a")))

% max{a;3, a2 }

<1} < i “’3<2-—<2}|

< Wz
< I -

min{a;s, a;1 }
The proofs of the above lemmas can be found in [19]. Also, detailed
informations can be found in [23], [24], [25].

Remark If the balls U, = B*(a?), p = 1,2,3, V, = B/(b7), ¢=1,2,3,4

in a les X are such that V; C Uy, Vy C U, C V;,U;s C V3 then by lemma 1.4
we have

b

b1

i i b;
(i 2 <L, 2 << {2 <2

a; il ]

22 <9)|.

Let (e;) be the canonical basis in X = K(C), C = (c;) and ¥ =
K(D), D = (dy,). f T : Y — X is an isomorphism, by the continuity
of T~1, given p,, there are p and ¢ > 0 such that

Us C T (%) = U CPT(V)

1 1 )
Choose now p > p such that ; < —p—-, ie. p>cy.
1

1 1
p>2p=>U,CU; = U C 3 U-( —T(V ) = =U, € —T(V,,)-
P1 p h

10



Then given ¢ (¢ > p) we have
1 1

-U, c -U,,
g p?

and by continuity of T', given ¢ (¢ > p), there are § and C > 0 such that

- 1 1
Vq cCT I(Uq)=> avq'c ;]—T 1(Uq).

. 1 1 .
Choose ¢; > G such that — < —, ie. ¢ > Cq.
o~ Cq

1 1

1 1 1
>q=>V, CV; = =TV, C —Vi(c =T~YU = —=T(V,) C -U,.
Q124 q g @ (qx Cq q( p ( ‘1) Py (q) q q

Up to now, we get Vp; IpVqdg; :
1 1 1 1
-T(Vp) C =U, C =U, C —T(V,,).
q (ql) q q p P P (p)

By repeating this we get Vp, 3p Vq 3¢, Vry 3r Vs 3sy... such that

1 1 1 1 1 1 1 1
;T(Vgl) C ";Us C ;Ur - ;‘;T(V';‘l) - ;T(‘/QI) - EUQ - ;UP - ;;T(‘/Pl)

If we denote the neigborhoods of X by U;’s and the neigborhoods of Y by
Vi’s,thengiven p € N wecanfind p,q1,9,41,71,7,8,81 with the chain
$1>8>2r >2r >4q¢ > 49> 4¢1 > 8p > 8py
and positive constants ¢;, ¢g, c3, ¢4, ¢5 such that

1
clUP - T(Vm)’ C3T(V§1) C Uq - ET(V%)’ caUr C T(Vrl)’ C5T(V31) cU.

Now consider the following sets

Wy = rU,, Wy = 7T (Vay)

Wa=Us, W =T(Vy) (2.2)

W3 = UMUM2 (U, Ws=T(,) *T(V,,)* ntT(V;,)
Wa=T(Vz)

11



where t,7 € R*. Define now

B = B (W Ws, T(Wh UWs)),
B = ,3( (Wz N Ws) r(Wl U W4)) y

1/2 1/2 1
ma’x{ctp ir ) tc"'}

L = {i: <1, Y <
1 { = I, < }
= {i:cpcir < ch, Gr < t =>r}, (2.3)
Ciq Cig
1 1/2 1/2 1 1
— . 2c max{d, 171 ) drr }dtq cd’q
I, = {i: plSl £ 'l,zldw: <1}
d; d;
= dip, di, < 43Fd2. =72 < 2ct, L > —
{Z P1 1 — (7R d;q’, C d:ql - 20}

(here ¢ > 0 is some constant). Since Wo N W3 C él(ﬁfz N Wg) for some
constant & > 0 and 6ZF(WI @] W4) C T(W; U W,) for some constant & > 0
we have f; < ;. We also have |I;| < f; by lemma 1.4(¢) and (3, < |I;]| by
lemma 1.4(2z). Thus || < |-

On the other hand given p € N we can find py, ¢1, ¢, 1, 7, 71, 51, S
with the chain

$§> 8 >2r > 2r >4q; > 49> 491 > 8py > 8p
and costants ¢, ¢, C3, ¢4, c5 > 0

|
Clvp] - T-—I(U) C3V<n cT" I(U ) C qu C4V7‘1 cT” (UT)’ C5T_1(US) - V81'

Consider now the sets

Wi = T(T 7 (U,)) 2T (U,)2 utT~(Uy)),

W, =T-Y(U,),

Wi = rT~Y(Uy),

Wy =T(VY2V 2 uy,,), (2.4)
W=V,

Ws = T‘/sl

W=V

12



where t,7 € R*. Define now

,B = ,B(I/Vz N W3 3 F(WI U Wz)),
B = B(c(Wy N\ Wa),T(Wy UW,)),
1

~Cis C; 1
I ={i:2— <1, ——-——, - <1

Cig , mm{cl/2 172y ¢ }

. < ir
={:: c? < CipCir, c: <, z— > t}, (2.5)
. 1 lds ! Edq
I::{i:ZCT”_ Ze 91 <1}
dig, mln{d:}{]2 3,/]2, tdir, }
= {i:dZ, <4dyd,, d”‘ < 2er d"‘ > —-}
idi iq

(here ¢ > 0 is some constant). Since W, N W5 C & (W, N W3) for some
constant ¢; > 0 and 62T(Wl U W4) C T(W, U W,) for some constant & > 0
we have 8 < . We also have |I| < 8 by lemma 1.4(i) and 3 < |I| by lemma
1.4(3). Then |I| < |I].

In the upcoming chapters we will have further estimates on

|11|, lle, |I| and Ifl

13



Chapter 3

Some Cartesian Products of Power Series

Spaces and Dragilev Spaces

In this chapter, we consider the cartesian product of a Dragilev space
and a power series space or cartesian product of two Dragilev spaces. We

show that the method used in [10] can be used in these cases.

In this chapter, we assume that all Dragilev functions are rapidly increas-
ing, and for any two considered Dragilev function, for example f and £, f

and f~! f are slowly increasing.

3.1  Ey(a) x Lg(b,00) ~ Ey(a) x Ls(b, o)

Let K(C) = Eo(a) x Ly(b,00), K(D) = Eo(a) x Ly(b, o) and suppose
T : K(D) — K(C) is an isomorphism where C = (c¢;;), D = (d;). Then

e ifi=2k~—1 e ifi=2k -1
I el it = 2k BT efh i = 2k

Given p; € N, by Remark, we can find a positive integer p > p; and a
constant ¢; > 0 such that U, C T(V},). Let ¢ > 2p, find ¢; > ¢ > ¢1(> 2p)
and constants ¢; > 0,c3 > 0 such that ¢;T(V;) C U, C %T(Vql). Let
r1 > 241, find r > r; and a constant ¢4 > 0 such that c U, C T(V;,). For
s> 2r, find s; > s and a constant ¢s > 0 such that ¢sT(V;,) C U,.

Now, consider (2.2). If = 2k in the set I in (2.3), then ¢;, = e/(P*). So

14



the first inequality in the set becomes

of (Pbe) S (rbi) < e2flabe) S(pb) + f(rbr) < 2f(qbe)

S(pbx) N S(rby) <2

f(qbe) — flqbe)

—

Let ¢by = z, then
ferby) . f(5z)

= lim

f(qbe) f(z)

since f is rapidly increasing. This shows us that the case : = 2k is not

possible. But for ¢ = 2k — 1 the same inequality gives

1 1 2
(= = pax < ——a

Y4 r

lim

which is possible for every value of k. So we take i = 2k —1 and ¢;, = e,

Then from the other two inequalities

1
Gt S5 = ed <t ed

1 1
= (l—- —l-)a;c <Int, (=—=)axr > Int
q T q s

i.e.

q r q s

Int In7
\h| = M. (ri Tj)

But |[;] < By by lemma 1.4(z).

Similarly, the first inequality in I cannot hold for 7 = 2k. Same inequality
gives
1

2
-+ 71— <In4c* —
Pt N Q1

for ¢ = 2k — 1. So we take ¢t = 2k — 1 and d;;, = e”#%. Then from the last

two inequalities :

1. 1. 1. 1.
——dr ——ar o ——d
e Tt <e @t 2t , e 51 >—e N
- — 2
1 1 1 1 T
= (— — —)ar <In(2ct) , (—— —ax) > In(—
(- Do < taf2et) | (- = 3-) 2 In()
In(2ct . In(Z
— ar < 1 ( 1) y Gk 2 1 (202
@ s a s

15



In(2¢t)  In(Z
e, |Ib] = Ms L"(_c i) , L“(_%i ) But, |I3] > B, by the lemma 1.4(s%). So,

Q1 T Q1 51

|| < By < B2 < |I3]. Hence we have

Int Int In(2ct) In(%)
Ma( ’ )SM&(_L_L,L_Zl .

a1 r Q1 51

Therefore we have shown that 3 ¢ > 0 such that My(t, 7) < M;(ct, I).

If i = 2k — 1 then ¢;, = e 7% and the first inequality in the set I gives

1 1 2 .. .. . -
— 4+ = < - which is impossible, because ¢ > 2p, r > 2¢. So we take 1 = 2k

p T
and c¢;, = e/ Then from the last two inequalities we get

ef(Sbk) - f(qbk) <7 , ef(rbk) - f(qbk) >t

> f(sbe) — f(gbe) <In7 , f(rde) — f(gbs) > Int
= f(sbe) <Iln7 | f((r —1)b) > Int

(since f is rapidly increasing f(rbx) — f(gbe) > f((r —1)b)). Hence we have

" <f—l(]n7') f;lilnlt)) <Ul<p.

b
s
Let us now consider

. 1.
dwl 2 dtth

1
i — {Z . 2¢ <1, S 1}
digy min{d},{lzd,!r/lz, i, }
d. d; t
L 2g. 4. s o
= {i:d;, <4c’dyp,diyy, diq': < 2cr, dq: < 2c}'

If - = 2k — 1, then the first inequality in the set Iis ;_)o'ssible only for finitely
many values of k. So we take : = 2k and d;, = e/P%)  Then from the last

two inequalities we have

S (5160) = F(G10) < 90r o (ribh) = flaabi) <

t
i‘z_c
= f(s1b) — f(Gibe) < In(2er), f(ribe) = flqbi) > In(5,)
— f((s1 = D) < In(2er), f(riby) > 1n(§tz)
(since f is rapidly increasing, f((s1 — 1)b) < f(s18%) — f(G1bx) ). So,
f'(In2er) f~'(In :th)) .

31—1 ’ T1

Bsmsm(

16



Hence we have

" (f“(lnr) f"‘(lnt))SMg <f“(ln207') f“(lni))

) b
S r—1 31—1 T

Let i“_(slrlz'_) =T. Then 7 = ¢/T) and
f'(In(2er))  fY(In2c+ f(sT)

s — 1 s1—1
[+ 1)T)
31—1
_ (s+ 1T
- 51-‘1
< KT (for Ky > 2L,
31—1

f (lri ) = L. Then t = /(""DL) 3pd
r —

Let now

-1 ¢
fing) (= 1)L) — In20)

™ ™
, -2
™
_ (r=2)L
= -
L ™
> — .
= (forK2>r_2)

So, for K > max{ K, K3} we have

My(T, L) < My(KT, %)

If we change the roles of U;, V;’s in Remark, we similarly obtain the following
symmetric inequalities : There is ¢ > 0 such that Mz(t,7) < M,(ct, L) for
large values of 7 and there is a constant, again we call, K > 0 such that

My(T,L) < My(KT, é) for large values of L. So by lemma 2.3 there are

integers k; and k; such that a;yx, < @; and biyr, < b;.
Therefore by theorem 2.1 we have

If Eo(a) x Ls(b,00) ~ Eo(d) x L (b, o)
then Eo(a) = Eo(d) , L;(b,o0) = Ly(b,o0).

Note We observe that to prove our claim, it is sufficient to show the
equivalence of the counting functions M. We shall do so in the rest of this

work.

17



3.2 Ey(a) x Ly(b,00) = Ey(a@) x L (b, o)

Let K(C) = Eo(a) x Ly(b,00), K(D) = Eo(a) x Lj(h,00) and T :
K(D) — K(C) be an isomorphism where C = (c;;), D = (d;;). Then

eTF%  ifi=2k—1 e % ifi=92k—1
Cip = 1y ip — P
P ef ) if 5 = 2k P S0 if = 9k

If ¢ = 2k then the first inequality in the set I; becomes
ef (i) o f(rbr) < e2f(abe) o equivalently  f(pbi) + f(rbe) < 2f(qbr)

which is not possible. Because, otherwise

S(pbe) | flrby)
f(qbk)-l_f(qbk) = 2

and if we take limit on both sides

Fbe) . f(rhe)
im ghe) T ey S 2
o0

So we take i =2k — 1 and ¢;, = e”#°*. Then from the other two inequalities

we get

Int- Int 1
In7 SakS n ie. |]1,=1‘:[a= (’l—n—l,%) .

1_
q

3 e

Similarly, the first inequality in the set I, is impossible for : = 2k. So we
take s = 2k—1 and d;, = e”7%. Then from the other two inequalities we get

In = In 2¢t I In 2¢t In =
2 ~ . _ 3
T Sd <77 le. |L)l=M;|+——, T |-
a1 51 q1 ™ a1 T qn 5

Since |I1| < p1 < B2 < |I,| we consequently have

Int Int In2¢t Ing
M“(l_l’ 1_1) SM&(L_L’l _2_1_)
q roq s q1 ™91 51

Therefore we have shown that 3¢ > 0 such that

M,(t,7) < Ma(ct, %)

18



Now, since

. C; Cir
lllzl{zzcz?qscipcir, ’—SST, ;Zt}lgﬁ
Ciq Ciq

by lemma 1.4(z2), if 2 = 2k — 1 then the first inequality in the set I gives

2
q

+

Nl
==

which is not possible. So we take i = 2k and ¢;, = e/(P*%). Then from the

other two inequalities we have

f(st) = flab) < of(rbi) — flgbi) >

<~ f(sbx)<Int , f((r—=1)b)>Int
— f}(Int) <b < FYIn7)
r—1 s
and hence M, (f“(ln 7) , f7(In t)) < .
s r—1

Note that f((r — 1)bx) < f(rbx) — f(gbx) since f is rapidly increasing.

On the other hand if i = 2k then the firt inequality in the set I gives

which is possible only for finitely many values of k. So we take : = 2k and

dip = e/(P%). Then from the other two inequalities we get

6f~(315k) — f(dubx) < 2er, f(ribe) — f(qbr) > .t

< f(s1bs) — f(Gibe) < In2er, f(ribe) — fgbe) > In

= f((Sx - l)l;k) < In2cr, f(r1be) > In =
. f-1 F—1 In +
Thus III S MB (f (ln 2CT) , f (n 2¢ ) .
s1—1 Ty

19



Note that f((s; — 1)b;) < F(s1bx) — f(dibe) since f is rapidly increasing.

Let now T = f“(sln T), ie. 7 =ef6T) Then
f 7 (In2cr)  f~'(In2¢+ f(sT))
s —1 s —1
FFUs+1)T)  FU((s+DT) AT _ 0 7y
S— =T = =TS < Ky f7A(T).(+)
for Ky > limp_ ff_—llj'cf((fl(;;(;lzjl)) Similarly for L = f‘lf‘ln t), le. t =
f(rL)
L eltD)
Fng) S5 =)  Ff(rL) — Ine)
Ty B 1 B ™
U -1DL)  FUA(r=1L) L) 1 s .
S L T
Tlf_lf(L)

for K3 > limp_o = .

[ ((r - 1I)
If we take K > max{K;, K>} then both of () and (*x) will hold. So we

have
. 1l o~
Now choose 7 so large that 77, ;,(K) > 7. Then

1

TP < MAF ), ).

My(K f~ £(T)
, - 1 oL L
Since My(f7f(nT), J7* f(2)) = My=aji(nT > ) we have
L
My(T, L) S My (T, )

If we change the roles of U;, V;’s above we get the following symmetric

inequalities;
Int Int In2ct In =
Mﬁ(z_l’ 1_1) SMG(;_L’ L_ZCL) ’
q r q 3 q1 T q1 S
M; (f“(ln‘r) , f"l(lnt)> <M, (f"(ancr) , f'(In 5‘;)) ‘
s r 81 ™

20



By these together with their symmetric inequalities we say
M, ~ M; and M, =~ M;.

As a consequence of these we get a; < d;4x, and b; < f“lf(5j+k2) . Then by

theorem (2.1) we have

if Eo(a) x Ly(b,00) 2 Eo(d) x L (b, o0)
then Eo(a) ~ Eo(d) and Ly(b,00) ~ Lj(b,00).

3.3 Lg(a,0) x Ex(b) ~ L(d,0) X Ew(b)

Let K(C) = Ly(a,0) x Ew(b), K(D) = L(&,0) x Ex(b) and let T be an
isomorphism from K (D) to K(C) where D = (d;;),C = (¢cip).- Then

e TG ifi=0k—1 e TG ifi =2k —1
Cip = ) ip — -
P ePbx if i = 2k P PPk if 1 = 2k

If 7 = 2k then the first inequality in the set I) gives p + r < 2¢ which is
impossible. So we take ¢ = 2k — 1 and ¢;, = e/s*%) Then from the other

two inequalities we get

f(éak) - f(%ak) <hlt f(%ak) - f(%ak) >Inr

1 1
— f(;ak).glnt , f(q+1ak)21n7'

= (g+1)f'(In7) < a;r < qf '(Int)
and hence M,(¢f*(Int),(¢+ 1)f'(In7)) < [L].

On the other hand if ¢ = 2k then the first inequality in the set I; gives
In4c?

p+r—2¢ < Y which is possible only for finitely many k. So we take
k e -~
i1 =2k—1and d;, = ¢ /(%) then from the other two inequalities we get
.1 £ 1 ~ 1 =1 T
—dy) — f(—di) <In2ct , —dy) — f(—dx) > In —
f(q1 k) = f(d) f(q1 k) = f(dk) 2 In 5
| ~ 1
%) < In2¢ct —dr) > In—
f(q'1+1a’°)—nc , f(q1 k) 21no
=  qf'n—)< d <(d+1)f"(In2%t)

2¢



and so |I| < Ms(( + 1) f(In2ct) , g1 f(In é).

Since II]I S ,31 S ,32 S IIgI have
T

M.(¢f*(Int), (¢ + 1)f'(In7)) < Mz((g1 + 1)f'(In2¢t), qu.f(In 22))

Let T =qf'(Int) and L = (¢+1)f~'(In7). Then for

f-1¢p0 T -1
K > max{(g: + 1) lim =V lim f—f(L)}

o ff(T) " qu oo f15(L)
we have M,(T, L) < Ms(Kf'f(T), L' f(L)).
Choose now 7 so large that 77_,,(7) > K. Then
M(T, L) < Mi(FT), (D)
Since Ma(f~1f(nT), f~1 (&) = ML jz)(nT , £) we have

L
Ma(Ta L) < Mf—lf'(&)(nT ’ ';]‘)

If : = 2k — 1 then the first inequality in the set I gives
1 1 1
2f(=ax) 2 f(-ax) + f(=a
Con) 2 S o) + f(Gad
which is not possible since f(;;ak) > f(%ak). So we take 7 = 2k and ¢;, = eP*.
Then from the other two inequalities we get
(s —q)by <Int |, (r—q)bx >Int

t 1 ‘
e Ity T |111=M,,(1“T, lnt).
q s—q ' r—q

On the other hand if i = 2k =1 then the first inequality in the set [ gives
<1 . « 1 ~ 1

f(Zdx) + f(—di) - 2f(—di) < Indc®

p r Q

which is possible only for some k < ko. So we take : = 2k and d;, = ePbE .

Then from the other two inequalities we get
. ~ ¢
(51— q1)bk <In2er , (r1i—qi)be 2 1In 52

t . 2 N In2 L
— M g2 (RET LY
™ —q1 S1—q1 S1i—q1 "M—q
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We consequenly have

9 t
A/[b<lnT , Int ) SMl;(ln_cv: , anC )
s—q T—¢ S1—q1 1 —q1

Also, if we change the roles of U;, V,’s in Remark we get the following sym-

metric inequalities ;
-1 (T, L) < Mo(nT, &),
]\/jb ( ln_) (l.anr ]-“_ztc )

s—q ) q s1—q1 ’ n1—q

These with their symmetric inequalities give

As a result we get a; < f"lf(&i_,.kl) and b; < by, for some ky, k; € Z by
2.3. Then by theorem (2.1) we have

if L4(a,0) X Eoo(b) 2 L(d,0) X Eoo(b)
then L;(a,0) = L7(&,0) and Ex(b) = Ew(b).

The following case is included in this chapter since its proof is similar to

the earlier proofs.

3.4 Lj(a,0) x Ly (b,00) =~ L¢,(a,0) x Ly, (b, 00)

Let K(C) = Ly,(a,0) x Ly,(b,00), K(D) = Ly,(,0) x Ly,(b,00) and let T
be an isomorphism from K (D) to K(C) where D = (d;;),C = (¢ip). Then

[ e hG =2k e =2k -1
Cip l2Eh) i 5 = Ok P ehB) if g = 2k

If : = 2k in the set

Crr Cis
I = {Z CipCir < ng) — <t =2 }
Ciq Ciq

then the first inequality gives

f2(pbi) + fa(rbe) < 2f2(qbx).
23



f2(rby)
f2(qbr)

1
Cip = e f1G%) Then from the other two inequalities we get

But /" oo since f; is rapidly increasing. So we take : = 2k — 1 and

AGa) - AGa St filza) = filja) = 7

ap) > Inr

1 1
—a;) <lInt
fl(qak)_ n fl(q_H

—
= ((+Df'(In7) < & <qfi'(Ine)
and hence M, (¢fT (Int), (¢ + 1) f (In 7)) < L]

On the other hand, if ¢ = 2k in the set

dtr dzs
I = {i: dip, di, <4cd;g L < 2ct !

*P1 W g " d. 2 _}
N 451

then the first inequality gives

fa(prbe) f4(T11;k)< In4c? 2 (<Indd 49w E
Fa@ite) T T@ibe) @b (Sinde’ + )

fa(r1be)

= 00. So we take? = 2k—1

which is not possible for every k since lim

- fo(@ k)
and d;, = e PG5 and get from the other two inequalities that
1 1 1 1 T
—dy) — f3(—dy) < —d.) — fa(—di) > ln —
fz(q1 dy) fz(r1 dy) <In2ct f3(q1 dx) fs(s1 dr) 2 In 5%
1 T
i) < —ai) > In—
= fg,(q~1 n 1ak) <In2t f3(q1 dy) > In 5
= afi'In0) S @ < (@ +1)f5 (In2e)
and hence 1] < Mi((§: +1)f5'(In2¢t), ¢1 f5 (In 216-))

Since |I1| € B1 < B2 < |I] by Remark we have

T

Ma(qfi(Int), (g+ 1) (n7)) < Ma((d +1)f5 (in2et) , quf5 (In ).

Consider now the set
Cis Czr

I-zc < CipCir, — < T >t
(i <open 2<r, o)
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If : = 2k — 1 then the first inequality in the set I gives
1
Qfl( ak) <f1( ak)+f1( k) (S 2f1(;ak))

which is not possible since p < ¢ and f is rapidly incresaing. So we take
t =2k and ¢;p = ef2(P%s)  Then from the other two inequalities we get

f2(sbe) — falgby) <InT ,  fo(rbr) — fa(qbe) 2 Int

— fZ(Sbk) <lnr , fz((T‘ - l)bk) > Int
-1 -1
s fs (lnt) < b < s (InT)
r —1 S
- ~1(Int
and hence Mb( 2 SHT), fzr Enl )) < II.

On the other hand for the set

R dir, t
71y dl — < 2cr 2 _}
d,ql ditn 2c

I

{i:d% <d4cd,, d;

tq1
if + = 2k, then the first inequality in the set gives

f3( 5o dk) fa(; )

< ln4c® + 2.
fs(5-dx) dx) ~

+

o-d) .
But lim folordh) _ . So we take i = 2k and d;, = e/****). Then from the
fa( ak)

other two mequaht1es we get

f4(51b~k) - f4(¢ilb~k) <lIn2cr f4(rll;k) - f4(£11b~k) > lnzt—c

- - t
= fa((s1 = Db <In2er , fa(rmb) 2 In g
— ' (In3) < b < fi (In2cr) '(In2c7)
T s —1
- 71(In2 T(In
and hence 1] < M; <f4 (In2c7) , fa'( 2c)> .
81 —1 r

Since |I| < B < B < |I| we consequently have

M, (f{‘(lnT) f{l(lnt)> < M <f4 (In2cT) f{l(lni)).

b
s Tor=1 s1—1 8
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Also, if we change the roles of U;, V;’s in Remark we get the following sym-
metric inequalities ;
_ _ . _ _ T
M;(qfs'(Int), (g +1)f5'(In7)) < Mo((2+1)f7 (In2et), qufi (In 37)),
M, ( i (In7) f;‘(lnt)) M, (f;‘(ln 2cr) fi'(In z—‘c)> .

s r—1 ’

IN

S — 1 ™
These with their symmetric inequalities we get

Ma =~ Mfflfa(ﬁ) and Mb ~ Mf—lf‘(g).

2

As aresult we get a; < f ! fa(@isr, ) and b; < £ fa(bjsr, ) for some ky, ks € Z
by 2.3. Then by theorem (2.1) we have

if Lfl (a70) X Ly, (b,OO) = Lfa(&’o) x qu(gi OO)
then Ly, (a,0) =~ Ly,(a,0) and Ly,(b,00) = Ly, (b, 00).

26



Chapter 4

Cartesian Products of Various Types of

Dragilev Spaces

In this chapter we shall consider all possible cases of the isomnorphisms of
cartesian products Ls(a,7) X Ly(B,s). We begin with a definition, which

was given in [1].
Definition A Kothe space K(A) A = (a;p) is said to have the property

St(f), if IpYMM >1Vq3dr
Sz(f), if YMM >13pVg3r
SHf), if IpVYgIraIM M >1 (!
Sy(f), if 3pVYgIrVM M >1 (!)° holds,
QF(f), if VpIgvrIMM >1 (!
Q5 (f), if VpIgIMM>1Vr (!
QY(f), if VMM >1VpIq¥r (!
Q; (f), if VMM >1Vp3q¥r (!)" holds,

where

3

M: Mf1? log(ﬂ‘l) < f~'log(%z) for every ¢ € N,
()7 M log(52) < M f~ log(G:
(M): [ log(2E) < M [ log(3;

(M Mf“llog(;‘,;;)Sf ‘log(a,

Q

iq

1

iq

)
) for every: € N,
) for every 7 € N,

IS

for every ¢ € N.

o

Note Subspaces of L;(a,0), Ls(e, 1), Ly(e,0), Ls(e,—1) respectively
have SF(f), S#(f), 57 (f), S (f), and quotients of Ly(a, o), Ly(a, 1),
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Ly(e,0), Ly(a,—1) respectively have QT(f), Qf(f), Q7 (f), @7 (f). Since

we consider L¢(a,r) spaces in cartesian products, they are both subspaces

and quotients (see [1]).

Lemma 4.1 Following implications are always valid ;

ST(f) = ST(f), Sz (f) = Si(f) and Q7 (f) = Qz(f), QI (f) = QT (f).

One of the linear topological invariants that we will consider in this
chapter is the property D,. This property was considered by Vogt [18] and
Tidten [17] and called DN, by them (see also [6], [22],). Let ¢ be continuous,
increasing function. A Fréchet space (X, || - ||) is said to have property D,, if

IpVYgIr3C >0: ||z|l, < e(s)|lzll, + gllx][, Vs> 0, Vz € X.

Proposition 4.1 Let X = K(a;,) be a Schwarz Kothe space. Then the

following are equivalent.

(2) X has property D,
(:2) IpVg3Ir3dC >0: Tia < c,o(a‘:’r).
aip ig

Given a function ¢ as in the definition of property D, and u > 0, we define

®(u) = inf(p(s) + <)

Proposition 4.2 Let p < ¢ <r,C > 0,K > 0 and 2a;; < aig41 for some 1.
Then

(1) K29 <02y = K B(CK 2
aip s a,',q aip
.. Qi q+1 a; r a;r
AT L P(CE) = 2 < (20
(i) S < o(0f) 5 B < pacl)
Proposition 4.3 Let p < r and
iy

V=T U( Sy Up kU)o V= Bo(aip ()

k>0 Qip

where T denotes the absolutely convez hull, and ®(u) = lr;(f)(cp(s) + (g)) as
defined before. Then V' C V C 3V,
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The proofs of above propositions can be found in [8].
Note For the spaces Ls(a, ), Ls(a, 1) if we take
ps = exp f:,;l,.,-f‘l log,
and for the spaces L¢(e,0), Ls(a,—1)
P = €Xp fo_l loga
we see that with the same quantifiers as in the definitions of Sit(f), ..., S7 (f),
the inequality %‘1’ < <Pf(:—:‘§) holds.

Now, we are going to start to analyse the cases of isomorphisms mentioned
above. We shall use a similar method as in Chapter 1, but in this chapter

we shall consider following neighborhoods

Wl-——-‘TUs,
W, =U,,
Wy = T(J (—U, 0 £U,)) 0 20,
k>0 (pf(k)
I/f/l = TT(‘/sl)a (41)
WZ:T(Vth)v
- = 1
Wy;=T ——T(V,,) N T(V;,))) ntT(V;,
3 (kgo(wf(k) ( P) ( ))) ( )
W4=T(V¢il)
instead of (1.2), and
== 1
w, = T(T(| ) —=T"'(U,) nkT~1(U,)) utT~Y(U,)),
L= T T G AT (0 0T (0)
W2 = T_I(UQ))
W = TT_I(US),
. =/ 1
W, = T(T(| ) —=V,, NkV,,) UtV,,), (4.2)
= TEY gt U
W2 = ‘/1117
Wg = T‘/sl,
Wy = V;

instead of (1.4). Then we will again have #; < f3; and § < B.

We shall consider all possible relations of the considered Dragilev func-
tions. But we will eliminate many of them by using the following facts (see

[20]) ;
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Definition We say that a pair of lcs’s (X, Y) satisfies the condition
R ((X,)Y) € R) if every linear continuous operator T from X to Y is compact.

Proposition 4.4 Let X = X; x X3, Y =Y, x Y, be lcs’s, and
(X1,Y2) e R, (Y1,X2) € R. Then X = Y if and only if X; = Y, and
X2 ~ Y2

Theorem 4.1 Let fi, f2 and ¢ = f{* o f, be rapidly increasing. Then

(Lfl(a”r) ) sz(b’ 3)) €ER

f0<r<oo, 0<s< o and

(sz(bvs) ’ Lfl (a,r)) ER

if —oo <r <0, —0o < s < oo independently of the choice of the sequences
a=(ax), b= (bx).

4.1 Lj(a,00) x Lg,(b,00) ~ Ly,(d,00) x Ly, (b, o)

We show all possible relations between fi, f2, f3, f4 in the following table ;

fi<fa; fa<fa

Al1,A3
h=<fo<fa<fs

(*)
h=<fimfa<fy

B2,B3
f<A<f<fs

B3
far fi<fa<f4

B2
fai<h=<fimfi

f3‘% fi <faxfy

D2,D4
f<fa<fA=<fa

(™)
i< fam fi<f

B1,B4
h=<fs<fa<f

B4
hrfs<fa<fa

B1
h=<fs<faxfo

hrfa<farf

B1,B3
hH<fi<fi<f4

B3
hirmfs<fa<fs

(*)
Hi<firxfi<fs

B2,B4
<h=<fa<fo

B4
fam i< fa<fa

(*)
AR i< h

B2
fa<fi<faxf

B1
h=<fa<fimfy
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B A1,A3 Al C1,C4 *)
h=<h<fa<fslh<hxef<fi|lfi<h<fl<f|fixfi<fi<fs
(*) D2,D4 D4
fixh=<h=efilixfhi<hafy |i<fi<h<fh|fi<fsrfi<f
B1,B4 *) *)
h=<fhifafs|h=<fi<fa<fHh|hRfu<fa<filA<fa<faxfoilixmfi<fi=f
D1,D4 *) D4 *)
fa<h<ffilfamrh=<fi<h|i<hxf<h|fi<Hh<fizxf
A1,A4 Al *) *)
h=<flhh<fh<flh<h=zf<fili<fh<fh=xcflixcfi<fi<fs
A1,A3 *) D2,D4 *)
h<fhihmfi|h<b<faicxfilh<fhxbhrli|fixfi<H<folfsrfirxfi<f
B1,B4 ‘
» h=<fimfu<f
A1,A3 A3 B2,B4 *)
L<h=<h<filh<hofh<fi|s<h<h<fi|lfsixfi<fi<]s
D2,D4 D2
fi<fa<h=mfalfanfeo<ficfy |i<fu<fo<fi|fi<famfa<h
C2,C4 (*) (*)
L<hfs<fulla<h<fa<hlficfai<fi<fi|h<fh<fumxh|fizfh<firfi
D2,D3 *) D2 )
fa<fa<fa<fi|acfi<fi<h|h=<f=m<hHh|f<fi<fi=fi
AZ,A3 A3 *) *
<h<hA<f|fi<heh<filh<fs<fizfi|lfirfi<fi<]i
A1,A3 (*) C1,C4 C1
fo<fi<fa<fs f2'<f1 fi<falfa<fo<h=<falfamfa<fi</fs
C4 D2,D4 D2
faxfo<fmfa|fanfo<fimfy [ i<fi<fi<fi|{fa<fimfi<fi
C2,C3 c2 Cs3
L<fAifi<fallfe<fi<fa<flcfi<f<f|li<fi<OHrfi|fizxfi<f=h
C2,C4 C2 (*) C4
fi<h=f<hlfich=<fs<h|fi<xhxfi<h|fi<fh<f=h
C1,C3 ) C3 C1
h<fa<h=<falh<farhi<filh<fa<h=fi|fixfi<h=<fs
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N A1,A3 (*) D2,D4 (*)
Lhifcfi|fe<hA<fsxfalh<ARfsxfi|fsirfu<fi<fl|fimfixfi<h
C2,C3
fo<fax fa<h
A1,A3 (*) B2,B3 D2,D4
haefisfa<fi|lfirfa<fa<falhrfacfi<filfai<hrh<fi|lfsi<fi<f=f

*)

h=fo; fam fy

h=xf<firf

o~

~

~y
~~

~

fi~fy~fy~f4

firfa<fimf

This table is valid for the next three isomorphism.

fi<fax fizfo
Al1,A3 (*) *) D2,D4
hrf a<fa|lheh<fi<flhchcu<fs|fi<xArRAL<f|fi<fs<Hh=x]f
(™)
fa<xfar fixfo .
Al1,A3 D2,D4

We eliminate many of the posibilities above. The remaining uneliminated
cases are written in bold face. Those are the cases which will be discussed.

We use some notations to show how we eliminated them. We wrote, for

instance A1,A3, over some cases. Because by theorem 3.1, the assumption

of above isomorphism fails whenever one of

A
B
C
D

fi <fa; fa=<fs
fi=<fa; <[
fa=fi; f2<fs
fa<fi; fa<fe

holds and one of

h=</fs
: fs< i
: 'f2<f4
fa< f2

W N

Also we wrote (¥*), for instance, over fi < fo = f3 < fa
for this case if we have the isomorphism T : Ly (a,00) x Ly, (b,00) —
Ly, (&,00) x Ly, (b,00), then S = Tth(a'oo) :— Ly, (&,00) x Ly, (b, 00) is also
an isomorphism onto a closed subspace. On the other hand, for the projec-
tions Ps : Ly,(d,00) x Ly, (b,00) = Ly, (@ 00) and Py : Ly, (&,00) x Ly, (b, 0),
P;o S and Py oS are compact since fiy < fo = f3. So oS+ Pyo S
should be compact. Then (P; + P4) 0 S is compact. But this means that S
is compact since Py + Py is identity. This contradics the assumption T is an

isomorphism.
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Proposition 4.5 Let fi < f,. Then
(i) Ly, (a,00) does not have Sf(f2),
(i) Ly,(@,00) does not have Qf (f1).
Proof
(i) Assume that Ly, (a, 00) has S (f2). Then 3pVM M > 1 Vq 3r such that

M f2—l log(efl(qak) _Afl(pa'k)) S fz_l log(efl(rak) - fl(qa’k))

= M fillg=Dax) < f57 fi(rar)

fi! fi(rax)
2 fillg —1)ax)

But since fi < fs, i.e. fi! fo is rapidly increasing the right hand side tends
to 1. This contradicts the assumption that M > 1. Thus Ly, (a, c0) does not

have S (f2)-

(ii) Similarly as in proof of (i), if we assume the contrary of (ii), we obtain
Vp3dqVr3IM M > 1 such that

F ful(r - Daw)
A S

But this is not possible, because the left hand side tends to infinity.

For K(C) = Ly,(a,00) x Ly, (b,00), K(D) = L, (d,00) x Ly, (b, 00),

[ et ifi=2k -1 ) PR if i =2k — 1
G 2P if i = 2%k TP b if g = 2k

4.1.1 fam fi< fa= f3

In this case fi! fi, fi' fa, f3* fo, f5'fs are all logarithmically convex and

slowly increasing, and f' f2, fi' fa ! f2, fi! fa are rapidly increasing.

Then
L;,(a, ) part does not have Sf(f2), S5 (fs),
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Ly, (b, 00) part does not have Q7 (f1), QF (f4),
Ly, (a,00) part does not have Q;"(fl), Q'l*'(f4),
Ly, (b, 00) part does not have Si(f2), Si(fs).

Assume K (D) = Ly, (&, 00)x Ly, (b,00) and K(C) = Ly, (a,00)x L, (b, 00)

areisomorphic where C = (¢;p), D = (dip),

_ efilper) if; =92k — 1 efsPin) if 5 =2k — 1
T ehbb) if ;= 2k »TPT) ehth) f g = ok

Consider f; = B(W, N W3, T(W; N W,)). Then

B 28 (B%c,-s) NT(B" (@5 (25)) N1B¥(es,)) , T(rB(eis) U Be(c,.,q))>

ip
max{c; , & (25), L¢; .
. {cip®sn(z= )“’T}Sl,lc"qsl}l
Cigq ;.'Cis
Cir czq Cir
1:® <=, =<, 22>
~ (i, (20) < 82, B oy B2 5y
zt{z:wyc‘,’“m"‘?‘ ,f"’—'St % > 7} = |Ll.
Cig-1 Cip Cig Ciq
Qf (n)

where o5, =exp fi1 37 fi log.
If i = 2 in I, then ¢;p = ef2(Ph) but Ly, (b,00) does not have QF (f1).

So we take i = 2k — 1 and ¢;, = e/1(P%). Then the last two inequalities give

filrax) — fi(gax) <Int ,  fi(sar) — fi(qax) > In7
filrax) <Int , fi((s —1)ax) 2 In7

e
-1
— fi (lnT)S ap < 1 (lnt)
s—1 r
“1(Int) fiY(1
and hence Ma< ! in ),fls (_an)> < L} £ B

On the other hand for #, = S (C(Wz nWws), T(W, U W4)),

Ba < B(e(B(dsgy) T3 B3, (3)) N 8B (i)

HP1

T(7B*(dis, ) U B*(diiy)))
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d.
i ma,x{%diﬂ,,l (I)jl (_'—rL)y %di,rx } ;_Cdi

. d
< s <1, 22 <y
d',zil rdis,
. 17‘ dir dzs
=Hiten(=) s 6be dig = < 2, L> T
' 7p1 d t,P1 d !QI d’ " 2c
z'r dzr dzs
Sl{i39°f( ,1)— .01+1, 1<2t, 1>_ = |
N 1 div<71+1 , dtPl d101 d; 1 }I I 2|
QF (1)

where ¢y, = exp : fi % fi' log. Since Ly, (&, 00) does not have Qf (f;) we
take 1 = 2k in I,. Then from the last two inequalities we see that

fi'(ln2et) fi'(Ing)
ﬂ2<|12|<M( o) A >

Therefore we have

(£ S208)) (5 () fn )

?
r s—1 ry—1 s

since B; < fs.

Consider now the sets 4.2 and replace f by f,. Then for
ﬂ=ﬁ(Wan3, F(WIUW2)))

5 28 (B N B () TOB () U 1B ) U B

P
L.
2160 S e () Forl ° =1l
~ i S e, —-—%;&‘L.,)<l % < o))
=i 2 < ga(), B B> )

zl{i:ci,q+lsq) Cir zs_ Ez,_th}I
ciyp rp 1‘] ci,q

> i 2 <o () 20 <7 S0 > )= 1,
C;’p C11q+1 c’vq 1,9
sH(s2)

where ¢, = exp fa 2= f7! log Since Ly, (a,00) does not have St (f;) we take

1 = 2k. Then from the last two inequalities we get

Mb( i'(n7) ff (lnt)) i< p

s r—1
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On the other hand, since 8 = 8(c(W, N W3), T(W, U W,)) < B where

8= Bl B(di) N 7B(do)) , T(T(B (i 1 £

tB*(dis,))) U B*(di 5,))),

and
A< i 22 <o, digy < 2}
- dig — n\in{d;'pIsz(ﬁl-), ldin} —
. d; d; Tdin o di 2
= I 3 <2er, T <20, (), S0 < 2y,
Zi,ql dgp, J di.py gi,rl i
= |{i: 22 < 2e0,,(-2), 2 < 2er, 2> 1)
gi,pl ddi,pl ddi,zil ddim i?c
- Gig-1 i is i
< e d.q Sq)fz(d.rl)> d._ISQCT, IZE_}I
.hPl (}1?1 11‘1(11. ‘lqé c t
< Z‘: 1,q1—2 < 1,r1+1 1,81 < 2CT 1,1 > = i
- ’{ divpl - ('DfZ(di1QI_2)J, diyé’l - ’ iyql N 2c}l I I
5F(f2)

where @y, = exp f2 37 f5 ' log. Since Ly, (b, 00) does not have Sit(f,) we take
¢t = 2k — 1. Then by the last two inequalities we see that

+ ! (In 2¢7) .f;;l(ln =) ) .

81—1 ' 1

Bsmsm(

Therefore we have

‘M<ﬁ%mﬂ,ﬁmmqsﬂﬁ(gmwa)ﬁ%m@)_

s r—1 ’

Sl—l 1

-1
Let now T = 2—(11—1—72 Then
s
fit(n2er) _ fi'(n2c+ f(Ts)) _ f5' fo(T(s +1))
s1—1 s1—1" - s;i—1

_ AT 5 (T (s +1) 1
- s — 1 f3-]f2(T) S Af.'} fZ(T)

. it AR(T(s+1)) : g : :
for A > lim . Note that since is slowly increasin
o T—o (sy — 1) f5 fo(T) fs' 1 Y &
we may find such a constant A.
fi!(Int)

Similarly for L = o e get

“n L
ﬁﬂ—QZQWhm

T1
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So for

f lfS_ f2( )
or B > an(}ofalfz((r_ ) )

K > max{A,B}

we have

MT, L) < M; (Kfa‘lfz(T), f—%—)) .

Choose now M so large that 7,-1, (M) > K. Then

L

My(T, L) < My ) (MT, M)
and similarly

L

Ma(T', L) < My, 6)(MT, 35)-
Also, by the symmetry we have

L
Mip14@(T L) < My(MT, 57),

L
M-I L) < Mo(MT, 57).

Similarly as before, from these last four inequalities we obtain

b X f5 fo(@ik,) , a; =< f7" fa(bjan, )-

Then by theorem (2.1) we have

if Lf1(a"oo) X sz(b7oo) = Lf;(&’oo) X qu(é’oo) and f4 ~ fl = f2 f3
then L (a,00) = Ly, (b,00) , Ly,(b,0)~ Ly (&,c0).

412 firfor farf

Remark Let f, g be two rapidly increasing Dragilev functions such
that h = f~!' g and A~! = g~! f are both logaritmically convex and slowly

increasing. Then there are constants «, # > 0 such that
g(z) = f(:caeﬁ) and f(z) = g(zl/“e—ﬂ/“),
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This case is quite different from the others. We may take in this case all
the functions the same. We may say
Ly (a,00) x Ly, (b,00) =~ Ly(c,00) and Ly, (&, 00) x Ly, (b, 00) ~ L; (&, 00),
where fo(z) = fi(z%€P), fa(z) = f;;(x&eﬁ) k= f,, h=fs, and
ehlpar) =92k —1 ehrar) =2k 1
c=(cip) = =

ehe*bge?)  ; — of eh™55e?) = ok

and
o efolrin) =9k 1 ehlein) =2k —1
¢=(&p) = S 5P o T fOEA) = ok '

We could take h and % to be f, and f; respectively too. Moreover we
could take & and A to be f; and fy or f; and f3 respectively. Hence we may

get each of the following;
Lfl(a’ Oo) ~ Lf3(67oo) and sz(ba OO) ~ Lf4(l~’a OO),
Lfl(a')oo) ~ Lf4(57 oo) and sz(b7 oo) ~ Ly, (&,OO).

by the same method as before.

We will see the same case in the rest of this thesis. But the idea here is

valid there too. So, we will not consider this case any more in the rest.

4.1.3 Other Cases

Under the assumption Ly, (a,00) x Ly, (b,00) =~ Ly, (d,00) x Ly, (b, 00), for
the cases
firh<ficnfi, farxfai<xfimfiand = fo<fizfa

we respectively obtain ‘

a; X fl_l f3(6i+k1) and b; =< f2-1 f4(i)i+k2)7

bi X f5" fol@ip,) and a; X 7 fa(birs,),

bi < f5! fa(bisy) and a; X 71 fs(@igs,)

by using the same method as before, where ki, k;, li, L, ¢, t2 are some

integers.
So, for the rest, it will be enough to consider only one case for each
considered isomorphism.
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4.2 Ly (a,0) x Ls,(b,0) ~ L, (a,0) x Ly, (b,0)

Proposition 4.6 Let g; < g2. Then
(i) Ly, (a,0) does not have Q5 (g2),
(ii) Ly, (@,0) does not have Sy (g1).

Proof
(1) Assume that L, (a,0) has Q1 (g2). ThenVM, M > 1, VpdqVr

Mg;! log(egl(%ak)_gl(%dk)) < g;! log(eg,(i—ak)_gl(%ak))

= Mg g(zau) <9 aiiax)

— M < 97 g1(Lax)

= g7 ailGger)’
But since g; < g3, right hand side tends to 1. This contradicts the assumption
M > 1. Thus, Ly, (a,0) does not have Q7 (g2)-
(i) The proof of (i2) is similar to (7).

The table in section 3.1 is valid here too.

The remaining cases after our eliminations are given below. In order to
deal with these cases we will use

e~fiken) ifi— ok 1 e PG if =2k —1
Cz = ) 1 = b
P e 2GG%) i 5 = ok P e NG if i = 2k

421 fimfi<h=fy

For this case

Ly (a,0) part dos not have Sy (f2), S5 (fs),
L;,(b,0) part dos not have Q7 (f1), Q7 (fs),
L;,(a,0) part dos not have Q7 (f1), @7 (f4),
Ly, (5,0) part dos not have S;(f2), Si(f3).

——=U,N kU Nntu,,
AL ))

For Wy =T (U(
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k>0 S‘ofl

= —= 1
W3 = r (U(WT(VPI) n kT(VTI))) N tT(‘/rl)’ where Ph =
exp fi M fi! log,in (4.1) we have

c 1 Czr

B> {5 : oy (Birtly < Sas <t 22> =l

1 I{ 1( i om 1) Cip ’ Cin Cig }I I 1|’
Q4(f1)
d; d; s T
By < i di < gt 2L < 2ct, > =} = |L]
l{ Q‘Ofl( ““ l) dzpl J’ dqu z,ql — zc}l ' 2'
Q4(f1)

Since Ly, (b,0), Lg,(a,0) do not have @5 (f1) we takei =2k —1in I and
¢ = 2k in I;. Then we get
B > L] > M, (¢ 7' (Ine), (g+1) f7'(In7)),
B < BI < M; (3 +1) 7 (n26t) , @0 S (n ),
and hence

(q fl'l(ln £, (g+1) fl—l(ln 7-)) < M (((i]) f;l(ln 2ct), ¢ f{l(ln %)) .

On the other hand, for
L_rywy) nkT“(U,)) U tT-\(U,,

Wy =T :
' kL>Jo ‘sz(k)
~ == 1
W, =T|(T (U —V,, nkV,l) UtV,l)
k>0 Pr2
where @, = exp fo M f;! log in (4.2) we obtain
Cig+1 Ci,s Cir
B> = g — <1, — 2t} = ||,
622 < (20, B Bz =
S4 (f2)
di - dt‘l' d‘l 31 din t 4
072 ¢ (P, S0 oo, TN Ly o]
L2131 ¢

B<|fi: 222 <
\divpl
55 (f2)

dir‘h —2J dir‘i]

Since Ly, (a,0), Ly, (b,0) do not have Sy (f;) we take i = 2k in [ and ¢ = 2k—1

in I and get
B2 112 My (g f7'(In7), (g+1) f7'(Int)),

2
. it
Bl < My (@ +1) £ (n2er), S5 n )
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and since 3 < B we have

My (g 77 0n7), (@41 S 100) < Ms (@ +1) S5 (n2er), a0 S (In ).

Because of symmetry, we therefore have

M, = Mf," f1(B) J My = Mf;‘ fa(8)

As a result we get a; < fi' fa(bipr,) and b; < f57 fa(@,4x,) for some
ki, ky € Z by (2.3).

4.3  Ly(a,1) x Ly, (b 1) ~ Ly (a,1) x Ly, (b, 1)

Proposition 4.7 Let g1 < g2. Then
(i) L, (b,1) does not have S§(g2),

(i) Ly, (b,1) does not have Q¥ (1)
Proof

() Assume that Ly, (b,1) has SF(g2). Then 3pVq3IrIM, M > 1
Mg{l log(em((l—;—)bk«)—gl((l—;;)bk)) < gi—l log(egl((1-—%)bk)—gl((1—%)bk)

= Mg a((l-1b) <9 a((l-55)b)

-1 1
97 91{(1-7)bk)
=> M S g;l gl((l_qll)bk).

Since g; < g2, the right hand side tends to 1. But this contradicts the
assumption that M > 1. Thus (z) must be true.

After eliminating many of the possible relations between the Drag-

ilev functions f1, f2, fs and fy, we only have 5 remaining cases :

431 fixfi<foxfy

This case

Ly (a,1) part dos not have St(f2), SH(fa),
4]



Ly, (b,1) part dos not have QF (f1), @F(f3),
L, (a,1) part dos not have S} (f,), Si(f1),

Ly,(b,1) part dos not have QF (f1), Q7 (fs),

and for f; ( by using ¢y, = exp fi & fi log ) in (4.1),

Cir+1 Cig—1 Cir Ciys
By > {1 g (22 < Tt > ) =]
l{ inl (c a1 ) Ci,p#, Cig Cig }l l 1')
Qt(fl)
dz T di q1+1 dir dt
132< . 90 1 S »q1 )Tl S2Ct 1 >__ _ ]
I{ fl(d ,th+1) di,Pl ’ di,tfl ’ d; 1 }I l 2|

Q4 (fl)

Since Ly, (b,1), Ly, (b,1) do not have QF (f;) we take i = 2k — 1 in I; and
in I;. Then we get

“nt ~1(1
,BIZIIIIZMa (fll(nl)’ fll (_nl'r))’
182 < IIZI < M (f:; (ln?d) ) f3 ( C)> ’
5 -
t -1 -1 -1 T
dbonee g (FRO SR (0% )Y
1-; 1-3 -5 -5
Since £, < B,.
On the other hand, by using ¢y, = exp f2 & f7' log in (4.2) ,
(& Cir Cis czr
B> {i: 22 < pp(—5), 22 <, 2 ) =1,
Cz,p C‘l,q+1 ct,q C; q .
SH(£)
~ . dig—2 dirr41. d; d; t <
< i 222 < tntly Thn o WS M= .
IB - l{z dixpl - (sz(div‘“_z )’ dir‘il - 267., dirQl - 2C}| ,Il

——

SH(f2)

Since Ly, (a,1), Ly,(d,1) do not have S (fz) we take 7 = 2k in I and in I
Then we get

b s (80 00
b <l < M, (ffﬁln?cr) ’ f;(flaitz)) ,
sy—1 T
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and hence
- 7 11

s1—1 T1

M, (f;‘(lnr) f{‘(lnt))S M, (f;‘(ln‘zcr) flt(lni))

1> 1
- i
By symmetry, we therefore obtain

M, = M= g 5 ) My = My-1 4, ).

As a result we get a; < f7! fa(dips,) and b; < 5! fa(bjsr,) for some
ki, k2 € Z by (2.3).

-~

4.4 Lfl(a, —1) X sz(b, —1) ~ Lfs(fl, —1) X Lﬂ(b, —1)

Proposition 4.8 Let f; < f;. Then (i) Ly, (a,—1) does not have Q7 (f2),
(it) Ly, (a,—1) does not have Sy (f1).

Proof If we assume the contrary of (z), we get

v < A+ D)

~ fr AL+ 7))

Since fi < f; right hand side tends to 1. But this contradicts the assumption
that M > 1. Thus, (¢) must be true. The proof of () is similar.

The remaining cases after elimination are same as before, that is:

441 firfi<firfq

For this case

Ly, (b, —1) part dos not have Sy (f1), S5 (fs)-
By using fo (for p;, = exp fo M f;' log) in (4.1)
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L3 <y, 22> 1) =),

C; Cig—
Bz |{i:wn(Z0) < =5

i,9—1 Cip Ci.q ig
Qz (fz)
dt )71 d 1,1 +1 d; d, 51

162<|{7' ‘r"’f( < ) “‘1<2t’ >_' Dl
: d:41+1) d»Pl d,th d“h }I |2l

Q (fz)

Since Ly, (a,—1), L (@, —1) do not have Q5 (f;) we take ¢ = 2k in I, I,.

Then we see that

,Bl > IIII > Mb (fz—l(lnt) f2_1(ln7'))
= = 1 )
1+3 1+q+l
B < || <My fi”(in2ct) fi'll N o)
B - 1+¢h+1 ’ 1 +-ql—1 ,

fi'(int) f;‘am))<M (f4 (In 2ct) f:‘(lné)

and hence M, ( ] , ,
o Tt

since f; < f,.

1
l+m 1+ -

On the other hand for ¢;, = exp fi M f{! log in (4.2) we get

Cir C; C, r
B> |{i: 2 < L), 2 <r, >y I
I{ Cip (pfl(ci,q+l 1? Cia T, Cig }l l |7
Sy (.fl)
3 . digy~2 diri+1, dis d;, t ~
B<|{i: 2222 < - 2L L 2er, =+ > —}| =]
I{ diYP] (Pfl ( diyql -2 ), diy‘il , dim 2C }l I l

S; (f1)

Since Ly, (b, —1), Ly,(b,—1) do not have S5 (f1) wetakei =2k—1in I, I.
Then we get

B> IIl > M, (fl—ll-(:an) , ln-ll—(ln t))
q q+1
BS |i| < M, (f?iln?w) , fs_lli_nliz)) ,
i+l 3
and hence M, (fl—llﬁn;) , 1_;(hl_t)) < M; (f?ilihﬁﬂ : filgan_tC))
7 7+l q1+1 0

since f < B.
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