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ABSTRACT

EFFICIENT METHODS FOR ELECTROMAGNETIC
CHARACTERIZATION OF 2-D GEOMETRIES IN
STRATIFIED MEDIA

'Fatma Caliskan
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. . Irsadi Aksun
August 1997

Numerically efficient method of moments (MoM) algorithms are developed for
and applied to 2-D geometries in multilayer media. These are. namely. the spatial-
domain MoM in conjunction with the closed-form Green's functions. the spectral-
domain MoM using the generalized pencil of functions (GPOF) algorithm and a
FFT algorithm to evaluate the MoM matrix entries. These approaches are mainly
to improve the computational efficiency of the evaluation of the MoM matrix
entries. Among these, the spectral-domain. MoM using the GPOF algorithm is
the most efficient approach for printed multilayer geometries. The assessment of
the efficiency of this method is performed on several problems. by comparing the

matrix fill times for these three approaches. In addition a new iterative algorithm
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is developed to solve the MoM matrix equation, which is based on dividing a
large object into subregions and solving the matrix equation on each subregion by
considering the effects of other regions. This iterative algorithm is applied to some
large geometries and is compared to a traditional LU decomposition algorithm
for the assessment of its numerical efficiency. It is observed that the iterative

algorithm is numerically more efficient as compared to the LU decomposition.

Keywords : Method of moments, Planarly layered media, Green's functions, It-

erative method



OZET

COK KATMANLI ORTAMLARDA 2 BOYUTLU
GEOMETRILERIN ELEKTROMANYETIK TANIMLAMASI
ICIN ETKILI YONTEMLER

Fatma Caligkan
Elektrik ve Elektronik Miihendisligi Boliimu Yiiksek Lisans
Tez Yoneticisi: Do¢. Dr. M. Irsadi Aksun
Agustos 1997

Cok katmali ortamlarda 2 boyutlu geometriler i¢in sayisal olarak etkin moment
metodu (MoM) algoritmalan gelistirildi ve 2 boyutlu geometrilere uvgulandi.
MoM matris elemanlarim hesaplamak i¢in kullanilan yontemler. kapali formda
Green fonksiyonlan ile birlikte kullanilan gergek uzay moment metodu. general-
ized pencil of functions (GPOF) algoritmasi kullanmilarak yvapilan spektral uzay

moment metodu ve moment metodu matris elemanlarini hesaplamak icin hizli

Fourier dontisumi (FFT) algoritmasi kullanilmasidir.  Bu yontemler moment

metodu matris elemanlarin iglemsel olarak verimli bir sekilde bulmak i¢in kul-
lamirlar. Bu yontemler i¢inde ¢ok tabakali basih geometriler igin en etkili olan

GPOF algoritmas: kullamlarak vapilan spektral uzay moment metodudur. Bu

v



metodun etkili oldugu bir ¢ok problem uzerinde ti¢ metodun matris eleman-
larim1 hesaplama sureleri kargilagtirilarak gosterildi. Buna ek olarak moment
metodu matris denklemini ¢6zmek igin yeni vinelemeli bir algoritma gelistirildi.
Bu yontem biyuk bir nesneyi alt bolgelere parcalayip, her bolgenin matris den-
klemini diger bolgelerin etkilerini digtiinerek hesaplamaktadir. Bu algoritma bazi
buyik geometrilere uyguland: ve sayisal etkisini degerlendirmek iin geleneksel bir
yontem olan LU ayristirma algoritmasi ile kargilagtirildi. Sonug olarak. yinelemeli

algoritmanin LU decomposition algoritmasindan sayisal olarak daha etkili oldugu

gozlendi.

Anahtar Kelimeler : Moment metodu, Dizlemsel cok katmanli ortam. Green

fonksivonlari, Yinelemeli yontem

vi



ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Assoc. Prof. Dr. M. Irsadi Aksun

and Asst. Prof. Dr. Levent Girel for their supervision and encouragement in all

steps of the development of this work.

I would like to thank Prof. Dr. Avhan Altintas and Assoc. Prof. Dr. Giilbin
Dural for reading and commenting on the thesis and for the honor thev gave
me by presiding the jury. I would also like to thank Prof. Dr. Erdem Yazgan

and Asst. Prof. Dr. Adnan Koksal for supporting me during my undergraduate
studies.
Many thanks to Novan. Ertem, Tolga, Cigdem. Deniz. Kirsat. Karim. Ay-

han and Tung for their valuable help. Sincere thanks are also extended to my

officemates Erdem, Fehmi and Moez. I also thank all my friends for their moral
support.

It is a pleasure to express my special thanks to my family. especially to my
mother, father and Zeynep. for their endless love. patience, support and encour-

agement.



To my mother. father and Zeynep

Vil



Contents

1 Introduction

2 Green’s Functions in Spectral and Spatial Domains
2.1 Green's Functions in the Spectral Domain

2.2 Closed-Form Green’s Functions in the Spatial Domain. . . . . . .

3 Formulation of Electric Field Integral Equation in 2-D

3.1 Method of Moments . . . . ... ... ... .. ... ...
3.2 ElectricFieldin2-D . ... ... ... .. ... . ...,
3.3 Basis and Testing Functions . . . . . ... ... ... ... ...

3.4 MoM Formulation in Spatial Domain . . . . . ... ... ... ..
3.4.1 Singularity Extraction . . ... .. ... ... . 0L,
3.5 MoM Formulation using FFT . . . .. .. ... ... ... ...

3.6 MoM Formulation in Spectral Domain

4 Numerical Examples

1.1 Examples for the MoM Formulation in the Spatial Domain. . . .

4.1.1 A Single Horizontal Strip . . .. .. .. ... ... ... ..

42
43
13

1.1.2  Analytical Solution of Cylinders in a Homogeneous Medium 48

X



4.1.3 A Conducting Cylinder in an Inhomogeneous Medium . . .
4.1.4 A Rectangular Cylinder in an Inhomogeneous Medium
4.2 Comparison of the Methods . . . . ... ... ...........

4.3 Examples for the MoM Formulation in the Spectral Domain

5 Solving Linear Equations by the Iterative Method
5.1 Comparison of the Iterative Method and LU Decomposition
51.1 Examplel . .. ... . ... ... ... .. ...
51.2 Example2 . . . .. ... ... oo

513 Example3 . .. .. ... ... . ... . ..

6 Conclusions



List of Figures

o
—

o
o

N N W
e = T BN SRS

V]
g

3.3
3.4
4.1

Sources embedded in a multilayer medium. . . . .. . ... .. ..
Definition of the Sommerfeld integration path, and the paths C,p,
and C,p; used in two-level approximations. . . . . . .. .. .. ..
The magnitude of the Green’s function for the vector potential G,
The magnitude of the Green’s function for the vector potential G,
The magnitudeof [Gdz . . . . ... ... .. .. ... . ....
The magnitude of the Green’s function for the vector potential G2
The magnitude of the Green’s function for the scalar potential G
The magnitude of the Green's function for the scalar potential G
Strip of width 2w located near interface between two semi-infinite
half-spaces and illuminated by source in upper half-space . . . . .
¢ and a on basis and testing functions . . . . ... .. ... ...
Single triangular testing and basis functions . . . . .. .. ...
Basis and testing functions on a single horizontal strip of width 2w
Strip of width 2w located near interface between two semi-infinite

half-spaces and illuminated by source in upper half-space . . . . .

Ni

-1

43



4.3

1.4

4.5

1.6

e
97}

1.9

Normalized current density on a four wavelength strip for the TM
excitation (reproduced from [15]). See Fig. 4.1 and the following
text for the geometry and its parameters. . . . . .. .. ... ...
Normalized current density on a four-wavelength strip from the
spatial-domain MoM for the TM excitation. See Fig. 4.1 and the
following text for the geometry and its parameters. . . .. .. ..
Normalized current density on a strip below interface for § = 0°
and the TM excitation (reproduced from [16]). See Fig. 4.1 and
the following text for the geometry and its parameters. . . . . . .
Normalized current density on a strip below interface for § = (°
and the TM excitation from the application of the spatial-domain
MoM. See Fig. 4.1 and the following text for the geometry and its
parameters. . . . . .. ... Lo oo
Normalized current density on a strip below interface for § = 0°
and the TE excitation (reproduced from [17]). See Fig. 1.1 and
the following text for the geometry and its parameters. . . . . ..
Normalized current density on a strip below interface for § = 0°

and the TE excitation from the application of the spatial-domain

MoM. See Fig. 4.1 and the following text for the geometry and its -

parameters. . . . .. ... oo oo e e e e

A plane wave incident upon a conducting cylinder in a homoge-

peous MedIUI & « « v v v v e e e e e e e e e e e e e e

The magnitude of the current density on a cylinder in a homoge-

neous medium for TM excitation

xii



4.10

1.11

4.12

1.13

4.14

1.15

116

L 17

The magnitude of the current density on a cvlinder in a homoge-
neous medium for TE excitation 52

Conducting cylinder located near interface between two semi-infinite

half-spaces and illuminated by a plane wave in upper half-space. . 53
Normalized current density on a circular cylinder of radius R =
0.375), for the TM excitation with various sampling points along
the circumferential direction. See Fig. 4.11 and the following text
for the geometry and its parameters. . . . . . ... ... ... .. 54
Rectangular cylinder located near interface between two semi-infinite
half-spaces and illuminated by a plane wave in upper half-space . 55
Normalized current density on a rectangular cylinder of cross sec-
tion 0.25), (width) and 0.1, (height) for the TM excitation with
various sampling points along the periphery. See Fig. 1.13 and the
following text for the geometry and its parameters. 56
Normalized current density on a rectangular cyvlinder of cross sec-
tion 0.25X, (width) and 0.1\, (height) for the TE excitation with
various sampling points along the periphery. See Fig. 4.13 and the
following text for the geometry and its parameters. 56
The real and imaginary parts of the normalized current. densities
for the TE excitation and for § = 0° 38
The real and imaginary parts of the normalized current densities
for the TE excitationand for 6 = =45 . . . . . .. .. .. .. .. 58
The real and imaginary parts of the normalized current densities

59

for the TM excitation and for 8 = 0°

X1l



4.19

4.20

N
o

NN
)
W

4.26

4.30

1.31

The real and imaginary parts of the normalized current densities
for the TM excitation and for § = —45°

Normalized current densities on the strip for the TE excitation and

h=-0.1Xx

Normalized current densities on the strip for the TM excitation

A two-strip, three layer geometry. . . . . . . . .. .. ... ...

The magnitudes of the current densities on the two strips for the

TM excitation

The magnitudes of the current densities on the two strips for the

TMexcitation . . . . . . . . . v v o e

A geometry of ten strips located side by side in a homogeneous

medium. . . . . . e e e e e e e e e

The magnitude and phase of the current densities for the TE ex-

citation, and for hw=1.0 . . . .. .. ... .. ... ... . ...

The magnitude and phase of the current densities for the TE ex-

citation. and for kw =20 . . . . . .. ... .

The magnitude and phase of the current densities for the TE ex-

citation. and for k=30 ... . . .. . ... ...

The magnitude and phase of the current densities for the TE ex-

citation, and for Aww=4.0 . . . . . . .. ... oo

The magnitude and phase of the current densities for the TE ex-

citation. and for Aw =30 . .. . . . . .. . .. ...

The magnitude and phase of the current densities for the TM ex-

citation. and for kw=1.0 . . . . . .. . . ... ... ...

Xiv

61

61

63



4.32

4.33

4.34

4.35

4.36
4.37

(a1
—

(8514
)

Ut
-

Wl
(@1

ot
[=2]

The magnitude and phase of the current densities for the TM ex-

citation,and for kw =20 ... ... ... ... .. ... .....

The magnitude and phase of the current densities for the TM ex-

citation. and for kw =3.0 . . . . . .. ... ... ... ...,

The magnitude and phase of the current densities for the TM ex-

citation, and for kw =4.0 . . . .. . ... ... ... ... ...,

The magnitude and phase of the current densities for the TM ex-

citation, and for kw =50 . . . .. . ... ... . ... ...
Three strips located in the same medium . . . . .. .. ... ...

The magnitudes of the current densities on the three strips for the

TE excitation . . . . . . . . v v o v e,

The magnitudes of the current densities on the three strips for the

TM excitation . . . . . . . . . . . e

Strip of width 2u located near interface between two semi-infinite
half-spaces and illuminated by source in upper half-space . . . . .
The current magnitude of the iterative method for the TM excita-
tion when iteration number is increasing for N = 1000

The current magnitude of the iterative method and LU decompo-
sition for the TM excitation and for N = 1000.

The current magnitud.e of the iterative method for the TE excita-
tion when iteration number is increasing for N = 1000

The current magnitude of the iterative'method and LU decompo-
sition for the TE excitation and for ¥ =1000 . . . ... ... ..

The error plot of the iterative method for the TM excitation and

for N = 1000 . . . . . . o @ e e e e

XV

70

70



5.8

3.

3.

10

11

5.12

5.

<t

13

d4

The error plot of the iterative method for the TE excitation and

for N =1000 . . . . . . . . . .

Two strips are located parallel to each other where the distance
between themis Ay. . . . . . . . ...
The magnitude of the current densities for the iterative method
and LU decomposition for the TM excitation, N=1000 and exam-
ple 2 . . L
The magnitude of the current densities for the iterative method

and LU decomposition for the TE excitation, N=1000 and exam-

Three strips of width 2w located in homogeneous medium with
0.5w spacing between them on the same = . . ... ... ... ..
The current magnitude of the iterative method and LU decompo-
sition for § = 0° and TM excitation . . . . .. ... ... ... ..
The current magnitude of the iterative method and LU decompo-
sition for # = 60° and TM excitation . ... ... ... ... ...
The current magnitude of the iterative method and LU decompo-
sition for § = 0° and TE excitation . . . . .. ... .. ... ...
The current magnitude of the iterative method and LU decompo-

sition for § = 60° and TE excitation

91



List of Tables

4.1

4.3

(&1
o

5.3

The CPU times of the spectral domain, the spatial domain and
the FFT approaches for TE and TM excitations

The CPU times of the spectral domain, the spatial domain and
the FFT approaches for,(a) TE and (b) TM excitations

The CPU times of the spectral domain, the spatial domain and
the FFT approaches for the TE and TM excitations . . . . . . . .
The values of N} and N, for different N for example 1. . . . . . .
(a) The CPU times of the iterative method and LU decomposition
(b) The number of iterations of the iterative method for the T\
excitation and example 1.

The CPU time and number of iterations of the iterative method
for the TM excitation when .V is set to (a) 200. (b) 100.

(a) The CPU times of the iterative method and LU decomposition
(b) The number of iterations of the iterative method for the TE
excitation and example 1.

The CPU time and number of iterations of the iterative method
for the TE excitation when .V is set to (a) 200. (b) 400.. . . . . .

The values of .V} and .V; for various N for example 2. . . . . . ..

XVi

60

(v 2}
(e}

7]
Pt

7]
(V]

7
2



Ut
-1

(1]
o

5.9

(a) The CPU times of the iterative method and LU decomposi-
tion (b) The iteration number of the iterative method for the TM
excitation and example 2.

(a) The CPU times of the iterative method and LU decomposi-

tion (b) The iteration number of the iterative method for the TE

excitation and example 2.

The CPU times of the iterative method and LU decomposition for
(a) TM and (b) TE excitations and (c) the iteration numbers of

the TM and TE excitations when 8is0° and 60°. . . . . . . . ..

XV

90



Chapter 1

Introduction

Advances in high speed digital computers have led to the development of more
sophisticated numerical methods to solve large electromagnetic problems of prac-
tical interest which, by classical techniques. would be virtually impossible. The
basic techniques that are used in electromagnetic problems are mainly the method
of moments (MoM) [1. 2]. finite element methods (FEM) [3] and the finite differ-
ence time domain (FDTD) methods [4], all of which basicly transform integral.
differential or integro-differential equations into algebraic equations. Therefore.
the computational efficiency of these techniques is dependent on the efficiency of
forming a set of linear equations and the number of unknowns.

The Method of Moments is very popular for the solution of open field prob-
lems. particularly for printed geometries in planar stratified media. It is presently
recognized as the most powerful approach for the analysis of printed antenna con-
figurations and for the characterization of radiation and coupling phenomena in

printed circuit discontinuities. A large number of applications of the MoM can

be found in the literature [5. 6. 7].
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The main advantages of MoM are its accuracy. versatility and the ability to
compute near -as well as far-zone parameters. The basic idea of the MoM is
to reduce an integral equation to a matrix equation, and to solve the matrix
equation by a known technique.

The first step of the MoM formulation is to write an integral equation describ-
ing the electromagnetic problem, which could be the mixed potential integral
equation (MPIE) or the electric field integral equation (EFIE) for the printed
geometries. These integral equations require related Green'’s functions. either of
the vector and scalar potentials (for MPIE formulation) or of the electric fields
(for EFIE formulation). Since the spectral-domain Green’s functions are available
in closed forms. their spatial-doinain counterparts are obtained via an efficient
inverse Fourier transform algorithm. Once the Green's functions are obtained,
the solution due to a general source in 2-D can be obtained by the principle of
linear superposition. The next step in the MoM formulation is to expand the
unknown function in terms of known basis functions with unknown coeflicients.
then is to implement the boundary condition in integral sense through the testing
procedure. Following these steps. the integral equation is transformed to a matrix
equation, whose entries are double integrals in the spatial domain, one for the
convolution integral to find the electric field, and one for the testing procedure
to apply the boundary condition. However, in the spectral-domain application of
the MoM. the matrix entries become single integrals over infinite domain. Con-
sequently, the computational efficiency of the MoM lies in the evaluation of the
MoM matrix entries. of course for moderate size geometries requiring a few hun-

dred of unknowns. For a geometry requiring a large number of unknowns. the
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matrix solution time dominates the overall performance of the technique, there-
fore the efficiency of the method is defined by the efficiency of the linear system
solver.

In this thesis, three different implementations of the MoM are studied, which
are, namely, the spatial-domain MoM using the closed-form Green’s functions.
the spectral-domain MoM using the GPOF algorithm [10] to find the matrix
entries, and the spectral-domain MoM using a FFT algorithm to evaluate the
matrix entries. It is observed that the most efficient one is the spectral-domain
MoM using the GPOF algorithm. However, for large geometries requiring a large
number of unknowns, the efficiency of the overall method can be improved by
using an iterative algorithm, developed in this thesis. for the solution of the
matrix equation.

In Chapter 2, a method to obtain Green's functions in the spectral and spatial
domains is presented. The details of the MoM formulations in the spectral and
spatial domains are given in Chapter 3. Then. several numerical examples of
these approaches are presented in Chapter 4. An efficient iterative method to
solve the matrix equation is introduced in Chapter 5 with some examples. and

finally. conclusions and future work are given in Chapter 6.



Chapter 2

Green’s Functions in Spectral

and Spatial Domains

Green’s functions. either in the spatial or spectral domain. play an important
role in driving integral equations for electromagnetic problems. Especially for
planar multilayer geometries, they reduce the dimension of the problem from 3-D
to 2.5D by incorporating the laver information. such as the dielectric constants.
thicknesses and the number of layers. through satisfying the boundary conditions
at the interfaces between the lavers. Therefore, the efficient calculation of Green's
functions is quite important for the efficiency of the method emploved in the
characterization of such geometries. In this chapter, the derivation of Green's
functions in the spectral domain is first presented, then their spatial domain
counterparts are obtained in closed forms.

Green’s functions of the vector and scalar potentials in the spectral and spa-

tial domains are obtained for the sources of horizontal and vertical electric dipoles
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placed in multilayer planar media, where the layers are assumed to extend to in-
finity in transverse directions. The spatial-domain Green’s functions are obtained
by taking the inverse Fourier transform of the corresponding Green's functions in
the spectral domain whose analytical expressions are available for planar. mul-
tilaver geometries. Hence, the main difficulty in obtaining the spatial-domain
Green’s functions is the transformation of the spectral-domain Green'’s functions.
which can be done analytically for a few special cases. Here. we present a tech-
nique that will allow the spatial-domain Green’s functions to be approximated in
closed forms, and that will completely eliminate the computational difficulty.
To obtain the inverse Fourier transform analytically, Green’s functions in the
spectral domain are approximated in terms of complex exponentials. One way
to perform this approximation is to use Prony’s method, in which the number of
samples required must be twice the number of complex exponentials [8]. It is obvi-
ous that this leads to difficulty in sampling rapid variations of the spectral-domain
Green's functions, unless a large number of exponentials is used. Although the
least-square Prony method improves its ability to account for the rapid changes
with a moderate number of exponentials [9], it still requires several trial and error
iterations. because of its noise sensitivity, which makes the technique inefhicient
and not robust. Another exponential approximation technique is the generalized
pencil of function (GPOF) method [10]. which is more robust and less noise sen-
sitive when compared to the original and least-square Prony methods. and also
provides a good measure for choosing the number of exponentials required in the
approximation. However. it still requires a study of the spectral-domain behav-
jor of the Green's function in advance. in order to decide on the approximation

parameters such as the number of sampling points and the maximum value of
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the sampling range. In addition, one would need to take thousands of samples in
order to be able to approximate a slow converging function with rapid changes.
because both the Prony and the GPOF methods require uniform sampling of the
function.

Recently, a new approach based on a two-level approximation has been pro-
posed to overcome the previously mentioned difficulties, and it has been demon-
strated that the new approach is very robust and computationally much more
efficient than the original one and its variants. The two-level approach divides
the range of approximation into two parts, the first one covers the region where
the function to be approximated has rapid transitions, whereas the function is
smooth in the second region. Therefore, it is no longer necessary to take thou-
sands of samples to account for a rapid transition that occurs in a small part
of the entire range, resulting in a significant reduction in the number of data
points to be processed. which, in turn, translates into a substantial saving in the
computation time.

We will derive the spectral-domain Green's functions for planarly stratified

media in Section (2.1). and will present the method of obtaining the closed-form

spatial domain Green's functions in Section (2.2).

2.1 Green’s Functions in the Spectral Domain

Consider the planar multilayered medium shown in Fig. 2.1 where it is assumed
that the lavers extend to infinity in the transverse directions. The source. (hor-
izontal electric dipole (HED) or vertical electric dipole (VED)) is embedded in

region i and the observation point can be located in an arbitrary layer. Each
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layer can have different electric and magnetic properties (¢,,, tt;,) and thickness
(d;). Perfect electric conducting planes and half-spaces are also regarded as layers

in this formulation.

. z
* z=z rh
region -(i+m)
region -(i+1)
z=d i-h
source
region-(i) * > x
(HED,VED,HMD,VMD)
z=-h
region-(i-1)
T z=-d j.4-h
region-(i-m)
' Z=-Z o, -h

Figure 2.1: Sources embedded in a multilaver medium.

The spectral-domain Green's functions are first derived in the source laver.
then by using an iterative algorithm applied to each transverse electric (TE)
and transverse magnetic (TM) components they are obtained in the observation
layer. Then, the spectral-domain Green's functions are approximated in terms
of complex exponentials via the GPOF method after the direct terms have been
extracted.

All of the Green's functions. presented herein. are for the vector and scalar
potentials that are indeed not defined uniquely in stratified media [11]. In other
words. different sets of Green's functions for the vector and scalar potentials can

be chosen to satisfy the same boundary conditions. The following notation for
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the Green’s function is commonly used and referred to as the traditional form:

I

4= (j.ﬁi: + g]))Grz + fiG:r + ﬁgG:y + 5.’36';; (21)

for the vector potentials, GI and G? for the scalar potentials.

The spectral-domain Green’s functions of the vector and scalar potentials can
be obtained from the electric and magnetic fields generated by a current dipole
J = Llé(r)a, where & is a unit vector. For the sake of illustration, the field
components for an HED in a multilayer media, Fig. 2.1, can be written in the

source layer (laver ) in 2-D as follows [12]:

INi o . o o .
., = / dkokye~the=[Leikalel 4 Beeibus 4 peeikes] (2.2)

° irw

LU=, ke oo - _
i, = — i /_ _dk,z_—e-f‘zf[e-ﬂ“-hl + ASelkat 4 CreIkas) (2.3)

where the = dependence of the fields in the source region is characterized as the
sum of the direct term and up- and down-going waves due to the reflections
from the boundaries at = = —h and = = d; — h. respectively, where + and —
signs are for positive and negative z values, respectively. The coefficients of the
up- and down-going waves can be obtained in terms of the generalized reflection
coefficients by applying the appropriate boundary conditions: (i) the down-going
waves for = > 0 are the consequence of the reflections of the up-going waves
at = = d; — h: (i1) the up-going waves for = < 0 are the consequence of the
reflections of the down-going waves at = = —h. It should be noted that the other
field components can be easily derived from the z-components of the fields [12].

so they are not included here. After having obtained the field components, the

components of the vector potential and the scalar potential can be derived from
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the following relations:

VxA=uH (2.4)

VxA Ll 0¢
- - (2

Q4 = ; = =
4 Jwpie;  Jw Ol

where ¢4 and ¢ are the scalar potentials for the dipole element and a point charge,

respectively, and !’ is replaced by z’ for an HED and replaced by =’ for a VED.

Below are the expressions of the spectral-domain Green’s functions (traditional

form) in the source layer for HED and VED sources. They read:

HED:
G2, = o;: 7kl L Ag eiha 4 Cre %7} (2.6)
. — A‘IA.:I € ey jko = kl'k-'-v € ey —JK: = -
G = Q_]T{ w2 (A, + Bpe™= + = (Dy = Cr)e™ } (2.7)
2 De .2 g€ 20 _ 12 De ‘
G = j.,:_A {e““‘h':' + KBk A :2' KA + G = b D “A""' D*'e‘“*v*"}(iz.s)
\'ED:
G = Jﬁ‘A {emhald 4 Agcehas 4 Brestat] (2.9)
Gl = {c--"=-'~'+(*:c-1‘-~-+D:,<--f‘-v-} (2.10)
72k €

where G,‘: denotes the spectral-domain Green's functions for the vector potential

in the direction-7 due to a unit j-directed current element. (G represents the

Green's function of the scalar potential in the spectral domain due to a unit

i-directed electric current element. k? =

= kZ 4+ kZ. the superscript A represents
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the electric vector potential, and ¢. represents the electric scalar potential. The

coefficients, Af ,, By ., Cf, and Dj . are functions of the generalized reflection

coefficients RTE,TM, and they are given by

A = eknldioh) fridt {e—jk,,(d.-h)+R:‘T.xgxc_jk:,(d.+h)}Mﬂ;
B = e*ik:,(d.—h)RiT.t;;l {e—jkx,(d.—h) _ R;:t'[‘—lle—jkx.(d.+h)}AI‘TM
C}: — C_jkx'hif;'-iE_l {e‘jk*.’h + R?‘glﬁ—jk"(zd'_h)}]‘ﬂrls
Dy = e bR e hah g Ry ek (WL T
A ek R {e‘f“r.h + R*‘T{;;le—jk=,(2d.—h)} AT
B = 8’““”'"“1?%*}‘ {e'—jkx,(d.—h) + RiT‘iA—Ile-jk:,(dnLh)} .v’lI,-T‘”
Co = e hah R { et g Ry ek (A AT
Di = emkaldmh bt f ke ok 4 Rigtemiba(dahl )y T

where
MIETM = (1= RYE T RYE rare™ ]!
Pty RYS Iy + RYETad ~_jk:’ *
—sk: 2d,

TETM = 5501
1 - R, js1Rrprme 77

Here R and R are the Fresnel and the generalized reflection coeflicients [12] for

which the subscripts TE and T M represent the polarization of the wave. the
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superscripts (z.7 — 1) or (1.7 + 1) show the layer numbers, the subscripts h and
v used in the coefficients (2.11)-(2.18) represent the orientation of the source,

horizontal and vertical, respectively, while the superscripts e denotes the electric

current source.

The amplitudes of the up- and down-going waves in a layer different from the

source layer are related to those in the adjacent layers by,

~i(ke, gy ks, )(h+2omi1)

Tiiq ;€
- 4= di+1
A7 = A

_ 4 2.21)
1+1 » —3k:. 2d (“""
1= Rj; 1R ;677707

where A; and A}, are the amplitudes of the down-going waves in layers j and
7 + 1., respectively, (j = t — m), T is the transmission coefficient, and z_,, is
the distance between the lower boundary of the source layer i and the lower
boundary of laver j. Fig. 2.1. Similarly the amplitudes of the up-going waves in
layer j = ¢ + m can be written as

. e—ilk: _]_kz Mzm-1+di—h)
Tj-1,€ ’ ’

Af = A7 (2.22)

% -h-1 5 —gk-_ 2d
1 - R;; 1R e
Therefore, starting from the source layer, the field expressions for any layer can

be obtained iteratively.

2.2 Closed-Form Green’s Functions in the Spa-

tial Domain

The scalar wave equation of a line source is written as

2 a2
[561—3 + d@_j + k:J é(x.z) = —6(r)é(z)
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Because of the cylindrical symmetry of the problem, Eq. (2.23) is solved in cylin-

drical coordinates, i.e.,
55+ -5+ k,,] #(p) = —6(p) (2.24)

where 6(p) = é6(x)é(z). It is known that, the solution of Eq. (2.24) is given as

[S™]
Q]
(&1
~—

o(p) = - HS (ksp) (2.

In addition, Eq. (2.23) can be solved by Fourier transform technique. For a fixed
z, assuming that the Fourier transform of ¢(x, z) exists, then it is expressible as

an inverse Fourier transform integral as

1 oo . A
#a,2) = 5= [ Glha,2)e o7 dk, (2.26)
Consequently, on substituting (2.26) into (2.23), and using the fact that
&(r) = L /\ e kT dk (2.27)
2 Jox T

one obtains

_1- X 0—2-}-1\‘2—1{2 é(}\ ..)e—jk,rdk _ __l~/¢< 6(~)f"~7-k’f(1/\'. (2 '78)
'277 —oc a:? 14 rf ¢ Ty~ T 27{‘ - bt r - .28

Therefore. we must have

a2 ‘
(ad? + A{f’) S(ke.z) = —6(2)

where &? = k2 — k2. Thus.

N o= k=)=
o(ky.2) = —"% (2.30)

if only the outgoing-wave solution is considered. Hence. Eq. (2.26) becomes

_J' ~ E‘j":""i":kl

o) = 7= [ ks

(2.31)
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By the uniqueness of the solution to the partial differential equation (2.23).

Eq. (2.31) must be equal to Eq. (2.25) since both of them satisfy (2.23). As

a result, an integral identity

1 o< e'jkrf—ijIZI
HP(k,p) = ;/_ ek (2.32)

is obtained, which is used throughout this thesis quite frequently. The right-
hand side of Eq. (2.32) could be interpreted as an integral summation of the
plane waves propagating in different directions including evanescent waves [12].

Since the principal goal of this section is to introduce a robust and efficient
technique to obtain the spatial-domain Green’s functions in closed-forms for pla-

nar layered media, it would be useful to first provide the definition of the spatial-

domain Green's functions
1 % - -
1.qe —jkez Frd g
G — ﬁ/ dk,e~ksx (349 (2.33)
L —0C

where, G and G are the Green's functions in the spatial and spectral domains.
respectively, and STP is the Sommerfeld integration path defined in Fig. 2.2.

The integral given in (2.33) cannot be integrated analytically. except for a
few special cases. However. if the spectral-domain representation of the Green’s
function. G in the integrand can be approximated in terms of complex exponen-
tials, the analytical evaluation of the integral (2.33) becomes possible and can
be expressed in terms of summation of the Hankel functions of the second kind.
Therefore. the crucial step in the derivation of the closed-form Green’s functions
is the exponential approximation of G.

The original approach of getting the closed-form Green’s functions in the
spatial domain has had some difficulties for example. the quasi-dynamic images

and the surface wave poles need to be found and extracted from the Green’s
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\ Im(k,] k- plane
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Figure 2.2: Definition of the Sommerfeld integration path, and the paths C,,
and C,pp used in two-level approximations.

function prior to the approximation. However, with the introduction of the two-
level approach. which is robust and very efficient, these difficulties are eliminated
[13]. In the two-level approach, a path formed by the paths C,p; and Cupy is
emploved. as depicted in Fig. (2.2). and the paths C,, and C,p2 are defined by

the following parametric equations:

For Capl k:' = —jk,'[To-g -+ f] 0<t< To] (234)

. t
FO’. Cap‘l l'.:, = k:[__]t + (1 - T"‘)] 0 S { S Tog (_33)
02

where t is the running variable sampled uniformly in the corresponding range.
The exponential approximation process begins with sampling the function to be
approximated. and then the algorithm for exponential approximation is emploved
for the sampled values of the function. After having sampled the spectral-domain
Green's function to be approximated. apart from the term 1/;2k. . the GPOF

method is used to obtain the exponential approximation of the function. which
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results in an approximation as follows:

: 1 PTRTR. : ,
G = T {e—)k:.I-—Z | + Z Cn,f_onlk"ejk"(:+:)
J= 2o ny=1
AY
+ Z Cn26 —anykz, e.lkx (2-2") + Z Cme-onq ~Jk: (242")
nz=1 na=1
Nz .
+ Y Coyeomiknemshn =70 (2.36)
n;:l

where C,’s and a,’s denote the coefficients and exponents of the complex expo-

nentials obtained via the GPOF method.

To demonstrate the procedure on a real example. the derivation of the closed-

form Green’s function in the spatial domain GZ_ is given below: first, the spectral

domain representation is written

Gi = ok, (5_jk:-"""' + Ry MTE ke 2 ok (451)
+RT VRIH ATE gmike 2 ik, (=) | Ptz y(TE —jks, (+45')
+ RxTxEle a4+l ‘[iTEf-jk:ﬂdne*Jk:.(3":’)) (2.37)

then its approximation by complex exponentials is transformed into the spatial

domain as

Gio= % dkpe T GA (2.38)
/ll —jkrr —jk: Jz=2') o ~ -0 ko gk: (=42")
- / dk, e u' ekl LS, e omarhs ke (o
nrr=1
N2ss Nars ,
+ Z Cnhxf_"""n:k:.ka:,(:‘:l) + Z (‘nanf"ﬁn:«nk:.(‘JL':,(-“"’:’)
nzry =1 nazr=1
N2z
+ 2. C nmf"’"z"k:'fnik:'(:_:l)} (2.39)
n2rr =1
where C,,,,. and a,,,, (1 = 1.2.3) are the coefficients and exponents of the complex

exponentials approximating the three term in Eq. (2.37). Using the identity
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derived in Eq. (2.32), the spatial-domain Green’s function G4, is obtained as

) Nizs Noasrx
JHi 2 i
G:‘T - —T {H(()z)(k' p) + Z Cnl-"Ho( )(k' p"l.r.r) + Z CI"?:: H((JZ)(A‘K pLil:)
nyrr=1 na2zz=I1
Nizx (2) Nazz (2)
+ Cn:‘.rx HO (kt pnlxx) + Z Cﬂ2;; HO (k1 psl22)xf) (2‘40)
nazy=1 nazr=1
where
p = -z +(z-2) (2.41)
Prics = \/(ﬂr -2’2+ (z+ 2 +jan,,)? (2.42)
PV = Sla =)+ (2= 4 jan,, )? (2.43)
P = \Jlz =) (2= 2 jan,,)? (2.44)
p"sxx = \/('T - 1")2 + (Z + zl - janau )2 (2-45)

)

It is known that G:y is equal to GZ2_. and the formulation procedure for G . G
and G4 are similar to G2,. For the derivation of G , one should note that k, in
the numerator of its spectral domain representation (2.7) should be eliminated

in the approximation process. Therefore, —jk, is taken out from the expression.

and G4 /(~jk;) is approximated:

G}r My ]":, € ey k. = k:- e e ke = .
ST e T B g (Dh - G (2.16)
“Jhr ~J Nz, T T
L -\'1 :x , . Na:s ) ,
L N B LT
‘)‘Jk:v ny.r=1 ny:r=1
Na:s ) , Noer e
+ Z CnJ::f-Q“S:Ik:'ei—Jk:'(:"’: ) - Z an:x(—nnz:xk:'é_"k:'L_. )) (2.1-‘-)
na:z=1 nz:r=1

Using the following property of the Fourier transform.

G(z.z) —— G(k;.2) (2.43)
Gk 2) (2.49)

/d.rG(.r.:) — N
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the integral of G2 is obtained as

4 ]ﬂl Nl:x (2) -V2:x (2)
[arci = 5" Corsa Bk pr) + Y Cons B A1)

nyre=1 nz:y=1
\.3:: (2) NZ .x
2 I
+ Z C"Bzx L pn; .r Z an :x ( ) 5122)_1)}(2.00)
n3:r=1 nz:r=1

Since the derivative of Hankel function is given by

d(HP(az
—(—Od;[(—)—) ~aH{"(az) (2.51)
G4 can be obtained as
]ﬂ le.r (2 l\z,x (2
64 = LS LT ) + Zla“ T ks pA2,)
Nyzz= Mzz n2:x= n2:r

N:z3 Ir— 1.’ (2) Na:x ()
+ Z C"Jxr Hl (ki pn3z:) - Z C"Z :x (2) H (A PL?.,) (2'52)

=1 n3:x n2:z=1 Prz:z

To give an idea how these closed-form Green’s functions behave. an example
is provided for two laver media: the first laver has a relative permittivity of 4
and the second layer is free space, the source is placed at the interface and hence

z* = 0. The plot of Green’s functions are given below.
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Figure 2.3: The magnitude of the Green’s function for the vector potential G2,
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Figure 2.4: The magnitude of the Green's function for the vector potential G2
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Chapter 3

Formulation of Electric Field

Integral Equation in 2-D

Method of Moments is one of the most popular numerical techniques employed
in electromagnetic simulations of printed circuits, and antennas. Hence. in this
thesis we are mainly concerned with the analysis of 2-D printed structures with
the use of the various forms of the MoM. Although the main algorithm is the
same in these forms. which is the discretization of unknown in terms of known
basis functions and application of the boundary condition: in integral sense. the
implementation of these steps can be carried out in different domains or via
different algorithm. For example, the whole algorithm can be carried out in the
spatial and spectral domain, or the implementation of the boundary condition in

integral sense can be performed via the fast Fourier transform.
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Chapter 3. Formulation of Electric Field Integral Equation in 2-D

3.1 Method of Moments

Although the MoM in this thesis is applied for the solution of an integral equation.
the general setting of the MoM is given here for the sake of completeness. For

this purpose, the following operator equation is considered,
L(f)=g (3.1)

where g represents a known source contribution. L denotes a linear operator
operating on an unknown parameter f, that has to be determined. The first
step in the application of the MoM for the solution of Eq. (3.1) is to expand the

unknown parameter by a set of known basis functions with unknown coefficients
as
f:Zann (:3'2)
n
where f, represents the basis function spanning the domain of the operator L.

and a, is the corresponding unknown coefficient. Using the representation of f

in Eq. (3.2) and the linearity property of L. the following equation is obtained :
Y aul(fa)=g (3.3)

The second step in MoM is to use a set of weighting functions. or testing

functions. wy. wa. ws. ... in the range space of L. and to take their inner products

with both sides of Eq. (3.3). resulting in

<uwy.g> = Enn < u'l.l.fn >
n

<wg> = Zn,, <>U‘2.1-f” > (3.1)
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These equations can be written in matrix form as
[9m] = [Imn][@n]

where
<uwi.g >

[gm] =l <uw.g>

<w,,Lfi> <w,Lfy>...

[[mn] = | <wyLlfi> <wylfy>. ..
aq
[aﬂ] =1 a2

If the matrix [I] is nonsingular. then

[@n] = [lmn] ™ [gm]

(3.5)

(3.7)

and the solution for f is obtained from Eq. (3.2). If the matrix [/] is of infinite

order, then its inversion can not be performed unless [{] is diagonal. If the sets

f» and w, are finite. the matrix is of finite order. and can be inverted by known

methods.

The solution depends on the choice of the basis functions. which should be

linearly independent and should be chosen such that some linear combination

Eq. (3.2) can approximate f reasonably well. The solution also depends on

the set of testing function wy.wy.. ...

which should be linearly independent and

should best represent the properties of g. Some additional factors which affect
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the choice of f, and w, are (1) the accuracy of solution desired. (2) the ease of
evaluation of the matrix elements, (3) the size of the matrix that can be inverted.
and (4) the realization of a well-conditioned matrix [{] [1].
The name method of moments derives from the original terminology that
J 2" f(zx)dr is the nth moment of f. When 7" is replaced by an arbitrary .
we continue to call the integral a moment of f. The name method of weighted
residuals derives from the following interpretation. If Eq. (3.3) represents an
approximate equality, then the difference between the exact and approximate L f
1S
9= aLfa=r (3.8)
n
which is called the residual r. The inner products < w,.r > are called the

weighted residuals. Eq. (3.4) is obtained simply by setting all weighted residuals

to zero.

3.2 Electric Field in 2-D

The general form of scattered electric fields can be written as

E,=—juG: »J, + fl—i((,"" *\ - J) (3.9)
Jwor
E, = —juG} x J, + Lo (G *Y\ - J) (3.10)
y I Ty * Iy Juw dy
1 0
E. = —juG} «J, —ju'(r'fy «J, = juGh « J. + - (G +Y-0)  (3.11)

where x denotes convolution. and G2, = G}, The fields E,. E, and E. represent
the scattered electric fields in xr. y and = directions. respectively. The term (:';';
represents i-directed vector potential at r due to a j-directed electric dipole of

unit strength located at r'. while G% represents the scalar potential by a unit
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point charge associated with an electric dipole. Since the traditional form of
the Green's functions is employed in the formulation, Green's function of the
scalar potential is not unique for horizontal and vertical electric dipoles as stated
previously. Hence, the term involving the Green's function of the scalar potential.
which is common in Egs. (3.9)-(3.11). can be explicitly written as

e\ ey v | e, 99 (3.12)
or y

,qe . — "qc
GV J =G« By e

where G% = G7¢ and G¥ denote Green's functions of the scalar potential for
a horizontal and vertical electric dipoles, respectively. However. the equations

(3.9)-(3.11) can be simplified in 2-D, because J;, .J, and J. are functions of & and

= only, that 1s,

9 Grev.3) = 0 (3.13)
Ay
aJ, .
Fy— = 0 (3.14)

which result in the following scattered electric field equations:

1 0 0 d
S — g A i % —J, 9w — J. 3.15
Ez J GII*J:+jw(').r [Gr *0J‘J + G *(): J (3.13)
E} = —jwGy, * J, (3.16)
1 0 J 7]
S — g ,.4 ,.4 . - - —J, C"fi, —'.]: 317
o= (C:I*JI+C::*J~)+J.W'0: [(r*&r'} o *('): } S

For the calculation of the incident field. a simple case in 2-D represented in
Fig. 3.1 is considered. If the excitation is transverse electric (TE) to y. then the

magnetic field is in y-direction. and written as

H:e - !)I{‘_((.J(kxl'+k::)+REI.‘IL‘-"(_)(L';J‘—L‘;:)) (3.18)
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Figure 3.1: Strip of width 2w located near interface between two semi-infinite
half-spaces and illuminated by source in upper half-space

Since the electric field integral equation is used throughout this thesis. the inci-

dent electric field is obtained from

VxH, = juweE] (3.19)

as

. 1
Ei. = —H{(=k. + 3h)Pm45) 4 (k4 k) RE Y o 13.20)

we,
When the excitation is transverse magnetic (TNM) to y. the electric field be-

comes in y direction. and written as

FE' — !;E'.((J(er‘i‘k: :) + I:{fl-_'vE_'l(J(k.:J'-k:f)) (¥~ )

tmi T
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Since most of the examples in the literature are given as the current density
normalized with respect to the incident magnetic field. this field component needs

to be determined. From the following Maxwell's equation
VxE, = —jupH (3.22)
the incident magnetic field is obtained as

| e L
H;, = rmEi((—rkz + 2hp )t 4 (k4 2k, ) RYE BT Re303.23)

where

ki o= Jk2+ k2 (3.24)

kisiné (3.25)

>~
H -
Il

k. = kycosf (3.26)

and RyF' and RY,;' are given in Eq. (2.20).

3.3 Basis and Testing Functions

The Method of Moments converts an integral equation to a matrix equation and
solves the matrix equation through the expansion of the unknown function in
terms of known basis functions and weighting the resulting expression by the
testing functions. Therefore. one needs to choose the basis and testing functions
judiciously to minimize the error in average sense. Since the Galerkin method is
used in the study. the basis and testing functions are chosen from the same set

of functions.

In this section. the basis and testing functions that are used throughout this
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thesis are presented. The current densities for TM and TE excitations are ex-

panded in terms of sub-domain basis functions as
Mim

Jy(v) = Y IymBym(v) (3.27)

m=1
M

Jo(v) = Z I B (V) (3.28)
m=]

and the testing functions T, (u) are used as in Fig. 3.2, where u and v are functions

of r and =.

Z/
A

“’{\ _ X
NN

Figure 3.2: o and o on basis and testing functions

These testing and basis functions are chosen as triangular functions. Fig. 3.3.

and given by

Sl ifoy <v <y
(v2 = vy)(v3 — 1) b="=
B(v) = 3 — LU if 1; < v <y (3.29)

(v3 — vg)(v3 — 1)

0 otherwise
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z z’
ﬁ 0 > X
X7, 23
(x5, 23
> X
0
Figure 3.3: Single triangular testing and basis functions
u — uy .
(7 — w1 )(us =) ifu, <u<u
T — Uz —u : R 3.
(u) (as —ua)(us = 1) if u, <u<ug (3.30)
0 otherwise
where
ot
o = arctan (? ”I) (3.31)
Ty — )
r' = vcoso (3.32)
2 = vsing (3.33)
and
a = arctan ( Sl ) (3.34)
I3z — Iy
r = ucosa (3.35)
: = wusina (3.36)
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Since both the basis and testing functions are in the same form. the Fourier

transform of the testing function is given here as

- —(u3 — u2)e?™ ™ 4 (uz — uy)e?* U — (uy — uy)e? e .
= (3.37)

T(ku) - A’:(UQ _ul)(u3—u1)(U3—U2)

to be used in the spatial domain applications of MoM.

3.4 MoM Formulation in Spatial Domain

The total electric field for TE excitation in region ¢ is the summation of the

scattered electric fields and the incident electric field
E, =iE; +iEI+ E;, (3.38)
Similarly, the total electric field for TM excitation is written as
E,, =jE; + E,, (3.39)
Boundary conditions for the tangential electric fields for both TM and TE
excitations are applied on the conducting body as

(E(rm )f“" =0 and (E;c)lnn =0 (310)
and substituting Eqs. (3.38) and (3.39) results in the following electric field inte-

gral equations (EFIE):
(FES 4 2EDan = —(Ej)tan (3.41)

(gE;)tan = _(Elm)lan (;42)

With the application of the testing procedure of the Mol to these integral equa-

tions

(Ten(u) . FES + 2EZ) = —(Talu) . E},) (3.13)



Chapter 3. Formulation of Electric Field Integral Equation in 2-D 31

for TE excitation. and
(Tyn(u), E}) = —(Tyulu) . Ein) (3.44)
for TM excitation are obtained. Using the testing function of

Tyn(u) = @ Tya(u)
= (Zcosa + Zsina) Tin(u) (3.45)

for TE case, the left hand side of Eq. (3.43) becomes

(Tyn(u), 0E)) = (Twn(u), TE; + ZE7)
= /du (cosa E +sina E?) Ton(u)

M.
= —juw Z Jom [ du Tyn(u) (cococoso G Bv,,,(z'))

+/du Ton(u) (sinocoso G'. * Bl-m("))
+/du Ton( u)(smnqmoc * B (1 ]

dTon(u) : dBm ()
d 2 ,'7(
[ —d (cos o Gl * i )

4 / du T ;'1';(“) (sinzd) G+ i’%)] (3.16)

and. the right hand side becomes

(Tvn(u) . E') = [/du cos(a + O) Ty (u)e? i Hhes)
e
/du cos(a — ) Ry'sy! T (u) /o5 )] (3.47)
l‘le )

= ——— |cos(a + 0T, (ksin(a + 0))e/hrrnathsing

we,;

— R'T'{,’ cos(a — OV T (ksin(0 — a))e s "nr“-:nz)](;_;..;g)

Similarly, using the testing function of

Tyn(u) = u Ty(u) (3.19)


















































































































































































































