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ABSTRACT

VARIATIONAL MONTE CARLO CALCULATIONS
FOR BOSE-HUBBARD MODEL BASED ON

PROJECTED WAVEFUNCTIONS

Fulya Koç

M.S. in Physics

Supervisor: Asst. Prof. Dr. Balazs Hetényi

June, 2014

Bose-Hubbard model is mainly used to describe and study the interactions be-

tween neutral atomic gases trapped in an optical lattice [1] and Josephson junction

arrays [2]. It is one of the toy models to understand quantum phase transitions,

i.e. a phase transition exists between the Mott insulator state and the super-

fluid state. Analytical solutions are limited to obtaining the ground state energy

for small systems, whereas, computational studies can be done for larger system

sizes. We applied the variational Monte Carlo method to the Bose-Hubbard model

based on projected wavefunctions, i.e. Baeriswyl and Gutzwiller-Baeriswyl. Even

though our method can be applicable to any dimension, we only consider the one

dimensional case in this thesis. We expressed observables in forms of averages

over configurations to which we can apply Monte Carlo sampling techniques. Our

results for both Baeriswyl and Gutzwiller projections are in qualitatively good

agreement with the known calculations of the phase diagram [3,4]. Furthermore,

we introduced a new method, apart from other known methods [5, 6], based on

the Drude weight [7–9] to calculate the superfluid fraction, which can also be

extended to observe BCS superconductivity [10].

Keywords: Bose-Hubbard model, Gutzwiller, Baeriswyl, Variational Monte Carlo.
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ÖZET

BOSE-HUBBARD MODELİ İÇİN İZDÜŞÜMLÜ DALGA

FONKSİYONLARI KULLANARAK VARYASYONEL
MONTE CARLO HESAPLAMALARI

Fulya Koç

Fizik, Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. Balazs Hetényi

Haziran, 2014

Bose-Hubbard modeli, genel anlamda, optik kafes içerisine sıkışmış nötr gazlar

arasındaki etkileşimler [1] ile Josephson eklemlerini [2] incelemek için kullanılır.

Bose-Hubbard Hamiltonian’ı, kuvantum faz geçişlerini, Mott yalıtkanı fazı ile

süperakışkan fazı arası geçişi, anlamak için en temel modeli oluşturur. Anali-

tik çözümler küçük sistemlerle sınırlı kalırken hesaplamalı çözümler daha büyük

sistemleri anlamak için kullanılır. Bu tezde Bose-Hubbard modeli izdüşümsel

dalga fonksiyonları, Baeriswyl ve Gutzwiller-Baeriswyl, kullanarak varyasyonel

Monte Carlo yaklaşımı ile incelenmiştir. Geliştirdiğimiz metod herhangi bir

boyuta uygulanabilmesine rağmen, bu tezde, sadece 1 boyutta hesaplamalar

yapılmıştır. Fiziksel nicelikler Monte Carlo tekniklerini uygulayabileceğimiz

şekilde konfigürasyonlar üzerinden ortalama hesapları yapılarak incelenmiştir.

Elde ettiğimiz sonuçlar, daha önceki bulgularla [3,4] nitelik bakımından iyi şekilde

örtüşmektedir. Ayrıca süperakışkan fazı oranını hesaplamak için daha önce kul-

lanılan metodlardan [5, 6] daha farklı bir metod, Drude ağırlığı [7–9], için temel

oluşturduk. Aynı zamanda bu metod BCS süperiletkenliğini açıklamak için de

genişletilebilir [10].

Anahtar sözcükler : Bose-Hubbard modeli, Gutzwiller, Baeriswyl, Varyasyonel

Monte Carlo.
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Chapter 1

Introduction

1.1 Bose-Hubbard Model

The Bose-Hubbard model is a bosonic analogue of the Fermi-Hubbard model [11]

which studies the strongly correlated materials. The Bose-Hubbard model was

first introduced by Gersch and Knollman in 1963 [12], and further studied exten-

sively by Fisher et al. in 1989 [13]. Based on the analysis of Fisher et al., the

phase diagram of the Bose-Hubbard model at zero temperature contains two dif-

ferent phases, namely; Mott insulating phase and superfluid phase. Hamiltonian

of the model is

Ĥ = −t
∑

<i,j>

(
b̂†i b̂j + h.c.

)
+
U

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i (1.1)

where b̂†i and b̂i boson creation and annihilation operators on site-i respectively.

n̂i = b̂†i b̂i is boson occupation number at site-i, and t is the hopping parameter.

< i, j > indicates that the summation over nearest neighboring sites. U, denotes

on-site interaction; it can be either repulsive, U > 0, or attractive, U < 0. Finally,

µ is the chemical potential.
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Boson creation and annihilation operators obey the following commutation rela-

tions;

[
b̂i, b̂

†
j

]
= δij and

[
b̂†i , b̂

†
i

]
=
[
b̂i, b̂i

]
= 0 ∀i, j (1.2)

These operators also act on the eigenbasis of the single-site boson occupation

number operator as;

b̂†i |n̂i > =
√
ni + 1|ni + 1 >

b̂i|n̂i > =
√
ni|ni − 1 > (1.3)

The first term in (1.1) denotes the hopping term and it introduces hoppings of

bosons between nearest neighboring sites. This term of the Hamiltonian, in a way,

describes how particles are delocalized; hence, it is convenient to represent it as

the kinetic term as well. Second term in (1.1), on the other hand, is called on-site

repulsion term, which contrarily to the first term tries to localize the bosons on

each site. The last term in (1.1) controls the particle number in the system.

In order to analyse the quantum phase transition and the existence of two phases

as indicated at the beginning of this chapter, we need to consider two cases;

first one is t
U
→ 0 which corresponds to the localized case, i.e. Mott insulating

phase, and the second one is t
U
→ ∞ which corresponds to a delocalized case, i.e.

superfluid phase. However before analysing these two limits, one needs to define

the symmetries of the Bose-Hubbard Hamiltonian.
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1.2 Symmetries of The Bose-Hubbard Hamilto-

nian

Basically, we can analyse the symmetry consideration of the Bose-Hubbard model

in three different ways [14–16];

1. U(1) Symmetry:

This symmetry indicates the conservation of total number of particles in

the system, and Ĥ is invariant under transformation;

(
b̂†i , b̂i

)
→
(
b̂†ie

iθ, b̂ie
−iθ
)
= eiN̂θ

(
b̂†i , b̂i

)
e−iN̂θ ∀θ ∈ ℜ (1.4)

2. Translational Symmetry:

This symmetry indicates the conservation of total quasi-momentum of par-

ticles in the system, and Ĥ is invariant under transformation;

(
b̂†i+1, b̂i+1

)
→ e−iT̂

(
b̂†i , b̂i

)
eiT̂ (1.5)

with T̂ being;

T̂ =
L−1∑

k=0

2πk

L
b̂†i b̂i (1.6)

where L is the lattice site.

3. Reflection Symmetry:

In this symmetry Ĥ is invariant under transformation;

(
b̂†i , b̂i

)
→
(
b̂†N−i, b̂N−i

)
in real space or

(
b̂†k, b̂k

)
→
(
b̂†−k, b̂−k

)
in momentum space. (1.7)
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1.3 Limiting Cases of the Bose-Hubbard Hamil-

tonian

1.3.1 Mott Insulating Phase

This limit corresponds to t
U
→ 0, and the Bose-Hubbard Hamiltonian reduces to;

Ĥon−site =
U

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i (1.8)

Hence, the ground state wavefunction is just the product state of single particles,

which can be represented as [17];

|ΨMI >=
Ld∏

i

(
b̂†i

)n
|0 > (1.9)

where n is the boson per site, L is lattice site, and d is the dimensionality.

(1.8) is minimized for integer values of n0 =
1
2
+ µ

U
. As we have a commensurate

fillings for a finite range of the chemical potential, we can say that the ground

state, in this case, is incompressible, where compressibility is defined as κ = ∂ρ

∂µ

with ρ is the boson density [17].

As we consider the particle correlations in the ground state, we can realize that

expectation value for such a correlation in momentum space, for practical reasons,

i.e. < b̂†q b̂q > is independent of the value q ; meaning, we have a delocalization in

momentum space as each momentum has the same weight; contrarily, we have

localization in real space.
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1.3.2 Superfluid Phase

This limit corresponds to t
U
→ ∞, and the Bose-Hubbard Hamiltonian reduces

to;

Ĥhopping = −t
∑

<i,j>

(
b̂†i b̂j + h.c.

)
(1.10)

Since, hopping term is diagonal in momentum space, we can further represent it

as;

Ĥhopping =
∑

ki

n̂kiǫ(ki) with ǫ(ki) = −2t cos (kixi) (1.11)

For such a Hamiltonian, we cannot use the same ground state wavefunction any-

more; however, we can define a new one as [18];

|ΨN >U=0 =
1√
N !

(
1√
L!

∑

−→x

b̂†−→x

)N

|0 > (1.12)

Since all particles would occupy the possible lowest energy, ground state of the

Hamiltonian would be at k = 0; meaning, particles are well localized in a single

state with a coherent phase [17] in momentum space; whereas, they are delocalized

in real space.

Observe that since the bosons, now, have coherent phase, particle number is

allowed to fluctuate, which breaks the U(1) symmetry as mentioned in Subsec-

tion.1.2. This broken-symmetry state is called superfluid state.
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1.4 Outline of the thesis

In this thesis, our goal is to analyse one dimensional Bose-Hubbard model by

using projected wavefunctions; i.e. namely Baeriswyl, and Gutzwiller-Baeriswyl,

via variational Monte Carlo calculations. We examine the observables in forms of

averages over configurations which we can apply MC techniques. Critical values

of the Mott lobes existing in the phase diagrams for the two different variational

wavefunctions, which we used in this thesis, are analysed and compared with each

other, and also with a reference value [19]. Besides, we calculated the superfluid

fraction with a new method [9,10] taking Drude weight as basis, apart from other

known methods [5, 6].

The thesis is organized as; in Chapter 2, some basic background and general

definitions which are deeply related to the Bose-Hubbard model are given, in

Chapter 3, both analytical and computational methods done so far are analysed

basically, in Chapter 4, the algorithm we developed is introduced, and finally in

the last chapter, results that we obtained from the projected wavefunctions are

presented and compared.
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Chapter 2

Background and General

Definitions

2.1 Bose-Einstein Condensation

Consider a many-body wavefunction which is symmetric under exchange of pairs

i and j; Ψ (~r1, ..., ~rN ) where N is the number of bosons. The single-particle density

matrix can be written as [20];

ρ1

(
~r, ~r′

)
≡ N

∑

i

pi

∫
d~r2...d ~rNΨ

∗
i (~r, ~r2, ..., ~rN )Ψi(~r

′ , ~r2, ..., ~rN )

≡ < Ψ̂† (~r) Ψ̂(~r′) >

(2.1)

where pi is the probability of state i. Density matrix can be further expanded to

include spin and time as well.

Since ρ1 matrix is hermitian, i.e. ρ1(~r, ~r
′) ≡ ρ∗1(

~r′ , ~r), we can diagonalise it in

such a form [20];
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ρ1

(
~r, ~r′

)
=
∑

i

niχ
∗
i (~r)χi(~r

′) (2.2)

where χi(~r) forms an orthonormal set, and nis are being the eigenvalues of this

set.

Based on (2.2), we can give a formal definition of BEC as [20];

1. BEC does not occur if all the eigenvalues of (2.2) are of the order unity.

2. Simple BEC occurs if exactly one eigenvalue of (2.2) is of the order N and

the rest of the eigenvalues are of the order unity.

3. Fragmented BEC occurs if two or more eigenvalues are of the order N and

the rest of the eigenvalues are of the order unity.

BEC can be checked depending on the choice of the order parameter defining the

condensate. Hence, I include the two different approaches to check the conden-

sate.

First criterion for the BEC with an associated order parameter is based on using

the boson field operators. The order parameter for this approach can be written

as [20];

ψ (~r) ≡< ψ̂ (~r) > (2.3)
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where ψ̂ (~r) is the boson field operator satisfying the commutation relations ∀~r, ~r′;

[
ψ̂ (~r) , ψ̂

(
~r′
)]

=
[
ψ̂† (~r) , ψ̂†

(
~r′
)]

= 0

(2.4)

[
ψ̂ (~r) , ψ̂†

(
~r′
)]

= δ
(
~r − ~r′

)
(2.5)

Note that the order parameter, i.e. ψ̂ (~r) can be expanded to include time as well.

In order for BEC to occur, in the limit
∣∣∣~r − ~r′

∣∣∣→ ∞, right hand side of the (2.2)

must have a value different than zero [20].

Second criterion for the BEC with an associated order parameter, on the other

hand, based on including density and phase terms. The order parameter for this

approach can be written as [20];

ψ (~r) ≡
√
N0χ0 (~r) (2.6)

Obeying the normalization condition;

∫
d~r|ψ (~r) |2 = N0 (2.7)

where χ0 (~r) is a single-particle wavefunction which is orthonormal and can be

defined as [20];

χ0 (~r) ≡ |χ0 (~r) |eiϕ(~r) (2.8)

where ϕ (~r) is the phase of the condensate, i.e. χ0 (~r), wavefunction.

9



To check the BEC in this approach, one can use the single-particle density matrix

in the limit |~r − ~r′| → ∞ [20];

lim
|~r−~r′|→∞

ρ1

(
~r, ~r′

)
= f ∗ (~r) f

(
~r′
)
+ ρ̃1

(
~r, ~r′

)
(2.9)

In the limit |~r − ~r′| → ∞, ρ̃1

(
~r, ~r′

)
→ ∞ and f (~r) goes to a non-zero value if

the condensate occurs [20].

2.2 Superfluid Phase

In 1938, two different groups (Kapitsa in Moscow, and Allen Misener in Cam-

bridge) simultaneously realized a peculiar behaviour of 4He below the λ-point,

i.e. ≃ 2.17K. They observed that the liquid flowed easily without friction through

a narrow channel between two bulk reservoirs [20, 21]. This behavior was later

labeled as superfluid by Kapitsa.

The more clear and modern definition of superfluidity, on the other hand, can

be understood via observing two conceptually different cases, which can also be

called as generalized BEC [20]. These two cases are considered on a multiply

connected geometry, e.g. annular region between two concentric cylinders, unlike

the narrow channel between two bulk reservoirs.

Due to the fact that superfluid velocity is not a directly measurable quantity, it

is suitable to define another quantity in which one can track the existence or the

absence of superfluid phase, i.e. current density [20];

~J (~r) = ρs (~r)~vs (~r) + ρn (~r)~vn (~r) (2.10)

where ρn is normal fluid density, whereas ρs superfluid density, and ~vn is normal

fluid velocity, whereas ~vs superfluid velocity.
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This is actually called the two fluid model, and it can be explained with hydro-

dynamic equations

Two give a full picture of the phenomena, one needs to define another condition

in which phase of the condensate wavefunction is also included. For the spinless

case ( it can be written for the spinfull case as well) candensate wavefunction can

be written as [20];

χ0 (~r, t) ≡ |χ0 (~r, t) |eiϕ(~r,t) (2.11)

Hence, the current carried by condensate;

~J (~r, t) ≡ N0|χ0 (~r, t) |2
h̄

m
~∇ϕ (~r, t) (2.12)

where N0 is number of particles in the condensate.

Note that the ratio J(~r,t)
ρ(~r,t)

has the dimensions of velocity which is defined as su-

perfluid velocity [20];

~vs (~r, t) ≡
h̄

m
~∇ϕ (~r, t) (2.13)

With the condition that χ0 (~r, t) has a non-zero value, ~vs satisfies [20];

11



1. Irrotationality:

~∇× ~vs (~r, t) = 0 (2.14)

2. Onsager-Feynman quantization:
∮

C

d~l·~vs (~r, t) =
nh

m
(2.15)

where n is an integer and also called winding number.

Hence, the more clear definition for superfluid phase, accepting the multiply

connected geometry, now, can be explained with two cases as mentioned [20];

1. Hess-Fairbank Effect:

While an annulus is being rotated with an angular velocity ω, cool the

system down to the λ-point, and wait for the system to reach thermal equi-

librium. Since the temperature is above the λ-point, Helium will behave like

a normal liquid. Hence, the current density will be ∝ ρ~vn with ~vn = ~ω × ~r,

and the angular momentum is ~L = Iclassical~ω .

Now, cool the system down below the λ-point. One expects to see an-

other phase; i.e. He-II [20, 21], the superfluid phase. Due to the Onsager-

Feynman quantization condition, (2.15), we have discrete values for vs, i.e.

vs = nωcR, where n is the winding number defined in (2.15).

The value of n in which the system prefers can be determined by minimizing

the effective energy [20];

Ĥeff ≡ Ĥlab − ~ω · ~̂L (2.16)

where the annulus is stationary in lab frame, which is given by;

Ĥlab =
∑

i

(
p2i
2m

+ Vext (~ri)

)
+

1

2

∑

i,j

U (|~ri − ~rj|) (2.17)
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Minimization of Ĥeff gives an expression depending on the winding num-

ber [20];

ε = ρs (~r)R
2

(
1

2
n2ω2 − nωωc

)
(2.18)

This expression is further minimized with respect to n by choosing n as

integer values of the ratio ω
ωc
, i.e. n ≃ int

(
ω
ωc

)
[20]. Contribution of

superfluid and normal components to the total angular momentum can be

identified depending on which value that ω chooses, i.e. [20];

(a) For ω < ωc

2
; ~vs = 0 and the total angular momentum is reduced by a

factor ρn
ρ
≡ gn (T ) with L(T ) = gn (T ) Iclassicalω.

(b) For ω > ωc

2
; ~vs 6= 0 and the total angular momentum is reduced by

ρs
ρ
≡ gs (T ) with superfluid contribution to the above equation to the

angular momentum is L(T ) = gs (T ) Iclassicalnωc.

Hence, the total angular momentum is [20];

L(T ) = [gn (T )ω + gs (T )nωc] Iclassical (2.19)

with n ≡ int
(
ω
ωc

+ 1
2

)
.

2. Metastability of Supercurrents:

This time the annulus is being rotated with a much larger angular velocity

ω0 ≡ ω ≫ ωc [20]. Again, cool the system down to the λ-point. vs, by

the Onsager-Feynman constraint, will take quantized values which are close

to int
(
ωc

ω

)
. However, the value of vs, due to ω0 ≫ ωc, should be so small

that any contribution made by the superfluid component will be small and

angular momentum would be only L(T ) ≃ Iclassicalω0.

If we further cool the system down below the λ-point, and stop the rotation

of the annulus, vn = 0, but superfluid component persist for a while, then,

n ≡ int
(
ω0

ωc
+ 1

2

)
and, hence, the angular momentum is [20];
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L(T ) ≃ gs (T )ω0Iclassical. (2.20)

That is even though it is not the equilibrium one, system has a persistent

superfluid circulation which leads to metastable superflow.

In order to determine the superfluid fraction, one needs to consider the system

response to the boundary condition. It can, basically, be measured either by cal-

culating the free energy change in a periodic system which is based on winding

number calculation or by calculating the momentum-density correlation func-

tion [5].

1. Winding number Approach:

This approach is based on calculating the density matrix for the moving

walls, i.e. rest frame for the walls; ρv [5];

ρv = e−βĤ , Ĥ =
∑

i

(~pi −m~v)2

2m
+ V (2.21)

where V is the interaction potential.

Response of the fluid to the boundary motion can be written in terms of

the total momentum operator, ~P [5];

< ~P >v=
ρn
ρ
Nm~v =

Tr
{
~Pρv

}

Tr {ρv}
(2.22)

where ρn is the normal component of the fluid.

This equation can also be written with respect to the superfluid fraction [5];

ρs
ρ

=
∂ (Fv/N)

∂
(
1
2
mv2

) (2.23)
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where Fv is the free energy, and free energy change can be computed as [5];

△F v

N
=

1

2
mv2

ρs
ρ

+O
(
v4
)
. (2.24)

Note that by (2.21), the density matrix satisfies the Bloch equation, hence,

obey the periodic boundary condition requirement which brings a phase

factor in front of the density matrix coming from the path ending as [5];

ei
m
h̄
~v·~L.

This factor introduces the so called winding number, W [5];

N∑

j=1

(
~r′j − ~rj

)
= ~WL (2.25)

where ~rj is the initial point and ~r′j is the destination point.

Free energy change can be calculated by using the winding number [5];

e−β△Fv =

∫
d~rρ~v (~r, ~r; β)∫
d~rρ~v=0 (~r, ~r; β)

=< ei
m
h̄ (~v· ~WL) > (2.26)

By using the △Fv

N
expansion in (2.24), for small velocities, the above relation

can be written for a d-dimensional system as [5];

ρs
ρ

=
m

h̄2
< W 2 > L2−d

ρdβ
(2.27)
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2. Momentum-Density Correlation Function Approach:

This approach is based on the momentum response of the fluid to the bound-

ary motion. For a system having periodic boundary conditions, only the

normal component of the fluid responds, and hence, expanding (2.22) to

the first order in v gives [5];

ρn
ρ
Nm~v =< ~P >v= β < ~P ~P > ·~v (2.28)

In terms of momentum density, i.e. ~p(~r), (2.28) can be written as [5];

< ~p (~r) >v= β

∫

over all volume

d3r′~v· < ~p (~r) ~p
(
~r′
)
>v=0 (2.29)

In an isotropic liquid, the normal component of the fluid can be written in

terms of momentum density correlation function as [5];

ρn =
β

3m

∫
d3r < ~p (~r) · ~p (0) > (2.30)

3. Single-Particle Delocalization Approach:

Apart from previously used techniques, there is another way to detect the

existence of superfluid phase based on Drude weight.

This approach is based on the Drude weight expression which was basically

introduced to distinguish metals from insulators, and can be expressed in

the form [7,8];

Dc =
π

V

[
∂2E (φ)

∂φ2

]

φ=0

(2.31)

where E is the ground state energy and φ is the phase introduced as per-

turbation.
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Based on (2.31), a more general relation can be written for the second order

derivative of the ground state energy as [10];

[
∂2E (φ)

∂φ2

]

φ=0

= i

N∑

j=1

< Ψ|
[
∂kj , ∂xj

]
|Ψ >

− lim
△X,△K→0

1

△X△K [Im

{
ln

(
< Ψ|ei△KX̂ei△XK̂ |Ψ >

ei△XK̂

)}

+ Im

{
ln

(
< Ψ|ei△XK̂e−i△KX̂ |Ψ >

ei△XK̂

)}
]

(2.33)

where K̂ =
∑N

j=1 k̂i and X̂ =
∑N

j=1 x̂i, with k̂i and x̂i are single momentum

and position operators for each particle respectively.

In order to observe the existence of superfluid phase, (2.33) can be used

in terms of the sum over expectation values of single momenta, and after

taking the limit indicated, one can obtain [9, 10, 22, 23];

σ2
x = − 2

(△K)2
Re
{
ln
(
< Ψ|e−i△KX̂ |Ψ >

)}
(2.34)

If the wavefunction is an eigenstate of the one-body position shift operator,

i.e. e−i△KX̂ , then, this expression contributes to the superfluid weight with

a finite value [10, 24].
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Chapter 3

Bose Hubbard Methods

3.1 Analytical Approach

3.1.1 Mean-Field Theory

Within a correlated system, the motion of each individual particle depends on all

the others. To simplify such a system, a physical model is introduced in which

correlations between the particles are not entirely included, but, instead, they

are included on average. Hence, the effect of the other particles is introduced as

mean-field, and the model can be treated as a single particle model.

Mean-field Hamiltonian, i.e. ĤMF , for the Bose-Hubbard model can be intro-

duced as [15];

ĤMF =
∑

i

(
−ψ∗

B b̂i − ψB b̂
†
i

)
+
U

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i (3.1)

where ψB is a variational operator. b̂†i , b̂i are boson creation and annihilation

operators respectively. n̂i = b̂†i b̂i is the number operator which gives the number

of particles on site i. U is the on-site interaction potential and µ is the chemical
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potential.

The variational operators in (3.1) represent the neighboring effects, and they

break the U(1) symmetry; hence, phase due to the broken-symmetry is introduced

as superfluid phase [15].

In order to approximate the ground state energy of the BHM, a suitable ground

state wavefunction must be introduced with an optimum value for the variational

operator which minimizes the ground state energy.

Since we can consider the model as a single particle problem, a suitable ground

state wavefunction is simply the product of single-site wavefunctions, and hence

the ground state energy is [15];

E0

L
=
EMF (ψB)

L
− zJ < b̂† >< b̂ > + < b̂ > ψ∗

B+ < b̂† > ψB (3.2)

where z is the coordination number, and L is the lattice site, with an optimum

value ψB = zJ < b̂ > [15].

Basically, three limits can be applied to the Hamiltonian;

1. J=0 (ψB=0):

For this case, since the variational operator is excluded, sites become decou-

pled which gives exact result for the MFT [15]. The Hamiltonian contains

only the number operator, thus, the problem is reduced to find only these

boson occupation numbers which minimizes the Hamiltonian.

Since n̂ is a good quantum number, ground state wavefunction can be rep-

resented by these occupation numbers |mi = n0

(
µ

U

)
> where n0 is [15];
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n0

( µ
U

)
=





0, µ

U
< 0

1, 0 < µ

U
< 1

...

n, n− 1 < µ

U
< n

(3.3)

2. J6= 0 but small:

For this case, since perturbation commutes with the Hamiltonian, system

will evolve having exactly the same eigenvalues with the adiabatic increase

of J. Hence, the exact result would be [15];

< b̂†i b̂i >= n0

( µ
U

)
(3.4)

This result is responsible for the island existing in the phase diagram which

are called asMott insulators [15]. This phase is incompressible with ∂<N>
∂µ

=

0.

3. J6= 0 (ψB 6=0):

For this case, ground state is delocalized over the lattice. Hence, one cannot

use the same ground stated as indicated in (3.3), but, instead, can use [18];

|ΨN >U=0 =
1√
N !


 1√

L!

∑

−→
R

â†−→
R



N

|0 > (3.5)

Since the particle density does not take quantized values, it can change with

µ, i.e. ∂<N>
∂µ

6= 0 which defines compressibility [15].

To determine the phase boundaries; as the variational operator, ψ is increased

continuously, numerical analysis shows that the Mott insulator phase is a sec-

ond order phase transition which can be explained using Landau theory [15].

Expansion of the ground state energy with respect to ψ gives [15];
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E0 = E00 + r|ψ|2 +O
(
|ψ|4

)∗
(3.6)

where the coefficient r can be found by using the second order perturbation the-

ory [15];

r = Γ0 (1− zJΓ0) (3.7)

where Γ0 is

Γ0 =

(
n0

(
µ

U

)
+ 1

Un0

(
µ

U

)
− µ

+
n0

(
µ

U

)

µ− U
(
n0

(
µ

U

)
− 1
)
)

(3.8)

For r=0, phase boundary is found.

3.1.2 Perturbative Methods

The perturbative method is another way to treat the Bose-Hubbard Hamilto-

nian. With this method, one can use either strong or weak coupling approaches.

In this thesis, strong coupling approach is covered based on the calculations of

Freericks [25].

For the strong coupling limit, kinetic energy vanishes and each site has a fixed

number of bosons; n0.

For such a system, let the chemical potential to be parametrized as [25]; µ =

(n0 + δ)U where n0 is ground state boson occupancy, and δ is the deviation from

integer filling.

The phase boundary between the Mott insulator and superfluid phases can be
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determined by calculating the energy of the Mott insulator phase and the de-

fect phase, which occurs due to adding hole (δ > 0) or particle (δ < 0) to the

system [25], and then, treating the kinetic energy term perturbatively.

Based on the two cases for the defect phase, i.e. δ > 0 and δ < 0, one needs

to calculate three different relations: EMI , Eδ>0
defect, Eδ<0

defect to determine the

phase boundary.

Relevant wavefunctions which are to the zeroth order in t
U

for calculating the

energy relations are given as [25];

1. Wavefunction which belongs to the Mott insulator phase:

|ΨMott (n0) >
(0)=

N∏

i=1

1√
n0!

(
b̂†i

)n0

|0 > (3.9)

2. Wavefunction which belongs to the particle for defect phase:

|ΨDef (n0) >
(0)
(δ<0)=

1√
n0 + 1

∑

i

fib̂
†
i |ΨMott (n0) >

(0) (3.10)

3. Wavefunction which belongs to the particle for defect insulator phase:

|ΨDef (n0) >
(0)
(δ>0)=

1√
n0

∑

i

fib̂i|ΨMott (n0) >
(0) (3.11)

where N is the number of sites in lattice, fi is the eigenstate of the hopping matrix

tij with the lowest eigenvalue.

Energy differences to the third order in U
t
between the Mott insulator and defect

phases are given as [25];
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1. For an extra particle:

E
(δ<0)
Def (n0)− EMott (n0) = −δ(particle)U − zt (n0 + 1)

+
zt2

U

n0(5n0 + 4)

2
− z2t2

U
n0 (n0 + 1)

+
t3

U2
n0 (n0 + 1) [

(
−2z3 +

25

4
z2 − 4z

)
n0

+

(
−z3 + 7

2
z2 − 2z

)
]

(3.12)

2. For an extra hole:

E
(δ>0)
Def (n0)− EMott (n0) = δ(hole)U − ztn0

+
zt2

U

(n0 + 1)(5n0 + 1)

2
− z2t2

U
n0 (n0 + 1)

+
t3

U2
n0 (n0 + 1) [

(
−2z3 +

25

4
z2 − 4z

)
n0

+

(
−z3 + 11

4
z2 − 2z

)
]

(3.13)

where

EMott (n0) = N

[
−δUn0 −

1

2
Un0 (n0 + 1)− zt2

U
n0 (n0 + 1)

]
(3.14)

Phase boundary between the Mott insulator phase and the superfluid phase can

be found by setting the energy difference to zero where these two branches meet

at [25]; δ(particle) (n0) + 1 = δ(hole) (n0).

Hence, upper and lower boundaries of the Mott insulator lobe in one dimension

are given as [25];
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1. Upper boundary:

δ(particle)
(
n0,

t

U

)
= −2 (n0 + 1)

(
t

U

)
+ n2

0

(
t

U

)2

+ n0 (n0 + 1) (n0 + 2)

(
t

U

)3

(3.15)

2. Lower boundary:

δ(hole)
(
n0,

t

U

)
= 2n0

(
t

U

)
− (n0 + 1)2

(
t

U

)2

+ n0 (n0 + 1) (n0 − 1)

(
t

U

)3

(3.16)

A similar approach can be done for weak coupling limit.

3.2 Computational Approach

Dealing with the physics of many-body systems consisting of a large number of

interacting particles is in general difficult. Finding an exact solution for such

systems as the dimensionality and the total particle number increases becomes

impossible. Therefore, a suitable computational approach to such systems is

necessary.

In this section, most common computational approaches to the many-body sys-

tems are discussed.

3.2.1 Exact Diagonalisation Method

In order to find the eigenvalues of a n-dimensional many-body Hamiltonian one

needs to solve a characteristic polynomial with degree n in which finding an exact

solution is not possible for n>4 [26].
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To be more quantitative, for Hubbard model, in general, with N particles there

are 4N states. This brings a limitation on the lattice site as it costs computer

time and memory. For instance for the ultra-cold atom systems L ∼= 22− 25, for

square lattice at half-filling it is L ∼= 20, and for the triangular lattice L ∼= 21 [27].

Thus the exponential growth of the matrix Ĥ even with small lattice sites makes

it hard to calculate the eigenvalues with the usual diagonalisation methods. One

suggestion to this problem is that by using the symmetries of the model, one can

find a unitary transformation which has the same characteristic polynomial, i.e.

Ĥ → U †ĤU , and find its eigenvalues instead.

It is necessary to construct the U matrix in an iterative way until the matrix Ĥ

becomes diagonal, i.e. Ĥ → U †
1ĤU1 → U †

2U
†
1ĤU1U2 → ... In order to diagonalise

the Hamiltonian Lanczos type algorithms can be used. To do this, one should

choose a convenient basis function first and then recursively produce new states

until the ground state energy is converged.

As for the low temperature systems, the most relevant eigenstates are either the

ground state or the lowest lying excited states. Thus, the initial random choice

of state can be chosen with a finite overlap with the ground state. That is [28]

|ψm+1 >= Ĥ|ψm > −αm|ψm > −β2
m|ψm−1 > (3.17)

with coefficients;

αm =
< ψm|Ĥ|ψm >

< ψm|ψm >
β2
m =

< ψm|ψm >

< ψm−1|ψm−1 >
(3.18)

Then, as a final step, diagonalise the obtained sparse matrix.

With the exact diagonalisation method, one can calculate static quantities like

correlation functions or dynamical quantities like density of states.
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3.2.2 Quantum Monte Carlo Method

Dealing with quantum systems is more difficult than dealing with the classical

systems because in the former case one does not know the exact distribution

which is to be sampled however one knows the exact Hamiltonian to be solved.

QMC methods are generally based on a random walk process. Simulation starts

with a random but reasonable configuration of the system. Then, probability

of each configuration is calculated based on Metropolis algorithm, which will be

covered in Chapter-4 in detail. With the help of this algorithm, one extracts the

’good’ probabilities, i.e. accepted ones which lead convergent expectation values,

and is able to calculate the mean values for the physical system.

Except for the projection method algorithm, which will be covered in Chapter-4

in detail, the most common algorithms which constitute the basis of QMC simu-

lations are ’Discrete-time world-line algorithm’ and ’Stochastic series expansion

algorithm’.

3.2.2.1 Discrete-Time World-Line Algorithm

This algorithm is based on the path integral formulation of the partition function

in imaginary time. The aim is to compute the physical observables either in the

canonical ensemble or in the grand canonical ensemble.

The core idea is to use the Suzuki-Trotter decomposition. For the case of a 1

dimensional system, when only nearest neighboring site coupling is allowed, i.e.[
Ĥi,i+1, Ĥj,j+1

]
= 0 where j > i+1. Thus, one can split Ĥ into even and odd

terms like Ĥ = Ĥeven + Ĥodd and expand the partition function as [29, 30];
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Z ≃ Tr

{
L∏

n=1

e−∆τĤevene−∆τĤodd

}

=
∑

n1,...,n2L

< n1|exp
(
−∆τĤeven

)
|n2L >< n2L|exp

(
−∆τĤodd

)
|n2L−1 >

... < n3|exp
(
−∆τĤeven

)
|n2 >< n2|exp

(
−∆τĤodd

)
|n1 >

(3.19)

where L is the lattice site, ∆τ = β

L
is the imaginary time, and {|ni >} is the

complete basis set for each imaginary time interval.

This decomposition leads to a checkerboard picture of space-time to track the

movements of particles along the world-lines which are moved via local up-

dates [31]. However, the Suzuki-Trotter decomposition brings an error term on

the order O(∆τ 2). In order to overcome this error, one needs to introduce the

continuous time limit, i.e. ∆τ → 0, [32, 33];

Z = Tr
{
e−βĤ

}

= Tr
{
e−βĤDe−

∫ β

0 dτĤOD(τ)
}

= Tr

{
e−βĤD

(
1−

∫ β

0

dτĤOD (τ) +
1

2

∫ β

0

dτ1

∫ β

τ1

dτ2ĤOD (τ1) ĤOD (τ2) + ...

)}

(3.20)

where D stands for diagonal and OD stands for off-diagonal with β = 1
kBT

.

Note that in the interaction representation, one can write the time-dependent

off-diagonal Hamiltonian as ĤOD (τ) = eτĤDĤODe
−τĤD .

However, still, such local updates on the checkerboard picture do not change the

global properties like number of world lines as a cost of using canonical ensemble.

In order to use grand canonical ensemble, global updates must be introduced with

the so called loop algorithm [34] and its continuous time limit version [35].
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3.2.2.2 Stochastic Series Expansion

This algorithm is based on power-series expansion of the partition function [36];

Z = Tr
{
e−βĤ

}

=
∞∑

n=0

βn

n!
Tr
(
−Ĥ

)n

=
∞∑

n=0

βn

n!

∑

{m1,...,mn}

∑

{b1,...,bn}

< m1| − Ĥb1|m2 >< m2| − Ĥb2|m3 > ... < mn| − Ĥbn|m1 >

(3.21)

where b is the bond index. Note that one can obtain (3.5) by setting ĤD = 0

and ĤOD = Ĥ in (3.4).

As it is seen from (3.4) and (3.5) that in world-line algorithm only the off-diagonal

is treated as perturbation series whereas in stochastic series expansion whole

Hamiltonian is treated as perturbation series. In practice SSE is preferred because

in continuous world-line algorithms, one has to deal with the high-precision values

of the imaginary time [37].

3.2.3 Density Matrix Renormalization Group Method

DMRG, which was developed by S. R. White [38,39], is based on an iterative and

also a variational method in which only the most significant states are considered.

The aim is to divide the system into blocks and treat every block separately.

While doing this, the interactions among the blocks must also be considered.

Starting point for DMRG is the block renormalization which follows the steps

basically [40];

Let n ≡ number of states in a block.
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1. Create an initial block-A, i.e. ĤA with length l acting on an n-dimensional

Hilbert space.

2. Then, create a compound block-AA, i.e. ĤAA with length 2l. The com-

pound block Hamiltonian consists of two block Hamiltonians which has

dimensionality = n2.

3. Diagonalise ĤAA and find the n lowest-lying eigenvectors.

4. Project ĤAA on the truncated space which is spanned by n lowest-lying

eigenvectors, i.e. ĤAA → Ĥ
′

AA

5. Start from 2l → l and Ĥ
′

AA → ĤA. Till the lattice site is reached.

In this method, blocks are considered as independent systems and each block has

its own boundary condition. When these blocks are combined same boundary

conditions for each block cannot be applied this time as it will not give the true

ground state [41]. Thus, instead of just calculating the ground state of the block

itself, one should consider the ground state of the compound system and the

environment, i.e. super-block, and after finding the ground state of the super-

block, found state is mapped on the block and the block space is truncated with

the following formulation [41];

Compound system state can be written as;

|Ψ >=
∑

i,j

λij|αi > ⊗|βj > (3.22)

where |αi > is a state in block space and |βj > is a state in environment space.

As a next step, environment is traced out and the density matrix for the block

only is calculated;

< α
′

i|ρBlock|αi >=
∑

j

λ∗ijλi′j (3.23)
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Note that the density matrix, i.e. ρBlock, must be;

1. Self-adjoint: ρ† = ρ,

2. Semi-positive definite: ρ ≥ 0,

3. Tracing out to unity: Tr {ρ} = 1.

The goal is to find the states which have highest eigenvalues so that the ground

state of the super-block is described properly.

Clear definition of steps can be summarized as;

Define m ≡ number of states in a block and n ≡ number of states on a site.

1. Introduce left and right Hamiltonians; i.e. ĤL and ĤR acting on an m-

dimensional Hilbert space.

2. Introduce the interactions as left-center and right-center; i.e. ĤLC and ĤRC .

3. Then, introduce the super-block Hamiltonian; ĤSB which is consist of ĤL,

ĤR, ĤLC , and ĤRC with dimensionality = m2n2.

4. Diagonalise ĤSB and find the ground state.

5. Calculate ρBlock for left and also for right part.

6. Calculate the m-eigenvectors having the highest eigenvalues for left and also

for right part.

7. Map left part Hamiltonian; i.e. ĤL, ĤLC . on m-dimensional truncated

space spanned by the eigenstates which are found in step-6, and do it for

the right part of Hamiltonian as well.

There are two types of DMRG; one being the infinite-size DMRG and the other

is finite-size DMRG. For further details one can check [41].
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DMRG is one of the good and powerful technique for one dimensional problems

as the method is based on a low-entanglement approximation. Thus, it is usually

preferred to obtain exact solutions in one dimensional.
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Chapter 4

Algorithm

4.1 Variational Monte Carlo Method

Quantum Monte Carlo methods allow to calculate expectation values with the

help of stochastic sampling by using the so called Metropolis algorithm [42]. This

algorithm generates Markov chains, i.e. random walks, over a configuration space.

Each configuration is sampled based on a stationary probability distribution.

VMC, on the other hand, is one of the QMC methods in which Metropolis al-

gorithm is directly used to describe the ground state properties of the system

stochastically based on a suitable trial wavefunction.

As a historical side note, VMC method was first applied to a bosonic many-body

system to observe the ground state properties of the 4He [43], and, it was applied

to the Hubbard model [44] by introducing the celebrated Gutzwiller wavefunction,

and the final basic contribution is done by using the square of an anti-symmetric

wavefunction to sample the configuration space as an equivalent approach for

fermionic many-body problems rather than bosonic ones [45, 46].
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4.1.1 Metropolis-Hastings Algorithm

The basic idea of this algorithm is to sample over the configuration space based

on acceptance or rejection criteria but keep only the good samples. Applying this

idea to the VMC leads to an algorithm based on the following steps;

1. Choose a set of coordinates in the Markov chain; {xi}j randomly (or from

the obtained set from previous configuration).

2. Then, suggest a move with a trial set of coordinates;
{
x

′

i

}j
. The probability

of accepting the move is

P = min


1,

∣∣∣∣∣
ψ
{
x

′

i

}j

ψ {xi}j

∣∣∣∣∣

2

 (4.1)

where ψ {xi}j is the variational wavefunction of the system with a configu-

ration {xi}j.

3. Generate a random number r st. 0 < r ≤ 1.

4. If

∣∣∣∣∣
ψ
{

x
′

i

}j

ψ{xi}
j

∣∣∣∣∣

2

≥ r, accept the move: {xi}j+1 =
{
x

′

i

}j
.

Else, reject the move: {xi}j+1 = {xi}j.

5. Then, suggest a new move (step-2) and repeat the process.

Based on the central limit theorem, for large enough samplings, average quantities

calculated with the Metropolis algorithm give reliable estimates of the expectation

values.
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4.2 Adaptation of the VMC Method to the

Bose-Hubbard Model

The following derivations can be applied to any dimension; however, in this thesis

results are obtained for a one dimensional system only.

We adapated VMC to the BHM with two different variational wavefunctions,

namely; the Baeriswyl and Gutzwiller-Baeriswyl variational wavefunctions.

4.2.1 Baeriswyl Projection

Baeriswyl variational wavefunction is defined as;

|ΨB >= e−αT̂ |ψU=∞ > (4.2)

where α is the variational parameter and T̂ = −t∑<i,j>

(
b̂†i b̂j + h.c.

)
with t as

the hopping parameter between nearest neighbouring sites; < i, j > on real space.

The operator T̂ can be also represented on momentum space as; T̂ =

−t∑L

k=0 2 cos
(
2π
L
k
)
with L being the lattice size.

The term e−αT̂ is called the Baeriswyl projection operator and we projected it on

U = ∞ state, i.e. over a localized state [47].

4.2.2 Gutzwiller-Baeriswyl Projection

The Gutzwiller-Baeriswyl variational wavefunction is defined as;

|ΨGB >= e−γN̂e−αT̂ |ψU=∞ > (4.3)
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where γ is the second variational parameter, and N̂ =
∑L

i=0 ni (ni − 1) with

ni = b̂†i b̂i on real space.

The term e−γN̂ is called the Gutzwiller projection operator for a bosonic sys-

tem [48].

This wavefunction is similar to the one which Otsuka suggested for fermionic

systems [49];

|ΨGB >= e−αT̂ e−γN̂ |φ > (4.4)

where in this case φ is the non-interacting Fermi sea.

Note that e−γ = 0 corresponds to the insulating state for fermions [50].

4.2.3 Calculation of The Observables

In order to calculate the observables, we introduce three different coordinates as

left, i.e. xL, center , i.e. xC , right , i.e. xR, for each single particle.

These coordinates form a complete set, i.e.

L∑

i=0

|xL >< xL| = 1 (4.5)

where L is the lattice site, and same condition also applies for center and right

coordinates.

As expectation value, in the most general form, can be written as;

< Â >=
< Ψtr|Â|Ψtr >

< Ψtr|Ψtr >
(4.6)
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where Ψtr is variational wavefunction.

1. The expectation value for the Baeriswyl projection:

The operator Â is considered as diagonal in real space.

< Â > =

∑
L,C,R< Ψ∞|xL >< xL|e−αT̂ |xC >< xC |Â|xC >< xc|e−αT̂ |xR >< xR|Ψ∞ >

∑
L,C,R< Ψ∞|xL >< xL|e−αT̂ |xC >< xc|e−αT̂ |xR >< xR|Ψ∞ >

=

∑
L,C,R P (xL, xC , xR) Â (xC)∑

L,C,R P (xL, xC , xR)

(4.7)

where L, C, and R stands for left, center, and right coordinates.

The probability function for an accepted move in (4.7) can be written as;

P (xL, xC , xR) = Ψ∞ (xL)Ψ∞ (xR)K (|xL − xC |)K (|xC − xR|) (4.8)

where Ψ∞ (xL) =< Ψ∞|xL >, and the propagator K is defined as;

K
(
|x− x

′ |
)
=< x|e−αT̂ |x′

>=
L∏

i=1

< xi|e−αT̂
(1) |x′

i > (4.9)

with T̂ (1) being the single particle operator.

By using the fact that the operator T̂ (1) is diagonal in momentum space,

one can write propagator in this space as;

K
(
|x− x

′ |
)
=

L∏

i=1

L∑

k=1

1

L
e−αǫke

ik
(

x
′

i−xi

)

(4.10)

where ǫkn = −2t cos
(
2πn
L
x
)
with n=0,..,L-1.
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2. Expectation value for the Gutzwiller-Baeriswyl projection:

The operator Â is considered as diagonal in real space.

< Â > =

∑
L,C,RΨ∞(xL)K (|xL − xC |) e−γN̂(xC)Â(xC)e

−γ ˆN(xC)K (|xC − xR|)Ψ∞(xR)∑
L,C,RΨ∞(xL) < xL|e−αT̂ |xC >< xC |e−2γN̂ |xC >< xC |e−αT̂ |xR > Ψ∞(xR)

=

∑
L,C,R P̃ (xL, xC , xR) Â (xC)
∑

L,C,R P̃ (xL, xC , xR)

(4.11)

where P̃ (xL, xC , xR) = P (xL, xC , xR) e
−2γ ˆN(xC).

Note that dealing with expectation values introduces the products of exponential

operators which is similar to the Suzuki-Trotter decomposition of e−τĤ , where

Ĥ = T̂ + V̂ with kinetic and potential energies respectively, which is seen in

QMC simulations [46].

As a cost of using variational theory, one needs to minimize the energy relation

with respect to the variational parameter(s) so that we can obtain a configuration

which is close to the exact ground state, i.e. < Ĥ0 > ≤ < Ĥ0 >tr, where <

Ĥ0 > stands for the exact ground state and < Ĥ0 >tr stands for the approximated

ground state with a suitable variational wavefunction.

4.2.3.1 Calculation of Kinetic Energy, Potential Energy and Super-

fluid Density

In this section, calculations of energies and superfluid density are demonstrated

only for the Baeriswyl projection. For the Gutzwiller-Baeriswyl projection, sim-

ilar calculations can be done on potential energy and superfluid density. Kinetic

energy relation with the Gutzwiller-Baeriswyl projection, on the other hand, is

different with Gutzwiller factor which will be demonstrated later.
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1. Potential Energy Calculation:

On-site term of the Bose-Hubbard Hamiltonian is V̂ = U
2

∑L
i=1 n̂i (n̂i − 1).

Note that potential energy is already diagonal in real space; hence,

V̂ =
U

2

∑
L,C,R P (xL, xC , xR) n̂i (xC) [n̂i (xC)− 1]

∑
L,C,R P (xL, xC , xR)

(4.12)

2. Superfluid Density Calculation:

Based on the last idea used in Section-2, we can calculate the superfluid

fraction. We need to calculate the square root of the single particle spread

function, which is also called single particle delocalization [51]. Spread func-

tion is

< σ̂2 >=
−2

(∆K)2
Re
{
ln < e−i∆KX̂ >

}
(4.13)

where ∆K = 2π
L

is a shift in momentum, and X̂ represents one-body posi-

tion shift operator.

Re-express the momentum shift operator for a more computationally ori-

ented way with the Euler’s formula gives

< ei∆KX̂ >=< cos
(
∆KX̂

)
> +i < sin

(
∆KX̂

)
>=< Ceiϕ > (4.14)

where C is the magnitude and φ is the argument of the spread function.

Hence,

< σ̂2 >=
1

(∆K)2
ln
[
< cos

(
∆KX̂

)
>2 + < sin

(
∆KX̂

)
>2
]

(4.15)

with X̂ =
∑L

i=1 xi (xC).
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Hence the single particle delocalization that contributes to the superfluid

weight is

σ

L
=

√
< σ̂2 > (4.16)

3. Kinetic Energy Calculation For Baeriswyl Projection:

We calculated the kinetic energy observable in two ways;

(a) By taking derivative with respect to the variational parameter, α;

< T̂ > = − ∂

∂ (2α)
ln < Ψ∞|e−2αT̂ |Ψ∞ >

= −1

2

1∑
L,C,R P (xL, xC , xR)

{
∑

L,C,R

P (xL, xC , xR) ...

...

[
1

K (|xL − xC |)
∂

∂α
K (|xL − xC |) +

1

K (|xC − xR|)
∂

∂α
K (|xC − xR|)

]
}

(4.18)

(b) By implementing the kinetic energy term directly;

Define:

∑

<i,j>

b̂†i b̂i ≡
∑

C,C
′

|x′

C >< xC | (4.19)

Then, substitute (4.18) with its hermitian conjugate to (4.7); hence,

< T̂ >=

∑
L,C,C

′
,R P (xL, xC , xR)

[
K(|xL−xC′ |)
K(|xL−xC |)

+
K(|x

C
′−xR|)

K(|xC−xR|)

]

∑
L,C,R P (xL, xC , xR)

(4.20)
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4. Kinetic Energy Calculation For Gutzwiller-Baeriswyl Projection:

For this case, we cannot use the first approach showed in (4.2.3.1.3.a);

because for different site indices, i.e. i 6= j, the operators T̂ and N̂ do

not commute, i.e.
[
T̂ , N̂

]
6= 0. Hence, we need to use the kinetic energy

formulation explained in (4.2.3.1.3.b) by adding the Gutzwiller correction.

Substitute (4.18) into (4.11), and note that the operator N̂ is diagonal in

real space;

< T̂ >=

∑
L,C,C

′
,R P̃ (xL, xC , xR)

[
K(|xL−xC′ |)
K(|xL−xC |)

+
K(|x

C
′−xR|)

K(|xC−xR|)

]
e
−γN̂(x

C
′ )

e−γN̂(xC)

∑
L,C,R P̃ (xL, xC , xR)

(4.21)
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Chapter 5

Data Analysis and Conclusion

In this chapter, results of the VMC techniques applied to the one dimen-

sional Bose-Hubbard model with projected wavefunctions; namely, Baeriswyl and

Gutzwiller-Baeriswyl, are analysed.

As a requirement of the VMC approach, we need to propose a trial wavefunc-

tion in order to analyse the ground state properties of the Bose-Hubbard model.

Depending on the variational parameter attained to each trial wavefunction, one

obtains a set of ground state energies. Among them, the lowest energy state must

be chosen, which is described by the best trial wavefunction. In order to choose

such a wavefunction, one needs to optimise the energy as a function of the pa-

rameter(s); which can be done via methods; steepest descent, parallel tempering

Monte Carlo, energy variance minimization, or conjugate gradient.

In order to observe the ground state properties of the system with the projected

wavefunctions, we, first, minimise the energy considering the different choices

of the hopping parameter, t>0. Then, we introduce a hypothetical chemical

potential, since we are working on the canonical ensemble, as [4];

µ (N) = E (N + 1)− E (N) (5.1)
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Hence, we can and will study the ground state phase diagram of the Bose-Hubbard

model.

How we control the number of particles is implemented in the algorithm we

developed, which is imposed on the ψ∞, regardless of the hypothetical chemical

potential that we introduced.

To study the ground state phase diagram of the model, we introduced two differ-

ent variational wavefunctions. First, we analyse the system with the Baeriswyl

projected wavefunction, then, we re-analyse the system with a Gutzwiller correc-

tion imposed on the Baeriswyl projected wavefunction.

5.1 Baeriswyl Projection Results

Baeriswyl wavefunction, stated in (4.2), is projected onto a localized state and

is supposed to introduce hoppings between sites. These hoppings are controlled

with the parameter t, as well as α and U. We analysed a system having lattice

sites as L = 20 with particle number N = [1, 60] and then L = 40 with particle

number N = [1, 160]. Larger lattice site is considered only for the single particle

delocalization function, i.e. (4.15).

In order to observe how single particle level is delocalizing with the Baeriswyl

projection, one can check the propagator, i.e. (4.10), behavior as;
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Figure 5.1: Propagator vs lattice site for Baeriswyl projection.

Observe that as α gets large, single particle propagator starts to delocalize.

Before presenting the phase diagram for the Baeriswyl projection, we checked

indirectly that whether a quantum phase transition occurs before introducing

the hypothetical chemical potential, i.e. µ in (5.1). Below, one can see how the

total ground state energy of the Baeriswyl wavefunction changes with respect to

α when we scan over different choices of the hopping parameter for a system with

L = 40;
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Figure 5.2: ETOT vs α for Baeriswyl projection.

In Fig.5.2, even though α is just a variational parameter, it is an indication of the

order parameter because each α value defines a specific wavefunction, i.e. (4.2)

and (4.3), and thus, we would have an order parameter associated to that specific

α value. Based on this logic, we do not see any phase transition neither first nor

second order. We observe that a global minimum occurs and migrates for larger

values of t.

The phase diagram for the Baeriswyl projection with L = 40 lattice sites can be

seen in Fig.5.3.
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Figure 5.3: Phase diagram for Baeriswyl projection with L = 40.

In Fig.5.3, on the left hand side, we see that for a specific value of the hopping

parameter which is chosen arbitrarily how the phase diagram on the right hand

side occurs. Observe that for integer values of the boson density, we have a finite

range in µ which does not affect the boson density. This case corresponds to the

Mott insulating phase. Whereas, for non-integer values of the boson density, we

do not have a constant ratio of ρ which corresponds to the superfluid phase.

To see how system size affects the phase diagram, observe Fig.5.4 for a system

having L = 20 lattice sites;
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Figure 5.4: Phase diagram for Baeriswyl projection with L = 20.

See that the tip of the Mott insulating lobes are different depending on the system

size, which gives better results [19] for the larger system size.

5.2 Gutzwiller-Baeriswyl Projection Results

Gutzwiller-Baeriswyl wavefunction, stated in (4.3), is projected onto a local-

ized state and is supposed to introduce hoppings between sites as in the case

of Baeriswyl projection. For the Gutzwiller-Baeriswyl projection, we analysed a

system having lattice sites as L = 40 with particle number N = [1, 160]. Larger

lattice site is considered only for the single particle delocalization function, i.e.

(4.15).

Again, before presenting the phase diagram for the Gutzwiller-Baeriswyl projec-

tion, we checked indirectly that whether a quantum phase transition occurs before
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introducing the hypothetical chemical potential, i.e. µ in (5.1). Below, one can

see how the total ground state energy of the Gutzwiller-Baeriswyl wavefunction

changes with respect to α when we scan over different choices of the hopping

parameter for a system with L = 40;
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Figure 5.5: ETOT vs α for Gutzwiller-Baeriswyl projection with γ = 0.01.

In Fig.5.5, we again observe that a global minimum occurs and migrates for larger

values of α. Hence, we do not have any phase transition, neither first nor second

order as in the Baeriswyl results.

The phase diagram for the Gutzwiller-Baeriswyl projection with L = 40 lattice

sites can be seen in Fig.5.7.
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Figure 5.6: Phase diagram for Gutzwiller-Baeriswyl projection with L = 40.

In Fig.5.7, as in Fig.5.3, on the left hand side, we see that for a specific value

of the hopping parameter which is chosen arbitrarily how the phase diagram on

the right hand side occurs. Observe that for integer values of the boson density,

we have a finite range in µ which again does not affect the boson density. This

case corresponds to the Mott insulating phase. Whereas, for non-integer values

of the boson density, we do not have a constant ratio of ρ which corresponds to

the superfluid phase.

As a comparison between the two projectors that we applied to the Bose-Hubbard

model with same lattice sites, i.e. L = 40, see Fig.5.8;

48



Figure 5.7: Phase diagram comparison between Gutzwiller and Gutzwiller-

Baeriswyl projections with L = 40

The red one with dots belongs to the Baeriswyl results and the blue one with

solid lines belongs to the Gutzwiller-Baeriswyl results.

In the PRB paper of Freericks and Monien in 1995, they found the critical value

for the Mott lobe as t
U

= 0.215 ± 0.01 [19] by applying the QMC techniques.

Even though our results are far beyond what they found, the tips for the Mott

lobes are closer to their value for the Gutzwiller-Baeriswyl projection.

5.3 Conclusion

In this chapter, we analysed the results that we obtained from both the Baeriswyl

and Gutzwiller-Baeriswyl projections for the one dimensional Bose-Hubbard

model even though our method is applicable to any dimension.
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Figures 5.2 and 5.5, on the other hand, indicate that for a fixed number of par-

ticles, both in commensurate and incommensurate fillings, we do not have phase

transition. Hence, we need to introduce another on-site potential, i.e. µ, to

control the particle fluctuation and encourage phase transition.

The phase diagrams obtained for both projections give qualitatively good results

compared to the results of Freericks and Monien [19] and Scalettar et al. [4]; how-

ever, our results are quantitatively weak as the critical t value for the Baeriswyl

result is ∼ 0.45; whereas for the Gutzwiller-Baeriswyl it is ∼ 0.5. Although we

expect that the Gutzwiller correction to the Baeriswyl projection would improve

the critical t value for the tip of the Mott lobes, it gave no good contribution.

In order to fix this problem Monte Carlo steps might be increased or different

optimization methods, other than minimization of the energy as indicated at the

beginning of this chapter, can be done on the projected wavefunctions.

Regarding to the quantitative calculations, our results show that variational

Monte Carlo approach with Baeriswyl and Gutzwiller-Baeriswyl projections do

give rough results rather than exact. However, the chosen lattice size, which is

at most L = 40 for general expectation values might affect the results. As we

can observe from the phase diagrams of different lattice sizes, i.e. Fig.5.3 and

Fig.5.4, critical value of t changes, and as the lattice size gets bigger, it gives

more accurate results regarding to the result in [19].

Future work might include trying these projected wavefunctions with other Monte

Carlo methods; like diffusion Monte Carlo or path integral Monte Carlo, which

is more common, and see if it gives better results. Preferentially, if variational

Monte Carlo is going to be used as a method, one can check how dimensionality,

larger Monte Carlo steps, or larger system size affects the results compared to

the ones we obtained in this thesis.
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