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ABSTRACT 

ANALYSIS OF THE IN-VITRO NANOPARTICLE-CELL 

INTERACTIONS VIA SMOOTHING SPLINES MIXED 

EFFECTS MODEL  

Elifnur Doĵruºz 

M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Savaĸ Dayanēk 

Co-Supervisor: Prof. Dr. Ķhsan Sabuncuoĵlu  

 

July, 2013 

A mixed effects statistical model is developed to understand the nanoparticle(NP)-

cell interactions and predict the cellular uptake rate of NPs. NP-cell interactions are 

crucial for targeted drug delivery systems, cell-level diagnosis, and cancer treatment. 

The NP cellular uptake depends on the size, charge, chemical structure, 

concentration of NPs, and incubation time. The vast number of combinations of 

those variable values disallows a comprehensive experimental study of NP-cell 

interactions. A mathematical model can, however, generalize the findings from some 

limited number of carefully designed experiments and can be used for the simulation 

of NP uptake rates for the alternative treatment design, planning, and comparisons. 

We propose a mathematical model based on the data obtained from in-vitro NP-

healthy cell experiments conducted by the Nanomedicine and Advanced 

Technologies Research Center in Turkey. The proposed model predicts the cellular 

uptake rate of Silica, polymethyl methacrylate, and polylactic acid NPs given the 

incubation time, size, charge and concentration of NPs. This study implements the 

mixed model methodology in nanomedicine area for the first time and is the first 

mathematical model that predicts NP cellular uptake rate based on sound statistical 

principles. Our model provides a cost effective tool for researchers developing 

targeted drug delivery systems. 

 

 

Keywords: Nanomedicine, targeted drug delivery, nanoparticle uptake rate, linear 

mixed model, smoothing splines 
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¥ZET 

D¦ZLEME ¢ĶZGĶLERĶ KARMA ETKĶLER MODELĶ 

ĶLE ĶN-VĶTRO NANOPARTĶK¦L-H¦CRE 

ETKĶLEķĶMĶNĶN ANALĶZĶ  

Elifnur Doĵruºz 

End¿stri M¿hendisliĵi, Y¿ksek Lisans 

Tez Yºneticisi: Do­. Dr. Savaĸ Dayanēk 

Tez Yardēmcē Yºneticisi: Prof. Dr. Ķhsan Sabuncuoĵlu  

 

Temmuz, 2013 

Bu tezde, nanopartik¿l (NP)-h¿cre etkileĸimini anlamak ve nanopartik¿llerin h¿creye 

tutunma oranēnē tahmin etmek i­in bir karma etkiler modeli geliĸtirilmiĸtir. NP-h¿cre 

etkileĸiminin incelenmesi, g¿d¿ml¿ ila­ daĵētēm sistemleri ve kanser gibi 

hastalēklarēn h¿cre d¿zeyinde teĸhis ve tedavisi a­ēsēndan ­ok ºnemlidir. 

Nanopartik¿llerin h¿creye tutunma oranē, nanopartik¿llerin kimyasal yapēsē (tipi), 

boyutu, y¿zey y¿k¿ ve yoĵunluĵu ile enk¿basyon zamanēna baĵlēdēr. Bu deĵiĸken 

deĵerlerin ­ok sayēda kombinasyonu olduĵu d¿ĸ¿n¿ld¿ĵ¿nde NP-h¿cre etkileĸiminin 

kapsamlē bir deneysel ­alēĸmayla incelenmesi pratik bir yaklaĸēm deĵildir. Fakat 

matematiksel bir model, sēnērlē sayēda ve dikkatli tasarlanmēĸ deneylerin sonu­larēnē 

genelleyebilmekte ve alternatif iĸlem tasarēmē, planlanmasē ve karĸēlaĸtērmasē 

­alēĸmalarēnda h¿creye tutunma oranē verisinin simulasyonunda kullanēlabilmektedir. 

Bu tezde, T¿rkiyeôdeki Nanotēp ve Ķleri Teknolojiler Merkeziônin ger­ekleĸtirdirdiĵi 

in-vitro NP-saĵlēklē h¿cre deneylerinden elde edilen verilere dayanēlarak NP h¿cresel 

tutunma oranē i­in yeni bir matematiksel model ºnermekteyiz. ¥nerilen model, her 

biri k¿resel ĸekilli polimetil metakrilat (PMMA), silika ve polilaktik asit (PLA) 

nanopartik¿llerin h¿creye tutunma oranēnē tahmin etmektedir. Bildiĵimiz kadarēyla 

bu ­alēĸma, karma model metodolojisini nanotēp alanēnda uygulayan ilk ­alēĸma ve 

NP h¿cresel tutunma oranēnē g¿venilir istatistiksel prensiplere dayanarak tahmin 

eden ilk matematiksel modeldir.  Bizim modelimiz, g¿d¿ml¿ ila­ daĵētēm sistemleri 

¿zerine ­alēĸan araĸtērmacēlar i­in maliyet etkin bir ara­ saĵlayacaktēr. 

 

Anahtar Sºzc¿kler: Nanotēp, g¿d¿ml¿ ila­ daĵētēmē, nanopartik¿l h¿cresel tutunma 

oranē, doĵrusal karma model, d¿zleme ­izgileri 
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Chapter 1 

 

Introduction  

Cancer is a disease that causes cells to change, grow, and spread 

uncontrollably. It may affect almost any part of the body. Most types of cancer form 

a mass called tumor, and the cancer is named according to the place of the tumor. 

Cancer is the leading cause of death in the world. Breast cancer is the most frequent 

cancer type among women and the most frequent cause of cancer death in women. It 

is the fifth cause of deaths from cancer overall in 2008 according to the report of 

International Agency for Research of Cancer.  In 2008, 7.6 million, which is around 

13% of all deaths, people died from cancer. It is estimated that 1,660,290 new cancer 

cases and 580,350 cancer deaths will occur in 2013 only in the United States (Siegel 

et al., 2013). Moreover, it is expected that deaths from cancer will rise to over 13.1 

million in 2030 (Boyle and Levin, 2008). 

Cancer was considered incurable before. Some patients can be treated now due 

to the improved diagnostic techniques and treatments. Current cancer treatment 

methods involve surgical intervention, radiation, and chemotherapy. However, those 

methods often harm also the healthy cells and cause toxicity. Therefore, there has 

been an interest to combine the power of nanotechnology and cancer biology to find 
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new solutions to the cancer In order to provide a less harmful and more effective 

solution, some research have focused on developing targeted nanoparticles that can 

directly deliver drugs to cancer cells. In addition to delivering therapeutics, 

nanoparticles can be used for imaging to detect the disease early at-cell level, and 

help us understand the tumor biology (Grodzinski, 2011). Moreover, a new method 

called theragnostics, which combines therapeutics with diagnostics, is developed to 

have patient-specific treatments. Use of nanoparticles has led the advances in 

theragnostics (Fang and Zhang, 2010). All of these fields require the use of 

nanoparticles at cell-level. Therefore, a careful investigation of NP-cell interaction 

and the cellular uptake process is very necessary to advance the relevant studies.  

Our study aims to investigate the cellular uptake rate of nanoparticles (NP) via 

statistical smoothing and mixed models methodology. Data obtained from in-vitro 

NP-cell interaction experiments are used to fit penalized spline smoothing model, 

formulated as a mixed model. The proposed model predicts the cellular uptake rate 

of NPs having different characteristics. Those characteristics are size, shape, 

chemical structure (type), surface charge of NPs, and the concentration of NP 

solutions used. Although some configurations of those characteristics cannot be 

produced due to technical limitations, the number of the remaining configurations is 

still vast. Therefore, it is very costly and time consuming to conduct experiments 

with all those possible configurations. However, prediction of the cellular uptake is 

still possible by using strong mathematical models. The ultimate aim is to obtain NP 
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specifications with the desired uptake efficiency. Our study was carried out to 

achieve that aim. 

We model the uptake rates of each type of nanoparticle (Silica, polymethyl 

methacrylate (PMMA), and polylactic acid (PLA)) into the cell in 48-hour time 

interval by means of a penalized spline smoothing mixed effects model. For each 

type of NP (Silica, PMMA, and PLA), we develop a model that takes NP size, 

charge, concentration, and incubation time as inputs to predict the cellular uptake 

rate. Our model is based on data obtained from in-vitro experiments conducted by 

the Nanomedicine & Advanced Technologies Research Center in Turkey. Three 

types of sphere-shaped nanoparticles are used in the experiments. Silica and PMMA 

NPs were produced in 50 and 100 nm diameter and PLA NPs were produced in 250 

nm diameter. For each type and size, NPs were produced with positive and negative 

surface charges. NP solutions with 0.001 mg/l and 0.01 mg/l concentrations were 

prepared and added to healthy cell cultures. The number of NPs removed from the 

environment was counted at 3, 6, 12, 24, and 48 hours of incubation. The difference 

between the number of NPs added to and removed from the environment is 

calculated as the number of NPs penetrated into the cell or attached to the cell 

surface. An experiment was repeated six times for each different configuration of NP 

characteristics. For Silica NPs, the experiments are replicated for all combinations of 

size, charge, and solution concentration. Observations are taken at different time 

points in the second replication. Also, PMMA experiments conducted with positively 

charged NP solutions of 0.001 mg/l and 0.01 mg/l are replicated, and observations 
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are taken at the same time points in both replications. Having correlated data coming 

from more than one replication is the main reason why we prefer mixed model to 

represent this uptake process. 

To the best of our knowledge, this study is the first application of penalized 

smoothing mixed effect model to nanomedicine and is the first random-effect 

statistical model of NP cellular uptake rate. A closely related study was Cenk et al.ôs 

(2014) Artificial Neural Network model. Unlike that model, our model brings an 

easy-to-understand explanation to the interactions of various effects on uptake rate, 

and is capable of linking the data obtained at different times by means of the random 

effects. The easy-to-interpret components of our model will make the researchers 

work more comfortably with the model. 

The remainder of the thesis is organized as follows: In Chapter 2, the literature 

on NP-cell interaction is given. In Chapter 3, background about the cell structure and 

particle transportation is explained for the readers who do not have knowledge about 

the cell physiology. Our methodology and design of experiments are discussed in 

Chapter 4. Chapter 5 presents our model. The results are analyzed and compared 

with the previous studies in Chapter 6. Chapter 7 concludes. 
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Chapter 2 

 

Literature Review 

Numerous experimental studies have been conducted to explore 

nanoparticle-cell interaction in the past few years. In those studies, effects of NP 

size, surface charge, concentration, chemical structure, and incubation time on the 

NP-cell interaction are investigated. Most of those studies contain no 

mathematical model of NP-cell interaction, but provide general comments about 

the influence of some of the properties of NPs. 

Davda and Labhasetwar (2001) investigate the uptake of nanoparticles by 

endothelial cells in cell culture. They demonstrate that the cellular uptake of 

nanoparticles depends on the concentration of the nanoparticles in the medium, 

and the uptake increases with the increase in the concentration. Another result of 

their study is that the uptake also depends on the incubation time. They image the 

cells at 0, 30, 60 and 120 minutes from the beginning of the incubation and 

observe that the uptake increases with the incubation time Their research also 

shows the biocompatibility of the NPs with cells and usability of NPs to target 

drugs into the endothelium. Hence, it is a significant study for the targeted drug 

delivery literature. Besides, this study is also important for us since it shows that 
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the concentration is influential on the uptake of NPs. However, its scope is 

narrower than our study since they observe only the effect of the concentration of 

NPs. 

Chithrani et al. (2006) study the cellular uptake of colloidal gold 

nanoparticles by mammalian cells and observe the effects of NP size, shape, and 

incubation time on the cellular uptake kinetics. They use spherical and rod-shaped 

NPs with diameters of 14, 30, 50, 74 and 100 nm and length by width of 40x14 

nm and 74x14 nm, respectively. They show that maximum uptake occurs with 

NPs of 50 nm. They also observe that the uptake increases in first 2 hours abruptly 

and then reaches to a steady level at 4-7 hours, depending on the size. Another 

result obtained is that the uptake is also dependent on the shape of NP, and more 

spherical NPs are absorbed to cell more than the rod-shaped counterparts. Their 

results demonstrate that the drug delivery via NPs can be controlled by adjusting 

the size and shape of NP. However, no mathematical function is developed to 

explain the interaction. Moreover, the influence of surface charge and 

concentration of NPs are not examined in this study, distinctively from our 

research. 

Peetla and Labhasetwar (2007) investigate the effects of surface chemistry 

of NPs on the interaction between nanoparticles and endothelial model cell 

membrane. They use polystyrene NPs of different surface chemistry and sizes and 

observe the changes in the membraneôs surface pressure as a measure of 

interaction. They utilize aminated, carboxylated and plain (without any surface 
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group) polysterene NPs of 60 nm size. They observe that aminated NPs increase 

the surface pressure while plain NPs decrease and carboxylated NPs do not 

change it. They also study the effect of the size of NPs, and show that the smaller 

NPs increase the surface pressure. They could not compare the effect of 20 nm 

aminated NPs with the same sized plain and carboxylated NPs since 20 nm 

aminated NP is not available. They conclude that small aminated NPs and plain 

NPs have greater interactions with the endothelial model cell membrane than 

carboxylated and large, plain NPs do. No mathematical model of cellular uptake is 

developed in this study. However, this research is significant for us since it 

emphasizes the importance of chemical structure and size of NPs. 

Lin et al. (2010) examines the interactions of gold nanoparticles with model 

lipid membranes by means of coarse-grained molecular dynamics simulation. 

They state that cationic (positively charged) gold NPs have a higher membrane 

adhesion than anionic (negatively charged) NPs on a typical mammalian cell 

membrane since the membrane has an overall electronegative feature. They also 

reveal that the penetration increases as the charge density, which is the amount of 

electric charge present on per unit surface area, of NPs increases. Their results 

demonstrate that the cellular uptake rate can be increased by increasing NP 

surface charges densities. Although this study does not consider the influence of 

NP properties except surface charge, it is important for us because the surface 

charge, which is an input of our study, is proven to be effective on the cellular 

uptake.  
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In the previously mentioned studies, NP-cell interaction is only explored 

through observations collected from physical experiments. Although they shed 

light on the role of various NP properties in the NP-cell interaction, none of them 

describe a mathematical model that relates the properties of NPs to the NP-cell 

interaction. Hence, they are incapable of predicting the cellular uptake rate, which 

is the aim of our research.  Besides, none of the previous studies investigate the 

interactions between different NP properties (chemical structure, size, charge and 

concentration of NPs) as they concurrently act, as we do in our study. 

In one of very few studies proposing some mathematical models, Boso et al. 

(2011) try to identify the optimal configuration that maximizes the NP 

accumulation at the diseased site via developing a mathematical model. They 

conduct a parallel plate flow chamber in vitro experiment with spherical 

polystyrene NPs. Based on the data obtained from the flow chamber experiments; 

they develop an artificial neural networks model (ANN) to predict the number of 

NPs adhering to the vasculature as a function of shear rate and NP diameter. They 

show that an optimal particle diameter exists for which the number of NPs 

adhering to the vessel walls is maximized. That optimal diameter depends on the 

wall shear rate, which is controlled through the syringe pump flow rate. This 

study investigates the effects of only the NP size and the wall shear rate on the NP 

accumulation. The other properties of NPs such as type, charge and concentration 

are not considered. However, they do not use real cells. Although the scope of the 

study is very limited, it shows that mathematical models can help minimize the 
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number of experiments otherwise needed to adequately understand NP-cell 

interaction, which is the motivation of this research. 

Another mathematical model is proposed by Cenk et al (2014). They 

investigate the NP-cell relations regarding the effects of NP size, surface charge, 

concentration, and chemical structure. They develop an artificial neural networks 

model to predict the cellular uptake by utilizing the same data set used in our 

study. Smoothing with linear mixed models is often preferred over artificial neural 

networks because the latter are considered as black boxes and their outputs are 

harder to interpret. Furthermore, when experiments are replicated, as in the cases 

for Silica and PMMA nanoparticles in our experiments, mixed model approach 

allows them to be naturally tied to a single model by means of suitable random 

effects. 

Although mixed model approach has not been used in nanomedicine area 

until now, it has been widely used to analyze clustered medical data. Mixed 

models can handle clustering effects by modeling them as random variables. 

Mixed models can also tolerate to missing data (Brown and Prescott, 2006). 

Moreover, mixed models are appropriate for modeling complex input-output 

relations such as NP-cell interaction. To the best of our knowledge, our study is 

the first to propose a linear mixed model for cellular uptake rate. We expect that 

our new model will advance the research in targeted drug delivery. It contributes 

to applied statistics as a novel application of mixed models.  
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Chapter 3 

 

Background on Cell Physiology 

In the experiments conducted for this research, the target is to observe the NP-

cell interactions. Hence, NP solutions are added to cell culture plates, and number of 

NPs adhered on or penetrated into the cell is calculated. To understand the 

experiments and interpret the results physiologically, it is crucial to understand the 

dynamics of the cells and particle transportation process. In this chapter, basic 

information about the cell structure and particle transportation will be given for the 

typical audience considered as engineers and statisticians.  Readers who have 

knowledge about those topics may skip this chapter. 

Cells are the basic functional units of living organisms. They are small but 

complex structures. Cells join together to create tissues, which organs are made up 

of. There are about 100 trillion cells in the human body (Guyton and Hall, 2006). 

There are many types of cells such as nerve cells, blood cells, muscle cells, bone 

cells. Cells differ from each other both morphologically and metabolically. While 

some bacteria can be seen hardly in the light microscope, some neurons might have a 

size of 1 meter.   
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Despite of the differences in sizes, shapes, and activities, all cells have two 

main functional regions: the nucleus and the cytoplasm (Wolfe, 1999).  The nucleus 

contains and transmits the genetic material needed for cell growth and reproduction. 

It is separated from the cytoplasm by a nuclear membrane. The cytoplasm uses the 

information stored in the nucleus to grow and reproduce. It also provides the energy 

to maintain these activities. The cytoplasm is separated from the fluids surrounding 

the cell (extracellular fluids) by the cell membrane. The cell contains highly 

organized physical subunits, which have specific functions, called organelles. 

Ribosome, mitochondria, endoplasmic reticulum, Golgi complex, lysosome are some 

of the organelles in the cells. Figure 1 shows a typical eukaryotic animal cell (Chiras, 

2011). Some of these organelles have membranes; hence, they divide the cell into 

compartments.  

 

Figure 1: Structure of a typical eukaryotic cell (Chiras, 2011) 
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Cells are organized by the systems of membranes. The cell membrane, which 

completely envelops the cell, is very important because the cell has to separate itself 

from the outside due to two reasons. First reason is that the cell must protect DNA, 

RNA, and other molecules from dispersion. Second reason is that the foreign 

materials that may be harmful must be kept away. While accomplishing these, the 

cell also should communicate with the outside, and accommodate itself to the 

changes in the environment. The cell membrane functions as a contact region with 

the outside world. Necessary substances and raw materials enter cells; waste and 

toxic materials are removed from the cell through the cell membrane.  

The cell membrane is a thin and elastic structure having about 7.5 to 10 

nanometers thickness, and is mostly composed of proteins and lipids (Guyton and 

Hall, 2006). It also contains carbohydrates combined with proteins and lipids in the 

form of glycoproteins and glycolipids (Rhoades and Bell, 2009; see Figure 2). Lipid 

bilayer is the framework of the membrane. Proteins are embedded as individual units 

in or on the bilayer. This lipid bilayer is impermeable to water-soluble substances 

such as glucose, urea, and ions whereas it is permeable to fat-soluble substances such 

as oxygen and carbon dioxide. There are integral and peripheral proteins in the 

membrane. Integral proteins are embedded to the lipid bilayer partly or completely, 

and they are suspended in the lipid bilayer. Peripheral proteins are attached to the 

membrane surfaces. Integral proteins function in the particle transportation by 

forming pores through which water-soluble substances can diffuse between the 

inside and outside fluids of the cell or by carrying substances in the opposite 
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direction of the diffusion. Peripheral proteins are generally attached to integral 

proteins. They function as enzymes or control intercellular activities in different 

ways.  

 

Figure 2: Cell membrane (Rhoades and Bell, 2009) 

There are two main mechanisms for particle transportation across the 

membrane: passive transport and active transport. Basically, if a particle passes the 

membrane without using cellular energy, it is called passive transport. Otherwise, the 

cellular energy is used, and it is called active transportation. Diffusion and osmosis 

are examples of passive transport. Diffusion is the movement of ions or molecules 

from a region with high concentration to a region with low concentration without 

expending the cellular energy. The rate of the movement depends on the difference 

between the concentrations, called concentration gradient; the movement continues 
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until the molecules are evenly distributed in both regions. Diffusion has two 

subtypes: simple diffusion and facilitated diffusion. Simple diffusion is kinetic 

movement of molecules or ions through an opening in the lipid bilayer or watery 

channels of some transport proteins (Guyton and Hall, 2006). On the other hand, in 

the facilitated diffusion, the particles pass through the membrane with the help of 

carrier proteins. The factors affecting the diffusion rate are: 

Membrane permeability: This means the rate of diffusion of molecules across 

the cell membrane. Various factors affect the membrane permeability. These are 

thickness of the membrane, number of protein channels appropriate for the molecule 

per unit area, lipid solubility, and weight of the molecule and temperature.  

Concentration difference: The rate of diffusion is proportional to the 

concentration difference. 

Electrical potential: Electrical potential causes particles to move even if there 

is no concentration difference. This situation triggers the occurrence of concentration 

difference. Diffusion continues until these two forces, electrical potential and 

concentration gradient, balance each other. 

Osmosis is simply the diffusion of the water through the cell membrane. The 

movement of water is again caused by concentration difference. 

In active transport, molecules or ions are moved inside or outside of the cell 

against the concentration gradient in contrast to the passive transport. Therefore, the 

cellular energy in the form of ATP (adenosine triphosphate) is used. Sodium and 
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potassium ions, calcium ions, iron ions, different sugars, and amino acids are some of 

the substances transported actively (Guyton and Hall, 2006).  

Active and passive transport permit the passage of the small molecules 

between inside and outside of the cell. However, cells also need to take and remove 

larger molecules like proteins and nucleic acids (Wolfe, 1999). Taking large 

materials from outside to the inside of the cell is called endocytosis. Firstly, the 

molecule that will be taken inside is connected to the membrane surface via 

receptors. Then, the membrane invagination occurs and a vesicle is formed around 

the molecule. Generally, the enzymes break down the vesicle in cytoplasm. For 

example, white blood cells engulf bacteria via endocytosis. Also, nanoparticles may 

be taken into the cell via endocytosis. The reverse mechanism of endocytosis is 

called exocytosis. It provides the release of big molecules to the outside of the cell. 

After the molecule is surrounded by a membrane and vesicle is formed, it is carried 

to the cell membrane. It unites to the membrane and then the vesicle is released to the 

outside. Figure 3 shows endocytosis of a food particle and then exocytosis after 

digestion (Purves et al., 1994). Both endocytosis and exocytosis require the use of 

the cellular energy. 
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Figure 3: Endocytosis and exocytosis of a food particle (Purves et al., 1994). 
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Chapter 4 

 

Background on Smoothing Splines and Mixed 

Effects Models 

Cancer is a widespread disease that results in death if its spread is not 

prevented.  Most cancers are treated by surgery, chemotherapy and radiotherapy 

today. However, these treatment methods are not very efficient because they are not 

capable of removing all tumor cells. Also, generally healthy cells are damaged in the 

treatment process. Therefore, there has been a developing interest to targeted drug 

delivery systems to kill tumor cells without harming healthy ones in recent years. In 

this context, nanoparticles with their abilities to store drugs in their cores and 

targeting properties become very suitable tools for that aim.  

The effective use of nanoparticles in targeted drug delivery depends on the 

knowledge of the interaction between the cells and NPs. The cellular uptake of NPs 

depends on the NP size, shape, surface charge, chemical structure and concentration. 

However, it is impractical to conduct all experiments with many different values of 

those variables. Moreover, analysis of the experimental data is complex because of 

the statistically fluctuating environment of living organisms. Hence, the most 

efficient and reliable synthesis of the interaction data is a well-thought 
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statistical/mathematical model of the complex relation between the cell uptake rate 

and NP characteristics. In this research, for each type of nanoparticles (Silica, 

PMMA, and PLA), we model the percentage of NPs entered in or attached to the 

cells in 48-hours time interval as a function of size, charge, and density of NPs.  We 

use the smoothing mixed model approach. Mixed models are designed to handle both 

fixed and random effects. Fixed effects are population-averaged parameters and 

influence average cellular NP uptake rate while random effects address variabilities 

in cellular NP uptake rate due to different cases under the same treatments. Mixed 

models can also naturally handle semiparametric smoothing that is able to capture 

nonlinear relationships between predictors and NP cellular uptake rate. We prefer 

semiparametric smoothing because it can capture important local variations in uptake 

rates. Besides, the replicated experiments with Silica and PMMA NPs can be treated 

most naturally with random effects in mixed-effect model setup. Those replications 

are similar to subjects selected at random from the same population. If we fit a model 

for each replication, we need to estimate too many parameters and then estimates 

will be less accurate. We also need a meaningful model of future realizations as well 

as the past observations. Mixed models can fulfill those requirements. 

In the Section 4.1, a brief description of smoothing and mixed models is given. 

Readers with detailed knowledge of mixed models and smoothing may skip this 

section. In Section 4.2, experimental procedure of the proposed study and NP-cell 

interaction data used in the model is explained. 
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 4.1 A Brief Description of Smoothing and Mixed Models   

4.1.1 Smoothing 

Scatter plots are simply the collections of some points on a plane, without any 

connection to a probabilistic model (Ruppert et al., 2003). Scatter plot smoothing is a 

widely used data analysis technique when the aim is to find the underlying trend in 

the scatter plot.  When looking at the scatter plot, we can think the vertical positions 

of the points as realizations of a random variable y (response variable) that is 

conditional on the horizontal position of the point x (explanatory variable). For 

example, a scatter plot may represent the relation between the years of education (x) 

and the annual income (y). Then we can write 

  Ὢ ὼ Ὁώ ȿὼ.                            (4.1)

 Equation (4.1) can also be written as 

  ώ Ὢὼ  ‐  where Ὁ‐ π.                          (4.2)

 Here, Ὢ is a smooth function, and it should be estimated from ὼ and ώ. There 

are many ways to fit a smooth curve to a set of noisy observations and the penalized 

splines method is one way of doing this. 

4.1.1.1 Penalized Splines (P-Splines) 

 Consider the linear regression model displayed in Figure 4, where the horizontal 

axis represents predictor variable x and the vertical axis represents response variable 

y:    
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   ώ  ‍  ‍ὼ  ‐ ȟ                           (4.3) 

which can be expressed compactly as  

   ώ ὢ ‍  ‐, 

where ώ  

ώ
ể
ώ

, ‍  
‍
ể
‍

, and the X-matrix for fitting regression is  
ρ ὼ
ể ể
ρ ὼ

 . For 

the model in (4.3), the functions 1 and x are the corresponding basis.  

 

  

Figure 4: Linear regression model 

 

 Consider the quadratic model shown in Figure 5: 

   ώ  ‍  ‍ὼ ‍ ὼ  ‐ Ȣ                          (4.4) 
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Figure 5: Quadratic model 

For the model (4.4), the corresponding basis functions are 1, x and x
2
 and the X-

matrix is  

    ὢ  
ρ ὼ      
ể ể
ρ ὼ

ὼ
ể
ὼ
  . 

 Now, consider a different nonlinear data structure, called broken stick model. 

Figure 6 displays an example of the broken stick model. Points represent the data 

points and the line represents the model. As seen in the figure, two lines with 

different slopes join together at x = 0.6. 
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Figure 6: Broken stick model 

Let us introduce a new basis function  

     ὼ πȢφ  
πȟ                      ὭὪ   ὼ πȢφȟ
 ὼ πȢφȟ            έὸὬὩὶύὭίὩȟ

 

to fit the broken stick model 

   ώ  ‍  ‍ὼ ‍ ὼ πȢφ  ‐ Ȣ                          (4.5) 

Then the X-matrix becomes  

   ὢ  
ρ ὼ      
ể ể
ρ ὼ

ὼ πȢφ
ể

ὼ πȢφ
  . 

 In real life, we may have more complex structures than the broken stick model. 

Figure 7 represents such a structure called whip model (Ruppert et al., 2003).  
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Figure 7: Whip model 

We should introduce new basis functions of the form ( x ï ə )+ , called a truncated 

line, to handle this complicated structure. The whip model in Figure 7 can be fitted 

with X-matrix, 

    8  
ρ ὼ      
ể ể
ρ ὼ

ὼ πȢυ
ể

ὼ πȢυ
    

ȣ
Ệ
ȣ
    
ὼ πȢωυ

ể
ὼ πȢωυ

   . 

In general, we can write 

   ώ  ‍  ‍ὼ В ὦ ὼ ‖  ‐ Ȣ             (4.6) 

 The value ə in ( x ï ə )+ is called as knot. A function of the form ( x ï ə )+  is 

called a linear spline basis function, and collection of  such functions is called a 

linear spline basis. A spline is a piecewise linear function which is linear 

combination of linear spline basis functions ρȟὼȟὼ ‖ ȟȣȟὼ ‖   (Ruppert 

et al., 2003).  

 Use of splines for smoothing gives too much flexibility because many possible 

fits can be made by changing the number and locations of the knots. However, this 
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flexibility creates a model selection problem since there are many candidate models. 

While too many knots lead to an overfit, few knots may give a poor fit. In order to 

overcome those problems, automatic knot selection procedures were proposed in the 

literature. One of them is the stepwise selection method proposed by Smith (1982). It 

starts with a subset of full basis, and then adds basis functions having the largest 

absolute Rao statistics step by step until reaching the full basis. Then basis functions 

having the smallest absolute Wald statistics are deleted stepwise until reaching the 

minimal basis. At each step, model is fitted with the current basis and the GCV 

(generalized cross validation) value of the fit is recorded. The fit having the lowest 

GCV gives the final estimate. Another method to choose knots is Bayesian variable 

selection approach proposed by Smith and Kohn (1996). Although performance of 

these methods is good, they are very complicated in terms of application. 

 Penalized spline regression is another method that keeps all the knots while 

limiting their effects. Consider the general spline model with K knots, 

   ώ ὢ ‍,                         

where ‍ is determined by the least squares criterion ᴁώ ὢ ‍ᴁ and ‍

‍  ‍  ‍   ȣ ‍ . In order to have a smooth fit, a constraint should be imposed 

on ‍  , and this constraint can be В‍ ὅ for some number C, which is easy to 

implement. Hence, the minimization problem is now  

   
-ÉÎ ᴁώ ὢ ‍ᴁ  ÓȢÔȢ   В‍ ὅȢ
‍                                                         

                 (4.7) 

The problem (4.7) can be written as  
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   Min ᴁώ ὢ ‍ᴁ   s.t.   ‍ Ὀ ‍ ὅ.                                    (4.8) 

where Ὀ  
π  π  
π  Ὅ 

 .  The Lagrange relaxation of the problem is 

   ὓὭὲ ᴁώ ὢ ‍ᴁ  ʇ ‍ Ὀ ‍ ,                (4.9) 

where ɚ is called the smoothing parameter. The solution of (4.9) is 

   ‍  ὢ ὢ  ʇ Ὀ  ὢ ώ ,                         (4.10) 

and the fitted values are 

   ώ ὢ ‍ ὢ  ὢ ὢ  ʇ Ὀ  ὢ ώ .                       (4.11) 

See, e.g., Ruppert et al., pp. 65-66 (2003).   

4.1.2 Linear Mixed Models 

 There are two types of explanatory variables: fixed effects and random effects. 

Generally, levels of the fixed effect variables are chosen by the researcher with the 

purpose of comparing the effect of levels. Fixed effects are constants and estimated 

from the data. A variable is a random effect if the effects of the levels of that variable 

can be viewed as being like a random sample from a population of effects. Random 

effects influence the variance of the response and manage the variance-covariance 

structure of the response. For example, if the relationship between age and weight is 

investigated on fifty children, age of the children is fixed effect variable, and child is 

the random effect variable since each child is a randomly chosen subject from the 

population.  
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 Mixed-effect models (or mixed models) are the extension of regression models 

that incorporates random-effects. They are generally used for representing grouped, 

therefore correlated, data that come from observational studies with hierarchical 

structure or designed experiments with different spatial or temporal scales. Increased 

popularity of linear mixed models resulted in significant improvements in software 

packages, which provide the analysis of linear mixed models with R, S-PLUS and 

SAS. 

 Consider the following linear regression model: 

  ώ ὢ ‍  ‐,                                      (4.12) 

where ώ is the vector of response variables, ὢ is the design matrix of explanatory 

variables, ‍ is the vector of regression coefficients, and ‐ is the vector of error terms. 

The least-squares estimator of ‍ is calculated as ‍ ὢὢ  ὢ ώȟ and errors are 

assumed to be normal with ‐Ḑ ὔ πȟ„ὍȢ 

The linear mixed model is the expanded version of the linear regression model 

(4.12) with the equation: 

  ώ ὢ ‍ ὤ ό  ‐,                                                    (4.13) 

where ώȟὢȟ‍ are the same as in the linear regression model, ὤ is the design matrix 

for random effects,  όḐ ὔ πȟὋ , ‐Ḑ ὔ πȟὙ , Ὃ „ Ὅ , and Ὑ „ Ὅ .  
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We need to estimate ‍ȟὋ and Ὑ and predict ό. Let ‍ be the estimated effects of 

fixed treatments, and ό be the estimated differences between subgroups and the 

population mean. Then (4.13) can be written as linear model with correlated errors: 

  ώ ὢ ‍ ‐ᶻȟ where ‐ᶻ ὤ ό  ‐.                                  (4.14) 

Then ‐ᶻ ḳὠ ὤ Ὃ ὤ  Ὑ . For given ὠ, we have 

   ‍ ὢ ὠ  ὢ  ὢ ὠ  ώ ,                                    (4.15) 

and for given ‍, we have 

   ό Ὃ ὤ ὠ  ώ ὢ ‍                                    (4.16) 

as the best linear unbiased predictors of ‍ and ό (Ruppert et al., 2003; Wand, 2002), 

respectively. 

Note that (4.15) and (4.16) require the estimation of covariance matrices Ὃ 

and Ὑ. Maximum likelihood (ML) and restricted maximum likelihood (REML), that 

maximize a likelihood function calculated from elements of y that does not depend 

on ɓ, are two main methods used for the estimation of  Ὃ and Ὑ. 

4.1.3 Penalized Splines and Linear Mixed Models 

 Speed (1991) shows that penalized splines can be fit as mixed models. Hence, 

splines can be considered as best linear unbiased predictors. Wand (2002) also uses 

the mixed model theory to fit splines, and he states that the software for mixed model 

analysis can be used for smoothing.   

 Recall that the nonparametric regression model is 
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   ώ Ὢὼ  ‐ ,  

where Ὢὼ  ‍  ‍ὼ  В ό  ὼ  ‖  . Then 

   ώ ‍  ‍ὼ  В ό  ὼ  ‖  ‐ .                      (4.17) 

Wand (2002) makes a modification to shrink ό to have a smooth fit and imposes 

that 

   ό ͯ ὔ πȟ„  .                          (4.18) 

This modification forces ό  to obey the rules of normal probability distribution with 

zero mean. 

 Let us define  ‍  
‍
‍

 and ό  

ό 
ể
ό 

 and design matrices ὢ
ρ ὼ
ể ể
ρ ὼ

 and 

ὤ  
ὼ  ‖ Ễ ὼ  ‖
ể Ệ ể

ὼ  ‖ ȣ ὼ  ‖
 

Then, equation (4.17) can be written as 

   ώ ὢ ‍ ὤ ό  ‐,   ὅέὺ
ό
‐
 ͯ ὔ 

π
π
 ȟ
„ Ὅ π

π „ Ὅ
 ),            (4.19) 

which is the linear mixed model formula in (4.13).  

 Solving the penalized least squares problem  

    ‍
ό
 ὥὶὫάὭὲȟ ᴁώ ὢ ‍ ὤ όᴁ  ‌ ᴁόᴁ ȟ                       (4.20) 
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with  ‌    and penalty ‌ᴁόᴁ gives the best predictors ‍ and ό (Robinson, 

1991). The solution is  

    ‍
ό
 ὅ ὅ  ‌ Ὀ  ὅ ώ ,                                                     (4.21) 

where  ὅ  ὢ ὤ and Ὀ was defined in (4.8); see Wand 2002. 

4.2 Experimental Procedure of Proposed Study  

Advanced technology is used for the synthesis of nanoparticles to be used for 

targeted drug delivery and diagnostics. In this process, different qualities are added 

to the nanoparticle according to their purposes. Nanoparticles can be characterized in 

order them to target some specific cells. Therapeutic agents can be inserted in 

nanoparticles to treat cells. Their chemical structures may help the imaging and so 

they will be useful for diagnostics. These objectives cannot be achievable without the 

proper design of the nanoparticles. There are five main design parameters of 

nanoparticles that help them in fulfilling their functions: type, shape, size, surface 

charge and concentration of the NP solution.  

The data set used in this study is obtained from in-vitro nanoparticle-cell 

interaction experiments conducted by the Nanomedicine & Advanced Technologies 

Research Center. Three types of NPs were used for the experiments: silica, 

polymethyl methacrylate (PMMA) and polylactic acid (PLA). All of those NPs were 

spherical. Silica and PMMA nanoparticles are produced in two different sizes; 

namely, with diameters of 50 and 100 nm. PLA nanoparticles are produced in 250 
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nm diameter. For each type and size of NP, two surface charges, positive and 

negative, are selected. NP solutions with two different concentrations, 0,001 mg/l 

and 0,01 mg/l, were prepared. 

In those experiments, "3T3 Swiss albino Mouse Fibroblast" type of healthy cell 

set was used. Cells were incubated in a medium containing 10% FBS, 2 mm L-

glutamine, 100 IU/ml penicillin and 100 mg/ml streptomycin at 37ÁC with 5% CO2. 

After incubation, proliferating cells in the culture flask were passaged using PBS and 

trypsin-EDTA solution. Then the cells incubated for 24 hours were counted and 

placed on 96-well cell culture plates. NP solutions are added to those plates. 

Micromanipulation systems in the labs established as a ''clean room'' principle 

are used in the in-vitro NP-cell experiments. Spectrophotometric measurement 

methods, transmission electron microscopy (TEM), and confocal microscopy were 

used to examine NP-cell interactions and to get the data. Figure 8 shows an example 

of TEM micrographs of iron oxide and CPMV nanoparticles. 

For Silica and PMMA NPs, there are 8 different configurations (50 or 100 nm 

size, positive or negatively charged, 0.001 or 0.01 mg/l concentration); for PLA NPs, 

there are 4 different configurations (250 nm size, positive or negatively charged, 

0.001 or 0.01 mg/l concentration). Those lead to 20 different configurations of NPs 

in total. For each of 20 different configurations of NPs, the experiments are repeated 

six times. At 3, 6, 12, 24, 36 and 48 hours of incubation, the number of NPs removed 

from the environment was counted by washing the solution. The difference between 
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that number removed from the environment and the initial number of NPs subjected 

to the cells gives the number of the NPs attached on cell surface or penetrated into 

the cells. Then the cellular uptake rate was found by dividing that number by the 

initial number of the NPs subjected to the cells.  

 

Figure 8: TEM micrographs of (a) iron oxide nanoparticles and (b) CPMV 

nanoparticle. The length of scale bar is 30 nm (Zhang et al., 2008) 

For eight different configurations of Silica NPs, the experiments were repeated 

and measurements were taken at 1.5, 4, 9, 18, 30 and 42 hours of incubation in order 

to observe the process in time intervals of the first replication. For two configurations 

of PMMA NPs (size of 50 and 100 nm with concentration of 0.001 mg/l and positive 

surface charge), the experiments were repeated and measurements were taken at the 

same time points as those of the first replication to check for the consistency of the 

results of the first replication. The figures of raw data can be seen in Appendices A.1, 

A.2, and A.3 for Silica, PMMA, and PLA nanoparticles respectively. 
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Chapter 5 

 

Proposed Model 

In this study, we want to predict cellular uptake rate of NPs having different 

properties with respect to time. Therefore, we use penalized spline smoothing mixed 

effects model, which is explained in detail in Chapter 4. Moreover, we decided to use 

quadratic truncated line basis since it enables us to handle the apparent nonlinear 

structure of the raw data. We fit a model for each type of nanoparticle, Silica, 

PMMA, and PLA; because their interactions with cells are very different from each 

other. For example, the uptake rate of Silica NPs is more stable than that of PMMA 

nanoparticles, which means that the change in the ratio of the number of attached 

nanoparticles is less than those of PLA and PMMA nanoparticles. 

 Table 1 presents the NP characteristics used in our research. 

In addition to the input variables of Table 1, a categorical random effect 

variable, Repeat,  is defined to track the replication number for the models of Silica 

and PMMA. Repeat has two levels, 1 and 2, since the experiments were replicated 

twice for Silica and PMMA. It has no fixed effect counterpart. We may consider 

repeated experiments as randomly chosen subjects from a population. Since we do 

not want to make inference just for those two observed replications, and we want to 



33 
 

predict general behavior of the population for future replications, we include Repeat 

as a random effect. 

 

VARIABLE  NAME 

 

 

VALUE 

Type of NPs 

 

Silica, PMMA, PLA 

Diameter Size of NPs (Size) 50 nm and 100 nm for Silica and PMMA 

250 nm for PLA 

Surface Charge of NPs  (Charge) 

 

Positive (+) and negative (-) 

Density of NPs (Density) 
0.001 mg/l and 0.01 mg/l 

Incubation Time (Time) 
0,3, 6, 12, 24, 36, 48 hours for Silica, 

PMMA and PLA 

0,1.5, 4, 9, 18, 30, 42 hours for Silica 

Table 1: Nanoparticle characteristics 

The aim of this study is to predict the cellular uptake rate. Hence, the cellular 

uptake rate is the output variable for all types of NPs. It is calculated according to 

formula  

ὅὩὰὰόὰὥὶ όὴὸὥὯὩ ὶὥὸὩ  
           

        
Ȣ    

(5.1) 

 Detailed information about the data can be found in Section 4.2 in Chapter 4. 

In the Sections 5.1 - 5.3, the models for Silica, PMMA, and PLA nanoparticles will 

be explained, respectively. In those sections, fitting procedures are explained in three 

steps. In the first step, input variables and the design matrices of mixed models are 

defined. In the second step, the model is constructed. In the third step, the model 

parameters are estimated. Then prediction intervals are derived in Section 5.4 1
st
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5.1. Proposed Model for Silica Nanoparticles 

For Silica NP experiments, all possible combinations of input variables stated 

in Table 1 were used. The experiments were repeated twice with different incubation 

times. In the first replication, measurements were taken at 3, 6, 12, 24, 36, 48 hours 

of incubation. In the second replication, measurements were taken at 1.5, 4, 9, 18, 30, 

42 hours of incubation. Hence, for each replication, there are 8 groups of 

nanoparticles. Table 2 presents those groups. 

Size Charge Density 

1 50 nm (+) 0.001 mg/l 

2 50 nm (+) 0.01 mg/l 

3 50 nm (-) 0.001 mg/l 

4 50 nm (-) 0.01 mg/l 

5 100 nm (+) 0.001 mg/l 

6 100 nm (+) 0.01 mg/l 

7 100 nm (-) 0.001 mg/l 

8 100 nm (-) 0.01 mg/l 

Table 2: Experimental groups of Silica and PMMA nanoparticles 

Step 1: Setting up the input variables and design matrices 

 In this model, we want to predict the fraction of Silica NPs attached to cell 

surface or penetrated into the cell. This fraction is controlled by two level categorical 
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variables Size , Charge, Density ; and the continuous variable, Time . Thus, 

input variables are Size , Charge , Density , and Time . Uptake rate (U)  is the 

output variable. Furthermore, our model does not have intercept because uptake rate 

is zero at time zero. We also include the interactions between categorical variables 

and Time,  and Time
2 into the model since the design matrix of the quadratic 

spline basis is ὢ ρ ὼ ὼ  as explained in Chapter 4. Then design matrix consists 

of the fixed effect variables Time ( T), TimeĬSize (TS), TimeĬCharge 

( TC), TimeĬDensity (TD), TimeĬSizeĬCharge (TSC),  

TimeĬSizeĬDensity (TSD), TimeĬChargeĬDensity (TCD), 

TimeĬSizeĬChargeĬDensity (TSCD), Time
2 

( T
2
), Time

2
ĬSize (T

2
S), 

Time
2
ĬCharge (T

2
C), Time

2
ĬDensity (T

2
D), Time

2
ĬSizeĬCharge 

( T
2
SC), Time

2
ĬSizeĬDensity (T

2
SD),  Time

2
ĬChargeĬDensity (T

2
CD) 

and Time
2
ĬSizeĬChargeĬDensity (T

2
SCD).  

 Recall that our mixed effects model formulation in (4.13) was 

   ώ ὢ ‍ ὤ ό  ‐ . 

Hence, the design matrix becomes 

ὢ   Ὕ   ὝὛ  Ὕὅ  ὝὈ  ὝὛὅ  ὝὛὈ  ὝὅὈ  ὝὛὅὈ  Ὕ   ὝὛ   Ὕὅ   ὝὈ   ὝὛὅ   ὝὛὈ  ὝὅὈ     

  ὝὛὅὈ .                    (5.2) 

 To construct Z-matrix, firstly we need to choose the places for the knots. The 

number of knots affects the size of the model. A large number of knots increase the 
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number of parameters to be estimated and the computation time while too few knots 

lead to a poor fit.  

 Ruppert et al. (2003) propose that the number of knots should be 

  ὑ ÍÉÎ ÎÕÍÂÅÒ ÏÆ ÕÎÉÑÕÅ ὼȟσυ ȟ                                   (5.3) 

and the knot locations should be 

  ‖ ÔÈ ÓÁÍÐÌÅ ÑÕÁÎÔÉÌÅ ÏÆ ÔÈÅ ÕÎÉÑÕÅ ὼ  for k=1,..,K.     (5.4) 

Those formulas generally give good results but sometimes adjustments are required. 

 We have 12 unique Time values. Hence, required number of knots is found 

three with formula (5.3) and knot locations are calculated as ə1 = 5.5, ə2 = 15 and ə3 

= 31.5 by (5.4).  Thus, the quadratic spline basis for our model becomes 

  Ὕ υȢυ  ȟὝ ρυ  ȟ Ὕ σρȢυ  Ȣ                         (5.5) 

 We build a model which includes random counterparts of all the fixed effect 

variables. Hence, the Z-matrix becomes  

ὤ   Ὕ υȢυ      Ὕ ρυ     Ὕ σρȢυ     

    Ὓ Ὕ υȢυ      Ὓ  Ὕ ρυ     Ὓ Ὕ σρȢυ        

   ὅ Ὕ υȢυ      ὅ Ὕ ρυ     ὅ  Ὕ σρȢυ       

   Ὀ Ὕ υȢυ     Ὀ Ὕ ρυ     Ὀ Ὕ σρȢυ      
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  Ὓὅ Ὕ υȢυ      Ὓὅ Ὕ ρυ     Ὓὅ Ὕ σρȢυ      

  ὛὈ Ὕ υȢυ      ὛὈ Ὕ ρυ     ὛὈ Ὕ σρȢυ      

  ὅὈ Ὕ υȢυ      ὅὈ Ὕ ρυ     ὅὈ Ὕ σρȢυ       

  ὛὅὈ Ὕ υȢυ      ὛὅὈ Ὕ ρυ     ὛὅὈ Ὕ σρȢυ    .                    (5.6) 

 We fit our model to the data by using lme()  function of package nlme  in 

software R. Firstly, we build a model with X and Z matrices defined in (5.2) and 

(5.6), respectively, to consider all possible fixed and random effect variables. Then 

we test for the significance of terms and eliminate insignificant ones. In order to test 

the significance of the terms, we fit a model with and without a given term. Then we 

apply ANOVA. If p-value is less than 0.05, then we keep that term in the model. 

Otherwise, we eliminate it. Moreover, Repeat (R)  is modeled as a random effect 

because we want to make inference not only for those two replications but also for 

the future replications. 

According to the test results, we find that Time ( T), TimeĬSize (TS), 

TimeĬCharge (TC), TimeĬDensity (TD), TimeĬSizeĬCharge (TSC), 

TimeĬChargeĬDensity (TCD), Time
2 

( T
2
), Time

2
ĬSize (T

2
S), 

Time
2
ĬCharge (T

2
C), Time

2
ĬDensity (T

2
D), Time

2
ĬSizeĬCharge 

( T
2
SC), Time

2
ĬChargeĬDensity (T

2
CD), and 

Time
2
ĬSizeĬChargeĬDensity (T

2
SCD)  are statistically significant fixed effect 

variables.  Time
2
ĬSizeĬDensity ( T

2
SD) , TimeĬSizeĬDensity (TSD), 

and TimeĬSizeĬChargeĬDensity (TSCD) are insignificant fixed effect 



38 
 

variables with p-values 0.0823, 0.9786, and 0.424, respectively.   Random effect 

counterpart of Size  and SizeĬDensity turns out to be insignificant with p-

values 0.1805 and 0.9999 respectively. Hence, after the elimination of insignificant 

terms, the final design matrices are  

ὢ   Ὕ   ὝὛ  Ὕὅ  ὝὈ  ὝὛὅ  ὝὅὈ   Ὕ   ὝὛ   Ὕὅ   ὝὈ   ὝὛὅ    ὝὅὈ   ὝὛὅὈ,        (5.7)                                                               

and  

ὤ   Ὕ υȢυ      Ὕ ρυ      Ὕ σρȢυ    

ὅ Ὕ υȢυ      ὅ Ὕ ρυ     ὅ  Ὕ σρȢυ      

           Ὀ Ὕ υȢυ     Ὀ Ὕ ρυ     Ὀ Ὕ σρȢυ      

           Ὓὅ Ὕ υȢυ     Ὓὅ Ὕ ρυ     Ὓὅ Ὕ σρȢυ        

           ὅὈ Ὕ υȢυ     ὅὈ Ὕ ρυ     ὅὈ Ὕ σρȢυ      

           ὛὅὈ Ὕ υȢυ     ὛὅὈ Ὕ ρυ     ὛὅὈ Ὕ σρȢυ    .                       (5.8) 

Step 2: Model formulation 

For Silica NPs, the proposed model is           

Ὗ  Ὢ Ὕ ‍ ὝὛ Ὢ Ὕ  Ὢ Ὕ    Ὢ Ὕ  Ὢ Ὕ  Ὢ Ὕ  ‐ ȟ             

(5.9) 

where all f functions are smooth functions of the terms whose both fixed and random 

counterparts are statistically significant .   
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 With the mixed model formulation, (5.9) is written as 

Ὗ  ‍ Ὕ  ‍ Ὕ  ‍ ὝὛ ‍ Ὕὅ  ‍ ὝὈ  ‍ ὝὛὅ ‍ ὝὅὈ ‍ ὝὛὅὈ

 В  όȟ  Ὕ ‖  όȟ  Ὕὅ  Ὕ ‖    όȟ  ὝὈ  Ὕ ‖  

 όȟ  ὝὛὅ Ὕ ‖     όȟ  ὝὅὈ Ὕ ‖   όȟ  ὝὛὅὈ  Ὕ ‖    ‐ ȟ                     

 (5.10) 

where ‍ȟ‍ȟȣȟ‍ are fixed parameters and  όȟ ȟȣȟόȟ ȟόȟ ȟȣȟόȟ   are random 

variables for replications 1 and 2, respectively, where k=1, 2, 3. 

Step 3: Estimation of model parameters 

 The model (5.10) is implemented in R using lme()  function in the nlme  

package (see Appendix B.1 for the code). Then ‍ and ό are obtained. To see the 

hourly predictions of the cellular uptake, X and Z matrices are formed for hourly grid 

Time=0,1,é49 hours. Using those matrices, the fitted lines are obtained with the 

formula 

   ώ ὢ ‍  ὤ ό .              (5.11) 

Predictions for Silica NPs can be seen in Figure 9 and 10. 
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1st Replication  Data points Predictions  95% Prediction interval  
2nd Replication  Data points Predictions  95% Prediction interval  

 

Figure 9: Silica 50 nm predictions 
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1st Replication  Data points Predictions  95% Prediction interval  
2nd Replication  Data points Predictions  95% Prediction interval  

 

Figure 10: Silica 100 nm predictions 
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5.2. Proposed Model for PMMA Nanoparticles 

 For PMMA NP experiments, the same eight combinations of input variables of 

Table 2 were used. The measurements were taken at 3, 6, 12, 24, 36, 48 hours of 

incubation. The experiments were repeated for positively charged nanoparticles with 

concentration of 0.001 mg/l. Measurements were taken at the same time points with 

the previous replication to be sure of the results since PMMA NPs having those 

characteristics behave different from the other configurations of PMMA NPs. 

Step 1: Setting up the input variables and design matrices 

 In this model, we want to predict the fraction of PMMA NPs attached to cell 

surface or penetrated into the cell. Input variables are two level categorical variables, 

Size, Charge, and Density ; and the continuous variable, Time . Intercept is 

forced to be zero because uptake rate is zero at time zero. Hence, we do not have 

intercept term, and involve the interactions between the categorical variables and 

Time,  and Time
2. Uptake rate (U)  is the output variable. 

 Initially, all the terms and their interactions mentioned above are added to the 

model as both fixed and random effects. Then design matrix consists of the fixed 

effect variables Time ( T), TimeĬSize (TS), TimeĬCharge (TC), 

TimeĬDensity ( TD), TimeĬSizeĬCharge (TSC),  TimeĬSizeĬDensity 

( TSD), TimeĬChargeĬDensity (TCD), TimeĬSizeĬChargeĬDensity 

( TSCD), Time
2 

( T
2
), Time

2
ĬSize (T

2
S), Time

2
ĬCharge (T

2
C), 

Time
2
ĬDensity (T

2
D), Time

2
ĬSizeĬCharge (T

2
SC), 
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Time
2
ĬSizeĬDensity (T

2
SD),  Time

2
ĬChargeĬDensity (T

2
CD) and 

Time
2
ĬSizeĬChargeĬDensity (T

2
SCD). Hence, it becomes 

ὢ   Ὕ   ὝὛ  Ὕὅ  ὝὈ  ὝὛὅ  ὝὛὈ  ὝὅὈ  ὝὛὅὈ  Ὕ   ὝὛ   Ὕὅ   ὝὈ   ὝὛὅ   ὝὛὈ  ὝὅὈ     

  ὝὛὅὈ .                  (5.12) 

 We have 12 unique Time  values in PMMA NP experiments, and 3 knots are 

recommended by (5.3). However, a poor fit is obtained with 3 knots, whose locations 

are computed by (5.4).  We tried 5 knots which give a more satisfactory fit.  Knots are 

located at ə1 = 5.5, ə2 = 10, ə3 = 18, ə4 = 28 and ə5 = 38 by (5.4). Quadratic spline 

basis becomes  

  Ὕ υȢυ  ȟ Ὕ ρπ ȟ Ὕ ρψ ȟ Ὕ ςψ ȟ Ὕ σψ ,            (5.13) 

and Z matrix becomes 

ὤ   Ὕ υȢυ      Ὕ ρπ      Ὕ ρψ      Ὕ ςψ      Ὕ σψ    

  Ὓ Ὕ υȢυ     Ὓ Ὕ ρπ     Ὓ Ὕ ρψ     Ὓ Ὕ ςψ     Ὓ Ὕ σψ         

   ὅ Ὕ υȢυ     ὅ Ὕ ρπ     ὅ Ὕ ρψ     ὅ Ὕ ςψ     ὅ Ὕ σψ     

   Ὀ Ὕ υȢυ     Ὀ Ὕ ρπ     Ὀ Ὕ ρψ     Ὀ Ὕ ςψ     Ὀ Ὕ σψ     

  Ὓὅ Ὕ υȢυ     Ὓὅ Ὕ ρπ      Ὓὅ Ὕ ρψ     Ὓὅ Ὕ ςψ     Ὓὅ Ὕ σψ      

 ὛὈ Ὕ υȢυ     ὛὈ Ὕ ρπ     ὛὈ Ὕ ρψ     ὛὈ Ὕ ςψ     ὛὈ Ὕ σψ      

ὅὈ Ὕ υȢυ     ὅὈ Ὕ ρπ     ὅὈ Ὕ ρψ     ὅὈ Ὕ ςψ     ὅὈ Ὕ σψ     
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 ὛὅὈ Ὕ υȢυ     ὛὅὈ Ὕ ρπ     ὛὅὈ Ὕ ρψ     ὛὅὈ Ὕ ςψ     ὛὅὈ Ὕ σψ   .       

(5.14) 

Moreover, Repeat (R)  is modeled as a random effect as in the model of Silica 

NPs. 

 Firstly, we fit a model with X and Z matrices in (5.12) and (5.14), respectively. 

Then we apply ANOVA to test the significance of each term in the model. We find 

that Time ( T), TimeĬSize (TS), TimeĬCharge (TC), TimeĬDensity 

( TD), TimeĬSizeĬCharge (TSC), TimeĬSizeĬDensity (TSD), 

TimeĬChargeĬDensity ( TCD),TimeĬSizeĬChargeĬDensity (TSCD)  and 

Time
2
 ( T

2
) are the significant fixed effect variables since p-values are less than 

0.002.  

 After removing the statistically insignificant variables, the new X and  Z 

matrices become 

 ὢ   Ὕ  Ὕ ὝὛ  Ὕὅ  ὝὈ  ὝὛὅ  ὝὛὈ  ὝὅὈ  ὝὛὅὈ ,                                    (5.15) 

and 

ὤ   Ὕ υȢυ      Ὕ ρπ      Ὕ ρψ      Ὕ ςψ      Ὕ σψ    

  Ὓ Ὕ υȢυ     Ὓ  Ὕ ρπ     Ὓ Ὕ ρψ     Ὓ Ὕ ςψ      Ὓ Ὕ σψ        

ὅ Ὕ υȢυ      ὅ Ὕ ρπ     ὅ  Ὕ ρψ     ὅ  Ὕ ςψ     ὅ  Ὕ σψ     
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 Ὀ Ὕ υȢυ     Ὀ Ὕ ρπ     Ὀ Ὕ ρψ     Ὀ Ὕ ςψ     Ὀ Ὕ σψ         

Ὓὅ Ὕ υȢυ     Ὓὅ Ὕ ρπ     Ὓὅ Ὕ ρψ     Ὓὅ Ὕ ςψ    Ὓὅ Ὕ σψ     

ὅὈ Ὕ υȢυ     ὅὈ Ὕ ρπ     ὅὈ Ὕ ρψ     ὅὈ Ὕ ςψ     ὅὈ Ὕ σψ     

ὛὅὈ Ὕ υȢυ     ὛὅὈ Ὕ ρπ     ὛὅὈ Ὕ ρψ     ὛὅὈ Ὕ ςψ     ὛὅὈ Ὕ σψ   ,       

(5.16) 

respectively. 

Step 2: Model formulation 

 For PMMA NPs, the proposed model is 

 Ὗ  Ὢ Ὕ  Ὢ Ὕ   Ὢ Ὕ  Ὢ Ὕ    Ὢ Ὕ  Ὢ Ὕ  Ὢ Ὕ

  ‍ ὝὛὈ ‐  ȟ                                                                                                                 (5.17) 

where all f functions are smooth functions. The final mixed model can now be 

written as 

Ὗ  ‍ Ὕ  ‍ Ὕ  ‍ ὝὛ ‍ Ὕὅ  ‍ ὝὈ  ‍ ὝὛὅ ‍ ὝὛὈ ‍ ὝὅὈ

 ‍ ὝὛὅὈВ  όȟ  Ὕ ‖  όȟ  ὝὛ  Ὕ ‖     όȟ  Ὕὅ  Ὕ ‖  

 όȟ  ὝὈ  Ὕ ‖     όȟ  ὝὛὅ Ὕ ‖    όȟ  ὝὅὈ  Ὕ ‖  

 όȟ  ὝὛὅὈ  Ὕ ‖  ‐  ȟ                             (5.18) 

where ‍ȟȣȟ‍ are fixed effects and όȟ ȟȣȟόȟ ȟόȟ ȟȣȟόȟ   are random effects 

for replications 1 and 2, respectively, where Ë ρȟςȟσȢ 
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Step 3: Estimation of model parameters 

 The R code for the implementation of model (5.17) can be seen in Appendix 

B.2. Using the values ‍ and ό obtained from R, the fitted lines for replication 1 and 2 

are calculated by (5.8) for hours 0 to 48 with the appropriate X and Z matrices 

formed for hourly grid Time = 0, 1,..,49 hours. Hourly predictions for PMMA NPs 

can be seen in Figure 11 and 12. 
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1st Replication  Data points Predictions  95% Prediction interval  
2nd Replication  Data points Predictions  95% Prediction interval  

 

Figure 11: PMMA 50 nm predictions 
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1st Replication  Data points Predictions  95% Prediction interval  
2nd Replication  Data points Predictions  95% Prediction interval  

 

Figure 12: PMMA 100 nm predictions 
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 5.3. Proposed Model for PLA Nanoparticles 

 In PLA experiments, nanoparticles of 250 nm size were used only because of 

technical feasibility of synthesizing. Measurements were taken at 3, 6, 12, 24, 36, 48 

hours of incubation.  

Size Charge Density 

1 250 nm (+) 0.001 mg/l 

2 250 nm (+) 0.01 mg/l 

3 250 nm (-) 0.001 mg/l 

4 250 nm (-) 0.01 mg/l 

Table 3: Experimental groups of PLA nanoparticles 

Step 1: Setting up the input variables and design matrices 

 In this model, we want to predict the fraction of PLA NPs adhered on the cell 

surface or penetrated into the cell. Input variables are two level categorical variables, 

Charge and Density ; and the continuous variable, Time . Size  is not an input 

variable here because it has only one level. Intercept is zero since the uptake rate is 

zero at time zero, as mentioned before for Silica and PMMA. Moreover, we involve 

the interactions between categorical variables and Time , and Time
2. Uptake 

rate (U)  is the output variable. 

 Initially, all the terms and their interactions are added to the model as both 

fixed and random effects. Then the design matrix becomes 
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  ὢ   Ὕ  Ὕὅ  ὝὈ  ὝὅὈ  Ὕ   Ὕὅ   ὝὈ   ὝὅὈȢ                                (5.19) 

 We obtain a good fit with 3 knots. Knots are located at ə1 = 7.5, ə2  = 18 and ə3 

= 33 by (5.4). The quadratic spline basis for our model becomes 

  Ὕ χȢυ  ȟὝ ρψ  ȟ Ὕ σσ.                                               (5.20) 

Then the Z-matrix becomes 

ὤ   Ὕ χȢυ      Ὕ ρψ      Ὕ σσ    

   ὅ Ὕ χȢυ      ὅ Ὕ ρψ     ὅ  Ὕ σσ      

   Ὀ Ὕ χȢυ     Ὀ Ὕ ρψ     Ὀ Ὕ σσ     

  ὅὈ Ὕ χȢυ     ὅὈ Ὕ ρψ     ὅὈ Ὕ σσ Ȣ                          (5.21) 

 After fitting our model to the data, we test the significance of each term in X 

and Z matrices via ANOVA and eliminate insignificant ones. According to the test 

results, we find that Time ( T) , TimeĬCharge (TC), and Time
2
 ( T

2
)  are 

significant fixed effect variables with p-values less than 0.0001. Their random 

counterparts are also significant. After eliminating the insignificant terms, the new X 

and Z matrices become 

  ὢ   Ὕ  Ὕὅ  Ὕ ȟ                                                                             (5.22) 

and 

  ὤ   Ὕ χȢυ      Ὕ ρψ      Ὕ σσ    
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                         ὅ Ὕ χȢυ      ὅ Ὕ ρψ     ὅ  Ὕ σσ  ȟ                (5.23) 

respectively. 

Step 2: Model formulation 

 For PLA NPs, the new model becomes 

  Ὗ     ὪὝ Ὢ Ὕ ‐,                             (5.24) 

where Ὢ is a smooth function of Time  and Ὢ is a smooth function of TimeĬCharge 

( TC) . The final mixed model formulation becomes 

     Ὗ  ‍ Ὕ  ‍ Ὕ  ‍ Ὕὅ В  όȟ Ὕ ʆ  όȟ Ὕὅ  Ὕ ʆ   ‐ ȟ 

                                                                                                                               (5.25)                            

where ‍ȟ‍ȟ ÁÎÄ ‍ are fixed coefficients, and όȟȟόȟ  are random coefficients 

where Ὧ ρȟςȟσȢ 

Step 3: Estimation of model parameters 

 The model (5.25) is implemented in R with the code in Appendix B.3. Then the 

values ‍ and ό are acquired from R, and the predictions are calculated by (5.8) for 

hours 0 to 48 with the appropriate design matrices. Figure 13 displays both data and 

fit from our model. 
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1st Replication  Data points Predictions  95% Prediction interval  

 

Figure 13: PLA predictions 
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5.4. Derivation of Prediction Intervals 

 The aim of this research is to predict NP-cell interaction based on results of the 

experiments conducted with Silica, PMMA, and PLA NPs. Hence, we want to know 

the interval in which our future estimates will fall. Therefore, we need to find 

prediction intervals. 

 Recall the mixed model formulation in (4.13)  

  ώ ὢ ‍ ὤ ό ‭, 

where   ὢ  ρ ὼ    ÁÎÄ  ὤ ὼ  ‖ ȟ . We can write  

  Ὢὼ  ὢ‍  ὤό ,                          (5.26) 

where   ὢ ρ ὼ and   ὤ  ὼ  ‖ . For the mixed model 

representation of penalized splines, Ruppert et al. (2003) derive the 100(1-Ŭ)% 

confidence interval as 

  Ὢὼ  
ὸρ

ᶿ
ȠὨὪ  „ ίὸὨȢὨὩὺȢὪὼ  Ὢὼ     ÆÏÒ ÓÍÁÌÌ Îȟ

ᾀρ
ᶿ
 „ ίὸὨȢὨὩὺȢὪὼ  Ὢὼ     ÆÏÒ ÌÁÒÇÅ Îȟ

      (5.27) 

where 

  ίὸὨȢὨὩὺȢὪὼ  Ὢὼ  „ ὅ ὅὅ   Ὀ ὅ  ,              (5.28) 

ὅ ὢ  ὤ , and  Ὀ ὨὭὥὫ πȟπȟρȟȣȢρ. Therefore, 100(1-Ŭ)% prediction interval 

for our case is 

  Ὢὼ  ᾀρ
ᶿ
 „ ρ ὅ ὅὅ   Ὀ ὅ .             (5.29) 
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Figures 9-13 plot both the fits and their 95% prediction intervals obtained from our 

models.  
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Chapter 6 

 

Comparison and Discussion 

 In this thesis, cellular uptake of nanoparticles is investigated through a mixed 

model. Mixed models are formed by extending regression models with random 

effects. As explained in Chapter 4, mixed models handle semiparametric smoothing 

since smoothing methods that utilizes basis functions with penalization can be 

represented as a mixed model. They are generally preferred for clustered, hence 

dependent, data collected hierarchically. This situation arises, for example, when 

observations are obtained from related subjects or when data is collected on the same 

subject over time. 

 In our study, we model the uptake rates of Silica, PMMA, and PLA 

nanoparticles into the cell in 48-hour time interval by means of a penalized moothing 

splines mixed effects model. For each type of NP (Silica, PMMA, and PLA), we 

develop a model that takes NP size, charge, concentration and incubation time as 

inputs to predict the cellular uptake rate. For Silica NP experiments, the experiments 

are repeated for all eight groups of different size, charge, and solution concentration. 

Observations are taken at different time points in two replications. Also, for PMMA 

NPs, the experiments conducted with positively charged NP solutions of 0.001 mg/l 
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and 0.01 mg/l are replicated once more, and observations are taken at the same time 

points in both replications. Having correlated data coming from more than one 

replication is main reason why we prefer mixed model to represent this uptake 

process.  

 Another advantage of mixed model splines is that smoothing is an effective and 

flexible method to represent nonlinear relationships between inputs and outputs. As 

mentioned in Chapter 4, the penalized spline smoother corresponds to the best linear 

unbiased predictor in a mixed model. Especially with the advances in mixed model 

software, fitting process becomes relatively fast and simple. Ease of implementation 

have increased the use of mixed model splines. 

 Another study performed to explore the NP-cell interaction with a 

mathematical model is Cenk et al.ôs study (2014). They propose an artificial neural 

network (ANN) model, which is developed with the same data set used in this thesis, 

for the NP-cell interaction. Incubation time, NP type, NP size, NP charge, and 

concentration are the five inputs of her model, likewise our model. NP uptake rate is 

the output. An input layer of five nodes and an output layer of one node are used in 

their ANN model. Tansig transfer function for hidden layers is chosen for hidden 

layer. Basically, dataset is divided randomly into training and test dataset. The ANN 

model is fitted with training dataset and the performance of the model is measured 

with the test dataset. Mean Square Error (MSE) is used to evaluate the network 

performance. Batch training method, which requires defining all inputs and outputs 

to the network firstly and then adjusts the weights of the inputs, is utilized. Different 
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training functions available in MATLAB for batch training is tried with different 

layer structures and Bayesian regularization training function is chosen since it gives 

the best MSE and computation time. Then the number of nodes in the hidden layer is 

decided as twelve by trial and error method according to the MSE and Mean 

Absolute Error (MAE). Hence, the network structure of the final model has an input 

layer of five nodes, a hidden layer of twelve nodes, and an output layer of one node. 

In the next step, Cenk et al. simulate the NP uptake rate for 48 hours. For every NP 

configuration, 50 simulation runs are obtained. For each simulation run, different 

initial parameters are tried and the best one is chosen as the final fit of the model. 

Then confidence bounds are computed with ςʎ from the mean of 50 simulation run 

results 

 Predictions of our mixed models proposed in Chapter 5 and Cenk et al.ôs ANN 

model are presented in Figure 14-18 for Silica 50 nm, Silica 100 nm, PMMA 50 nm, 

PMMA 100 nm, and PLA nanoparticles, respectively. For Silica NPs, their 

predictions are generally between the first and second replicationôs predictions of our 

model. The situation is the same for size of 50 and 100 nm, positively charged, 

density of 0.001 mg/l PMMA nanoparticles. Those experiments are the ones that are 

replicated twice. For other PMMA NP configurations, of which experiments are not 

repeated, predictions of both models are similar; however, our predictions are a little 

bit more fluctuating. For PLA NPs, predictions are again similar in both models. 

 For the replicated experiments, our approach is more appropriate than Cenk et 

al.ôs model since experiments are replicated after a while. It can be thought that data 



58 
 

come from different subjects of the same population, and hence, it is correlated. We 

should not combine two datasets as if they were obtained together. Our model has the 

advantage of linking the data obtained at different times by means of random effects. 

Their ANN model ignores this complexity. Besides, ANN models are seen as dark 

boxes and it is difficult  to explain the relationships between inputs and outputs. 

However, our model is a statistical model and provides an easy-to-understand 

explanation to the interactions of various effects on the NP cellular uptake. Both 

models are flexible and appropriate for the representation of the nonlinear data 

structure. Another difference is that their study contains the confidence interval. 

Unlike their study, we compute prediction intervals. It is more reasonable to compute 

prediction intervals instead of confidence intervals since we want to know where our 

predictions of future replications fall in. 
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Our model, 1st Replication  Data points Predictions  95% Prediction interval 
Our model, 2nd Replication  Data points Predictions  95% Prediction interval 
Cenk et al.Ωǎ !bb ƳƻŘŜƭ                                               Predictions                    95% Confidence interval  

Figure 14: Silica 50 nm predictions of our model and Cenk et al.ôs model 
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Our model, 1st Replication  Data points Predictions  95% Prediction interval 
Our model, 2nd Replication  Data points Predictions  95% Prediction interval 
Cenk et al.Ωǎ !bb ƳƻŘŜƭ                                             Predictions                    95% Confidence interval  

              Figure 15: Silica 100 nm predictions of our model and Cenk et al.ôs model  
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Our model, 1st Replication  Data points Predictions  95% Prediction interval 
Our model, 2nd Replication  Data points Predictions  95% Prediction interval 
Cenk et al.Ωǎ !bb ƳƻŘŜƭ                                               Predictions                    95% Confidence interval  

Figure 16: PMMA 50 nm predictions of our model and Cenk et al.ôs model 
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Our model, 1st Replication  Data points Predictions  95% Prediction interval 
Our model, 2nd Replication  Data points Predictions  95% Prediction interval 
Cenk et al.Ωǎ !bb ƳƻŘŜƭ                                               Predictions                    95% Confidence interval  

Figure 17: PMMA 100 nm predictions of our model and Cenk et al.ôs model 


