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ABSTRACT

ANALYSIS OF THE IN-VITRO NANOPARTICLE-CELL
INTERACTIONS VIA SMOOTHING SPLINES MIXED
EFFECTS MODEL

Eli fnur Dojru®°z
M.S. in Industrial Engineering
SupervisorAssoc. ProfDr.Sav ak Dayaneéek
Co-SupervisorProf.Dr.Kh sSsaatb uncuoj | u

July, 2013

A mixed effects statistical model is developed to understand the nanopartiele(NP)
cell interactions and predict the cellular uptake rate of NPscéMRnteractions are
crucial for targeted drug delivery systems, -be¥el diagnosis, and cancer treatment.
The NP cellular uptake depends on the size, charge, chemical structure,
concentration of NPs, and incubation time. The vast number of combinations of
those variable values disallows a comprehensive experimental study -oélINP
interactions. A mathematical model can, however, generalize the findings from some
limited number of carefully designed experiments and can be used for the simulation
of NP uptake rates for the alternative treatment design, planning, and comparisons.
We propose a mathematical model based on the data obtained oo iNP-
healthy cell experiments conducted by the Nanomedicine and Advanced
Technologies Research Center in Turkey. The proposed model predicts the cellular
uptake rate of Silica, polymethmethacrylate, and polylactic acid NPs given the
incubation time, size, charge and concentration of NPs. This study implements the
mixed model methodology in nanomedicine area for the first time and is the first
mathematical model that predicts NP celluliptake rate based on sound statistical
principles. Our model provides a cost effective tool for researchers developing
targeted drug delivery systems.

Keywords Nanamedicine, targeted drug delivery, nanoparticle uptake rate, linear
mixed modelsmoothing splines
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Chapter 1

Introduction

Cancer is a disease that causes cells to change, grow, and spread
uncontrollably. It may affect almost any part of the body. Most types of cancer form
a mass called tumor, and the cancer is named according to the place of the tumor.
Cancer is the leadingaase of death in the world. Breast cancer is the most frequent
cancer type among women and the most frequent cause of cancer death in women. It
is the fifth cause of deaths from cancer overall in 2008 according to the report of
International Agency for Rearch of Cancer. In 2008, 7.6 million, which is around
13% of all deaths, people died from candeis estimatedhat 1,660,290 new cancer
cases and 580,350 cancer deaths will occur in 2013 only in the United States (Siegel
et al., 2013)Moreover, t is expected that deaths from cancer will rise to over 13.1

million in 2030 (Boyle and Levin, 2008).

Cancer was considered incurable bef@amepatients can be treated nalve
to the improved diagnostic techniques and treatments. Current cancer treatment
methods involve surgical intervention, radiation, and chemotherapy. Howeese, th
methods dken harm also the healthy cells and catgsecity. Therefore, there has

been an interest to combine the power of nanotechnology and cancer biology to find



new soltions b the cancein order to provide a less harmful and more effective
solution, some research have focused on developing targeted nanoparticles that can
directly deliver drugs to cancer cell$n addition to delivering therapeutics,
nanoparticles canebused for imaging to detect the disease earbelhtlevel, and

help us understand the tumor biology (Grodzinski, 2011). Moreover, a hew method
called theragnostics, which combines therapeutics with diagnostics, is developed to
have patienspecific treéments. Use of nanoparticles has led the advances in
theragnostics (Fang and Zhang, 2010). All of these fields require the use of
nanoparticles at celevel. Therefore a careful investigation of NEell interaction

and the cellular uptake process is vieegessary to advance the relevant studies.

Our study aims to investigate the cellular uptekte of nanoparticles (NP) via
statistical smoothing and mixed models methodology. Data obtained frwitran
NP-cell interaction experiments are used to fit penalized spline smoothing model,
formulated as a mixed model. The proposed model predicts the celpibke rate
of NPs having different characteristics. Those characteristics are size, shape,
chemical structure (type), surface charge of NPs, and the concentration of NP
solutions used. Although some configurations of those characteristics cannot be
produced due to technical limitations, the number of the remaining configurations is
still vast. Therefore, it is very costly and time consuming to conduct experiments
with all those possible configurations. However, prediction of the cellular uptake is

still possible by using strong mathematical models. The ultimate aim is to obtain NP



specifications with the desired uptake efficiency. Our study was carried out to

achieve that aim.

We model the uptake rates each type of nanopartickSilica, polymethyl
methacrylate (RMMA), and polylactic acid (PLA))into the cell in 4&our time
interval by means of a penalized spline smoothing mixed effects model. For each
type of NP (Silica, PMMA, and PLA), we develop a model that takes NP size,
charge, concentration, andcubation time as inputs to predict the cellular uptake
rate. Our model is based on datdtained from irvitro experiments conducted by
the Nanomedicine & Advanced TechnologieResearch Center in Turkey. Three
typesof sphereshaped nanopatrticlege usd in the experiments. Silica and PMMA
NPs were produced in 50 and 100 nm diameter and PLA NPs were produced in 250
nm diameter. For each type and size, NPs were produced with positive and negative
surface charges. NP solutions with 0.001 mg/l and 0.01 cogitentratios were
prepared and added to healthy cell cultuidse number of NPs removed from the
environment was counted at 3, 6, 12, 24, and 48 hours of incubation. The difference
between the number of NPs added to and removed from the environment is
calculated as the number of NPs penetrated into the cell or attached to the cell
surface An experimentwasrepeated six times for each different configuration of NP
characteristics. For Silica NPs, the experiments are replicated for all combinations of
size, charge, and solution concentration. Observations are taken at different time
points in the second repétion. Also, PMMA experiments conducted with positively

charged NP solutions of 0.001 mg/l and 0.01 mg/l are replicated, and observations



are taken at the same time points in both replications. Having correlated data coming
from more than one replicatias the main reasorwhy we prefer mixed model to

represent this uptake process.

To the best of our knowledge, this study is the first application of penalized
smoothing mixed effect model to nanomedicine and is the first ramdict
statistical modelof R cel | ul ar uptake rate. A closel
(2014) Artificial Neural Network model. Unlike that model, our model brings an
easyto-understand explanation to the interactions of various effects on uptake rate,
and is capable of linkinthe data obtained at different times by means of the random
effects. The easto-interpret components of our model will make the researchers

work more comfamably with the model.

The remainder of ththesis is organized as follows: In Chapter 2, theditee
on NP-cell interaction is given. In Chapter 3, background about the cell structure and
particle transportation is explained for tteadersvho do not have knowledge about
the cell physiologyOur methodologyand design of experiments are discussed in
Chapter 4. Chapter presents oumodel. The results are analyzed and compared

with the previoustsidies in Chapter 8Chapter toncludes



Chapter 2

Literature Review

Numerous experimental studies have beeonducted to explore
nanoparticlecell interaction in the past few years. In those studies, effects of NP
size, surface charge, concentration, chemical structure, and incubation time on the
NP-cell interaction are investigated. Most of those swidieontan no
mathematical modedf NP-cell interaction, but provide general comments about

the influence of some of the properties of NPs.

Davda and Labhasetwar (2001) investigate the uptake of nanoparticles by
endothelial cells in cell culture. They demonstrdiat tthe cellular uptake of
nanoparticles depends on the concentration of the nanoparticles in the medium,
and the uptake increases with the increase in the concentration. Another result of
their study is that the uptake also depends on the incubationTivag.image the
cells at 0, 30, 60 and 120 minutes from theginning of the incubation and
observe that the uptake increases with the incubation Tine&r research also
shows the biocompatibility of the NPs with cells and usability of NPs to target
drugsinto the endotheliumHence, it is a significant study for the targeted drug

delivery literature. Besides, this study is also important for us since it shows that



the concentration is influential on the uptake of NPs. However, its scope is
narrowerthanour study since they obserealy the effect of the concentration of

NPs.

Chithrani et al. (2006) study the cellular uptake of colloidal gold
nanoparticles by mammalian celisd observe the effexdf NP size, shape, and
incubation time on the cellular uptake kinetics. They use spherical arshaped
NPs with diameters of 14, 30, 50, 74 and 100 nm and length by width of 40x14
nm and 74x14 nm, respectively. They show that maximum uptake occurs with
NPs of 50 nm. They also observe that the uptake increases in first Z2boupty
and then reaches to a steady level-&t Hours, dependgon the size. Another
resultobtairedis that the uptake is also dependent on the shape of NiPma@ned
sphericalNPs areabsorbed taell more than the redhaped counterparts. Their
results demonstrate that the drug delivery via NPs carobieolledby adjusting
the size and shape of NP. However, no mathematical function is developed to
explain the interaction. Meover, the influence of surface charge and
concentration of NPs are not examined in this study, distinctively from our

research.

Peetla and Labhasetwar (2007) investigate the effects of surface chemistry
of NPs on the interaction between nanoparticles endothelial model cell
membraneThey use polystyrene NPs of diféeit surface chemistry and sizewd
observe the changes i n t he measund ofaneds

interaction. They utilize aminated, carboxylated and plain (without any surface



group) polysterene NPsf 60 nm size They observe that aminated NPs increase
the surface pressure while plain NPs decrease and carboxylated NPs do not
change it. They also study the effect of the size of NPs, and show that the smaller
NPs increase the surface pressure. They could not centipareffect of 20 nm
aminated NPs with the same sized plain and carboxylated NPs since 20 nm
aminated NP is not availabl&hey conclude that small aminated NPs and plain
NPs have greater interactions with the endothelial model cell membrane than
carboxyhted and large, plain NPs ddo mathematical modeif cellular uptakes
developed in this stly. However, this researcis significant forus since it

emphasizetheimportanceof chemical structurand size of NPs.

Lin et al. (2010)examineghe interations of gold nanoparticles with model
lipid membranes by means of coaggained molecular dynamics simulation.
They state that cationic (positively charged) gold NPs have a higher membrane
adhesion than anionic (negatively charged) NPs on a typical manncell
membrane since the membrane has an overall electronegative feature. They also
reveal that the penetration increases as the charge devsith is the amount of
electric charge present on per unit surface as€dNPs increases. Their results
demonstrate that the cellulaiptake rate can be increased by increasiNg
surface charges densities. Although this study does not consider the influence of
NP properties except surface charge, it is important for us bedaeisurface
charge, which is amput of our studyis proven to beeffective on the cellular

uptake.



In the previously mentioned studies, {d€ll interaction is only explored
through observations collected from physical experiments. Although they shed
light on the role of various NP properties in the-d&# interaction, none of them
describe a mathematical model that relates the properties of NPs to -tell NP
interaction. Hence, they are incapable of predicting the cellular uptake rate, which
is theaim of our research. Besides, none of the previous studies investigate the
interactions between different NP properties (chemical structure, size, charge and

concentration of NPs) as they concurrently act, as we do in our study.

In one of very few studigsroposing some mathematical models, Boso et al.
(2011) try to identify the optimal configuration that maximizes the NP
accumulation at the diseased site via developing a mathematical riibegl.
conduct aparallel plate flow chamber in vitro experiment with spherical
polystyrene NPs. Based on the data obtained from the flow chaxperiments;
they develop an artificial neural networks model (ANN) to predict the number of
NPs adhering to the vasculatureaafunction of shear rate and NP diametdrey
show that an optimal particle diameter exists for which the number of NPs
adhering to the vessel walls is maximized. That optimal diameter depends on the
wall shear rate, which is controlled through the sygirpump flow rate. This
study investigates the effects of only the NP size and the wall shear rate on the NP
accumulation. The other properties of NPs such as type, charge and concentration
arenot considereddowever they do not use real cellalthoughthe scope of the

study is very limited, it shows that mathematical models can help minimize the



number of experiments otherwise needed to adequately understaicell NP

interaction, which is the motivation of this research.

Another mathematical model igroposed by Cenlet al (2014). They
investigatethe NRcell relations regarding the effects of NP size, surface charge,
concentration, and chemical structuféey developan artificial neural networks
model to predict the cellular uptake by utilizing the same data set used in our
study. Smoothing with linear mixed models is often preferred over artificial neural
networks because the latter are considered as black boxdleandutputs are
harder to interpret. Furthermore, when experiments are replicated, as in the cases
for Silica and PMMA nanoparticles in our experiments, mixed model approach
allows them to be naturally tied to a single model by means of suitable random

effects.

Although mixed model approach has not been used in nanomedicine area
until now, it has been widely used to analydastered medical dataMixed
models can handle clustering effects tpdeling themas randomvariables
Mixed mode$ can also tolerate to missing data (Brown and Prescott, 2006).
Moreover, mixed models arappropriate formodeling complex inpubutput
relations such as NEeell interaction. To the best of our knowledge, our study is
the first to propose a linear mixed model for cellulptake rate. We expect that
our new model will advance the resdain targeted drug delivery. ¢ontributes

to applied statistics as a novel application of mixed models.



Chapter 3

Background on Cell Physiology

In the experiments conducted for thesearch, the target is to observe the NP
cell interactions. Hence, NP solutions are added to cell culture plates, and number of
NPs adhered on or penetrated into the cell is calculated. To understand the
experiments and interpret the results physiolotjic#l is crucial to understand the
dynamics of the cells and particle transportation process. In this chapter, basic
information about the cell structure and particle transportation will be given for the
typical audience considered as engineers and tst@ins. Readers who have

knowledge about those topics may skip this chapter.

Cells are the basic functional units of living organisms. They are small but
complex structures. Cells join together to create tissues, which organs are made up
of. There are atut 100 trillion cells in the human body (Guyton and Hall, 2006).
There are many types of cells such as nerve cells, blotg] paiscle cells, bone
cells Cells differ from each other both morphologically and metabolically. While
some bacteria can be sdwardly in the light microscope, some neurons might have a

size of 1 meter.
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Despite of the differences in sizes, shapes, and activities, all cells have two
main functional regions: the nucleus and the cytoplasm (Wolfe, 1999). The nucleus
contains and &nsmits the genetic material needed for cell growth and reproduction.
It is separated from the cytoplasm by a nuclear membrane. The cytoplasm uses the
information stored in the nucleus to grow and reproduce. It also provides the energy
to maintain these &gities. The cytoplasm is separated from the fluids surrounding
the cell (extracellular fluids) by the cell membrane. The cell contains highly
organized physical subunits, which have specific functions, called organelles.
Ribosome, mitochondria, endoplasmeticulum, Golgi complex, lysosome are some
of the organelles in the cells. Figure 1 shows a typical eukaryotic anim@Chets,

2011) Some of these organelles have membranes; hence, they divide the cell into

compartments.

Huclear envelope
Centriole Ly=sosome Hucleolus
Chromatin
éNucIear pore

Hucleus

Mitochondrion Vacuole

Plasma

membrane
~ Ribosomes

Cytoplasm Golgi complex

Smooth )

endoplasmic

reticulum
Rough
endoplasmic
reticulum

——  Microfilaments
Microtubule

Figure 1: Structure dd typical eukaryotic cellChiras, 2011)
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Cells are organized by the systems of membranes. The cell membrane, which
completely envelops the cell, is very important because the cell has to separate itself
from the outside due to two reasons. First reasahaisthe cell must protect DNA,

RNA, and other molecules from dispersion. Second reason is that the foreign
materials that may be harmful must be kept away. While accomplishing these, the
cell also should communicate with the outside, and accommodate tdséhe
changes in the environment. The cell membrane functions as a contact region with
the outside world. Necessary substances and raw materials enter cells; waste and

toxic materials are removed from the cell through the cell membrane.

The cell membkane is a thin and elastic structure having about 7.5 to 10
nanometers thickness, and is mostly composed of proteins and lipids (Guyton and
Hall, 2006). It also contains carbohydrates combined with proteins and lipids in the
form of glycoproteins and glyapids (Rhoades and Bell, 2009; sEmure 2). Lipid
bilayer is the framework of the membrane. Proteins are embedded as individual units
in or on the bilayer. This lipid bilayer is impermeable to watduble substances
such as glucose, urea, and ions whsrit is permeable to fabluble substances such
as oxygen and carbon dioxide. There are integral and peripheral proteins in the
membrane. Integral proteins are embedded to the lipid bilayer partly or completely,
and they are suspended in the lipid b&layPeripheral proteins are attached to the
membrane surfaces. Integral proteins function in the particle transportation by
forming pores through which watspluble substances can diffuse between the

inside and outside fluids of the cell or by carryingostances in the opposite

12



direction of the diffusion. Peripheral proteins are generally attached to integral
proteins. They function as enzymes or control intercellular activities in different

ways.

Extracellular fluid

Glycoprotein Integral proteins
Glycolipid / .
\ ;ﬁm L -
y I
0011 00000000000

0000000000000000
'

Phospholipid Cholesterol 2
Channel Peripheral protein
Cyloplasm

Figure 2: Cell membran@hoades and Bell, 2009)

There are two main mechanisms for particle transportation across the
membrane: passive transport and active transport. Basically, if a particle passes the
membrane without using cellular energy, it is called passive transport. Otherwise, the
cellular energy is sed, and it is called active transportation. Diffusion and osmosis
are examples of passive transport. Diffusion is the movement of ions or molecules
from a region with high concentration to a region with low concentration without
expending the cellular ergy. The rate of the movement depends on the difference

between the concentrations, called concentration gradient; the movement continues

13



until the molecules are evenly distributed in both regions. Diffusion has two
subtypes: simple diffusion and faciliéat diffusion. Simple diffusion is kinetic
movement of molecules or ions through an opening in the lipid bilayer or watery
channels of some transport proteins (Guyton and Hall, 2006). On the other hand, in
the facilitated diffusion, the particles pass tlglotthe membrane with the help of

carrier proteins. The factors affecting the diffusion rate are:

Membrane permeability: This means the rate of diffusion of molecules across
the cell membrane. Various factors affect the membrane permeability. These are
thickness of the membrane, number of protein channels appropriate for the molecule

per unit area, lipid solubility, and weight of the molecule and temperature.

Concentration difference: The rate of diffusion is proportional to the

concentration difference.

Electrical potential: Electrical potential causes particles to move even if there
is no concentration difference. This situation triggers the occurrence of concentration
difference. Diffusion continues until these two forces, electrical potential and

concentration gradient, balance each other.

Osmosis is simply the diffusion of the water through the cell membrane. The

movement of water is again caused by concentration difference.

In active transport, molecules or ions are moved inside or outside of the cell
against the concentration gradient in contrast to the passive transport. Therefore, the

cellular energy in the form of ATP (adenosine triphosphate) is used. Sodium and

14



potassium ions, calcium ions, iron ions, different sugars, and amino acids are some of

the substances transported actively (Guyton and Hall, 2006).

Active and passive transport permit the passage of the small molecules
between inside and outside of the cell. However, cells also need to take and remove
larger molecules like proteins and reicl acids (Wolfe, 1999). Taking large
materials from outside to the inside of the cell is called endocytosis. Firstly, the
molecule that will be taken inside is connected to the membrane surface via
receptors. Then, the membrane invagination occurs amsiales is formed around
the molecule. Generally, the enzymes break down the vesicle in cytoplasm. For
example, white blood cells engulf bacteria via endocytosis. Also, nanoparticles may
be taken into the cell via endocytosis. The reverse mechanism ofyergisds
called exocytosis. It provides the release of big molecules to the outside of the cell.
After the molecule is surrounded by a membrane and vesicle is formed, it is carried
to the cell membrane. It unites to the membrane and then the vesitdasedeto the
outside. Figure 3 shows endocytosis of a food particle and then exocytosis after
digestion(Purves et al., 1994Both endocytosis and exocytosis require the use of

the cellular energy.
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Figure 3: Endocytosis and exocytosis of a food parffeurves et al., 1994)
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Chapter 4

Background on Smoothing Splines and Mixed

Effects Models

Cancer is a widespread disease that results in death if its spread is not
prevented. Most cancers are treated by surgery, chemotherapy and radiotherapy
today.However, these treatment methods are not very efficient because they are not
capable of removing all tumor cells. Also, generally healthy cells are damaged in the
treatment process. Therefore, there has been a developing interest to targeted drug
delivery systems to kill tumor cells without harming healthy ones in recent years. In
this context, nanoparticles with their abilities to store drugs in their cores and

targeting properties beme very suitable tools for thatm.

The effective use of nanopartsl in targeted drug delivery depends on the
knowledge of the interaction between the cells and NPs. The cellular uptake of NPs
depends on the NP size, shape, surface charge, chemical structure and concentration.
However, it is impractid to conduct all experiments withany different values of
those variables. Moreover, analysis of the experimental data is complex because of
the statistically fluctuating environment of living organisms. Hence, the most

efficient and reliable synthesis othe interaction data is a wahought

17



statistical/mathematical model of the complex relation between the cell uptake rate
and NP characteristics. In this research, for each type of nanoparticles (Silica,
PMMA, and PLA), we model the percentage of NPs rewten or attached to the

cells in 48hours time interval as a function of size, charge, and density of NPs. We
use the smoothing mixed model approach. Mixed models are designed to handle both
fixed and random effects. Fixed effects are populadeeragd parameters and
influence average cellular NP uptake rate while random effects address variabilities
in cellular NP uptake rate due to different cases under the same treatments. Mixed
models can also naturally handle semiparametric smoothing that isoatégture
nonlinear relationships between predictors and NP cellular uptake rate. We prefer
semiparametric smoothing because it can capture important local variations in uptake
rates. Besides, the replicated esipents with Silica and PMMA NPsan be trated

most naturally with random effects in mixeffect model setup. Those replications

are similar to subjects selected at random from the same population. If we fit a model
for each replication, we need to estimate too many parameters and then estimates
will be less accurate. We also need a meaningtdel of future realizations as well

as thepast observations. Mixed models can fulfill those requirements.

In the Section 4.1, a brief description of smoothing and mixed maigilgen.
Readers with detat knowledge of mixed models and smoothing may skip this
section. In Section 4.2, experimental procedure of the proposed study acell NP

interaction data used in the model is explained.

18



4.1 A Brief Description of Smoothing and Mixed Models

4.1.1Smoothing

Scatter plots are simply the collections of some points on a plane, without any
connection to a probabilistic model (Ruppert et al., 2003). Scatter plot smoothing is a
widely used data analysis technique when the aim is to find the underlymuginre
the scatter plot. When looking at the scatter plot, we can think the vertical positions
of the points as realizations of a random variapl@esponse variable) that is
conditional on the horizontal position of the pomt(explanatory variable). Fo
example, a scatter plot may represent the relation between the years of eduration (

and the annual incomg)( Then we can write
Ve O 0OwW. (4.1)
Equation (4.1) can also be writtas
w Qu - whereO - TL 4.2)
Here, Qis a smooth function, and it should be estimated fetomnd w. There

are many ways to fit a smooth curve to a set of noisy observatiortbepenalized

splinesmethod is one way of doing this.
4.1.1.1 Pealized Splines (PSplines)

Consider the linear regression model displayed in Figure 4, where the horizontal

axis represents predictor variald@nd the vertical axis represents response variable

y.
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¢

w T o - (4.3)
which can be expressed compactly as

o o -

e-
e-

f

P
wherew 1 € , and theX-matrix for fitting regression is €
P

. For

é é
W I @

the model in (4.3), the functions 1 axdre thecorresponding basis

0.2 04 06 0.8
&
A
o
o

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4:Linear regression model

Consider the quadratic model shown in Figure 5:

@ I 16 I o -8 (4.4)
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Figure 5: Quadratic model

For the model (4.4), the corresponding basis functions axeahd x* and theX-

matrix is

[

()
O 0O
8‘ ™ 8‘

5

@
Now, consider a different nonlinear data structure, called broken stick model.

Figure 6 displays an example of the broken stick model. Points represent the data

points and the line represents the model. sken in the figure, two lines with

different slopes join together at x = 0.6.
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Figure 6: Broken stick model
Let us introduce a new basis function

‘ mh JONCN) h
W T o T

T[&JF\ EONI VI Q
to fit the broken stick model
w o T o 11 -8 (4.5)

Then theX-matrix becomes

P W W T
G é é é
P W W T

In real life, we may have more complex structures than the broken stick model.

Figure 7 represents such a structure cailbgh mode(Ruppert et al., 2003).
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Figure 7: Whip model

We should introduce new basis functions of the fori (3 ).+, called atruncated
line, to handle this complicated structure. The whip model in Figure 7 can be fitted

with X-matrix,

PO o ™ 8 @ v
8 e é é E é
P ® ® ™ 8 ® Tmdv
In general, we can write
w T o B o o | - 8 (4.6)

The valueain (xT 9 ). is called aknot A function of the form ki 8 ). is
called a linear spline basis function, and collection of such functions is called a
linear spline basis. Aspline is a piecewise linear function which is linear
combination of linear spline basis functioplhc I Mhao | (Ruppert

et al., 2003).

Use of splines for smoothing gives too much flexibility because many possible

fits can be made by changingethumber and locations of the knots. However, this
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flexibility creates a model selection problem since there are many candidate models.
While too many knots lead to an overfit, few knots may give a poor fit. In order to
overcome those problems, automatmkselection procedures were proposed in the
literature. One of them is the stepwise selection method proposed by Smith (1982). It
starts with a subset of full basis, and then adds basis functions having the largest
absolute Rao statistics step by stepilwaaching the full basis. Then basis functions
having the smallest absolute Wald statistics are deleted stepwise until reaching the
minimal basis. At each step, model is fitted with the current basis and the GCV
(generalized cross validation) value betfit is recorded. The fit having the lowest
GCV gives the final estimate. Another method to choose knots is Bayesian variable
selection approach proposed by Smith and Kohn (1996). Although performance of

these methods is good, they are very complicateerms of application.

Penalized spline regression is another method that keeps all the knots while

limiting their effects. Consider the general spline model with K knots,
w o,
where I is determined by the least squarestedon ao @f £ and |

1 1 81 . In order to have a smooth fit, a constraint should be imposed

on? , and this constraint can I 0 for some numbe€, which is easy to
implement. Hence, the minimization problem is now
- Eld F £ BB B 68
I
The problem (4.7) can be written as

(4.7)
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Min a0 ®Ff £ st | Of 0. (4.8)

whereO :: 1"10 . The Lagrange relaxation of the problem is
DQ¢ md A 11 Of, (4.9)

where & is called the smoothing paramet el
f HH 10 O o, (4.10)

and the fitted values are
W o OO 10 & w. (4.12)
See, e.g., Ruppert et al., pp-65 (2003).

4.1.2 Linear Mixed Models

There are two types of explanatory variables: fixed effects and random effects.
Generally, levels of the fixed effect variables are chosen by the researcher with the
purpose of comparing the effect of levels. Fixed effects are constants and estimated
from the data. A variable is a random effect if the effects of the levels of that variable
can be viewed as being like a random sample from a population of effects. Random
effects influence the variance of the response and manage the vadaacance
structue of the response. For example, if the relationship between age and weight is
investigated on fifty children, age of the children is fixed effect variable, and child is
the random effect variable since each child is a randomly chosen subject from the

popuation.
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Mixed-effect models (or mixed models) are the extension of regression models
that incorporates randoeffects. They are generally used for representing grouped,
therefore correlated, data that come from observational studies with hierarchical
structure or designed experiments with different spatial or temporal scales. Increased
popularity of linear mixed models resulted in significant improvements in software
packages, which provide the analysis of linear mixed models withFR,US and

SAS.
Consder the following linear regression model:
@ O -, (4.12)

wherew is the vector of response variablésjs the design matrix of explanatory
variables] is the vector of regression coefficients, and the vector of error terms.
The leastsquares estimator df is calculated ak ®» & & chand errors are

assumed to be normal withp 0 1, 08

The linear mixed model is the expanded version of the linear regression model

(4.12) with theequation:
w o wo -, (4.13)

wheredtfi are the same as in the linear regression maalis,the design matrix

for random effectsp D 0 THO,- D 0 THY,"O , "QandY , O
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We need to estimatefiiOand'Y and predict. Let] be the estimated effects of
fixed treatments, and be the estimated differences between subgroups and the

population mean. Then (4.13) can be written as linear model with correlated errors:
®w ® -‘hwhere-* &6 -. (4.14)
Then -* k @ @'O®d Y. For givenw, we have
I Ow O O o, (4.15)
and for giveni , we have
6 OO w w o (4.16)
as the best linear unbiased predictors a@ind6 (Ruppert et al., 2003; Wand, 2002),
respectively.

Note that (4.15) and (4.16) require the estimation of covariance mai@ces
andY. Maximum likelihood (ML) and restricted maximum likelihood (REML), that
maximize a likelihood function calculated from elementy ¢iiat does not depend

on b, are two main methods used for the estimatioriGaind'Y.
4.1.3 Penalized Splines and Lineavlixed Models

Speed (1991) shasathat penalized splines can be fit as mixed models. Hence,
splines can be consideredlaesst linear unbiased predictorg/and (2002) also uses
the mixed model theory to fit splines, and he stttat the software for mixed model

analysis can be used for smoothing.

Recall that the nonparametric regression model is
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where"Qw f fw B o w | . Then
0w fw B o6 w | - . (4.17)

Wand (2002) makes a modification to shridkto have a smooth fit and imposes

that
6x 0 mh . (4.18)

This modification force® to obey the rules of normal probability distribution with

zero mean.
T 0 P W
Let us definef i ando ,é and design matrice® € € and
0 P W
w E o |
) é E é
w 8 w
Then, equation (4.17) can be written as
"o v ., O . Tl =nw O T
W W Wo -, 0E€U0 X0 h 4.19
T ) L N G
which is the linear mixed model formula in (4.13).
Solving the penalized least squares problem
I Ol Qe o Gok | & h (4.20)
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with | — and penalty A& gives the best predictofs and 6 (Robinson,

1991). The solution is

Té 86 |0 8 , (4.21)

where 0 @& andOwas déined in (4.8); see Wand 2002.

4.2 Experimental Procedure of Proposed Study

Advanced technology is used for the synthesis of nanoparticles to be used for
targeted drug delivery and diagnostics. In this process, different qualities are added
to the nanoparticle according to their purposes. Nanoparticles can be characterized in
orde them to target some specific cells. Therapeutic agents can be inserted in
nanoparticles to treat cells. Their chemical structures may help the imaging and so
they will be useful for diagnostics. These objectives cannot be achievable without the
proper dsign of the nanoparticles. There are five main design parameters of
nanoparticles that help them in fulfilling their functions: type, shape, size, surface

charge and concentration of the NP solution.

The data set used in this study is obtained fromitmo nanoparticlecell
interaction experiments conducted e Nanomedicine & Advanced Technologies
Research CenterThree types of NPs were used for the experiments: silica,
polymethyl methacrylate (PMMA) and polylactic acid (PLA). All of those NPs were
spherical. Silica and PMMA nanoparticles are produced in two different sizes;

namely, with diameters of 50 and 100 nm. PLA nanopatrticles are produced in 250
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nm diameter. For each type and size of NP, two surface charges, positive and
negative, are selectetllP solutions with two different concentrations, 0,001 mg/I

and 0,01 mg/l, were prepared.

In those experiments, "3T3 Swiss albino Mouse Fibroblast” type of healthy cell
set was used. Cells were incubated in a medium containing 10% FBS, 2-mm L
glutamine, 100 U/ ml penicillin and 100 mg/ ml str
After incubation, proliferating cells in the culture flask were passaged using PBS and
trypsinEDTA solution. Then the cells incubated for 24 hours were counted and

placed on 9éwell cell cdture plates. NP solutions are added to those plates.

Micromanipulation systems in the labs established as a "clean room" principle
are used in the imitro NP-cell experiments. Spectrophotometric measurement
methods, transmission electron microsc¢p#M), and confocal microscopy were
used to examine NEell interactions and to get the ddtgure 8 shows an example

of TEM micrographs of iron oxide and CPMV nanopatrticles.

For Silica and PMMA NPs, there are 8 different configurations (50 or 100 nm
size,positive or negatively charged, 0.001 or 0.01 mg/l concentration); for PLA NPs,
there are 4 different configurations (250 nm size, positive or negatively charged,
0.001 or 0.01 mg/l carentration). Thee lead to 20 different configurations of NPs
in total. For each of 20 different configurations of NPs, the experiments are repeated
six times. At 3, 6, 12, 24, 36 and 48 hours of incubation, the number of NPs removed

from the environment was counted byshiang the solution. The difference between
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that number removed from the environment and the initial number of NPs subjected
to the cells gives the number of the NPs attached on cell surface or penetrated into
the cells. Then the cellular uptake rate wasntb by dividing that number by the

initial number of the NPs subjected to the cells.

Figure 8: TEM micrographs of (a) iron oxide nanoparticles anCRNIV

nanoparticle. The length of scale bar is 30(@imang et al., 208)

For eight different configutaons of Silica NPs, the experiments were repeated
and measurements were taken at 1.5, 4, 9, 18, 30 and &ohmoubation in order
to observe the process in time intervals of the first replication. For two configurations
of PMMA NPs (size of 50 and 100 nm with concentration of 0.001 mg/lI and positive
surface charge), the experiments were repeated and measisrerasn taken at the
same time points as those of the first replication to check for the consistency of the
results of the first replicatio.he figures of raw data can be seen in Appendices A.1,

A.2, and A.3 for Silica, PMMA, and PLA nanoparticles respety.
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Chapter 5

Proposed Model

In this study, we want to predict cellular uptake rate of NPs having different
properties with respect to time. Therefore, we use penalized spline smoothing mixed
effects model, which is explained in detail in Chapter 4. MoreowedJecided to use
quadraic truncated linebasis since it enables us to handle the apparent nonlinear
structureof the raw dataWe fit a model for each type of nanoparticle, Silica,
PMMA, and PLA; because their interactions with cells are very different from each
other. For example, the uptake rate of Silica NPs is more stable than that of PMMA
nanoparticles, which means that theawege in the ratio of theumber of attached

nanoparticls is less than those BLA and PMMA nanoparticke
Table 1 presents théP characteristicgsed in our research.

In addition to the input variablesf Table 1, a categorical random effect
variable,Repeat, is defined to track the replication number for the models of Silica
and PMMA.Repeat has two levels, 1 and 2, since the experiments were replicated
twice for Silica and PMMA. It has no fixed effect counterpart. We may consider
repeated experiments as randomly chosen subjects from a population. Since we do

not want to make inference justrfihose two observed replications, and we want to
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predict general behavior of the population for future replications, we inBlejpkeat

as a random effect.

VARIABLE NAME VALUE

Type of NPs Silica, PMMA, PLA

Diameter Size of NPs (Size) 50 nm and 100 nrfor Silica and PMMA
250 nm for PLA

Surface Charge of NPs (Charge) Positive (+) and negative)(

Density of NPs (Density) 0.001 mg/l and 0.01 mg/l

Incubation Time (Time) 0,3, 6, 12, 24, 36, 48 hours for Silica,

PMMA and PLA
0,1.5, 4, 9, 18, 30, 4Rours for Silica

Table 1:Nanoparticle characteristics

The aim of this study is to predict the cellular uptake rate. Hence, the cellular
uptake rate is the output variable for all types of NPs. It is calculated according to

formula

6Qa ad e BB Q 8

(5.1)

Detailed information about the data can be found in Section 4.2 in Chapter 4.
In the Sections 5.15.3, the models for Silica, PMMA, and PLA nanoparticles will
be explained, respectively. In those sections, fitting procedures are explained in three
steps.In the first step, input variables and the design matrices of mixed models are
defined. In the second step, the model is constructed. In the third step, the model

parameters are estimated. Then prediction intervals are derived in Sectldh 5.4
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5.1. Proppsed Model for Silica Nanoparticles

For Silica NP experiments, all possible combinations of input variables stated
in Table 1 were used. The experiments were repeated twice with different incubation
times. In the first replication, measurements were taked) 6, 12, 24, 36, 48 hours
of incubation. In the second replication, measurements were taken at 1.5, 4, 9, 18, 30,

42 hours of incubation. Hence, for each replication, ethare 8 groups of

nanoparticlesTable 2presents those groups

Size Charge Density
1 50 nm (+) 0.001 mg/I
2 50 nm (+) 0.01 mg/l
3 50 nm ) 0.001 mg/I
4 50 nm ) 0.01 mg/l
5 100 nm +) 0.001 mg/l
6 100 nm (+) 0.01 mg/l
7 100 nm ) 0.001 mg/I
8 100 nm (-) 0.01 mg/I

Table 2: Experimental groups of Silica and PMManoparticles

Step 1: Setting up the input variables and design matrices

In this model, we want to predict the fraction of Silica NPs attached to cell

surface or penetrated into the cell. This fraction is controlled by two level categorical
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variablesSize , Charge, Density ; and the continuous variabl@me. Thus,
input variables arSize , Charge , Density , andTime . Uptake rate (U) is the
output variable. Furthermore, our model does not have intercept because uptake rate
is zero at time zero. We also include the interactions between categorical variables
and Time, and Time? into the model since the design matdk the quadratic

spline basis igd pww as explained in Chapter Zhen design matrix consists

of the fixed effect variablegime ( T) , Ti mel STSge Timel Charge
(TO , Ti mel DensiTD)y, (Ti mel Si zel ChESEHg e (
Ti mel Si zel DensTSDy, (Ti mel Chargel DE€ER), ty

Timel Si zel Char gel DI8Q@s Mimey 2 (T?), Time 2 Si z eT?SY
Time?l Char ger’C), (Time 2l Densit VD), (Time 21 Si zel Charge
(T?SO, Time 21 Si zel Den d3SH,yTine 2 Chargel DendEDt y (

and Time?l Si zel Chargel D@ i ty (
Recall that our mixed effectaodel formulation in (4.13) was
W o  wo -.
Hence, the design matrix becomes
(A YOYYYO'YO'YYOY'YOYS OY'YO '™ "Y'Y'YO "YO "Y'YO'Y'YOY6 O
“YY6 O (5.2)

To construcZ-matrix, firstly we need to choose the places for the knots. The

number of knots affects the size of the model. A large number of knots increase the
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number of parameters to be estimated and the computation time while too few knots

lead to a por fit.

Ruppert et al(2003) propose that the number of knots should be

o [ ET- T 01 ARO T wwoOh ENOA (5.3)

and the knot locations should be

I — OE OAiI bl A NOAT QHorkkl, JKE A O ET

Those formulas generally give good results but sometimes adjustments are required.

We have 12 unigu@ime values. Hencerequired number of knots is found
three withformula (5.3) andknot locations arealculated as;. = 5 5,1 5% 3and a8

=31.5 by (5.4). Thus, the quadratic spline basis for our model becomes
Y u® hY puv hY o@ 8 (5.5)

We build a model which includes random counterparts of all the fixed effect

variables. Hence, th&-matrix becomes
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Y6 Y ua Y6 Y pu Y6 Y o@
YO Y ud YO Y puv YO Y o@
00 Y uvd 60 Y pu 060 Y o
YOO Y u® YOO Y pu YOEO Y o@ . (5.6)

We fit our model to the data by usihge() function of packag&lme in
softwareR. Firstly, we build a model witliX and Z matrices defined in (5.2) and
(5.6), respectively, to consider all possible fixed and random effect variables. Then
we test for the significance of terms and eliminate insicgnit ones. In order to test
the significance of the terms, we fit a model with and without a given term. Then we
apply ANOVA. If p-value is less than 0.05, then we keep that term in the model.
Otherwise, we eliminate it. MoreoveRepeat (R) is modeled ag random effect
because we want to make inference not only for those two replications but also for

the future replications.

According to the test results, we find tHatme ( T) , Ti mel SISz e (
Ti mel ChaM@®e @Ti melDent®i,t yTi(mel Si zel TS®arge (
Ti mel Char gel DeTiCB,i tTime ?( (T?, Time 2 Si z e T?S)
Time?l Char gé€r’c), (Time 2l Densi t ¥°D), (Time 2 Si zel Charge
(T?S0), Time 2l Chargel Densi ty T’CD, ( and
Time?l Si zel Char gel O%ER iaregtatisticallysignificant fixed effect
variables Time? Si E Bensi ¢(TySD, Ti mel Sizel Da&SD},i ty (

and Ti mel Si zel Char geITBGDn saret insignificant fixed effect
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variables with pvalues 0.0823, 0.9786, and 0.424, respectivelyRandom effect
counterpart ofSize and Si z el De n tuins put to be insignificantith p-
values 0.1805 and 0.9998espectively Hence, after the elimination of insignificant

terms, the final design matrices are

® YUYYYO'YO'Y'YSYS OY "Y'YTYO YO "YYO YO O'Y'Y6 O  (5.7)

and

O Y ud O Y pu O Y o
YO Y u® Y6 Y pu Y6 Y o@
00 Y B 00 Y pu 060 Y o@
"Y6O Y u® YOO Y pu YBO 'Y o@ . (5.8)
Step 2: Model formulation
For Silica NPs, the proposed model is
Y QY T YY"Q Y QY QY "Q Y "Q "Y - h
(5.9)

whereall f functions are smooth functions of the terms whose both fixed and random

counterparts arstatisticallysignificant.
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With the mixed model formulation, (5.9) is written as

YooY Y P YT Y6 T YO f Y'Y T YO OTf Y'YYO O
B or Y I O0r YO Y I 0 YOY I

65 YYSY | 65 Y6 OY I 05 YYSOY | - h
(5.10)

wherel i B h are fixedparametersand 6 , BB ; M ; B are random

variabledfor replications 1 and 2, respectively, whied, 2, 3.
Step 3: Estimation of model parameters

The model (5.10) is implemented R usingIme() function in thenime

package (see Appendix B.1 for the code). Theand 6 are obtained. To see the
hourly predictions of the cellular uptaké,andZ matrices are formed for hourly grid
Time=0, 1, €49 hours. Usi ng t h otanedmnvdhttimei c e s,

formula
0 Of 0. (5.11)

Predictions for Sica NPs can be seen in Figure 9 and 10
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Figure9: Silica 50 nmpredictions
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Size 100 nm, Charge +, Density 0.001 mg/l Size 100 nm, Charge +, Density 0.01 mg/l
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Figurel0: Silical100 nm predictions
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5.2. Proposed Modefor PMMA Nanoparticles

For PMMA NP experiments, the same eight combinations of input variables of
Table 2 were used. The measurements were taken at 3, 6, 12, 24, 36, 48 hours of
incubation. The experiments were repeated for positively chargeaparticles vih
concentration of 0.001 mg/l. dasurements were taken at the same time uiith
the previous replicatiomo be sure of the resulsince PMMA NPs having those

characteristics behave different from the other configurations of PMMA NPs.
Step 1: Setting up the input variables and design matrices

In this model, we want to predict the fraction of PMMA NPs attached to cell
surface or penetrated into the cell. Input variables are two level categorical variables,
Size, Charge, and Density ; andthe continuous variabldime. Intercept is
forced to be zero because uptake rate is zero at time zero. Hence, we do not have
intercept term, and involve the interactions between the categorical variables and

Time, and Time 2. Uptake rate (U) is the output variable.

Initially, all the terms and their interactions mentioned above are added to the

model as both fixed and random effects. Then design matrix consists of the fixed

effect variables Time ( T) , Ti mel ST e Ti mel Chda&®ge (
Ti mehhdye( TD), Timel SizelTSHargeTi(mel Si zel Densi
(TSD , Ti mel Chargel(D@DhsitVimel Si zel Chargel Den

(TSCD, Time 2 (T?, Time 21 Si zeT?S{ Time 2l Char g&20), (

Time?l Densi ty T°D), ( Time %1 Si zel Char geT?S0O, (
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Time?l Si zel DensTPSDy Time 2l Char gel DenFCDO yand(

Time?l Si zel Char gel D@ i Hence(it becomes

® YIYYYOTYO'Y'YEY'YOYS OY'YO '™ "YY'YO YO "Y'YOUY'YOYO O

“Y°Y$ O (5.12)

We have 12 unigu@ime values in PMMA NP experimentand3 knots are
recommended by (5.3). Howevarpoor fit is obtained with 3 knots, whose locations
are computed by (5.4We tried5 knotswhich give amoresatisfactoryfit. Knots are
located ate; = 5 .5, 1 &, 1aB=, 288 5a BBdoy (5.4).Quadratic spline

basis becomes

"Yu® hY pmh”Y pu hY cyp hY oy, (5.13)
andZ matrix becomes
(%) Y oud Y opm Y opy Yoy Y oy
Y Y u® Y Y pm Y Y puw Y Yy Y Y oy
6 Yud o6 Ypm 6 Ypy 6 Yy 6 Y oy
O Yud O “Ypm O “Ypy O “Ycy O Y ou
YO Y u® YO Y pm YOG Y py YO Y ¢ @ YO Y oy
YO Y u® YO Y pm YO Y py YO Y ¢¢ YO Y oy

50 Y u®& 60 Y pm 60 Ypy 60 Ycy 60 Y oy
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YEO Y ud YBO Y pmt Y6O Y py YBOY cy YEOY oy
(5.14)

Moreover,Repeat (R) is modeled as a random effect as in the model of Silica

NPs.

Firstly, we fit a model witlX andZ matrices in (5.12) and (5.14), respectively.
Then we apply ANOVA to test the significanceeazch term irthe model We find
that Time ( ), Ti mel STSge Ti mel Ch®) ge T{( mel Density
(TD) , Timel Si zel CiS&®r,ge Ti(mel Si zel DeTBB,i t vy (
Ti mel Charngitg [ DECD , Ti mel Si zel Char g@SCDearsdi ty (
Time? (T%) arethe significant fixed effect variablesince p-valuesare less than

0.002

After removing the statistically insignificant variables, the n&wand Z

matrices become
A YYUYYYSTYOY'YSY'YOYS OY'YE 0 (5.15)
and
(%) Y oud Y opm Y opy Yoy Y oy
Y O'Y u® Y Y pm Y Ypy Y Yy Y'Y ouy

0O Y u® 0 Y pm O Y py O Yy O Y oy
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O Y ud O Ypmr O Y pyg O Y@ O Y oy

YO Y u® YO Y pmm YO Y py YO Y ¢y YO Y oy

00 "YU OO0 'Y pm 60O Y pyY 60O Y@ 60 Y ou

YO O Y u® YOO'YY pmt YOO Y pyYg YOO Y ¢y YOOY oy

(5.16)

respectively.
Step 2: Model formulation

For PMMA NPs, the proposed model is

~.

Y Q%Y Q%Y Q%Y Q%Y Q %Y "Q %Y Q Y

I "YYO- h (5.17)

where allf functions are smooth functionghe final mixed model can now be

written as

Y 1Y TOY O FOYYT Y6 T YO T YYOT YYOT YOO

T YY8 B 6q Y 65 YYY I 6r Y& Y |
65 YOUY I 65 "YYSEY I 65 YOOV |
65 Y'Y OY | - R (5.18)

wherg B R are fixedeffectsando B B B are randoneffects

for replications 1 and 2, respectively, whére pltios
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Step 3: Estimation of model parameters

TheR code for the implementation of model (5.17) can be seen in Appendix
B.2. Using the valuds and6 obtained fronR, the fitted lines for replication 1 and 2
are calculated by (5.8) for hours 0 to 48 with the appropdatnd Z matrices
formed for hourly gridTime= 0, 1,..,49 hoursHourly predictions for PMMA NPs

can be seen in Figufdl and 12

46



Size 50 nm, Charge +, Density 0.001 mg/l Size 50 nm, Charge +, Density 0.01 mg/l
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Figure 11: PMMA 50 nmpredictions
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Figure 2: PMMA 100 nmpredictions
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5.3. Proposed Model for PLA Nanoparticles

In PLA experiments, nanopatrticles of 250 simewere used only because of
technical feasibility of synthesizing. Measurements were taken at 3, 6, 12, 24, 36, 48

hours of incubation.

Size Charge Density
1 250 nm +) 0.001 mg/l
2 250 nm (+) 0.01 mg/l
3 250 nm ) 0.001 mg/l
4 250 nm ) 0.01 mg/l

Table 3: Experimental groups of PLA nanopatrticles

Step 1: Setting up the input variables and design matrices

In this model, we want to predict the fraction of PLA NPs adhered on the cell
surface or penetrated into the cell. Input variables are two level categorical variables,
Charge and Density ; and the continuous variabl&me. Size is not an input
variable hee because it has only one level. Intercept is zero since the uptake rate is
zero at time zero, as mentioned before for Silica and PMMA. Moreover, we involve
the interactions between categorical variables @mte, and Time? Uptake

rate (U) is the output &riable.

Initially, all the terms and their interactions are added to the model as both

fixed and random effects. Then the design matrix becomes
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G YYSYOYS OY Y6 YO Y 08 (5.19)

We obtain a good fit with 3 knot&nots are locateda= 7 5,1 & zand

= 33 by (5.4)Thequadratic spline basis for our model becomes

Y x® h"Y py h'Y oo. (5.20)

Then theZ-matrix becomes

& Y x® Ypy Y oo

5 Y x& 6 Ypy & Y oo

O Yx& O Y py O 'Y oo

00 Y X® 060 Y py 060 Y oo 8 (5.21)

After fitting our model to the dataye test the significance of each termxn
andZ matrices via ANOVA and eliminate insignificant ones. According to the test
results, we find thaffime ( T), Ti mel Ch a T@®,e ard Time? (T? are
significant fixed effectvariableswith p-values less than 0.000Their random
counterparts are also significaAfter eliminating the insignificant terms, tmew X

andZ matriceshecome

® “YY6'Y h (5.22)

and
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6 Y X® 6 Y py 6 Y oo h (5.23)
respectively.
Step 2: Model formulation
For PLA NPs, themewmodelbecomes
YOQY QY -, (5.24)

where™Qis a smooth function ofime and'Qis a smooth function df i me T Char ge

(TO . The final mixed model formulation becomes

Y P Y FY YO B 6r Y [ 6f°Y6Y [ -h
(5.25)

wherei B hAT71A are fixed coefficients, and ;o ; are random coefficients

whereQ pltlos
Step 3: Estimation of model parameters

The model5.25)is implemented iR with the code in Appendix B.3. Then the

values] ando are acquired fronR, and the predictions are calculated by (5.8) for
hours 0 to 48vith the appropriate designatrices.Figure B displays both data and

fit from our model.
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Size 250 nm, Charge +, Density 0.001 mg/l Size 250 nm, Charge +, Density 0.01 mg/l
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Figure B: PLA predictions
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5.4. Derivation of Prediction Intervals

The aim of thigesearch is to predict Néell interaction based on results of the
experiments conducted with Silica, PMMA, and PLA NPs. Hence, we want to know
the interval in which our future estimates will fall. Therefore, we need to find

prediction intervals.
Recall the mixed model formulation in (4.13)

®w W  wo T,

where @ p® AT & o | i . We can write
Vo O Ho, (5.26)
where W pw and © w . For the mixed model

representation of penalized splindyppert et al. (2003}erive the 100(3U) %

confidence intervahs

Op “MQ , i sAQH Qo AiGd AR
Qw . o (5.27)
Gp - , i o8O Qo AlIIAJIRA
where
i OO Qe o, 6 66 —O 6 (5.28)

6 O ® ,and0 Q QP @ . Therefore100kU) % predi cti on i
for our case is

o ap -, p 668 —O b . (5.29)
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Figures 913 plot both the fits and their 95% prediction intervals obtained from our

models.
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Chapter 6

Comparison and Discussion

In this thesis cellular uptake of nanoparés is investigated through a mixed
model. Mixed models are formed by extending regression models with random
effects. As explained in Chapter 4, mixed modeladle semiparametremoothing
since smoothing methods that utilizes basis functions with atalh can be
represented as a mixed model. They are generally preferred for clustered, hence
dependent, data collected hierarchically. This situation arises, for example, when
observations are obtained from related subjects or when data is collectedsamih

subject over time.

In our study, we model the uptakeites of Silica, PMMA, and PLA
nanoparticles into theell in 48hourtime intervalby means o penalizednoothing
splinesmixed effects model. For each type of NP (Silica, PMMA, and PLA), we
develop a model that takes NP size, charge, concentration and incubation time as
inputs to predict the cellular uptake rate. For Silica NP experiments, the experiments
are repeated forlleeight groups of different size, charge, and solution concentration.
Observations are taken at different time points in two replications. Also, for PMMA

NPs, the experiments conducted with positively charged NP solutions of 0.001 mg/l
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and 0.01 mg/l areeplicated once more, and observations are taken at the same time
points in both replications. Having correlated data coming from more than one
replication is main reasowhy we prefer mixed model to represent this uptake

process.

Another advantage of méxi model splines is that smoothing is an effective and
flexible method to represent nonlinear relationships between inputs and outputs. As
mentioned in Chapter 4, the penalized spline smoother corresponds to the best linear
unbiased predictor in a mixed a&l. Especially with the advances in mixed model
software, fitting process becomes relatively fast and simple. Ease of implementation

have increased the usémixed model splines.

Another study performed to explore the &#l interaction with a
mathemadt ¢ a | mod el stidy (ZDBAn They proposeah artdicgal neural
network (ANN) modelwhich is developed with the same data set used in this thesis,
for the NRcell interaction Incubation time, NP type, NP size, NP charge, and
concentration are the five inputs of her motikewise our model. NP uptake rate is
the output. An input layer of five nodes and an output layer of one node are used in
their ANN model. Tansig transfeiunction for hidden layers is chosen for hidden
layer. Basically, dataset is divided randomly into training and test dataset. The ANN
model is fitted with training dataset and the performance of the model is measured
with the test dataset. Mean Square ESE) is used to evaluate the network
performance. Batch training method, which requires defining all inputs and outputs

to the network firstly and then adjusts the weights of the inputs, is utilized. Different
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training functions available in MATLAB fobatch training is tried with different
layer structures and Bayesian regularization training function is chosen since it gives
the best MSE and computation time. Then the number of nodes in the hidden layer is
decided as twelve by trial and error methoatoading to the MSE and Mean
Absolute Error (MAE). Hence, the network structure of the final model has an input
layer of five nodes, a hidden layer of twelve nodes, and an output layer of one node.
In the next step, Cendt al. simulatehe NP uptake rateof 48 hours. For every NP
configuration, 50 simulation runs are obtained. For each simulation run, different
initial parameters are tried and the best one is chosen as the final fit of the model.
Then confidence bounds are computed wittk from the mean 050 simulation run

results

Predictions of our mixed modgisoposed in Chapterdnd Cenketald s A NN
model arepresented in Figure4118 for Silica 50 nm, Silica 100 nm, PMMA 50 nm,
PMMA 100 nm, and PLA nanoparticles, respectively. For Silica NRsjr
predictions are generally between the fi|
model. The situation is the sanier size of 50 and 100 nm, positively charged,
density of 0.01 mg/l PMMA nanoparticles. Thesxperiments are the ones that are
replicated twice. For other PMMA NP configurations, of which experimentaare
repeatedpredictions of both models are similar; however, our predictions are a little

bit more fluctuating. For PLA NPs, predictions are again similar in both models.

For the replicated experiments, our approach is more appropriate thareCenk

albs model since exper i melincansbe thaught thatedptd i c a t
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come from different subjectsf the same populatiorand henceit is correlated. We
should nottombine two datasets as if thegreobtained togethe©Our model has the
advantage of linking the data obtained at differenesimy means of random effects.
Their ANN model ignores this complexity. Besides, NNnodels are seen as dark
boxes and it is ifficult to explain the relationships between inputs and outputs.
However, our model is a statistical model apbvides an egsto-understand
explanation to the interactions of various effects on the NP cellular upBakke
models are flexible and appropriate for the representaifothe nonlinear data
structure.Another difference is thatheir study contains the confidence interval.
Unlike their study, we compute prediction intervals is more reasonable to comput
predictionintervals instead of confidendatervals since we want to know where our

predictions of future replications fall in.
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Size 100 nm, Charge +, Density 0.001 mg/l Size 100 nm, Charge +, Density 0.01 mg/l
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