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ABSTRACT

SYNCHRONIZATION OF CHAOTIC SYSTEMS BY USING
OCCASIONAL COUPLING

Moez Feki
M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Omer Morgiil
June 1997

Nonlinear and chaotic systems are difficult to control due to their unstable and
unpredictable nature. Although, much work has been done in this area, synchro-

nization of chaotic systems still remains a worthwhile endeavor.

In this thesis, a method to synchronize systems, inherently operating in a chaotic
mode, by using occasional coupling is presented. We assume that a master-
slave synchronizing scheme is available. This approach consists of coupling and
uncoupling the drive and response systems during some alternated intervals. It is
then shown how this synchronization method can be used to transmit information
on a chaotic carrier. The applicability of this method will be illustrated using

Lorenz system as the chaotic oscillator.

Keywords : Chaotic systems, Lorenz system, Chaos synchronization.
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OZET

ARASIRA BAGLANTI YOLUYLA KAOTIK SISTEMLERIN
ESZAMANLAMASI

Moez Feki
Elektrik ve Elektronik Miihendisligi Boliimii Yiiksek Lisans
Tez Yoneticisi: Do¢. Dr. Omer Morgiil
Haziran 1997

Dogrusal olmayan ve kaotik sistemler, ¢oziimlerinin kestirilmesi ve kararsiz
yapilar1 dolayisiyla kontrol edilmeleri oldukga gii¢ olan sistemlerdir. Bu konuda
son yillarda oldukca ¢aligma yapilmig olmasina ragmen kaotik sistemlerin

egzamanlamasi hala aragtirmaya deger bir konu olarak goriilmektedir.

Bu c¢alismada kaotik modda c¢aligan sistemleri arasira baglant: yoluyla
egzamanlamasi metodu incelenmigtir. Bu caligmada bir stirtici ve bir alici sis-
temi egzamanlayacak bir yonetim onceden var oldugunu kabul edecegiz. Onerilen
arasira baglant1 yénteminde stiriici ve alici sistemler ard arda gelen belli zaman
araliklarinda baglanacak ve baglanti kesilecektir. Daha sonra bu yontemin stirtictt
ile alic1 arasinda nasil bilgi aktariminda kullanilacagi incelenecektir. Bu yontemin

uygulanabilirligi Lorenz sistemi kullanilarak gosterilecektir.

Anahtar Kelimeler : Kaotik sistemler, Lorenz sistemler, Kaos egzamanlamasi.
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Chapter 1

Introduction: A New Age of Dynamics

“Until recently, chaotic behavior

was a nuisance in engineering...”

L.O. Chua and M. Hasler

1.1 What is chaotic dynamics?

Throughout the history of science, complex nonlinear phenomena have been no-
ticed by experimentalists but more often than not, have been disregarded because

the concepts for explaining them simply did not exist.

For some, the study of dynamics began and ended with Newton’s law of
F=ma. We were told that if the forces between particles and their initial posi-
tions and velocities were given, one could predict the motion or history of a sys-
tem forever into the future, given a big enough computer. However, the arrival of
large and fast computers has not fulfilled the promise of infinite predictability in
dynamics. In fact, it has been discovered quite recently that the motion of very
simple dynamical systems cannot always be predicted far into the future. Such

dynamical systems, which in the papers are dubbed chaotic systems, (or said to
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exhibit chaos: the origin of the word chaos is a Greek verb which means to gape
open and which was often used to refer to the primeral emptiness of the uni-
verse before things came into being.) Such systems are defined to be aperiodic,

bounded dynamics in a deterministic systems with sensitive dependence

on initial conditions, see [1].

Fach of these terms has a specific meaning, see [1]:

e Aperiodic: means that the same state is never repeated twice. However, in
practice, by either graphically iterating or using a computer with finite pre-
cision, we eventually may return to the same value. Although, a computer
simulation or graphical iteration always leaves some doubt about whether
the behavior is periodic, the presence of very long cycles or of aperiodic

dynamics in computer simulations is partial evidence for chaos.

e Bounded: means that on successive iterations the state stays in finite

range and does not approach +oo.

e Deterministic: means that there is a definite rule with no random terms
governing the dynamics (e.g, Lorenz’s equations, Rossler’s equations ...).
In principle, for a deterministic system zq can be used to calculate all future

values of z(t).

e Sensitive dependence on initial conditions.: means that two points
that are initially close will drift apart as time proceeds. This is an essential
aspect of chaos. It means that we may be able to predict what happens
for short times, but that over long times prediction will be impossible since

we can never be certain of the exact value of the initial condition in any

realistic system.

Loss of information about initial conditions is, indeed, a property of chaotic
system. Suppose one has the ability to measure a position with accuracy Az and
a velocity with accuracy Awv, then in the position-velocity plane (known as the

phase plane) we can divide up the space into areas of size AzAv as shown in

Figure 1.1.
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Figure 1.1: Uncertainty growth in chaotic dynamics.

If we are given initial conditions to the delineated accuracy, we know the sys-
tem is somewhere in the shaded box in the phase plane. But if the system is
chaotic, this uncertainty grows in time to N(¢) boxes as shown in Figure 1.1-b.
The growth in uncertainty given by N = Nye" is another property of chaotic
systems. The constant A is related to Lyapunov exponent, see [2]. Lyapunov ex-
ponents quantify the average exponential rates of separation of trajectories along
the flow. For instance, the flow in a neighborhood of asymptotically stable tra-
jectory is contracting so the Lyapunov exponents are negative, whereas, sensitive
dependence on initial conditions results from positive Lyapunov exponents. In

fact, since chaotic dynamics are bounded, the divergence of chaotic orbits can be

only locally exponential.

One more characteristics of chaotic vibrations, is the broadness of the spec-
trum of Fourier transform, when motion is generated by single frequency that is

if we consider, for example, the differential equation
I 3
w—i—zm—w—i-w = 0.3coswt , w=1.

we obtain a wide spectrum of the output signal x(¢) as shown in Figure 1.2.
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Frequency component of a chaotic signal.
1200 T T T T

1000k -+ oo s ] : '
| ’ : —— FFT of x(t)
j - - FFT o;f cos(t)

800k [ e b

400 A | . . ............... |
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Figure 1.2: Broadness of the spectrum of a chaotic signal.

1.2 Where have chaotic vibrations been observed?

Chaotic oscillations are the emergence of random like motions from completely
deterministic systems. Such motions had been known in fluid mechanics, but
they have recently been observed in low-order mechanical and electrical systems

and even in simple one-degree-of-freedom problems, see [3].

In 1963, an atmospheric scientist named E.N.Lorenz of M.L.T proposed a
simple model for thermally induced fluid convection in the atmosphere. Fluid
heated from below becomes lighter and rises while heavier fluid falls under gravity.
Such motions often produce convection rolls similar to the motion of fluid in a

circular torus as shown in Figure 1.3.

In Lorenz’s mathematical model of convection, three state variables are used
(z,y,z). The variable @ is proportional to the amplitude of the fluid velocity
circulation in the fluid ring, while y and z measure the distribution of temperature

around the ring. The so-called Lorenz equations may be derived formally from
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the Navier-Stokes partial differential equations of fluid mechanics. The non-

dimensional forms of Lorenz’s equations are:

t = oly—z) ,
y = —zz+rz—y , (1.1)
z = zy—bz .

where o, r and b are some positive real constants.

_~ 2« —

/\
//_\\T2<T, -~
/\

9 ©

/////g%'//////

HEAT

ooy

Figure 1.3: Motion of heated fluid.

It was Lorenz’s insistence in the years following 1963 that chaotic motions
produced by the system defined in (1.1) were not artifacts of computer simula-
tion but were inherent in the equations themselves, that led mathematicians to
study these equations further. Since 1963, hundreds of papers have been written

about these equations and this example has become a classic model for chaotic

dynamics.

Chaotic phenomena were also observed in mechanical systems, herein, we cite
two simple examples, [3], [4]. The first is a thought experiment of an idealized
billiard ball which bounces off the sides of an elliptical billiard table. When
damping is neglected (ideally smooth table) and elastic impact is assumed, the
energy remains conserved (boundedness of the motion) but the ball may wonder
about the table without exactly repeating a previous motion of certain elliptically
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(b)

Figure 1.4: (a) The motion of a ball after several impacts with an elliptically
shaped billiard table. The motion can be described by a set of discrete numbers
(si, ®;) called a map. (b) The motion of a particle in a two-well potential under

excitation.

shaped tables. Another example, depicted in Figure 1.4-b, is the ball in a two-well
potential. Here the ball has two equilibrium states when the table or base does
not vibrate. However, when the table vibrates with periodic translating motion
of large enough amplitude, the ball will jump from one well to the other in an
apparently random manner, that is an input of one frequency leads to a broad

spectrum output (broadness of the spectrum).

Chaotic vibrations can also be observed in electric systems. This type of
chaotic dynamical systems illustrate a revolution in the field of chaos. In fact
researchers preferred the electrical systems for its being simple and clear enough
to be analyzed. Indeed, in the rush to explain chaotic dynamics in physical
systems, there is a temptation to propose mathematical models that emulate the
classic chaos paradigms. This could be easily done in the case of electrical circuits,
rather than in mathematical or fluid systems. Moreover, the chaotic vibration or

sounds can be clearly observed on oscilloscope or heard in such cases.

A simple circuit which was known to exhibit chaos, is depicted in Figure 1.5

it was called the Chua circuit (named after Leon O. Chua).
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Figure 1.5: Chua’s circuit.

A somewhat peculiar aspect in the literature is the choice of Chua’s circuit by
many authors both as a vehicle of discourse and as a chaotic circuit building block
for applications. In fact, many other circuits and systems have also been known
to exhibit chaotic behavior. However, Chua’s circuit appears to be the chaotic
circuit of choice because it is the simplest chaotic circuit, it has been widely
studied, it is easily realizable in the laboratory, and it is capable of exhibiting
virtually all reported generic bifurcation and chaotic phenomena of third order
autonomous systems. Therefore, it serves as a workhorse for testing concepts,

comparing results, and designing engineering application.

In the next chapter, we would focus on chaotic phenomena created in three
dimensional systems, by giving concrete simulation as well as numerical results,
together with theoretical justifications. In the third chapter we would intro-
duce different methods to synchronize chaotic systems. Next, our new approach
to synchronize chaotic systems will be discussed, and then its use for message
transmission will be presented. The fifth chapter is devoted to present the ex-
perimental work and results. Eventually we shall conclude this work by stating

some remarks.



Chapter 2

Three-Dimensional Chaotic Systems

The world is an co-dimensional

chaotic system.

2.1 Lorenz System

2.1.1 Mathematical Model

In order to approximate the motion of thermally induced fluid convection in the
atmosphere, E. N. Lorenz had proposed the following non dimensional system of

differential equations (the Lorenz model).

¢ = oly—-z),
y = re—y—axz , (2.1)
z = zy—bz .

where the dot refers to the differentiation with respect to time and o, r, and b are
real positive parameters. Note that the only nonlinear terms are 2z and ay in

the second and third equations.
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X

Figure 2.1: Sketch of local motion near the three equilibria for the Lorenz system.

The importance of this model in not that it quantitatively describes the hy-
drodynamic motion, but rather that it illustrates how a simple model can produce
very rich and varied forms of dynamics, depending on the values of the parameters

in the equations.

For the parameter values (o,r,0) = (10,28,8/3) (studied by Lorenz) or
(10,20, 1) that will be studied in chapter four, there are three equilibrium points,
all of them unstable. The origin is a saddle point, while the other two are un-
stable foci or spiral equilibrium points (Figure 2.1). Nevertheless, globally one
can show that the motion is bounded. That is the trajectories do not diverge nor
converge to a specified limit but remain confined to an ellipsoidal region of phase

space. Indeed, this was a property established by Lorenz, see [2].

property 2.1 All solutions of the Lorenz system remain bounded in phase space

for all times.

Proof: let w =z —r — o, then (2.1) becomes:

¢ = oly—z) ,
y = —.’E(U+0')—y,
z = zy—blutr+o) .
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Now let’s consider the positive definite Lyapunov function
1 1 1
V(z,y,u) = 5562 + §y2 - §u2 .
Then we have

V(z,y,u) = zo(y—2z)—y(y+e(u+0)) + u(—blu+r + o)+ ay)
= oy — oz’ —y? — xyo — zyu — bu® — bru — bou + uzy
= —ozt—y?- b(u? + ru + ou).
(2.2)

Since all constants are positive, it easily follows that for v > 0 or u < —(o -+ )
(or equivalently for z > o + r or z < 0, respectively), V < 0 hence the Lyapunov
function decreases outside a bounded region (e.g. in the region 22 + y2 + u? >
2(c +r)). This proves that the solutions remain bounded. In the sequel, we will

use this property to prove some other important facts.

Figure 2.2: Dynamics of Lorenz system.(o,r,b) = (10,20,1) (MATLAB simula-
tion)
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2.1.2 Electronic Implementation

An electronic circuit implementation of the Lorenz system has been suggested in
[5]. In fact, the implementation was not direct, because the state variables of the
Lorenz system occupy a wide dynamic range with values that exceed reasonable
power supply limits. A simple remedy to this difficulty, is scaling the state
variable as follows: ¢ — z/10, y — y/10, z — 2/20. With these new state

variables the Lorenz system equations are transformed to:

t = oly—z) ,
y = re—y—20zz (2.3)
z = bdzy—bz .

An analog circuit implementation of (2.3) is shown in Figure 2.3. The opera-
tional amplifiers and the associated circuitry perform the operations of addition,
subtraction, and integration. The multipliers implement the non-linearities in
the second and third equations. By applying circuit theory techniques to analyze
the circuit, the following state equations that governs the dynamical behavior of

the circuit can be obtained.

Lo me
RY
X VW - RI3
4 W -
W +
- W F o
RI RS " | Rl
=/ | - x i
. 3
R2 s
R3 1 e
- N R6 RI9
L —W— c3
o ¢
—x L S| .
7y LY
RI8 1
Figure 2.3: Lorenz-based chaotic circuit.
) 1 T[R4 Rs R4
b= oo [y (14 2]
RsCy LRy Ry + Rs Ry
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) 1 Ry, ., Ria Ry R, Ry Ry,
= 1 14 —)z — —y — —=: 2.4
Y = RaG [R10+Rll( TR TR TR TR Y R Y
) 1 [ng Ris Ry
z = =Ty — 1+ z]
Ry0Cs Rlexy Rz + Rw( RIG)

where z, y and z are the voltages measured at the outputs of op-amps 2, 6 and

8, respectively.

We note that the circuit is large compared to Chua’s circuit. Moreover, it

contains integraters which are not convenient in electronic circuits design.

The component values ! of the circuit can be appropriately chosen to meet
different parameter combinations by changing Rs, Ri;, and Rig, and the circuit
time scale can be easily adjusted by changing the values of the capacitors. Figure
2.4 depicts the behavior of the circuit projected onto the xy-plane and xz-plane,
respectively. These data were obtained from H-spice simulation. Note that the
multipliers were modeled by H-spice nonlinear voltage controlled voltage source,

due to nonexistence of AD632AD macro-model.

5.0 T T gpeeur.tes

P
[ ]

Figure 2.4: H-spice simulation of the Lorenz-based chaotic circuit. The first and
second graphs represent: x-signal vs y-signal and x-signal vs z-signal respectively.

IResistors(k$2): R1, R2, R3, R4, R6, R7, R13, R14, R16, R17, R19=100 R5, R10=49.9
R8=200 R9, R12=10 R11=63.4 R15=40.2 R18=66.5 R20=158. Capacitors(pF): C1, C2,
C3=500. Op-Amps (1) ...(8): LF353 Multipliers: AD632AD.
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2.2 Chua’s Circuit

2.2.1 Circuit Dynamics

The Chua’s circuit shown in Figure 2.5-a consists of two capacitors (C; and C,),
inductor (L), a linear resistor (G) and only one nonlinear resistor, the charac-
teristic of which, is described by Figure 2.5-b. This characteristic is defined

analytically as follows:

Gyor + (Gb - Ga)E Z_f vp< —F
ir = f(vr) = Gavr iof —-E<wvwp<E (2.5)
Gyop + (Ga — Gb)E Zf vp > F

where £ > 0 and G, < Gy < 0. There are simple and yet very important reasons
for choosing a piecewise-linear resistor instead of other nonlinear resistors. First
of all, it is easy to implement. If f(.) is, for example, a third order polynomial,
then it will be extremely difficult to implement. The piecewise-linearity also
simplifies rigorous analysis in a drastic manner. Namely, the state space can be
decomposed into three regions in each of which the dynamics is linear so that

trajectory can be expressed as a composition of linear flow.

i =1(Vy)
G=1R i
AN — :
. + +
i
L
L A G
L Ve =T~ C Ver - T~ € Vi H ° TE
E Vi
G,
Gy,
(a) (b)

Figure 2.5: Chaotic system.(a)Chua’s circuit.(b)Nonlinear resistor characteristic.
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One can write down, then, explicit bifurcation equations. Using Kirchoft’s
voltage and current laws, this circuit may be described by three ordinary differ-
ential equations. By choosing ve1, vee and if as state variables, we obtain the

following equations:

d'UCl _ G 1
dt = Cl ('UC2 - UCI) — 51— ('UCI) R (26)
dvcz G J. .
= = - = 2.
dt C, (ver — vo2) + CZZL ) (2.7)
dey, 1
T —Z’Ucz . (2.8)

The rich dynamical behavior of Chua’s circuit was confirmed by computer
simulations and experiments, see [6][7]. It has been shown that different values of
circuit elements lead to different dynamics. With an appropriate choice of element
values, the circuit can be made to behave in the chaotic domain. To investigate
the circuit, let us substitute (2.5) in (2.6). Then we may decompose the system
of equations into three distinct affine regions: vey < —FE, |vei| < E, and vey >
E. We denote these regions by D_;, Dy, and Dy, respectively. Using piecewise-
linear analysis, we examine each region separately, and then superpose all regions
together. We look at Dy first.

The Middle Region (Jvci| < E)

" Figure 2.6: Equivalent of Chua’s circuit in the Dy region.
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When |vei1| < E, the Chua’s circuit is described by the following system.

dr G G+G,
dv G 1.
d(;z = a(vol—vcz)vLazL ,
dy 1

a L'

The Dy equivalent circuit is simply the linear parallel RLC circuit shown in
Figure 2.6. This linear circuit has a single equilibrium point at the origin whose

stability is specified by the eigenvalues of the Jacobian matrix of the system:

Ch
Jp. = G _G 1
Do Cs C, G,
0 -L 0
L

By using the element values (L = 18mH,C; = 10nF,C; = 100nF,R =
183092 Go = —T757us and Gy = —411pus), we obtain the following eigenvalues
of Jp,:

Yo ~ 41233

oo £ jwo ~ —5339 £ 521402

Associated with the unstable real eigenvalue 7 is an eigenvector E"(0), whereas
the complex eigenvector associated with o9 + jwy span a complex eigenplane
denoted by E¢(0).

Qualitative Description of the Dy Dynamics: “A trajectory starting from some
initial state in the Dy region may be decomposed into its components along the
complex eigenplane F°¢(0) and along the eigenvector £7(0). When v, > 0 and
oo < 0, the component along E°(0) spirals toward the origin along this plane
while the component in the direction £7(0) grows exponentially. Adding the two
components, we see that a trajectory starting slightly above the stable complex
eigenplane F°(0) spirals toward the origin along the £°(0) direction all the while
being pushed away from £°¢(0) along the unstable direction £7(0). As the (stable)
component along F¢(0) shrinks in magnitude, the unstable component grows



Chapter 2. Three-Dimensional Chaotic Systems 16

exponentially, and the trajectory follows a helix of exponentially decreasing radius
whose axis lies in the direction of E7(0)”, see [6].

Now let’s analyze D_; and D44
The Outer Region (lve1| > E)

In the outer regions, Chua’s circuit is described by

d’UCl _ gv _ G + va .

dt = C] C2 C] C1 NL
d’UcQ . G 1 .

a -0 (ver — vez) + CZZL y

dip, —lv

a ~ L

where iy = (Gy — Go)E when vy < E (the D_; region) and inp = (G, —
Gy)E when ve > E (the Dy region). The equivalent circuit consists of a linear
parallel RLC circuit with shunt DC current source iy, as shown in Figure 2.7.
The equilibrium points P_ and P, of the outer regions are obtained from the
DC solution of the equivalent circuit shown in Figure 2.7 by short-circuiting the
inductor and open-circuiting the capacitors. Therefore the equilibrium points
are:

Gﬂ_GbE’ Gb_GaE
G+Gy G4+Gy
P_ = 0 ) Py = 0
G!Gb—Ga)E G(Ga—Gy E
G+Gy G+Gy

It is worth noting that these equilibrium points are situated inside their cor-
responding regions, hence, this circuit has three equilibrium points. The stability

of the equilibrium points is determined by the eigenvalues of the Jacobian matrix

_GiG, & g
Ch Ci

— G G 1

R
(et
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L % Ve G, Ve 7T~ €y G"% Vr N

Figure 2.7: Equivalent of Chua’s circuit in the Dy, regions.

Notice that both D_; and D4; regions have the same Jacobian matrix, hence
the corresponding dynamical behaviors are similar. The eigenvalues, for the

corresponding element values are

oA~ —22050
o1t jw; &~ 924 4 719188

Qualitative Description of the Dynamics for |lvcy| > E ¢ “Associated with the
stable real eigenvalue v, in the D; region is the eigenvector E"(P,). The real
and imaginary parts of the complex eigenvectors associated with oy + jw; define

a complex eigenplane E°(P; ).

A trajectory starting from some initial state in the D; region may be de-
composed into its components along the complex eigenplane E¢(P;) and the
eigenvector £"(P;). When 73 < 0 and o7 > 0, the component on E°(Py) spirals
away from P, along this plane while the component in the direction of E™(Py)
tends asymptotically toward P,. Adding the two components, we see that a tra-
jectory starting close to that stable real eigenvector E”(P;) above the complex
eigenplane moves toward E°(P,.) along a helix of exponentially increasing radius.
Since the component along E"(Py) shrinks exponentially in magnitude and the
component on E¢(P,) grows exponentially, the trajectory is quickly flattened
onto E°(Py), where it spirals away from Py along the complex eigenplane. By
symmetry, the equilibrium P_ has three eigenvalues: v; and oy £ jw,, therefore

similar dynamics as for P,” , see [6].

The double scroll depicted in Figure 2.8 delineates the stretching and folding
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Vel iL

Figure 2.8: MATLAB simulation of the Chua’s circuit describing system.

of the vector field. These were the results of numerical (MATLAB) simulation of
the system of differential equations (2.6), (2.7), and (2.8) with the element values

previously indicated.

2.2.2 Electronic Implementation

The Chua’s circuit has been implemented in many different ways using standard
electronic components [6], [8], [9], and also simple chip integrated circuit [10],
[11]. Since all of the linear elements (capacitors, resistor, and inductor) are
readily available as two terminal devices, the main concern to realize the Chua’s
circuit is to design the nonlinear resistor (the Chua diode) with the characteristic
delineated in Figure 2.5-b. Noting that the nonlinear resistor described therein
is active, i.e., vgir = vrg(vr) < 0, then active devices such as transistors or
operational amplifiers should be used. Several implementation of the Chua diode
already exist in literature, [8], [6], among which, we have chosen the realization
depicted in Figure 2.9, to carry out all the simulations and experiments that will

be investigated in chapter five.
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Figure 2.9: Practical implementation of Chua’s circuit using two op-amps and
six resistors to realize the Chua diode.

Figure 2.9 shows a practical implementation of Chua’s circuit. The resistance
values? chosen to implement the Chua diode lead to conductances: Ga = —757us
and Gb = —411ps if in addition, the following component values are chosen,
R =1830Q, L =18mH, C; = 10nF and Cy; = 100nF, the circuit will behave in
a chaotic mode. The 1f351 op-amps in this realization are modeled using Texas
Instruments macro-model. Figure 2.10 shows a double-scroll Chua attractor ob-
tained from the H-spice simulation of the circuit shown in Figure 2.9. Figure2.11
shows the time evolution of the state variables vg; and its power spectrum den-
sity distributed on a normalized scale. It is clear that the chaotic signal is a
broadband signal although Chua’s circuit contains a harmonic oscillator of single
sinusoidal frequency. The evolution of vg; is an H-spice simulation output and

the power spectrum density is a MATLAB Simulation output.

2R1=R2=2209, R3=2200Q, R4=R5=22kQ and R6=3300Q. Op-amps are If351, or
equivalent.
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Figure 2.10: H-spice simulation of the Chua circuit. The first and second graphs
represent: vey-signal vs veg-signal and vey-signal vs ip-signal respectively.
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time (second)

Power Spectrum Magnitude (dB)
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Frequency

Figure 2.11: Time evolution of the state variables vc; and its power spectrum
density.



Chapter 3

Synchronizing Chaotic Systems: A Preview

“The ability to design synchronizing systems
in nonlinear and, especially, chaotic systems

may open interesting opportunities...”
T.L. Carroll and L.M. Pecora

Until last decades, most engineers were rather skeptical and reluctant to admit
that chaotic behavior might have a practical use. Consequently, most research
in this area focused on how to avoid chaos. But now a much more exciting
motivation has emerged to exploit and harness the very special and peculiar
features of chaotic behavior. In particular, self-synchronization of chaotic systems
is an intriguing concept, and recently, has received considerable attention. It is
believed that synchronization plays a crucial role in information processing, in
living organisms, image processing [12], and neural networks [13]. Moreover, the
synchronization property of chaotic circuits has revealed potential applications

to secure communications, see e.g. [14] [15], [16] [17], [18] [19], [20] [21] [22].

Since the chaotic systems are deterministic, two trajectories that start from
identical initial states will follow precisely the same paths through the state space.
Nevertheless, the problem of obtaining two or more real chaotic circuits oscillating
in a synchronized way is not a trivial task. As a matter of fact, it is impossible

21
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in practice to construct two systems with identical parameters, let alone to start
them from identical initial states. Due to the foregoing facts, two nearly identical
systems starting from infinitesimally close initial states will have divergent orbits,
and their time evolutions will be completely uncorrelated. However, recent work
by Pecora and Carroll [23] [24] [25], Amritkar [26] [27] and others, have shown

that it is possible to synchronize two chaotic systems so that their trajectories

remain close.

Master o=h(x) Slave or=h(x,)
system system

Figure 3.1: Master-slave configuration.

In this chapter, we consider a set-up where a master system drives a slave
system in order to impose its waveforms. This situation is depicted schematically
in Figure 3.1. Both systems should be thought of as being chaotic. In general,
the slave system is nothing but a duplication of the master system, except that it
has an additional control input (non-autonomous) which is either driven directly
with the transmitted signal o(t), as shown in Figure 3.1, or it is driven by some

error signal.

Should the transmitted signal o(t) be appropriately chosen, the output o,(t)
of the slave system will be forced to copy the waveform of the driving signal o(?).
Assuming the initial states of the two systems to be different, and knowing that
the evolution of a chaotic system depends on its initial state, we cannot expect
0,(t) to be identical to o(t). Only in the limit, the influence of the initial state

can be expected to fade away. This justifies the following definition, see e.g. [20]:

Definition 3.1 The slave system synchronizes with the master system if
Jim [lo(t) — o, (¢)] = 0

for any combination of initial states of the master and the slave systems.
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Next, we shall show five methods to synchronize chaotic systems, namely

1. by decomposition into subsystems
by linear mutual coupling

by linear feedback

Ll

by the inverse system

by observer design

Ut

3.1 Synchronization by Decomposition Into Subsystems

f,.(0) = X f,() = X1

X, £,0 X 5 £ 0 TXI

Figure 3.2: Master-slave set-up for synchronization by decomposition into sub-

systems.

The idea of synchronization by decomposition into subsystems has first been pro-
posed by Pecora and Carroll [23]. This synchronization scheme applies to systems
that are drive-decomposable. A dynamical system is called drive-decomposable
if it can be partitioned into two subsystems that are coupled so that the behavior
of the second (called the response subsystem) depends on that of the first, but
the behavior of the first (called the drive subsystem) is independent of that of

the second.

To construct a drive-decomposable system, an n-dimensional, autonomous,

continuous-time dynamical system

x = f(x), x(0)=xo (3.1)
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where X = (21,22,...,2,)7 and f(x) = [fi(x), fa(x),... fu(x)]7, is first parti-

tioned into two subsystems

x1 = f1(x1,%x2), x1(0) =x,, (3.2)
)'(2 = fz(Xl,Xz), Xz(O) = X2, (33)
where X1 = (21,22, .+, Zm)?, X2 = (Tmi1, Tmaa, . . - )T,
J1(x1,%x2)
fa(x1,x2)
f1(x1,x2) = ’
fm(x1,%2)
and
fm+1(X1,X2)
m X1,
fa(x1,x2) = It (x1,2)

fa(x1,x2)

An identical (n — m)-dimensional copy of the second subsystem, with x} as
state variable and x1 as input, is appended to form the following (2n — m)-

dimensional coupled drive-response system:

5(1 = f1(X1,X2) y X1(0) = X1, (34)
X, = fa2(x1,%x2) , x2(0) = xy, (3.5)
x; = fa(x1,%x3) ,  x3(0) = x5, (3.6)

The n-dimensional dynamical system defined by (3.4) and (3.5) is called the

drive system and (3.6) is called the response subsystem.

Note that the second drive subsystem (3.5) and the response subsystem (3.6)
lie in state space of dimension R(®~™) and have identical vector field f and input

X1.
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Consider a trajectory x3(t) of (3.6) that originates from an initial state xj
“close” to x3,. We may think of x,(%) as a perturbation of x}(¢). In particular,
define the error ex(t) = X,(t) — x5(¢). The trajectory x4(t) approaches x,(t)
asymptotically (synchronizes) if according to definition 3.1 |jex|| — 0 as ¢t — oo.
Equivalently, the response subsystem asymptotically tends to xz(¢) when it is

driven with x;(¢).

Example 3.1 If we consider
X2 = g(x1) + Ax,
X = g(x1) + Ax;
where A is a stable matriz, then
és = Ae,
hence ||e;|| — 0 exponentially fast. O
The synchronization of the response subsystem may be determined by exam-

ining the linearization of the vector field along the response signal. The linearized

response subsystem is governed by

X = Dy f2(x1(2), x3)%1,  x(0) = x4 (3.7)
where D, fa(x1(¢),x5) denotes the partial derivatives of the vector field fa of

the response subsystem with respect to x7. This is a linear time-varying system

whose state transition matrix ®(t,£o) maps a point x;(to) into x;(¢). Thus

xi(t) = ®(t, 0)xy, (3.8)

Note that ® is a linear operator. The conditional Lyapunov exponents A;(x1,,X2,)
(hereafter denoted CLE) are defined by

Ai(Xi1g,X2p) = th—gi% In o;[®(¢,0)], i=12,...,(n—m) (3.9)
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whenever the limit exists, and where o; denotes the ¢th singular value of the tran-
sition matrix ®(¢,0). The term conditional refers to the fact that the exponents
depends explicitly on the trajectory of the drive system. Based on the CLE,

Pecora and Caroll proved the following theorem, see [28]

Theorem 3.1 The trajectories x2(t) and x5(t) will synchronize only if the CLE’s

of the response system are all negative.

Remark 3.1 Note that this is a necessary but not sufficient condition for syn-
chronization. However, if the response and second drive subsystems are identical
and the initial conditions X, and X3 are sufficiently close, and the CLE’s of
(3.6) are all negative, synchronization will occur. On the other hand, if the sys-
tems are not identical, (in our work we do not assume this case) synchronization

might not occur, even if all of the CLE’s are negative.

Although we have described it only for an autonomous continuous-time sys-
tem, the drive response technique may also be applied for synchronizing non-

autonomous and discrete-time circuits, see [29] [30] [31].

The drive-response concept may be extended to the case where a dynamical
system can be partitioned into more than two parts. A simple two-level drive-

response cascade is constructed as follows. Divide the dynamical system

x =f(x), x(0)=xo (3.10)
into three parts:
)'(1 = f1(X1,X2,X3), Xl(O) = Xi4 (3.11)
xz = fa(x1,x2, X3), x2(0) = %3, (3.12)
X3 = f3(X1,X2,X3), X3(0) = X3, (3.13)

and

N—

Now construct an identical copy of the subsystems corresponding to (3.12
(3.13) with x1(¢) as input:

x5 = fa(x1,X%3,X3), Xx3(0) = x5, (3.14)
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x5 = fa(x1,%3,x3), x5(0) = x3, (3.15)

If all of the CLE’s of the driven subsystem composed of (3.14) and (3.15)
are negative then, after the transient decays, lim o (x5(¢) — x2(¢)) = 0 and
limy—o X5(¢) — x3(t)) = 0.

Proceeding one step further, we reproduce subsystem (3.11):
X = f1(x1,%3,x3), x1(0) = x] (3.16)
Similarly, if all of the conditional Lyapunov exponents of (3.16) are negative,

then using Theorem 3.1 and Remark 3.1, we expect x}(¢) to converge to x;(¢)

and continue to remain in its steps.

In the following two sub-sections, we shall apply this scheme on some concrete

dynamical systems, namely: Lorenz system and Chua’s circuit.

3.1.1 Synchronization of Lorenz System

We consider the following well-known Lorenz system as the drive system:

t=o0(y—z) , (3.17)
y=-—-zz+re—-vy , (3.18)
z=ay —bz . (3.19)

We choose the parameters o, r and b so that the system (3.17)-(3.19) is in the
chaotic regime as ¢ = 10, r = 20, b6 = 1. The solution z(¢) of (3.17)-(3.19) will

be used to synchronize the solutions of the following response system,

& =0o(yr — @) , (3.20)
U, = —xz, + 1T — Y, (3.21)
z, = ay, — bz, . (3.22)

We first note the following simple fact :
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Lemma 3.1 Consider the following system :
w=Aw+ f(t) , (3.23)

where w € R*, A € R™", f(:) : Ry — R" is a differentiable function. Assume
that the matriz A is Hurwitz-stable (i.e. all eigenvalues are in the open left half
of the complex plane), and that f(t) decreases ezponentially to zero, i.e. for some
M; > 0 and oy > 0, the following holds :

IFOI < Mem™", t>0 . (3.24)

Then, for any w(0) € R", the solution w(t) of (3.23) also decays exponentially

to zero.

Proof : The solution w(t) of (3.23) can be written as :
t
w(t) = e*w(o) -I-/ A=) f(r)dr . (3.25)
0

Since A is Hurwitz stable, there exist constants M, > 0 and oy > 0 such that
the following holds :
le?t]| < Mae™o2t | (3.26)

where || - || in (3.26) is now the induced matrix norm, see e.g. [32]. Hence, the
first term in the right hand side of (3.25) clearly decays to zero exponentially

fast. For the second term, note that
t t
| [ A f(r)dr)) < MiMpemet [elerenimr (3.27)
0 0

where we used (3.24) and (3.26). Without loss of generality we may assume that
a; # o, for otherwise by slightly decreasing «; and/or a; one can easily find
values for oy and «; such that oy # a2 and both (3.24) and (3.26) are satisfied.
Then, simple integration shows that the second term in the right hand side of

(3.25), and hence also w(t), decay exponentially to zero. O

To prove the synchronization, let us define the synchronization error terms as

follows :
=T —Tp , €=Y—Yr , € =2—2 , (3.28)
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Lemma 3.2 For any e,(0), €,(0), e,(0), the errors defined by (3.28) associated
with the systems (3.17)-(3.19) and (3.20)-(3.22) decay exponentially to zero.

Remark 3.2 The synchronization of (3.17)-(3.19) with (3.21)-(3.22) (i.e for
ey and e,) could be found in [25]. Asymptotic synchronization of (3.17)-(3.19)
and (3.20)-(3.22) can be found in [18]. Below it will be emphasized that the

synchronization is in fact exponential. This analysis is based on Lemma 2 and a

Lyapunov function, different than the one used in [18], O

Proof : By using (3.18)-(3.19) and (3.21)-(3.22) we obtain :
by = —T€, — €y (3.29)

€, = xey, —be, . (3.30)
Let us define the Lyapunov function V as :

1 1
V= 565 + §e§ : (3.31)

Simple differentiation of V along the solutions of (3.29)-(3.30) results in :
V= —e—be . (3.32)

Since b > 0, this shows that all solutions of (3.29)-(3.30) globally asymptotically
decay to zero, see TheoremA.2. Moreover, from (3.31) and (3.32) it easily follows
that V(¢) < e *V(0), where k = 2min{1,b}. Moreover, since b = 1, we have
V = —2V, which implies that V(t) = e=%V/(0), hence the errors e,(t) and e,(t)
in fact decay exponentially to zero. This in particular implies that | e,(¢) |<
e t||e(0)|| where |le(t)]| = \/eg(t) + e2(t) 4 €%(t). Then, using (3.17) and (3.20)

we obtaln :

by = —0€y + o€y . (3.33)

Since o > 0 and e, decays exponentially to zero, it follows from Lemma 3.1 that

e, also decays exponentially to zero. The solution of (3.33) is given as

t
es(t) = e 7"e;(0) +/ oe~ e, (t)dr .
0
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Hence, by taking norms, using the facts given above and ¢ > 1, we obtain

et < 2+ =2 Te )]

which implies that the synchronization is exponentially fast. O

Remark 3.3 In [25], depending on the synchronization signal, various drive-
response systems have been proposed. In particular, for Lorenz system, instead of
(3.20)-(3.22), the following response system can also be used :

z, =0y —z,) , (3.34)
Yp = —Tp2p +TTp — Y (3.35)
Z, = x,y — bz, . (3.36)

where, this time y(t) is used for synchronization. It can easily be shown that the

error signals defined by (3.28) also decay exponentially to zero. O

3.1.2 Synchronization of Chua’s Circuit

I G= /R
G=1m ; BN

AN L 2~
N + +
i
1

Vi 53X
‘!

Figure 3.3: Synchronization of two Chua’s circuits.

Now, let’s consider the Chua’s circuit as the chaotic dynamical system. It has

been shown in the previous chapter that the Chua’s circuit is governed by the

following state equations:

dvey G 1 .
_ o) — L 3.37
= oy (vo2 — ver) Cl (ve1) (3.37)
d'l)og G 1 .
_ _ L 3.38
= s (ver — vez) + o (3.38)
dip 1 (3.39)
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