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ABSTRACT 

FINAL PHASE INVENTORY MANAGEMENT OF SPARE PARTS UNDER 

NONHOMOGENEOUS POISSON DEMAND RATE 

 

Sertalp Bilal Çay 

M.S. in Industrial Engineering 

Supervisor: Prof. Nesim Erkip 

June 2013 

 

In product lifecycle, there are three phases, initial phase, normal phase and final phase. 

Final phase begins when the product is out of production, and ends when the last 

contract expires. It is generally the longest period in the lifecycle. Although the product 

is not manufactured any more, spare parts of the product need to be supplied to the 

market. Firms need to provide these parts at the retailer level until the end of the phase 

due to legal responsibilities. Because of lack of historical data and unavailability of 

forecasting, retailers need a systematic policy to decide replenishment quantity and time 

to prevent excessive holding, backordering, unit and setup costs. In our problem, we 

assume that demand of the spare part is a non-homogeneous Poisson process where the 

rate parameter is a non-increasing function of time. We consider all costs and lead time 

are fixed and known. Due to characteristics of the final phase, the planning horizon is 

taken as finite and known. 

In this study, we developed two alternative heuristics for retailerôs problem to minimize 

total cost during the final phase. First heuristic is a continuous-review policy based on 

estimation of future replenishments by solving series of deterministic demand sub-

problems. Second heuristic is a periodic-review policy with variable period lengths, 

which solves myopic problems, by selecting subsequent time points to check inventory 
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position. We also developed a simulation model to evaluate performances of the 

heuristics. 

This study provides an efficient way to decide on replenishment quantity and time. 

Limited numerical results show that heuristics provide near-optimal results for 

homogeneous cases studied in the literature. Moreover, this is one of the initial studies 

that considers final phase with non-homogeneous demand rate. In that sense, it makes a 

contribution to the literature of final phase problems and provides a systematic way of 

replenishment decisions for the retailers. 

Keywords: Inventory Control, Final Phase, Spare Part 
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ÖZET 

HOMOJEN OLMAYAN POISSON TALEP DAĴILIMLI YEDEK PAR¢ALARIN 

SON AķAMADA ENVANTER Y¥NETĶMĶ 

 

Sertalp Bilal Çay 

End¿stri M¿hendisliĵi Y¿ksek Lisans 

Tez Yöneticisi: Prof. Dr. Nesim Erkip 

Haziran 2013 

 

Bir ¿r¿n¿n yaĸam dºng¿s¿ ¿­ aĸamadan oluĸmaktadēr; ilk aĸama, normal aĸama ve son 

aĸama. Son aĸama, ¿r¿n¿n ¿retimden kaldērēldēĵē anda baĸlayēp, son m¿ĸteri sºzleĸmesi 

bitene kadar devam eder. Genel olarak bu s¿re­ ¿r¿n¿n yaĸam döngüsündeki en uzun 

aĸamadēr. Bu aĸamada ¿r¿n ¿retilmemesine karĸēn yedek par­alarē saĵlanmaya devam 

edilmelidir. Bu yedek parçalar perakendeci seviyesinde, yasal zorunluluklar bitene kadar 

tutulmalēdēr. Talep ge­miĸi ve tahminin yapēlamamasēndan ºt¿r¿ doĵabilecek aĸērē 

bekletme, ēsmarlama, ¿r¿n ve sipariĸ maliyetlerini engellemek i­in perakendeciler 

sistematik bir yaklaĸēma ihtiya­ duymaktadēr. Bu problemde, talebin homojen olmayan 

Poisson daĵēlēmla geldiĵi ve talep kurunun artēĸ gºstermeyen zamana baĵlē bir fonksiyon 

olduĵu varsayēlmēĸtēr. Problemdeki t¿m maliyet parametrelerinin sabit ve bilindiĵi 

varsayēmē altēnda sēnērlē bir zaman aralēĵē i­in ­ºz¿m geliĸtirilmiĸtir. 

Bu ­alēĸmada, perakendecinin problemini ­ºzmek i­in iki adet sezgisel yaklaĸēm 

geliĸtirilmiĸtir. Ķlk yaklaĸēm bir s¿rekli envanter yºntemi olup, gelecek zamana ait 

talebin deĵerlendirmesine ve bir dizi deterministik probleminin ­ºz¿m¿ne 

dayanmaktadēr. Ķkinci yaklaĸēm bir aralēklē envanter yºntemi olup, aralēk uzunluĵu 

miyop olarak çözülen k¿­¿k problemlerin sonucuna gºre deĵiĸiklik gºstermektedir. 

Geliĸtirmil olduĵumuz bir sim¿lasyon aracēyla bu ­ºz¿mler test edilmiĸtir. 
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Bu ­alēĸma, perakendecinin sipariĸ zamanē ve b¿y¿kl¿ĵ¿ konusunda etkili bir ­ºz¿m 

ºnermektedir. Yapmēĸ olduĵumuz sēnērlē sayēdaki sayēsal sonu­lara gºre homojen talep 

daĵēlēmē i­in optimal ­ºz¿me yakēn sonu­lar vermektedir. Ayrēca bu ­alēĸma, son 

aĸamada homojen olmayan talep daĵēlēmēnē kullanan ilk ­alēĸmalardan biridir. Bu a­ēdan 

son aĸama problemleri literat¿r¿ne bir katkēda bulunup, perakendeciler i­in sistematik 

bir sipariĸ yºnetimi ºnermiĸtir. 

Anahtar Kelimeler : Enventer Kontrolü, Son Aĸama, Yedek Parça Yönetimi 
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Chapter 1  

Introduction 

 

In manufacturing and logistics, spare part management (SPM) is an important 

component to achieve desired service level at minimum cost. Besides their usage for 

repairing, spare parts can also be used to replace failed components, thus extending 

lifetime of the products. Decision in SPM includes different aspects from forecasting to 

inspection. Due to its large range of decisions, in industry more than 50% of the 

maintenance costs are due to spare parts. Moreover in some sectors more than half of the 

down times are due to unavailability of adequate spare parts [24]. In 2011 press release, 

Technology Services Industry Association (TSIA) stated that average value of spare 

parts inventory is 17% of total service revenue and spare parts are critical to delivering 

prompt quality service [29]. Obviously, SPM is a vital factor for success in 

manufacturing and business today. 
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Spare part management consists of different phases throughout the production process. 

In each phase, supply and demand structure changes and often these phases are studied 

separately. A major one of these life periods is called Final Phase, which is also known 

as End-of-life (EOL) phase in the spare part management literature. This phase starts 

when the product is out of production line and continues until last costumer contract or 

warranty expires. In this phase, although part is no longer manufactured, the service 

requirements still  continue, hence the spare parts should be supplied until the end. There 

are also some legal stipulates to firms to provide spare parts until last customer contract 

expires. Therefore, unavailability of sufficient spare parts inventory can lead some 

penalty costs which could be more than product value (due to replacement). On the other 

hand, excessive inventory can lead huge disposal costs at the end of the final phase. 

Final Phase is known to be the longest period in a product life-cycle in general [32]. For 

instance in European Union every goods need to have two-years of guarantee at 

minimum [9]. Moreover, based on Supply of Goods and Services Act 1982, spare parts 

for motor companies should be provided at least for 10 years [24]. These instances prove 

that inventory control of spare parts during final phase is a vital decision for enterprises. 

Spare parts can be stored in different levels in a multi-echelon inventory system. Based 

on the industry, parts may be needed to be available at retailer level to provide fast 

response and lower backordering cost. Especially if production of spare parts is costly 

for the company, they may want to produce spare parts in large batches, as in the case of 

serial production. Therefore, retailers need to order spare parts to keep their inventory at 

a reasonable level. 

As described above, this thesis focuses on retailer-level inventory management of spare 

parts during final phase. This problem is originally discussed through a forecasting-

based approach by Moore [19] in 1971, where they define all-time requirements of 

consumable spare parts for motor-car industry. In his thesis, Pourakbar [21] provides a 

comprehensive analysis on problem, discussing different approaches. 
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This study evaluates problem on retailerôs behalf. Therefore, our objective is minimizing 

total cost of the retailer in a decentralized system. The total cost is consisting of unit, 

setup, holding, and backorder costs. Since we study on a decentralized system, retailer 

need to decide own replenishment times and quantities, which are our decision variables. 

Since inventory management varies much based on product type, industry type and other 

conditions, we decided to focus on the following setting: 

¶ Time horizon is finite and known. This is a common setting in final phase studies 

because expiration of last contract is known beforehand. Time is considered as a 

continuous variable over planning horizon. 

¶ At the end of the planning horizon, all backordered demands should be satisfied 

with a single last order. This one is a part of legal requirements. 

On top of this setting, we made the following assumptions to work on a clearer problem: 

¶ Unit, setup, holding and backorder costs are constant and known at time zero. 

¶ Lead time is constant and known. 

¶ Unit demands are unit-sized.  

¶ Demand is a Non-Homogeneous Poisson Process with a non-increasing demand 

rate over time. 

In this study we proposed two heuristics from different perspectives to solve the 

retailersô inventory management problem. 

Following sections in this thesis as follows; in second chapter, problem definition and 

literature review about spare parts inventory management and final phase is given. In 
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third chapter, our proposed solution methodology is presented. Paper follows with 

computations in fourth chapter and conclusion in fifth chapter. 
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Chapter 2  

Problem Definition and Literature 

Review 

2.1. Problem Definition 

 

Spare part management consists of different echelon levels in general. Each level 

requires strategic, tactical and operational decisions. These decisions could be made 

either by a single decision maker or each level may have its own. In this thesis, we 

focused on a decentralized system with a focus on single retailer. Problem is based on 

retailerôs controlling spare part inventory in the final phase. As stated before, retailer is 

the only decision maker and so the purpose of this study is minimizing its total cost in a 

finite horizon. 
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In management of the spare part inventory, retailer faces with some challenges. One of 

the biggest challenges in this management is unavailability of data for forecasting the 

future demand. This is generally the case in the final phase. Since retailer has limited or 

inadequate data for forecasting and demand is unknown, retailer should estimate the 

future demand which makes inventory management much more difficult. On top of that, 

a certain customer service level may be desired for either cost minimization or customer 

satisfaction. Service level is especially vital in case of non-zero lead time. Little 

tardiness in replenishment decision time may lead unexpected high costs for the retailer. 

Yet another vital decision appears on replenishment quantity. Underestimation of the 

future demand leads smaller replenishment quantities which may increase the total 

number of the setups, thus total setup costs. On the other hand overestimation of the 

demand may lead higher holding costs and moreover, excess inventory could be 

available at the end of the final phase. 

In this thesis, we defined the retailerôs problem with the following assumptions; 

¶ Planning horizon is finite and known. This assumption is based on the fact that 

expiration of the last customer contract and legal responsibilities are known by 

the retailer. 

¶ Unit, setup, holding and backorder cost parameters are fixed and known. 

¶ Lead time for the supplier is fixed and known. Lead time is independent from 

replenishment quantity and time. Thus we assume supplier does not spend time 

for production; there is always adequate inventory at supplier level. 

¶ Demand is a Non-Homogeneous Poisson process with a time-dependent rate. 

This rate is assumed to be a non-increasing function of time. In some cases, we 

also assume that rate of the NHPP reaches zero at the end of the planning 

horizon. 

¶ Time is a continuous variable in the planning horizon. 
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¶ All demands are unit-sized. 

¶ Backordering is allowed. Demands are met whenever inventory is available. 

¶ If horizon ends with some backorders, a last order is given to meet all 

backordered demands. 

¶ There is no salvage cost at the end of the horizon. Therefore, if inventory 

position is positive at the end of the horizon, all items are disposed. 

In this thesis we focused on a retailerôs problem within a single echelon system and there 

is single type of product. Hence our objective is minimizing total cost of the retailer. 

Before going into details, we know that retailer has two different extreme solutions. First 

extreme solution is backordering all demand during final phase and meets all these 

orders at the end of horizon. Second extreme solution is placing a huge replenishment 

order at the beginning of the phase.  

Assume that retailer applies the first extreme solution and backorders all the demand 

during time horizon. Due to legal responsibilities, he needs to meet all these demands in 

a single order and he pays backordering (penalty) costs. If penalty cost is sufficiently 

small, this extreme solution could be the best choice for the retailer. Otherwise, 

systematic planning of the replenishments may balance the holding, setup and 

backordering costs.  

There are two decisions need to be taken by the retailer. First one of these decisions is 

ñWhen I need to place a replenishment order?ò Second question is ñHow much I need to 

order for each replenishment order?ò Correct answers to these two decisions are affected 

by total cost components: setup, unit, holding and backorder costs. Moreover, these 

questions needed to be answered throughout the horizon. So our policies should be 

capable of answering these questions at any time during the horizon. 
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Due to nature of the final phase, our planning horizon is the time between End of 

Production (EOP) and End of Service (EOS) where last customer contract expires. In 

this thesis, the problem starts just before EOP to start horizon with a sufficiently large 

inventory. Therefore both heuristics starts at First Installment (FI) point, which is lead 

time length before EOP. 

 

Figure 2.1 Planning horizon of the problem 

In order to find satisfying answers to retailerôs problem we developed two heuristics. 

These heuristics answers these questions in a systematic way for the retailer. We 

detailed these heuristics in the Chapter 3. 

2.2. Literature Review 

 

The problem considered in this thesis can be classified under different stream of 

literature of inventory management, such as Spare Part, Obsolescence, Product Life-

Cycle and Final Phase. In this subsection, there are numerous studies that are related 

with more than one topic among these streams. We try to show the importance of this 

study in these streams while defining the problems and classifying previous studies, in 

given order. 
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Spare Part Management 

Spare Part Inventory Management (SPIM) is a broad topic that includes various aspects. 

The more relevant studies in SPIM are conducted by Fortuin [11, 10] in 1980 and 1981, 

which define all-time requirements (final order) of spare part inventories. He studies on 

management of spare parts of a product that have risk of failure, such as electronic 

products, for the ñservice after salesò department. He defines the product life-cycle 

consist of three phases. There are initial, repeat and the final phases. He assumes 

exponentially decreasing demand in his study.  

Another relevant study in SPIM literature is presented by Geurts and Moonen [13] in 

1992. In their paper, they analyze and present how óinsurance typeô spare parts are 

needed to be keep. They use Dynamic Programming (Markov Programming) approach 

in this paper, which is also supported by numerical examples. While deciding on 

uncertainty parameters, they also utilize their approach to measure how good the 

decision strategy is. 

Obsolescence 

The main stream of our thesis, Final Phase studies are also related with finite horizon 

inventory problems with obsolescence. Hadley and Whitin [14] provides the classical 

obsolescence problem in 1963. In this study demand is a random variable and occurs in 

time periods independently. Obsolescence time is known or a finite number of possible 

obsolescence times are given with their respective probabilities. They solve this problem 

with a dynamic programming approach.  

In 1997, David et al. [5] provides the continuous version of the classical obsolescence 

problem defined by Hadley Whitin. They provide a dynamic programming model for the 

finite horizon problem, where demand rate is fixed while lifetime of the items follows a 

known random distribution. In this problem, they observe that there must be a time 
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where ordering to the end is the optimal option. This corresponds to ñlast-order 

problemò in our heuristic. This study is also provides structural properties of the 

problem. 

Life Cycle 

Elements such as demand direction, length of horizon and stochasticity of the parameters 

lead different problem definitions in inventory studies. Hence, even for the very same 

product, we need to apply different inventory policies for the different phases during its 

life cycle. Often, inventory studies encapsulate a certain time interval in the product life. 

Such as, our heuristics described in this thesis are useful for a specific time interval in 

the product life-cycle due to its features and assumptions. There are numerous studies 

that emphasize these differences. For instance, Solomon et al. [27] showed the life-cycle 

phases and their distinct features of electronic equipment. They divided electronic 

productôs life-cycle in six phases. There are defined as introduction, growth, maturity, 

decline, phase-out and obsolescence phases. In this study, they mention on last-buy 

decision in the obsolescence phase, which is relevant to time-period we interest in this 

thesis and it will be discussed later in detail. One of the earliest studies that focus on the 

time interval we interest is performed by Cohen and Whang [4] in 1997. Similar to our 

study, they focus on the service after sales operations. On top of the management of 

spare parts, they consider an independent service operator which leads competition. 

Hence they used a ógame-theoreticô approach in their study. Their decision variables are 

completely different from ours, they decide product price, after-sales service quality and 

after-sales price in their problem.  

Another interesting research that focuses on product life-cycle is performed by Bradley 

and Guerrero [2] in 2008. This paper focuses on product design to a better utilization of 

life-cycle mismatch of the components in a product. In this paper, one of the alternatives 

that are used to manage life-cycle mismatch is called ñlife-time buyò or ñlast-time buyò 
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which corresponds the final decision of inventory operations. This is exactly the same 

topic that we cover in this thesis.  

Another study of Bradley and Guerrero [1] published in 2009 deals with lifetime buy 

(last-time buy) decision for multiple obsolete parts. Lifetime buy policy is argued to be 

the necessary when product life-cycle mismatch occurs on spare parts of a product. They 

prove the existence and the uniqueness of the solution to the problem, however since the 

solution cannot be expressed in closed-form, they suggest two heuristics which gives 

upper and lower bounds on the solution. They show results for stationary and non-

stationary demand, and suggest that the heuristics give accurate results for the stationary 

demand case. 

In their 2011 paper, Dekker et al. [6] inspect the various aspects of life-cycle phases of 

spare part management. They mention about unique and difficult cases on managing the 

spare part inventory and focus on forecasting strategies. Life-cycle phases mentioned 

above are also available in this study, while they give an importance on the life-cycle of 

spare part demand. Interested readers may look for the case studies in Fokker Services, 

IBM, IHC Merwede and Voestalpine Railpro companies, presented in this paper. 

Spengler and Schröter [28] developed tools for information management on a closed-

loop supply chain at the End-of-Life service period. They model the management of 

production and recovery system of spare parts and emphasize the importance of several 

strategies. This study is important since it combines end-of-life service period with 

product design with a different view. In their paper, they show the difficulties to manage 

spare part inventory during end-of-life service period. It is known that final phase lasts 

for many years for electronic equipment [30]. These are the loss of economies of scale 

since the product is no longer manufactured, possible differences between product 

generations (hence spare parts may differ), limited flexibility of the spare parts and 
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possible problems on providing materials for spare parts. On a case study, they provide 

the output of their ñsystem-dynamicsò model for spare parts. 

Final Phase 

Now, we will focus on more relevant studies to our work which focus on spare part 

inventory management in the final phase. Final phase is also called with different 

definitions such as ñend-of-life serviceò, ñpost-product lifeò and ñafter-sales service 

periodò. The problem considers the inventory in the Final Phase period is also known as 

ñEnd-of-Life Inventory Problemò (EOL), ñFinal Buy Problemò (FBP) and the ñEnd-of-

Production Problemò (EOP) [23]. In this part we will review these relevant studies and 

emphasize the similarities and differences of our work with them. Note that the terms 

describing final phase are used interchangeably.  

In their paper dated 1998, Teunter and Haneveld [33] described the final order problem. 

They solve the problem of ñlast-orderò for the client, who will give a final order of spare 

parts from manufacturer due to discontinuity of spare part supply of the manufacturer. 

Client is assumed to have a machine which needs these critical spare parts to operate. 

Client wants to use this machine at least for a certain amount of time. Therefore, client 

should keep a sufficient inventory of these critical spare parts. They suggest an order-up-

to level policy for this last order quantity. They found it by minimizing the total 

discounted cost. On 3 different examples they show that their model provides near-

optimal results. There are some features of their problem, which is significantly different 

from the problem considered in this thesis. Teunter and Haneveld consider the time-

period where service agreement ends, while we consider time between End-of-

Production and End-of-Service (Final Phase) period. Moreover, they solve this problem 

for only one final order, while we allow replenishments during the time horizon which 

leads different assumptions. 
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In another study of Teunter and Fortuin [30], they study on the same problem with 

supplierôs perspective. In this case the decision maker is the service department of the 

supplier. However, the ordering structure is the same as Teunter and Haneveldôs study: 

only one last order is allowed to make for decision maker [33]. For given cost 

parameters, they reach near to optimal solutions of the quantity of the last order. They 

both provide óoptimalô final order by using stochastic dynamic programming and a 

ónear-optimalô final order level by using an explicit cost formulation. They show that the 

explicitly defined final order level is near to optimal final order level, which is practical 

to compute. Moreover, in this study they suggest a ñremove-down-toò level, where they 

defined discrete time intervals and remove some spare parts from the stock if the 

inventory level is above the ñremove-down-toò level. This study is important, because 

they take decisions after final phase started due to ñremove policyò. Although they only 

remove items from the stock instead of replenish it as we cover in this thesis, this paper 

is closely related with ours since they allow actions during the time horizon. 

In their 1999 paper, Fortuin and Martin [12] define phases of the spare part life-cycle. 

Itôs one of the earliest study that use term ñfinal phaseò by referencing Teunter and 

Fortuinôs definition of End-of-Life service (EOL) [31]. This is a comprehensive study 

that shows different aspects of management of spare part inventory. It covers logistics, 

demand and delivery, management concepts of spare parts and also devotes a section to 

show differences between spare part inventory management with traditional approaches. 

They emphasize the distinction between phases of the spare part life-cycle, which are 

defined as initial, normal and final phase. In the following paragraphs, we will also 

review the work of Teunter and Haneveld [32] in 2002, which use the same final phase 

definition as in this paper. 

Cattani and Souza [3] consider the effect of delaying the end of life buy in their 2002 

paper. Their study is slightly different from Teunter and Haneveldôs research in terms of 

time of the final order (end-of-life buy) [33]. By using the information obtained by 
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delaying the final order decision, they argue that the underage and overage costs can be 

reduced. For different settings they show that the cost benefit of delaying the decision is 

non-decreasing function of time and concave. This is a remarkable result for the 

manufacturers who can delay their final order decision. They used the newsvendor 

problem as a basis to calculate costs of initial problem. On numerical experiments they 

provide how effective their model is. 

Draper and Suanetôs work in 2005 includes various and detailed information about 

IBMôs inventory operations [7]. They stated that IBM divided inventory life-cycle into 

three phases: Early-Life, Mid-Life and End-of-Life. Their definition of End-of-Life 

phase is precisely the same as we define final phase. They note that this phase takes 7 

years on average, although it varies a lot for different PC parts. They also stated that 

Service Parts Logistics organization is responsible for the actions in the end-of-life 

phase and used a ólast-orderô at the beginning of this phase. This is precisely the problem 

that we mentioned above. They indicate that specialized algorithms are being used for 

this decision where historical data and demand forecast play a significant role. They 

refer the paper of Teunter and Haneveld for more information on last-buy problem [32]. 

Inderfurth and Mukherjee [17] consider different approaches in the final phase in their 

paper dated 2008. They differentiate the different phases of the product life-cycle similar 

to studies mentioned above. They stated that the managing the spare part inventory 

between end-of-production (EOP) to end-of-service (EOS) is especially challenging for 

many industries. This time period corresponds to final phase (or post-product life cycle) 

in our study. Assumptions and observations in this paper are very close to our problem. 

They show how the problem can be modeled as a Decision Tree and can be solved by 

Stochastic Dynamic Programming procedure. Moreover, they propose a relatively 

simpler heuristic by inspired by the solution of the dynamic programming.  
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Another study on the spare parts inventory management in the final phase is conducted 

by van Kooten and Tan [34] on parts under condemnation. Their model includes repairs 

of the spare parts. They suggest a continuous-time transient Markovian Model with 

certain repair probability and repair lead time. 

Pinçe and Dekker [20] deal with the inventory of slow moving items subject to 

obsolescence in their paper dated 2011. They consider a continuous review inventory 

system and works in a similar environment to this problem. They assume that the 

demand rate drops a lower rate in a known time during the horizon. In this study, policy 

changing is proposed and an approximate solution of time to shift to new control policy 

is given. Advantages of such a shift are also described in the paper. During all horizon 

demand is assumed to follow Poisson Process with a constant rate, which drops to 

another constant rate at a known time. In that sense, their demand definition is one of the 

studies that are close to our problem. The policy used in the paper is one-for-one 

replenishment policy for both policies (initial policy and new policy) with different 

parameters.  Our problem is slightly different from their definition and includes setup 

cost, which makes one-for-one replenishment policy an undesired alternative. For the 

problem they consider, they achieve satisfying numerical results that show the 

superiority of the switching. 

There are also some studies that cover the different aspects of the final phase problem. 

Pourakbar et al. [23] suggests alternative decisions in the final phase such as offering a 

new product. They discuss the effects of such alternatives and show how they are more 

cost-efficient than keeping spare parts inventory at some point in the final phase. Hence, 

their study examines the cost trade-offs of such policies and give an exact expression 

represents expected total cost. They also show that such an expression leads the solution 

of last-order quantity and time to switch policies simultaneously. Their study is based on 

a real-life study of a major consumer electronic goods manufacturer, which is common 

in final phase studies. They developed two models, first, an alternative service policy 
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and second, a more sophisticated model for the cost function which is closer to real-life 

cases. In the study, demand is assumed to follow non-stationary Poisson process, which 

is also an assumption in this thesis. Moreover, horizon is finite and cost parameters are 

fixed and known similar to ours. However, they consider only ñone-time buyò policies 

with review and scrapping options. Since we allow multiple orders during the final 

phase and associate a setup cost for this operation, the total cost structure and the 

behavior of the solutions to the problems are different from each other, respectively. 

In 2012, Pourakbar and Dekker [22] combine customer differentiation with the final 

phase inventory problem. Note that their study is different from other studies in the final 

phase literature, where procurement (replenishment) is an available option as we assume 

and they also use non-stationary demand rate. They show that their model reaches 

remarkable cost improvements on the problem. 

Now, we will cover two researches that are very close to our problem, in detail. 

In the study of Inderfurth and Kleber [16] in 2013, alternative management of spare part 

inventory in End-of-Production phase is studied. Due to challenges in managing the 

spare part inventory at this phase, they argue that options such as extra production and 

remanufacturing provide flexibility to the manufacturer. For this problem, they provide 

order-up-to levels for extra production and remanufacturing options, very similar to our 

model in this thesis. The decisions are told to be simple compared the complexity of the 

problem. They show that the problem can be modeled as a stochastic dynamic 

optimization problem. However, the policy to minimize average total cost is found to be 

too complex. Therefore, they suggest simple order-up-to policies, which are shown to be 

worked well for most of the cases when policy parameters are chosen appropriately. 

Their research is a great contribution to the literature, considering the number of studies 

about the final phase that considers extra production. 
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Note that, our study has similarities to the problem they worked. First of all, in both 

studies the time horizon is defined as the final phase (end-of-production phase) and 

assumed to be finite and known. Second, cost parameters are assumed to be fixed and 

known. Third, demand is assumed to be stochastic. Fourth, extra production is possible 

with a major setup cost. And lastly, the objective is to minimize total cost. Although the 

working environment is defined very similar, our approaches differentiate in the 

modeling phase. First of all, they discretize the time intervals into periods; hence their 

model suggests a periodic review policy. As we will see in following sections, our 

heuristics are continuous-review policies, indeed. Second, they update the estimation of 

the demand along the horizon while we assume that the distribution of the demand is 

known due to historical data beforehand. Third, their application area is automotive 

sector; hence they benefit from easiness of remanufacturing which does not take major 

setup time and setup cost. Our study focus on general cases hence remanufacturing is not 

an option. Lastly, they stated that extra production is only available with a minimum 

order quantity. We allow extra production for any quantity during the final phase.  

The other research that is close to our work in the literature is conducted by Teunter and 

Haneveld [32] in 2002. Actually our study is inspired by the problem they defined in 

their paper. Hence, we will extensively cover the details of this study in here and 

describe the similarities and differences with ours. We also used this study as a 

benchmark in our numerical experiments. 

They study on manufacturerôs spare part inventory problem in the final phase. Since the 

expiration of last contract is known, they assume that the planning horizon is finite and 

known. There is no setup cost in the study; hence the replenishments are unit sized. Note 

that, they allow replenishments after the beginning of the final phase, but with a higher 

price. Demand is assumed to be stationary Poisson process. They propose an initial 

order-up-to level for the initial order, which is also known as the ñlast-orderò, ñfinal 

buyò and ñlifetime buyò in the literature, and then provide order-up-to levels for the 
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remaining horizon. Since there is no setup cost, it is an (Ὓ ρȟὛ) inventory policy, 

where ñS-1ò is considered as a reorder level. Manufacturer should place unit-sized 

replenishment orders whenever the inventory position drops below the order-up-to level 

of the current time. They solved this problem optimally and provide a method which 

gives (1) initial order quantity and (2) time period length where order-up-to level is 

constant.  By using this information, one can calculate the order-up-to level for any 

given time. 

The problem we consider shows similarities to theirs in the following aspects. (1) The 

planning horizon is finite and known. (2) The cost parameters are known and fixed 

(holding, backorder). (3) Replenishments are allowed during the final phase. (4) 

Demand follows Poisson process. (5) A reorder level-order up to level policy is 

suggested. 

We can also list the different aspects of our solution method as follows. (1) Setup cost 

exists and fixed. (2) Lead time is non-zero and fixed. (3) Poisson demand rate can be 

defined as non-stationary. (4) Unit cost is fixed and same during planning horizon. 

Note that among they suggest (1) and (3) as an extension to their model. In our problem, 

we assume that demand of the spare part is a nonhomogeneous Poisson process where 

the rate parameter is a non-increasing function of time. 

In this study, we developed two heuristics for retailerôs problem to minimize total cost 

during the final phase. One of these heuristics is a continuous-review policy while the 

second one is a periodic-review policy. Due to complexity of the problem, we provide 

near-optimal results with these heuristics. This is one of the initial studies that considers 

final phase with non-homogeneous demand rate with replenishment option. In that 

sense, it makes a contribution to the literature of final phase problems and provides a 

systematic way of replenishment decisions for the retailers.  
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Chapter 3  

Solution Methods 

 

To solve a finite horizon problem, there are two types of policies based on the time of 

the decision. First type of approach is providing a static policy, where the problem is 

solved at the beginning of the horizon and applied thoroughly. For instance, in their 

paper, Teunter and Haneveld find the optimal order-up-to levels before the time horizon 

is started and these decisions are applied throughout the horizon [32]. All orders are 

given based on these optimal order-up-to levels. Second approach is constructing a 

rolling policy, where the decisions are given in continuous time. Such rolling policies 

are usually applied when the system changes over time. An order-up-to level can be used 

if applicable.  

This problem, due to its very nature, is hard to solve optimally. Scarf showed that finite 

horizon problems can be solved with an optimal (ίȟὛ) inventory policy by using 
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dynamic programming [25]. To the best of authorôs knowledge, there is no optimal 

solution to our problem in the literature. 

In this study, two heuristics are provided to solve retailerôs problem. Both of these 

heuristics are rolling policies with an approximation to the unknown optimal solution. 

There are two decisions variables in this problem, reorder level and order-up to level. 

Both policies use same reorder level mechanism however their selection of order-up-to 

level varies. 

Our first heuristics provides a continuous review policy with look-ahead capability into 

remaining time horizon. Replenishment decisions are independent from past decisions 

and affected by the residual time. For each decision, a deterministic subproblem, 

between current time and end of horizon, is solved to estimate future orders. Solution to 

the deterministic subproblem is obtained by using Johnson and Montgomeryôs notes on 

the ñContinuous Review Lot Size Problemò [18]. Deterministic subproblems will be 

explained in detail in section 3.2.2. This estimation helps us to decide on replenishment 

quantity because when the number of remaining orders ὔ  is known (or fixed), then 

the deterministic demand subproblem problem can be solved optimally (Lot Size 

Problem) [18]. Therefore, based on the best possible choice of ὔ, one can choose a 

replenishment quantity to minimize expected total cost until end of horizon. Therefore, 

solution of deterministic subproblem is solely the effective parameter on ordering 

quantity. On the other hand, replenishment time is chosen based on the inventory 

position. By using a reorder level, decision points can be found easily. Different reorder 

levels can be used based on the structure of the system. In this thesis we used both Type-

1 and Type-2 service level. Notice that, since demand is a non-increasing function of 

time, reorder level (ὶ) is also formulated as a non-increasing function of time. This 

definition comes with a benefit that retailers can avoid unnecessary and costly 

operations and review inventory only at discrete times. 
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Second heuristic can be categorized as a periodic review policy with variable period 

lengths. Instead of considering residual time horizon, this policy has a myopic look over 

the problem. Hence, instead of estimating all remaining orders as we do in 1
st
 policy, we 

are only looking for the next expected replenishment time. The objective in each 

decision point is minimizing the total cost per unit time. It uses same reorder level 

definition as in first heuristic. However, ordering quantity is determined to minimize 

total holding and backordering cost for small steps. In each decision point we need to 

select a period length, which gives minimum cost per unit time. Since such a search can 

be exhaustive, it is assumed that a set of possible candidates for next replenishment time 

is provided. So the selection is based on the minimization of total cost between 

ὸ  έὶ ὸ and estimated next order point ὸ  which resembles applications in real 

life. Then, ordering quantity is found as the expected demand during next phase. 

Inventory is checked only at the end of each period. 

To sum up, first policy is a variant of well-known reorder level ï order up to level (ίȟὛ) 

policy, while second one is a variant of reorder point ï reorder level ï order up to level 

(ὙȟίȟὛ) policy. Different from classical approaches, the parameters of these policies 

change throughout the time horizon. 

 

3.1. Notations and Parameters 

 

Following notations are used in this study: 

πȟὌ : planning horizon  

ὸ : continuous time variable, where  ὸ ɴ πȟὌ  

ὑ : setup cost per replenishment  

ό : unit cost 
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Ὤ ȡ ÈÏÌÄÉÎÇ ÃÏÓÔ ÐÅÒ ÉÔÅÍ ÐÅÒ ÕÎÉÔ ÔÉÍÅ 

ὦ ȡ ÂÁÃËÏÒÄÅÒ ÃÏÓÔ ÐÅÒ ÉÔÅÍ ÐÅÒ ÕÎÉÔ ÔÉÍÅ 

ὒ ȡ ÌÅÁÄ ÔÉÍÅ 

‗ὸ : demand rateȟ ×ÈÉÃÈ ÉÓ Á ÎÏÎȤÉÎÃÒÅÁÓÉÎÇ ÆÕÎÃÔÉÏÎ ÏÆ ÔÉÍÅ 

Ὀὸ : ÄÅÍÁÎÄ ÂÅÔ×ÅÅÎ πȟÔ, which is a random variable; 

Ὀὸͯ Nonhomogeneous Poisson‗ὸ  

ὔὸ : expected demand between πȟὸ, where; 

ὔὸ = ὉὈὸ ᷿‗ὸȢὨὸ  

Ὅὸ : Inventory position at time t 

 

As described in 2
nd

 Chapter, horizon length Ὄ, cost parameters ὑȟόȟὬȟὦ and lead 

time ὒ are fixed and known before the horizon. 

We denote  ὸ and ὗ  as the time and order quantity of ὲth
 replenishment respectively. 

These are our decision variables. Decision parameters; reorder level and order up to 

level are denoted as  ὶὸ and Ὓὸ, respectively. 

 

3.2. Decision Variables and Levels 

 

Without loss of generality, retailer needs to decide on two variables: time ὸ and quantity 

ὗ for replenishment Ὥ. Defining a reorder level helps us to decide about replenishment 

times. Similarly, an order-up-to level may be beneficial to decide about replenishment 

quantity. In that sense, we define reorder and order-up-to levels for both policies. 

However, since our horizon is finite and demand follows a non-increasing rate over 

time, we need update parameters and levels for these decisions frequently. Best selection 

of these levels for a decision point may be different from previous decision. 
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Reorder level is defined same for both policies. Therefore we will start with selection of 

reorder level and then, selection of order-up-to level will be discussed. 

3.2.1. Replenishment Time and Reorder Level 

For the selection of replenishment types, we used a reorder level definition which helps 

to prevent unnecessary setups and loss of service level. An order is placed if inventory 

position drops below reorder level. Since inventory structure can differ among different 

business types, it is possible to select this reorder level in several ways. However, for the 

rest of this study we restrict ourselves to two types of reorder levels for the sake of 

simplicity: Type-1 (‌) and Type-2 (‍) service levels during lead time. Here, we used a 

different Type-1 and Type-2 service level than their traditional definition. We denote 

ὶȟὶ respectively for Type-1 and Type-2 service measure during lead time. 

Reorder levels can be easily calculated by using given parameters as provided in the 

following subsections. 

3.2.1.1. Reorder Level with  Type-1 Service Measure 

By definition, Type-1 (‌ service level) leads a reorder level, which satisfies the 

probability of not seeing any stock-out. Here we use a different service measure and 

focus only demands during replenishment lead time. Here, at any time ὸ ‭ πȟὌ , our 

reorder level is the smallest integer, whose probability of no stock-out is higher than 

known and fixed probability level ‌ .  

 ὶ‌ȟὸ ÍÉÎ” ȿ ὖὶέὦὈὩάὥὲὨ ὈόὶὭὲὫ ὒὩὥὨ ὝὭάὩ” ‌ȟ   ”‭ᴚ  (1)  

 

Lead time and demand rate can dropped from the parameters of reorder level function 

since these are fixed throughout the study. Let ɿὸ ᷿ ‗ὸȢὨὸ is the expected 

demand during lead time. Then, probability of no stock-out during replenishment lead 

time is; 



24 

 

 ὖὶέὦὈὩάὥὲὨ ὈόὶὭὲὫ ὒὩὥὨ ὝὭάὩ ”
Ὡ Ȣ‏ὸ

ὼȦ
 (2)  

 

So we can simply use the following inequality; 

 ὶ‌ȟὸ ÍÉÎ” ȿ 
Ὡ Ȣ‏ὸ

ὼȦ
‌ ȟ”‭ᴚȟɿὸ ‗ὸȢὨὸ

ὸὒ

ὸ

 (3)  

 

3.2.1.2. Reorder Level with  Type-2 Service Measure 

Type-2 (‍ service level) is often called as fill-rate alias fraction of demand met on time. 

For this service measure, probability of not backordering a demand (satisfied demand) 

should be more than ‍. In other words, fraction of demand not met on time during lead 

time should be less than ρ ‍. Again, we restrict ourselves to demand during lead time 

to apply this service level. 

By using same ὸ definition, we can define ὶ‍ȟὸ as; 

 ὶ‍ȟὸ ÍÉÎ”ȿὊὶὥὧὸὭέὲ έὪ ὨὩάὥὲὨ ὲέὸ άὩὸ έὲ ὸὭάὩ”ȟὸ ρ ‍ (4)  

 

One can define the fraction of demand not met on time as; 
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ὊὶὥὧὸὭέὲ έὪὨὩάὥὲὨ ὲέὸ άὩὸ”ȟὸ 
ὉὼὴὩὧὸὩὨ Π έὪὦὥὧὯέὶὨὩὶὩὨ ὨὩάὥὲὨ

Ὕέὸὥὰ Π έὪ ὩὼὴὩὧὸὩὨ ὨὩάὥὲὨ
 

 

В ὼ ”Ȣὖὔὸ ὒ ὔὸ ὼ

В ὼȢὖὔὸ ὒ ὔὸ ὼ
 

 

В ὼ ”Ȣ
Ὡ Ȣ‏ὸ

ὼȦ

В ὼȢ
Ὡ Ȣ‏ὸ

ὼȦ

 

 

В ὼ ”Ȣ
Ὡ Ȣ‏ὸ

ὼȦ
ὸ‏

 

(5)  

 

where ‏ὸ is expected demand during lead time ‏ὸ ᷿ ‗ὸȢὨὸ as used above. 

Therefore, similar to Type-1 reorder level, ” is the smallest integer where fraction of 

demand not met on time is less than ρ ‍. 

3.2.1.3. Change in Reorder Level  

In this subsection, we will introduce a useful observation, which leads tracking the 

inventory position only when a demand occurs become sufficient instead of tracking it 

continuously.  

In first type of service level (Type-1), for any time ὸ, we have a reorder level as; 

 ὶ‌ȟὸ ÍÉÎ” ȿ 
Ὡ Ȣ‏ὸ

ὼȦ
‌ ȟ”‭ᴚ  (6)  

 

Here, if we increase time ὸ, then ‏ὸ decreases. We can prove it for any ὸȟὸ‭πȟὌ  

where  ὸ ὸ, then; 
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‗ὸ ‗ὸ  (7)  

 

this follows, 

 
ὸ‏ ‗ὸȢὨὸ

ὸρ ὒ

ὸρ

‗ὸȢὨὸ

ὸς ὒ

ὸς

ὸ‏  

 

ὸ‏ ὸ‏  

(8)  

 

Since ‏ὸ ὸ‏ , it directly follows that 

 
ὶ‌ȟὸ ὶ‌ȟὸ     ὭὪ ὸ ὸ ύὬὩὶὩ  ὸȟὸᶰπȟὌ  (9)  

 

Same can be applied for Type-2 service measure. Taking same ὸ and ὸ we can easily 

show for same ”, fraction of demand not met on time will be ὖ ὖ respectively for ὸ 

and ὸ. Then we get; 

 
ὶ‍ȟὸ ὶ‍ȟὸ          ὭὪ ὸ ὸ ύὬὩὶὩ  ὸȟὸᶰπȟὌ  (10)  

 

This condition is useful in terms of applying the policies. Because, obviously ὶ and ὶ 

both are non-increasing functions of time. Therefore, necessary condition for a 

replenishment, where inventory position is below any of service level could only happen 

when a demand arrives. Therefore, checking reorder levels only when a demand arrives 

will be sufficient. 
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3.2.2. Replenishment Quantity and Order-up-to Levels 

Based on the selection of replenishment time which is obtained by using the reorder 

level, retailer needs to decide about quantity of replenishment. This replenishment 

quantity ὗὸ is a major decision for retailer which affects remaining horizon heavily. If 

replenishment is overestimated, then holding cost increases. On the other hand if it is 

underestimated then retailer may need additional replenishment which may increase 

total setup cost. 

There are some measures which is extremely important for selection of replenishment 

quantity. These are residual time Ὄ ὸ, holding, backorder and setup costs and demand 

rate. Although cost parameters are fixed and known, changes in residual time and 

demand rate affects replenishment quantity. Since replenishment quantity decision is 

independent from past decisions, we can evaluate the remaining time horizon and 

demand rate and provide a level which helps to determine the replenishment quantity. 

Therefore, we used two order-up-to level definitions which are used to decide 

replenishment quantity. 

Replenishment quantity and next replenishment time affects each other. Therefore, one 

can select an estimated time for next replenishment and then calculate order-up-to level. 

Our heuristics are differentiated at this point. In order to provide an estimate time for 

next replenishment we can make an exhaustive search in a continuous interval and find 

the best candidate. Instead, we can limit ourselves to a finite set consists of various time 

periods and select the best one among them, which is time-efficient. 

As described above, first alternative takes residual time into consideration while second 

alternative concerns only with the given time period. Our first heuristic uses the first 

method described above while second heuristic applies the other one. Therefore we can 

say that our first heuristic takes the remaining time horizon into consideration and thus it 

is a policy with look-ahead capability. Our second heuristic, in that sense, is a myopic 
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policy. In here, we would like to describe how these two different structures are applied. 

First we will describe how first policy consider residual time to select replenishment 

quantity. We will present a subtopic, deterministic subproblem, which is used for this 

task. Then quantity decision of our myopic policy, second heuristic, will be explained. 

3.2.2.1. Order-up-to Level Decision with Look Ahead Capability 

We know that our selection of replenishment quantity will affect the expected next 

replenishment time and expected number of residual orders. The relation is shown at 

Figure 3.1. 

 

Figure 3.1 Relation between replenishment quantity decision and its effects. 

Every replenishment order affects the remaining replenishments, hence to find 

replenishment quantity for only one interval needs to solve the consecutive problems as 

well. Hence decision to replenishment quantity needs the residual time into 

consideration. As we see every decision to replenishment quantity needs solving the 

subproblem between ὸ  and Ὄ. 

Note that the replenishment quantity belongs to a large set and the expected next 

replenishment time is continuous, hence we can find and set the expected number of 

residual orders to find others. 
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Note that subproblem between ὸ  and Ὄ is a smaller version of the original problem, 

where we are deciding demand at time 0, when the time horizon is between ὸ  and Ὄ. 

Solving this subproblem optimally has same complexity to solve the real problem. 

Therefore, we simplified the subproblems as follows: If we assume that the demand 

during residual time ὸ ȟὌ  is deterministic and equal to demand rate ‗ὸ, we can 

solve the subproblem. Hence for an arbitrary time interval ὸȟό, the demand is known 

and fixed to ᷿ ‗ίὨί. We know that the deterministic subproblem (DS) can be solved 

optimally if the total number of remaining replenishment is fixed. Therefore, starting 

from ὲ ρ to a sufficiently large number ὔ, we can calculate the total cost for 

deterministic subproblem and then select the one which gives minimum total cost. This 

approach is suggested by Johnson and Montgomery [18] to solve Continuous Review 

Lot Size Problem. Trying various ὲ values is also suggested in their study. Note that, we 

are looking for the best selection of ñexpected number of residual ordersò and then 

finding the expected time of next replenishment and finally the replenishment quantity. 

Deterministic Subproblem 

Assume that total number of remaining orders is ὲ. 

In this step, we will find the optimal solution to the deterministic subproblem (DS) 

between ὸ ὒ to Ὄ with deterministic demand rate. Define ὺᶰὸ ὒȟὌ  

represents time. 

We denote Ὕὅ ὲ is the total cost of optimal selection of ὲ replenishment times for 

deterministic subproblem, starting from ὸ . For any selection of replenishment times 

 ὺ ȟὺ ȟȣȟὺ  the total cost is denoted as Ὕὅ ὲȟὺ ȟȣȟὺ  where superscript 

D represents deterministic problem. By using expectation on demand rate, expected total 

cost between ὸ  and Ὄ becomes; 
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Ὕὅ ὲȟὺ ȟȣȟὺ ὛὩὸόὴ ὅέίὸὟὲὭὸ ὅέίὸὌέὰὨὭὲὫ ὅέίὸ 

Ὕὅ ὲȟὺ ȟȣȟὺ  ὲȢὑ όȢ ὔὺ , ὔὺ ,

όȢὔὌ ὔὺ ὒ

ὬȢ ὺ ὺ Ȣὔὺ ὒ

ὔὭȢὨὭ

ὬȢὌ ὺ ὒȢὔὌ

ὔὭȢὨὭ 

 

(11)  

 

Taking partial derivatives of this term with respect to ὺôs where Ὦɴ ςȟȣȟὲ gives 

optimality conditions. In optimal solution of ordering times ὺᶻȟȣȟὺᶻ  the resulting 

terms must be equal to zero. This gives ὲ ρ nonlinear conditions. 

For Ὦ  ςȟȣȟὲ ρ 

 ‗ὺᶻ ,Ȣὺᶻ ὺᶻ ὔὺᶻ , ὔὺᶻ , (12)  

 

For Ὦ ὲ 

 ‗ὺᶻ ,Ȣὺᶻ ὺᶻ ὔ( ὔὺᶻ , (13)  

 

There are ὲ ρ unknowns with ὲ ρ equality conditions since we set ὺ ὸ  for 

all solutions. Then, these equations will have a unique solution. These solutions could be 
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found by using mathematical software. Johnson and Montgomery suggest setting a value 

for ὺ  and then solving all remaining variables. If last condition does not satisfy 

equality another value of ὺ  should be selected [18]. These conditions can be solved by 

using mathematical software. 

Since we know the optimal solution for the deterministic subproblem with ὲ orders, we 

can simplify the total cost term. Now, best total cost for deterministic subproblem with n 

orders Ὕὅ  can be defined as; 

 Ὕὅ ὲ ÉÎÆ
 ὺρὲȟὺςὲȟȣȟὺὲὲ

Ὕὅ ὲȟ ὺρὲȟὺςὲȟȣȟὺὲὲ  (14)  

 

Determining Replenishment Quantity based on DS Solutions 

As discussed before, we can solve DS optimally for any given ὲ. Iterating from ὲ ρ to 

a sufficiently large upper bound N gives the optimal number of orders, which is denoted 

by ὲᶻ  . A lousy selection of N can be calculated as follows: 

 Ἒ
ὦὌ ὸ ὔὌ ὔὸ

ὑ
 (15)  

 

where we compare total setup cost with the total backordering cost of extreme solution 

where all residual orders are backordered. 

 We can write; 

 ὲᶻ ÁÒÇÍÉÎὝὅ ὲȟὲᶰᴚ  (16)  
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After selecting best solution to expected number of residual orders, one can calculate the 

ordering quantity. For optimal ὲᶻ, we have ὺ ȟzὺ ȟzȣ. Then replenishment quantity 

for order Ὥ is; 

 
ὗὸ ὔὺ ᶻ ὒ ὔὺ ᶻ ὒ 

ὔὺ ᶻ ὒ ὔὸ ὒ 
(17)  

 

which corresponds to expected demand until expected next immediate replenishment 

time. 

3.2.2.2. Myopic Order-up-to Level Decision 

As discussed before, we can select the review period length among a set of finite 

candidates. This alternative may represent real-life conditions better since most of 

business applies periodic replenishments. 

For each period length in the candidate set, we will define and solve a subproblem. Since 

these subproblems are considerably smaller than the subproblems we solved before, we 

donôt need to assume deterministic demand for these problems. We denote fl for the 

candidate set. For each candidate ὰɴ fl, define the subproblem between ὸ

ὒȟὸ ὒ ὰ. Order-up-to level for any ὰ will be the smallest integer, which satisfies 

the service level derived by holding and backordering cost parameters. Denote  

ὸ‏ ὒ ‗ὸὨὸ 

as the expected demand during review period. We will assume that the inventory 

position at the beginning of the period is equivalent to smallest integer, that satisfies 

service level derived by holding and backorder cost parameters. Let ὰ is the jth 
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candidate in the set fl. Let, ὗ ὸ is the replenishment quantity for candidate Ὦ at time ὸ. 

Then, 

 
ὗ ὸ ÍÉÎὗ ȿ 

Ὡ‏ὸȢ‏ὸ

ὼȦ

ὦ

ὦ Ὤ
ȟὗᶰᴚ  (18)  

 

which is the same solution to newsvendor problem assuming demand follows Poisson 

distribution with rate ‏ὸ. After solving all subproblems we will select the one give the 

minimum cost per unit time. Then, for ὰ we can find expected total cost by using 

following equation. 

 
Ὕὅὸȟὰ ὑ όȢὗ ὸ

ὖὈὸ ὒ ὰ Ὀὸ ὒ ὨȢ

ὉὌὄὸ ὒȟὸ ὒ ὰȟὗ ὸ
 (19)  

 

where ὉὌὄόȟὺȟὗ  is the expected holding and backordering cost between ό and ὺ 

where starting inventory level is ὗ. This cost can be calculated by using order statistics 

of the Non-homogeneous Poisson Process. 

Then total cost per unit time is simply 

 
ὝὅὖὟὸȟὰ

Ὕὅὸȟὰ

ὰ
 (20)  

 

For each element ὰ in the candidate set fl, we get ὝὅὖὟὸȟὰ. 

Here, we will select the best ὰɴ fl as ὰᶻ which satisfies 
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ὰᶻ ὰ ȿ ὰɴ flȟὝὅὖὟὸȟὰ ὝὅὖὟὸȟὰᴂ  ᶅὰᴂᶰfl (21)  

 

Now, we have the best solution for the myopic subproblem. Let Ὦᶻ is the index of 

selected period length. Then the order-up-to level is, 

 
Ὓὸ ὗᶻὸ (22)  

 

After finding our order-up-to level, now we can define the real replenishment quantity, 

such as: 

 ὗὸ Ὓὸ Ὅὸ  (23)  

 

3.2.3. Last Order Problem 

In section 3.2.2.1, we see how replenishment quantity can be chosen by solving 

deterministic subproblem for the residual time horizon. Remember that, we were solving 

deterministic subproblems for fixed number of residual orders. When we are sufficiently 

close to end-of-horizon Ὄ, we can solve the stochastic subproblem without simplifying 

the stochasticity. We will call  this problem as ñLast Order Problemò (LOP). 

As we prove in section 3.2.1.3, reorder levels are non-increasing function of time. On 

top of that, if we assume that demand rate is a continuous, non-increasing function of 

time, then these reorder levels are step functions with certain break points. 
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Figure 3.2 Behavior of Reorder Level during Final Phase when Demand Rate is Non-Increasing Function of 

Time 

At time ὸ Ὄ ὒ, the order up to level will become minus infinity with optimal 

number of estimated replenishments ὲᶻ ρ for sure. Therefore, instead of issuing an 

order, retailer may want to wait until the end of horizon and simply meet the all 

backordered demands with a single replenishment. Note that, the start of the last phase 

where Ò Њ may become earlier than H-L. 

In their study, Teunter and Haneveld show a similar effect while describing the optimal 

Ὓ ρȟὛ policy [32]. He shows that optimal order-up-to level function Ὓ will reach 

zero, and eventually become minus infinity, where not placing any order is the best 

option.  

The reason for order up to level function takes minus infinity value can be reviewed as 

follows; assume that an arbitrary demand occurred in ὸᴂ, which is smaller than Ὄ ὒ. 
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Assume our inventory position drops to -1. Retailer has two alternatives. First one is not 

giving any order at time ὸᴂ and pays the backordering cost until end of horizon, which 

corresponds; 

 
ὅ ὸ ὦȢὌ ὸ (24)  

 

The second option is giving an order at ὸᴂ and meets the item at ὸ ὒ. Then, the cost 

becomes; 

 
ὅ ὦȢὒ ὑ ό (25)  

 

If ὅ ὸᴂ ὅ then the best policy is not giving any replenishment order. Therefore, it is 

obvious that the optimal order up to level for ὸᴂ is strictly below zero. In order to find 

optimal reorder level, let there is another demand arrives where inventory position drops 

to -2 at time ὸᴂᴂ. Since ὸᴂᴂὸᴂ and ὅ ὸᴂ ὅ, we get ὅ ὸᴂᴂὅ ὸ ὅ. Therefore 

best policy for this singular order is same as previous: do not issue a replenishment 

order. Clearly, it is same for all demand after here and it is easy to see that, procedure 

can continue until minus infinity. Therefore optimal reorder level is minus infinity. 

When the retailer approaches near to end of the planning horizon, best estimation for 

remaining orders will get closer to zero.  

Based on this observation, when optimal number of estimated replenishment is less than 

2, time until Ὄ is sufficiently close for considering not giving any order until end of final 

phase. Moreover the residual stochastic subproblem can be solved. 
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In this step we will compare expected total cost of two alternatives. First one is placing 

any order at time ὸ ὸ . Without loss of generality, assume that we will place an 

order with size of ὼ. Then, expected total cost between ὸ and Ὄ will be; 

 
ὉὼὴὩὧὸὩὨ Ὕέὸὥὰ ὅέίὸ

Ὁ ὛὩὸόὴ ὅέίὸὟὲὭὸ ὅέίὸὌέὰὨὭὲὫ ὅέίὸ

ὄὥὧὯέὶὨὩὶ ὅέίὸ 

(26)  

 

Denote the demand between ὸ ὒ and Ὄ is  

Ὀὸ ὒȟὌ ὔͯὌὖὖ ‗ὸȢὨὸ 

Then we can expand total cost formulation as; 

 
ὉὝὅὼ ὑ ὑȢὖὶέὦὈὸ ὒȟὌ ὼ Ὅὸ π όȢὼ

όȢὉ Ὀὸ ὒȟὌ ὼ Ὅὸ

ὉὌὄὅὸ ὒȟὌȟὼ Ὅὸ  

(27)  

 

where ὉὌὄὅ represent ὉὼὴὩὧὸὩὨ ὌέὰὨὭὲὫ ὥὲὨ ὄὥὧὯέὶὨὩὶ ὅέίὸ between ὸ ὒ and Ὄ 

with an inventory position ὢ at ὸ ὒ. We can expand ὉὌὄὅ as; 

 

ὉὌὄὅὸ ὒȟὌȟὼ Ὅὸ

ὖὈὸ ὒȟὌ ὨȢὉὌὄὸ ὒȟὌȟὼ ὍὸȟὨ (28)  
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and by using order statistics, we know that Ὠ demands will be distributed over horizon 

where demand rate-time areas between consecutive demand times are equal. 

 

Figure 3.3 Order Statistics of Arrival Times of Demands 

Then, once can calculate ὉὌὄ for any input using bisection method. 

Let ά ᷿ ‗όȢὨό. We can rewrite (28) as the following; 

 

Ὕὅ ὼ

ὑ ὑȢρ
ὩάȢάὨ

ὨȦ

ὼὍὸ

Ὠ π

όȢὼ

όȢ Ὠ ὼ Ὅὸ Ȣ
ὩάȢάὨ

ὨȦ

Њ

Ὠ ὼὍὸ

ὩάȢάὨ

ὨȦ
ȢὉὌὄὸ ὒȟὌȟὼ ὍὸȟὨ

Њ

Ὠ π

 

(29)  

 



39 

 

As discussed above, our second alternative is not placing any order until Ὄ. Modifying 

(30) we can write; 

 

Ὕὅ π

ὑȢρ Ὡά όȢ ὨȢ
ὩάȢάὨ

ὨȦ

Њ

Ὠ π

ὩάȢάὨ

ὨȦ
ȢὉὌὄὸ ὒȟὌȟὍὸȟὨ

Њ

Ὠ π

 

(30)  

 

Note that, first term in the cost expression (31) represents the setup cost at the end of the 

horizon which is dependent to demand between ὸ ὒ and Ὄ which follows Poisson 

Process with rate ά. 

 

3.3. Heuristics 

 

3.3.1. First Heuristic;  Based on the Expected Number of Residual Orders 

Since we are dealing with a finite horizon problem, replenishment times and quantities 

affect the remaining orders. In finite horizon inventory problems, generally, 

replenishments are correlated with each other. Logic behind this policy is based on this 

observation. In order to shape our policy, we are solving a deterministic subproblem for 

the remaining time horizon. 

We know that deterministic demand variation of the problem can be solved optimally for 

fixed number of residual orders as discussed in section 3.2.2.1. If it is known that there 

will be ὲ ordering points, then it leads ὲ ρ optimality conditions using first 

derivatives. These conditions have a unique solution. This observation constitutes a basis 
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for determining the replenishment quantity in our heuristic. Shortly, in our first heuristic, 

a deterministic subproblem at each ordering time is solved by using optimality 

conditions, and results of the problem used for determining ordering quantity. 

We assume that, retailer start the final phase with sufficient (optimal) inventory level. In 

other words, assume the inventory is ordered at time óɀὒô. 

As stated before, this heuristic is a continuous review policy, which is a variant of 

classical reorder level, order up to level ίȟὛ inventory policy. 

A scheme of the heuristic can be seen in the Figure 3.4. 
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Figure 3.4 Flow chart of the 1st Heuristic 
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Here, we will show steps of the first heuristic. 

Step 0 - Initialization  

Set ὸ ὒ and Ὥ π. ὸ  represents the current time and Ὥ is used to represent 

iteration number (namely, the number of current replenishment). 

Step 1 ï Defining and Solving the Deterministic Subproblem 

Set ὸ ὸ , where ὸ is the order time of Ὥ  order while ὸ is a candidate for ὸ. Here, 

if Ὥ π, it is considered as the ñfirst orderò. 

In order to estimate optimal number of residual orders, we will consider time interval 

between Ô ὒȟ(.  We will solve deterministic subproblem in this interval for 

different selection of number of residual replenishments.  

Set ὲ ρ initially and solve DS as discussed in section 3.2.2.1. Then increase ὲ by 1 

and solve DS again. Repeat this process until ὲ ὔ, where ὔ is a sufficiently large 

upper bound of ὲ.  

In practice, the total cost decreases while ὲ increases at first, and then increase after 

some point, which is close to optimal value of ὲ. Therefore, in practice ὔ can be chosen 

based on the observation on the increment in total cost while ὲ is getting larger. We can 

say that change in cost is not always convex but close to have a convex shape. 

For each subproblem with residual orders ὲ, we get the total cost with the optimal 

selection of replenishment times over the remaining horizon: 

 
Ὕὅ ὲ ÍÉÎ

 ὺρὲȟὺςὲȟȣȟὺὲὲ
Ὕὅ ὲȟ ὺρὲȟὺςὲȟȣȟὺὲὲ  

Ὕὅ ὲ Ὕὅ ὲȟὺᶻȟὺᶻȟȣȟὺᶻ  
(31)  
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After obtaining total cost for each value ὲᶰρȟςȟȣȟὔ  go to step 2. 

Step 2 ï Selecting Best Solution to Decide Replenishment Quantity  

Now we have expected total costs of ὔ different selection of total number of residual 

orders. Among these costs, we need to select the best possible ὲ to minimize total cost 

for residual time horizon. Let ὲᶻ  is the best selection of total number of residual 

orders, such that; 

 ὲᶻ ÁÒÇÍÉÎὝὅ ὲȟὲᶰᴚ  (32)  

 

After selecting best solution to expected number of residual orders, one can calculate the 

ordering quantity. 

If ὲᶻ ς it means we enter the ñlast-order problemò which is introduced in Section 

3.2.3. In this condition, we are sufficiently close to the end-of-horizon Ὄ and therefore, 

remaining problem can be solved optimally. Go to step 4. 

If  ὲᶻ ς set ὸ ὸ . It means, we decide to issue a replenishment order at ὸ  as 

Ὥ  order. Therefore, we are fixing the value of ὸ. 

As calculated in the Step 1, for optimal ὲᶻ, we have ὺ ȟzὺ ȟzȣ. Then replenishment 

quantity for order Ὥ is; 

 
ὗὸ ὔὺ ᶻ ὒ ὔὺ ᶻ ὒ 

ὔὺ ᶻ ὒ ὔὸ ὒ 
(33)  

 

After selection of replenishment quantity, now retailer places a replenishment order with 

a size ὗὸ . Go to Step 3. 
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Step 3 ï Finding Reorder Level and Reorder Point 

In this step, we need to wait until inventory position drops below reorder level. By using 

an important observation introduced in Section 3.2.1.3, we can check inventory only 

when a demand arrives rather than tracking inventory position continuously, which may 

be costly. Here, we may use one of the two different reorder level explained in section 

3.2.1. For each type of service levels, we can easily show that reorder level is a non-

increasing function of time which is similar to demand rate function. 

The observation leads us to define this step as follows: assume that, a demand arrives 

at ὸ. Then, inventory position is updated and we will check the reorder level. Based on 

the selected service measure, reorder level for time ὸ is calculated by using either (3) or 

(4). 

If inventory position is above the reorder level, then repeat step 3. The procedure must 

be repeated for every until inventory position drops below reorder level, as observation 

suggests. Otherwise, if inventory position drops below reorder level for any ὸ Ὄ ὒ, 

then go to step 1. 

Step 4 ï Last Order Problem 

Until this step of the heuristic, estimation of best solution for the total number of 

residual replenishment is used. As described in Section 3.2.3, we can solve the 

remaining subproblem when we are close to end of the planning horizon. This is our last 

decision in the problem. Based on the solution of the LOP we can give a last order at 

ὸ  or skip this decision point. Either way, we need to satisfy any backordered 

demands at the end of horizon and this concludes the heuristic. 
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3.3.2. Second Heuristic; Based on the Minimization of Myopic Period  

While looking for alternative of the first heuristics, we came up with an idea, which 

resembles applications in the real life. Assume there is a retailer, which is about to issue 

an order but undecided about the quantity of the replenishment. A basic solution to this 

complex problem is setting replenishment quantity to an amount which is most probably 

cover the demand until next week or next month or next two months, etc. - average time 

between consecutive replenishments based on historical data. Here, his estimation of 

next order is can be chosen among meaningful candidates. Note that, this selection is 

done automatically in the first heuristic by looking ahead to remaining time horizon. 

Here, our objective is to select best candidate which will  minimize total cost per unit 

time until next estimated order. 

A major drawback of this heuristic is, residual time is not being considered while 

deciding on replenishment quantity. Choosing replenishment quantity based on total cost 

per period length is a suitable approach for infinite horizon. However, we may reflect 

the effect of residual time into the heuristic with some extensions. 

This policy can be considered as a variant of well-known Silver-Meal heuristic proposed 

by Silver and Meal [26]. We are minimizing total cost per period, in a finite set of 

variable period lengths. In that sense this heuristic is a periodic review policy with 

variable period lengths. 

Assume that, set of candidate periods fl is already given or known before the problem. If 

not provided, this set can be constructed easily based on the nature of the given problem. 

Steps of the heuristic are shown in Figure 3.5. 
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Figure 3.5 Steps of the 2nd heuristic 
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Step 0: Initialization 

Set ὸ ὒ and Ὥ π. 

Step 1: Define the Subproblem for Each Candidate 

In this step, for each candidate in the period set, we will define the subproblem. Unlike 

previous deterministic subproblems, the subproblems that will be presented in this 

policy will be solved optimally. 

By using myopic order up to level described in the section 3.2.2.2, we can find total cost 

per unit time for each candidate. Denote ὝὅὖὟὸȟὰ is the total cost per unit time for 

candidate ὰᶰfl. All ὝὅὖὟs can be calculated easily by using (19). After solving 

subproblems optimally for each candidate, go to step 2. 

Step 2: Set Period Length and Place Replenishment Order 

By using information obtained in Step 1, we can denote 

 ὰᶻ ÁÒÇÍÉÎ
flɴ
 ὝὅὖὟὸȟὰ (34)  

 

Now as we decide on our period length, we can set ὸ ὸ . Now we need to specify 

replenishment quantity. As we have the best solution for the myopic subproblem, we can 

set the order-up-to level as, 

 
Ὓὸ ổὔὸ ὒ ὰᶻ ὔὸ ὒỖ (35)  

 



48 

 

Based on our selection, we can issue a replenishment order with a size of ὗὸ  at time ὸ 

which is the difference between order-up-to level and current inventory position, as 

defined in subsection 3.2.2.2. Then, go to step 3. 

Step 3: Wait Until Next Decision Point 

In first heuristic we checked our inventory whenever a demand arrives instead of 

tracking it continuously. Although same conditions are still available for this policy, we 

may limit ourselves to our earlier decisions. Remember that, in second step period length 

is fixed. To be consistent, we will check inventory position when this period ends. 

Hence for any replenishmentὭ, we will until ὸ ὒ ὰ where ὰ is the length of Ὥth 

period. When ὸ ὸ ὒ ὰ , if ὸ Ὄ ὒ go to step 4, otherwise it is end of 

the problem. 

Step 4: Update Candidate Set and Check Inventory Position 

Since problem horizon is finite, at some point ὸ ὰ may be larger than Ὄ for 

any ὰᶰfl , where period length becomes infeasible since ‗ὸ is defined only 

between πȟὌ . In order to prevent infeasible periods, we will update our candidates. 

For any ὰɴ fl, if ὸ ὰ Ὄ, than update that member as ὰ Ὄ ὸ. As an additional 

step, we can remove any duplicate candidate in the set fl. After this update, all elements 

in the candidate set become feasible. 

Now we will check if our inventory position is less than our reorder level. Here, we are 

using same reorder level as we used for first heuristic. By using reorder level for Type-1 

(1) or Type-2 (4) service measure, if Ὅὸ ὶὸ  go to Step 1. 

An additional step is needed otherwise. If our inventory position is larger than reorder 

level, retailer shouldnôt issue a replenishment order. Therefore, we will solve our 
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subproblems as described in Step 1, with an exception: starting inventory of the period 

will be equal to current inventory position. Hence; for candidate ὰᶰfl 

 
Ὕὅὸȟὰ ὑ όȢὍὸ

ὖὈὸ ὒ ὰ Ὀὸ ὒ ὨȢ

ὉὌὄὸ ὒȟὸ ὒ ὰȟὍὸ
 (36)  

 

and 

 
ὝὅὖὟὸȟὰ

Ὕὅὸȟὰ

ὰ
 (37)  

 

By using total cost per unit time for each candidate, we can similarly set  

 ὰᶻ ÁÒÇÍÉÎ
flɴ
 ὝὅὖὟὸȟὰ (38)  

 

Finally we decided for our next decision point. Go to Step 3 with new period length. 

 

3.4. Effect of Residual Time on Solutions 

 

Until here, we described two different heuristics to solve retailerôs problem. One of these 

policies is a policy with look-ahead capability, where residual time has an effect on our 

decisions. Other one focuses on myopic decisions and tries to minimize cost per unit 

time in every decision point. 
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One of the very natures of retailerôs final phase problem is the finiteness of the time 

horizon. As discussed in section 2, for most of business types, end of final phase is 

known and deterministic. Therefore, retailerôs problem is a finite horizon problem, as its 

effect is obvious on our heuristics. 

Recall that we have two major driving forces that define our problem and thus affects 

our heuristics: horizon length and demand rate. In general, while horizon length is 

effective in our decision on order-up-to level, demand rate affects reorder level. At this 

point, note that time horizon has no effect on reorder level, which may lead some 

troubles as described below. 

Suppose our demand rate is constant over time horizon, thus demand follows 

Homogeneous Poisson Process and let its rate is ‗. In this case reorder level will be 

constant for both Type-1 and Type-2 service measure. For Type-1 service measure, 

rewrite (2) such as: 

 ὖὶέὦὈὩάὥὲὨ ὈόὶὭὲὫ ὒὩὥὨ ὝὭάὩ”
Ὡ Ȣ‏ὸ

ὼȦ
 (39)  

 

where ɿὸ is defined as expected demand during lead time. Here, ɿὸ ᷿ ‗ȢὨὸ

‗Ȣὒ thus itôs constant and not dependent on t. For constant (40) reorder level  

 ὶ‌ȟὸ ÍÉÎ” ȿ 
Ὡ Ȣ‏ὸ

ὼȦ
‌ ȟ”‭ᴚȟɿὸ ‗ὒ (40)  

 

becomes constant for any arbitrary ὸ. 
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Figure 3.6 Effect of constant demand rate on reorder level 

However, in optimal policy, reorder level should decrease towards end of horizon due to 

risk of overstocking. Such a behavior is incorrect for both practical and theoretical 

purposes. We know that reorder level should be as low as 0 when time is Ὄ ὒ and it 

should be decrease gradually towards it. 

In order to reflect the effect of residual time on our heuristics we define an adjustment 

rate for reorder level. This rate uses the following observations: 

¶ Effect of residual horizon at starting point should be zero. 

¶ Adjustment rate should decrease reorder level to zero when ὸ Ὄ ὒ. 

¶ Based on problem parameters, gradual decrease may be slow or fast. 

Such a rate can be defined as a function of time and horizon length, dependent to rate 

 where itôs zero at first and reaches 1 when ὸ Ὄ ὒ. Therefore denote adjusted 

demand rate as 

 
‗ ‗ὸȢρ

ὸ

Ὄ ὒ
 (41)  

 

 where ὥ is adjustment parameter that defines shape of adjusted demand rate. 
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Figure 3.7 Behavior of Adjusted Demand Rates for Various Selection of the Parameter 

As shown in figure above, if ὥ ρ and demand rate is constant, adjusted demand 

decrease linearly. If ὥ ρ, adjusted demand rate increase slowly at first and then 

decrease sharply towards end of horizon. If ὥ is set to be infinity, than adjusted demand 

rate is equal to demand rate. 

Actually, this adjustment works well for homogeneous demand cases as described in the 

following subsection. 

Following subsections are organized as follows. In subsection 3.4.1, we will show that 

the usage of adjustment parameter provides near-optimal results for the homogeneous 

case. Then, we will show how the adjustment parameter can be selected for a given 

problem. In the last subsection, we suggest Power Approximation method to find a 

sufficiently good selection of the adjustment parameter and show the calculation steps. 
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3.4.1. Comparison with Teunter and Haneveldôs Method for Homogeneous Cases 

In 2002, Teunter and Haneveld dealt with a similar problem [32]. In their work, an 

optimal policy for a homogeneous-demand rate spare part inventory is proposed. In the 

study, setup cost is discarded; hence an Ὓ ρȟὛ policy is proved to be optimal. 

Moreover, for this policy, break points throughout the horizon are given explicitly. Their 

method will be denoted as THM. 

Compared to our study, the demand rate is different. THM considers homogeneous 

Poisson demand rate for the spare parts while in our study, demand rate is distributed 

with a non-homogeneous Poisson demand rate. Moreover, we have a fix setup cost, 

although setup cost is not considered in the study. Therefore, if we set our setup cost as 

zero, and homogenized our demand rate, than it will be the same problem. Since their 

problem is similar to the problem described here, we compared performance of our 

heuristic with his method. 

Since our first heuristic provides a closer solution to the THM, we used it for the 

comparison. Thus, we can examine effect of adjustment parameter by comparing his 

optimal policy with ours.  

Our first heuristic performs as the THM suggests when the setup cost is zero; order size 

will be unit sized for all orders. It is precisely the same policy of THM Ὓ ρȟὛ 

optimal policy. The Ὓ ρ level corresponds to reorder level in our heuristic, while Ὓ 

level is order up to level as same. 

Here, following parameters are used which are defined by Teunter and Haneveld [32]. 

ό=1, ὦ=20, Ὤ=0.2, ὑ=0, ‗=4, ὒ=0.25 and let Ὄ=10. Now we can plot the order-up-to 

level with given parameters as follows: 
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Figure 3.8 Order-up-to level by THM  for Teunter and Haneveldôs problem 

Order-up-to level (reorder level plus one unit) can be plot as follows if adjustment rate is 

not used. 

 

Figure 3.9 Order-up-to level by First Heuristic for Homogeneous Case 
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As data provides, our heuristic does not perform well for homogeneous case. As 

described previously, an adjustment is needed to reflect the effect of the residual time. 

Let select an adjustment parameter ὥ τȢω. Then we get the following order-up-to level 

for our first heuristic: 

 

Figure 3.10 Side by side comparison of THM  and First Policyôs Order-Up-To Level with Adjusted Demand 

Rate 

As shown, adjustment parameter is capable to imitate behavior of reorder level of the 

optimal solution. The next subsection is devoted to describe which parameters affect the 

selection of adjustment parameter and how it can be selected. 
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3.4.2. Selection of the Adjustment Parameter 

We observe that selection of parameter ὥ should be related with backordering (ὦ), 

holding (Ὤ) and setup (ὑ) costs, lead time (ὒ) and horizon length (Ὄ). If holding cost is 

high and backorder cost is significantly small, then obviously ὥ should be less because 

otherwise ὥ may not be sufficient to decrease the adjusted demand rate, which may lead 

excessive holding cost. In the opposite case, if backorder cost is high and holding cost is 

small, then ὥ should be high to maintain a higher adjusted demand rate for escaping 

excessive backorder cost. Due to these observations ὥ should be proportional with ὦȾὬ. 

Moreover, ὥ should increase when horizon length and lead time are increasing. 

Based on our observation in change of ὥ, we came up with three different alternatives. 

First alternative gives a mild adjustment parameter, where adjusted demand rate stays 

high until end-of-horizon and decrease sharply at the end. For this selection ὥ should be 

selected relatively higher (ὥ ρ). Second alternative is selecting an aggressive 

adjustment parameter, where adjusted rate decrease at first and its acceleration becomes 

slower as time passes by or decreases linearly ὥ ρ. Third selection is moderate 

selection, which is a linear combination of two alternatives.  

In order to finding best estimation of parameter ὥ, we get some simulation runs. For 

evaluating the performance of the selected ὥ level, we consider Teunter and Haneveldôs 

problem with homogeneous demand rate with K=0. (Appendix 1) 

For Teunter and Haneveldôs original problem, we found that, if parameter ὥ is taken 5.5 

for 1
st
 heuristic, then average total cost for 100 replications is 1.87% away from optimal, 

which is promising. 
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For the variations of the problem solved in Teunter and Haneveldôs paper [32], we 

search best ὥ values. Assume the standard problem has following values. 

 
‗ τȟὌ ρπȟὒ πȢςυȟὬ πȢςȟὦ ςπȟὑ πȟό ρ (42)  

Best ὥ levels are found by an exhaustive search algorithm. We found the following ὥ 

values for the variations of the standard problem as follows: 

Table 3-1 Best selection of ╪ for various cases. 

Variation 

  RESULT (100 Replications Each) 

Best 
a 

Level 

THM 
Total Cost 

Adjusted Heuristic 
1 

Total Cost 

Gap to 
THM 
(%) 

H=20 6.5 94.027 ± 1.45 94.301 ± 1.469 0.2920 

L=0.5 5.5 50.548 ± 1.545 50.852 ± 1.46 0.6022 

b=5 0.8 44.451 ± 1.242 45.197 ± 1.238 1.6788 

b=10 1.0 46.176 ± 1.415 46.66 ± 1.197 1.0476 

h=0.4 1.0 52.77 ± 1.686 53.191 ± 1.313 0.7971 

 

¶ For standard problem with horizon length is 20, best a level is 6.5, where total 

cost is very close the optimal result, gap between costs is just 0.29%. 

¶ For standard problem with lead time 0.5, we get a solution 0.60% away from 

optimal cost.  

¶ With a backorder cost 5, best level for ὥ is significantly low, 0.8 where we 

satisfy to be far from optimal solution just 1.67%. 

¶ For the original problem with only difference backorder cost is 10, best selection 

of ὥ is 1, where average total cost 1.04% away from average total cost with 

Teunter and Haneveldôs optimal policy, THM. 

¶ And lastly, for original problem with only difference holding cost is 0.4, best 

selection of ὥ is again 1, where total cost is 0.79% away from optimal result. 
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We conclude that ὥ is depending on the following parameters; 

¶ Holding / backorder cost ratio 

¶ Lead Time 

¶ Horizon Length 

We set up 20 different scenarios and get 100 replications for more than 30 different 

 ὥ levels each to better estimate it. We reach the following selections of ὥ, where unit 

cost is fixed to 1; 

Table 3-2 Best selection of adjustment parameter 

Parameters   

Horizon 
Length 

Backorder 
Cost 

Holding 
Cost 

Lead 
Time 

Setup 
Cost 

Adjustment 
Parameter 

H b h L K Best a 

5 18 0.6 0.50 2 0.2 

5 15 0.8 0.75 1 0.8 

5 15 0.7 0.75 0 5.4 

5 25 0.9 1.25 0 7.2 

5 18 0.5 0.75 2 0.5 

10 19 0.5 0.50 2 0.3 

10 15 0.2 0.50 3 2.1 

10 21 0.7 0.50 0 7.9 

10 19 0.1 1.25 2 3.5 

10 25 0.2 0.75 0 6 

20 23 1.0 1.25 0 57.5 

20 16 0.9 1.25 0 53.1 

20 17 0.1 0.50 4 8.2 

20 24 0.4 1.25 0 51.2 

20 30 0.1 0.25 5 8.1 

30 26 0.2 1.25 3 12.6 

30 16 0.9 0.25 0 30.4 

30 15 0.1 0.25 2 7 

30 20 0.2 0.50 0 44.5 

30 22 1.0 1.25 0 58.5 
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3.4.3. Power Approximation of Adjustment Parameter ñaò 

By using simulation results given in Section 3.4.2, we apply power approximation 

method, defined by Ehrhardt in 1979 [8]. This approximation assumes that the parameter 

to be adjusted is a multiplicative function of the factors.  Let, the optimal selection of 

adjustment parameter ñaò has the following relation with the problem parameters: 

 
ὥ ὧὌ

ὦ

Ὤ
ὒ ρ ὑ ρ  (43)  

 

where ὧȟὧȟὧȟὧȟὧ are the parameters to be approximated. Taking the logarithm of 

both sides gives us 

 
ÌÎὥ ÌÎὧ ὧÌÎὌ ὧÌÎ

ὦ

Ὤ
ὧÌÎὒ ρ ὧÌÎὑ ρ (44)  

 

which can be approximated by linear regression. We take some simulation runs for the 

approximation (Table 3-2). By using the linear least-squares approach as suggested by 

the author, the approximations of the parameters are listed below.  

Table 3-3 Regression Results for Power Approximation 

Parameter Approximation 

ὧ 0.02 

ὧ 1.71 

ὧ 0.34 

ὧ 1.73 

ὧ -1.43 

 

The statistical results obtained from Linear Regression are given in Appendix 4. 
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Later, we conclude that parameter ὥ should be dependent only to horizon length. 

Moreover, backordering and holding cost ratio and setup costs are not sufficient to 

represent the behavior. We know that ὥ should increase when Ὄ increases while other 

relations of problem parameters with ὥ is unclear. Hence we ignore the effects of the 

other parameters and apply Power Approximation where  ὥ is defined as 

 
ὥ ÃὌ  (45)  

 

and apply Power Approximation. Statistical details are provided in Appendix 5. 

Approximation is represented as 

 
ὥ πȢπυ ὌȢ  (46)  

 

Unfortunately, this approximation explains the behavior of adjustment parameter with 

adjusted R-Square value of 0.52. Although our Power Approximation is unable to 

explain adjustment parameter, we use this approximation for the computations in 

Chapter 4. Such an approximation may lead under or overestimation of adjustment 

parameter.  

By using these results, we get the approximations of ὥ for our experiment set: 
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Table 3-4 Comparison of Best and Approximated Adjustment Parameter 

Parameters     

Horizon 
Length 

Backorder 
Cost 

Holding 
Cost 

Lead 
Time 

Setup 
Cost 

Adjustment 
Parameter 

Adjustment 
Parameter 

H b h L K Best a Approximation 

5 18 0.6 0.50 2 0.2 1.09 

5 15 0.8 0.75 1 0.8 1.09 

5 15 0.7 0.75 0 5.4 1.09 

5 25 0.9 1.25 0 7.2 1.09 

5 18 0.5 0.75 2 0.5 1.09 

10 19 0.5 0.50 2 0.3 3.95 

10 15 0.2 0.50 3 2.1 3.95 

10 21 0.7 0.50 0 7.9 3.95 

10 19 0.1 1.25 2 3.5 3.95 

10 25 0.2 0.75 0 6 3.95 

20 23 1.0 1.25 0 57.5 14.35 

20 16 0.9 1.25 0 53.1 14.35 

20 17 0.1 0.50 4 8.2 14.35 

20 24 0.4 1.25 0 51.2 14.35 

20 30 0.1 0.25 5 8.1 14.35 

30 26 0.2 1.25 3 12.6 30.53 

30 16 0.9 0.25 0 30.4 30.53 

30 15 0.1 0.25 2 7 30.53 

30 20 0.2 0.50 0 44.5 30.53 

30 22 1.0 1.25 0 58.5 30.53 

 

3.5. Ending Remarks 

 

Residual time is an effective element in finite horizon problems, in general. Most of the 

time, decisions are affected by the residual time. For our problem, even if the demand 

rate stays constant, retailers may want to reduce the reorder level to minimize risk of 

paying unnecessary setup costs. Teunter and Haneveldôs optimal policy for the 

homogeneous demand rate case with zero setup cost shows that reorder level should 
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decrease towards the end of horizon [32]. Therefore, applying our two heuristics on the 

problems without any modification may lead some excessive setup costs, since reorder 

level defined by either Type-1 or Type-2 service level does not consider residual time on 

calculations. However, we know that at some point of time, not giving a replenishment 

order until the end is the best option for the retailer as mentioned in Section 3.2.3. 

Since we know that reorder level should decrease gradually to zero, and then to minus 

infinity, we decided to use an adjustment parameter, which leads underestimating the 

demand during lead time: 

 
‗ ‗ὸȢρ

ὸ

Ὄ ὒ
 (47)  

 

This underestimation is dependent to residual time until end-of-horizon and can be 

adjusted by the parameter ὥ. Based on problem parameters, we would like to change our 

underestimation of the demand during lead time. For instance, when horizon length is 

sufficiently large, we would like to increase adjustment parameter ὥ, since the relatively 

lower values of ὥ leads a sharp decrease at the beginning of the horizon. As holding and 

backorder cost parameters are effective in THM, we know that these two parameters 

should affect our selection of ὥ. Also, setup cost is another parameter that should be 

considered. 

As the best selection of parameter ὥ seems unclear, we decided to use Power 

Approximation method, where the parameter ὥ is defined as a multiplicative function of 

parameters mentioned. We decided that only horizon length is effective on adjustment 

parameter. Then by using Linear Regression on the logarithm of both sides, we can 

estimate the parameters in the Power Approximation method. Note that for a good 

estimation of ὥ we need a sufficiently big sample size. Small number of experiments 

may lead errors in regression of parameters. Even if we approximate this parameter, 
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such a relation between adjustment parameter ὥ and the other parameter of the problem 

is not certain. We suggest using this approximation for the decision maker, for a 

relatively better selection of the adjustment parameter. Decision maker can also find 

another way to search for the best value of ὥ by taking simulation runs. 

Power Approximation provides a value for adjustment parameter ὥ and we use this 

technique for all simulation results in Chapter 4 unless otherwise stated. We also show 

why this adjustment is needed in the numerical experiments. 
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Chapter 4  

Computations & Results 

 

In this chapter, we used our both heuristics for various setups and measure the 

effectiveness of these policies. In 4.1 we will introduce the computation platform, 

simulation software and system specifications. In 4.2 we provide verification of software 

by using simple cases and parameters. Finally in section 4.3 we provide comprehensive 

results for both heuristics and compare results. 

 

4.1. Computation Platform 

 

Since our heuristic is designed for a stochastic problem, in order to evaluate 

performance of the policies we need simulation. However, available simulation 
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softwares are not flexible to solve the deterministic subproblems. Therefore, we create a 

user-friend simulation tool, Inventory System Simulator (Insys) for measuring and 

comparing performance of the policies. 

Insys is developed on Object-Oriented Java language (Java JDK 1.7.0) and able to use 

mathematical software MATLAB® for calculations. There are 3 external libraries in 

Insys. First external library is exp4j (ver. 0.2.8) which enables the usage of symbolic 

definition of demand rates by using variables. Second external library is JSC (Java 

Statistical Classes, ver. 1.0) which is used for demand distribution, such as generating 

demand points according to Non-homogeneous Poisson Distribution. Last external 

library is matlabcontrol (ver. 4.0.0) for connecting MATLAB® functions to Insys. 

Insys is capable of simulating 100 replications in less than 2 minutes for most cases 

(homogeneous case with no setup cost). All mathematical operations, such as solving (9) 

and (10) optimality conditions and calculating long mathematical expressions (8) are 

done via MATLAB®. 

Insys has also well-designed user interface for saving/loading problems and tracking 

inventory position in continuous time. Both inventory position and level could be 

tracked in continuous time. After getting runs simulation graphs (inventory movements) 

are recorded as image files to the computer for detailed analysis. The simulation tool is 

capable of running THM, 1
st
 Heuristics and 2

nd
 Heuristic. For THM, tool can also 

provide optimal order-up-to levels. 

For numerical experiments in this chapter, Type-2 service level during lead time is 

applied unless otherwise stated. Service level is fixed to ὦὦ Ὤ . 
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Figure 4.1 User Interface of Insys Simulation Tool 

Usage of Insys 

Insys is capable to solve Final Phase Problem by using 1
st
 heuristic, 2

nd
 heuristic and 

THM. Note that, it set some of pre-defined values for the selection of the algorithm. For 

instance, THM works only if K=0, hence it sets setup cost value at the time of selection. 

User can set the non-homogeneous Poisson demand rate in three ways. First, the 

constant rate is defined by letter ñCò and written as ñὅȿτò for ‗ τ. Second, piecewise 

linear cases can be set by letter ñPò such as ñὖȿσȟσz ὼȡφȟὼȡρπȟςz ὼò represents 

‗ὸ

σὸ ὭὪ π ὸ σ
ὸ ὭὪ σ ὸ φ
ςὸ ὭὪ φ ὸ ρπ
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Lastly, user can enter any other function with letter ñOò such as ñὕȿπȢςz τπ ὼò 

which corresponds ‗ὸ πȢς τπὸ (Figure 13). Note that, there is no any restriction 

for given function, however demand rate should be a non-increasing function to take 

meaningful results. 

 

Figure 4.2 Insys is simulating a case, where demand rate is a decreasing linear function of time. 

Parameter should be set in numerical format. Only for 2
nd

 heuristic, Defined time 

intervals should be separated with comma, such as ñρȟςȟτȟρπò which defines the 

candidate period length for the 2
nd

 heuristic. 
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In default settings, Insys provides 10 replications with the given setup and their 

inventory position-level versus time graphs. (Figure 14) Note that all generations and 

statistics are also recorded for comparison purposes. (Appendix 2) 

 

Figure 4.3 A sample output file of Insys. 

4.2. Validation and Verification of Software 

 

As shown in the previous subsection Insys provides reasonable results for given inputs. 

We know that when K=0, the orders should be unit sized, as the solution of deterministic 

subproblems. For ὑ π standard problem, we get the following output Inventory 

Position vs. time graph: 
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Figure 4.4 Inventory Position-Level vs. Time Graph for Standard Problem by using 1st Heuristic (Appendix 3) 

Note that, all orders are unit sized as we expect. See Appendix 3 for the final report on 

replenishment times and quantities. As seen all orders are unit-sized as expected. It is 

because, best solution to Deterministic Subproblem is achieved where ὲ equals to 

expected demand between ὸ  and Ὄ and since there is no setup cost. Hence 

replenishing inventory for every single demand minimizes the total cost. Therefore, 

order sizes will be unit sized. This theoretic solution is observable in simulation 

replications, which proves the tool works correctly in terms of (1) solving DS and (2) 

calculating costs. 

We also see that, demand generations of the software are reasonable. For different 

demand rate functions (‗) we inspect the demand times and verify that times are 

accurate. On a simple example, when ‗ τ constant, the expected demand for Ὄ ρπ 

should be 40. Over 100 replications, we see that the 95% confidence interval of total 

demand is 40.0113 ± 0.0345. We assume that the precision we obtain is acceptable. 

To verify software, we set up some simple cases and compare the results with the known 

optimal solutions. 
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First case we observe is when setup cost is zero and demand rate is constant. We know 

that THM solution is optimal for this problem. 95% Confidence Interval of Average 

Total cost is τχȢςσ  ρȢρω for THM, while our 1
st
 heuristic gives τψȢρρ  ρȢς with 

ὥ υȢυ (Appendix 1). 

Second case is performed with THM. We solve standard problem with their algorithm 

and observe the inventory movements. We see that, software is accurate in terms of 

calculating order-up-to and reorder levels, defining break points and calculating average 

total costs.  

 

Figure 4.5 Inventory Movement with THM  

4.3. Results 

 

For evaluating the performance of the heuristics we set up some pre-defined parameters. 

The list of these cases as the following; 
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Table 4-1 Setups for Problem Parameters  

Parameter   

Unit Cost 1     

Holding Cost 0.2     

Lead Time 0.25 0.5   

Setup Cost 0 10   

Backordering Cost 5 20   

Horizon Length 10 20   

Demand Rates 
(H=10) 4 0.8.(10-t) -3/50*t^2+6 

(H=20) 4 0.4.(20-t) -3/200*t^2+6 

 

So, for lead time we use 2 different settings, 2 for setup cost, 2 for backordering cost and 

2 for horizon length. For each horizon length, we evaluate (1) homogeneous demand rate 

case, (2) linear decreasing demand rate case and (3) quadratic decreasing demand rate 

case for non-homogeneous Poisson process. 

By using combinations of these setups, there are totally 48 different cases. By using 

simulation, we evaluate performances of our heuristics for these cases. In here, we 

present results of 1
st
 and 2

nd
 Heuristics in order, for homogeneous, linear decreasing and 

quadratic decreasing order for demand rate. 

For each demand rate, we create a demand list by generating non-homogeneous Poisson 

process demands and apply same demand times to all scenarios. 

4.3.1 Results of 1
st
 Heuristic 

For the 1
st
 heuristic we take simulation run for homogeneous, linear decreasing and 

quadratic decreasing demand rates.  



72 

 

For the homogeneous case we use ‗ τ, for linear decreasing  ‗ὸ πȢψ ρπ ὸ and 

for quadratic decreasing we set  ‗ὸ Ȣὸ φ where ᷿ ‗ὸ Ὠὸ τπ. Hence 

expected total unit cost is equal for all these cases. 

Results of constant, linear decreasing and quadratic decreasing demand rate experiments 

are provided in the Appendix 6, 7 and 8, respectively. 

A summary of the results are provided in the following tables. 

Table 4-2 Comparison of Simulation Results for 1st Heuristic Different Setups, ╛ Ȣ  

(L=0.25) 
b=5 b=20 

K=0 K=10 K=0 K=10 

H=10 

Constant 47.057 109.991 49.332 111.102 

Lin. Dec. 49.009 173.701 52.848 171.102 

Quad. Dec. 48.107 160.088 51.300 158.134 

H=20 

Constant 93.305 194.615 97.060 195.248 

Lin. Dec. 95.003 303.666 102.252 303.974 

Quad. Dec. 94.770 275.992 100.115 279.418 

 

Table 4-3 Comparison of Simulation Results for 1st Heuristic Different Setups, ╛ Ȣ 

(L=0.5) 
b=5 b=20 

K=0 K=10 K=0 K=10 

H=10 

Constant 50.065 106.406 53.655 107.758 

Lin. Dec. 54.035 170.176 64.656 175.686 

Quad. Dec. 52.442 155.380 61.079 156.406 

H=20 

Constant 99.306 193.686 101.719 195.105 

Lin. Dec. 103.567 302.771 116.253 308.402 

Quad. Dec. 100.887 276.963 111.757 282.822 

 

Note that as we select ὥ rather arbitrarily, comparison of expected costs may not follow 

expectations. 
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4.3.2 Results of 2
nd

 Heuristic 

We take simulation runs of 2
nd

 heuristic for only homogeneous demand case. We apply 

the same setups as we used for 1
st
 heuristic. Note that we have two different lead times. 

Period length candidates are selected as the 2
nd

 degree multipliers of these lead times. 

So, for L=0.25, candidates are 0.25, 0.5, 1, 2 and 4, while for L=0.5 candidates are 0.5, 

1, 2, 4 and 8. 

Simulation results are provided in Appendix 9. Comparison with 1
st
 heuristic results is 

discussed in following subsection. 

 

4.4. Performance Comparisons 

 

We emphasize some of the important comparisons between performances of the 

policies. 

THM  ï 1
st
 Heuristic 

Since THM is only applicable for homogeneous Poisson demand rate and zero setup 

cost, we evaluate this comparison on standard problem. For the standard problem, 

defined in (42) we get the following average total cost. 

Table 4-4 Comparison of THM and 1st Heuristic with Different Adjustment Parameter on Standard Problem 

Method 
Adjustment 
Parameter 

Mean 
(CI 0.95) 

Gap (%) 

THM  - 48.763 ± 2.168 - 

1st Heuristic - 50.582 ± 2.065 3.730 

1st Heuristic 20 49.695 ± 2.034 1.911 

1st Heuristic 3.622 49.332 ± 2.232 1.166 

1st Heuristic 1 51.036 ± 2.753 4.661 
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In 100 replications, THM gives a total cost 48.763. We applied 1
st
 Heuristic with no 

adjustment parameter, and then two extreme adjustment parameter (20 and 1) and finally 

the adjustment parameter obtained via Power Approximation, 3.622. As we expect, 

without adjustment, heuristic gives a higher cost compared to approximated value. 

Extreme solution where ὥ ρ actually gives worse result than not applying adjustment 

at all, this shows that good selection of the parameter is important for its performance. In 

another setting, we change the holding cost to 2, while in the original problem it is 0.2. 

Enlarging holding cost 10 times increased the cost as follows: 

Table 4-5 Comparison of THM and 1st Heuristic with Different Adjustment Parameter for ▐  

Method 
Adjustment 
Parameter 

Mean 
(CI 0.95) 

Gap (%) 

THM   82.463 ± 2.397 - 

1st Heuristic - 87.201 ± 2.216 5.740 

1st Heuristic 20 86.540 ± 2.276 4.943 

1st Heuristic 3.622 86.380 ± 2.275 4.750 

1st Heuristic 1 88.365 ± 2.903 7.158 

 

The gap between average total costs (THM vs. Best 1
st
 Heuristic Result) increased in 

this experiment to 4.75%, while we reach the worst solution when adjustment parameter 

is fixed to 1. 

1
st
 Heuristic, Different Setup Cost Selection 

We also compare the effect of adding setup cost to the problem. We know that without 

setup cost and under homogeneous demand rate, the optimal solution suggests 

replenishments with unit-size. However, addition of setup cost changes the cost 

structure. Here, we evaluate how setup cost affects the total cost in the problem. We use 

1
st
 Heuristic with three different setup cost parameters, 0, 1 and 5, in order. For each 
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setup cost, we take simulation runs (1) without adjustment operation and (2) adjustment 

parameter with Power Approximation. We get the following results: 

Table 4-6 Effect of Adjustment on Different Setup Cost Settings 

Setup Cost 
Adjustment 
Parameter 

Mean 
(CI 0.95) 

Decrease (%) 

0 - 50.582 ± 2.065 - 

0 3.622 49.332 ± 2.232 2.47 

1 - 67.129 ± 2.281 - 

1 3.622 63.143 ± 2.359 5.93 

5 - 93.435 ± 2.903 - 

5 3.622 86.102 ± 2.916 7.84 

 

This shows that benefit of applying adjustment is increasing when setup cost is higher. 

Note that, when we apply THM for the case ὑ ρ, the total cost becomes 87.232 and 

for ὑ υ it becomes 247.232, since the policy orders a unit for every demand. 

1
st
 Heuristic, Different Demand Rate Functions 

We compare the performance of the 1
st
 heuristic on different demand rate functions. We 

choose samples where the total expected demand remains same. Adjustment parameter 

does not depend on the demand rate function, hence it remains same. We compare cases 

where ὑ π and ὑ π. 
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Table 4-7 Change in Total Cost for Different Demand Rates 

Demand Rate Setup Cost 
Adjustment 
Parameter 

Mean 
(CI 0.95) 

Gap (%) 

4 0 3.622 49.332 ± 2.232 - 

0.8 (10-t) 0 3.622 52.848 ± 2.556 7.172 

6-3 ὸ/50 0 3.622 51.3 ± 2.423 3.989 

4 10 3.622 111.102 ± 6.074  - 

0.8 (10-t) 10 3.622 171.102 ± 11.78  54.004 

6-3 ὸ/50 10 3.622 158.134 ± 10.773  42.332 

As seen from the results, the average total cost increased compared to homogeneous 

Poisson case. Although confidence intervals are wide, total cost for quadratic decrease 

case seems slightly better than linear decrease case. 

1
st
 Heuristic ï 2

nd
 Heuristic 

We compare 1
st
 and 2

nd
 Heuristicsô results for both when ὑ π and ὑ π. Here, 

candidate set for the 2
nd

 heuristic is defined as the second degree multiples of lead time. 

First, we take setup cost as zero (ὑ π) and also set adjustment parameter to 3.622. We 

get the following result. 

Table 4-8 Comparison of THM, 1st and 2nd Heuristics for Standard Problem 

Method Candidate Set 
Mean 

(CI 0.95) 

THM - 48.763 ± 2.168  

1st Heuristic - 49.332 ± 2.232 

2nd Heuristic 0.25, 0.5, 1, 2, 4 53.569 ± 3.438  

 

Then we consider the standard problem with ὑ ρ and ὑ ρπ. For both setup cost, 

adjustment parameter is calculated via Power Approximation and set to 3.622. 
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Table 4-9 Comparison of 1st and 2nd Heuristics for ╚  on Standard Problem 

Method Candidate Set 
Mean 

(CI 0.95) 

1st Heuristic - 63.143 ± 2.359 

2nd Heuristic 0.25, 0.5, 1, 2, 4 62.032 ± 2.372 

 

For ὑ ρπ: 

Table 4-10 Comparison of 1st and 2nd Heuristics for ╚  on Standard Problem 

Method Candidate Set 
Mean 

(CI 0.95) 

1st Heuristic - 111.102 ± 6.074  

2nd Heuristic 0.25, 0.5, 1, 2, 4 99.435 ± 3.681 

 

Also by comparing the results presented in section 4.3.1 and 4.3.2, we see that 1
st
 

heuristic provides slightly better results than 2
nd

 heuristic for zero setup cost case. When 

we apply non-zero setup cost to the problem, performances of the heuristics becomes 

closer and especially for higher setup costs 2
nd

 heuristic gives better results in general. 

 

4.5. Remarks and Conclusions 

 

Computational studies give some hints about applications of the heuristics. We will 

summarize these important results in here. 

¶ On homogeneous demand rate with zero setup cost, 1
st
 heuristic performs best. 

We compare these results with THM as a benchmark and conclude that it gives 
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near-optimal solutions for most of the cases, at most 2% away from optimal 

value according to our numerical results. 

¶ On homogeneous demand rate with non-zero setup cost 2
nd

 Heuristic provides 

better objective values compared to other combinations. Especially for high 

values of setup cost, 2
nd

 heuristic outperforms 1
st
 heuristic. There are two reasons 

for this result. (1) Although 1
st
 heuristic benefits from estimation of future 

replenishments, solving deterministic subproblems involves some errors due to 

stochasticity. Most of the time, 1
st
 heuristic ends up with more replenishments 

than estimated at time 0. (2) Inclusion of setup cost in 2
nd

 heuristic pushes 

retailer to use longer period lengths while holding and backordering cost do the 

opposite. When setup cost is getting larger, review period lengths are getting 

longer, which ultimately reduce total setup cost. 

¶ For non-homogeneous demand rate with zero setup cost cases, performance of 1
st
 

heuristic is not affected by cost parameters. For instance, for the standard 

problem with ὦ υ and ςπ, average total costs are 47.057 and 49.332, 

respectively. 

¶ Results of the 1
st
 heuristic on non-zero setup cost cases are heavily affected by 

the size of setup cost. For higher setup costs, average total cost increased 

significantly. Same effect is also observable on 2
nd

 heuristic, but not as much as 

in 1
st
 heuristic results. 

¶ Selection of adjustment parameter is vital for the practical purposes. Although 

the existence of an explicit way to calculate best ὥ value is unknown, we could 

explain the its relation with horizon length. Hence, Power Approximation 

method, only depends on horizon length, is applied and results are compared to 

THM. 

¶ Candidate set for the 2
nd

 heuristic is always selected as the 2
nd

 degree multipliers 

of the lead time and this selection provides better values for homogeneous 
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demand rate with zero setup cost cases. Increasing the size of the candidate set 

obviously increase the performance of the 2
nd

 heuristic, but may be time-

consuming for practical purposes. 

¶ Both heuristics provided results in reasonable times as expected. Moreover, 

addition of extra information such as indefinite integral of the demand rate 

function is observed to be useful for numerical operations. 
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Chapter 5  

Conclusion 

 

Final phase is generally the longest phase in the lifecycle of a product. It starts when the 

product is out of production and continues until last contract expires. In this phase, 

companies have to supply spare parts due to legal responsibilities in the contracts. 

Therefore, management of inventory of spare parts becomes an issue for retailers; since 

these parts often need be keep in the retailer level. Due to uncertainty of demand and 

risk of obsolescence at the end of the horizon, retailers must manage spare part inventory 

careful to avoid excessive holding, backorder, setup and unit costs. 

In this study we focus on a retailerôs problem in the final phase. Due to nature of the 

final phase, we define the horizon is finite and known. We also assume that demand is 

distributed with Non-Homogeneous Poisson Distribution over the horizon with a non-

increasing function of time rate. All cost are taken as fixed and known as the lead time. 
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Optimal solution of this problem could be obtained via Dynamic Programming, however 

up to authorsô knowledge; there isnôt any study on the optimal solution of the problem 

considered here. Moreover, structure of the optimal solution via Dynamic Programming 

could be difficult to capture. 

In order to provide a fast and applicable solution to retailerôs problem, we came up with 

two heuristics. Our first heuristic is a continuous review heuristic, which uses the 

solution of the deterministic subproblem for ordering quantity and time decisions. This 

policy has look-ahead capability over the residual horizon, which is based on estimating 

future orders. On the opposite, second heuristic uses a myopic look for solving the 

problem. It is a periodic review policy, where the lengths of the periods are variable and 

selected among a candidate set. It is more realistic and applicable to real life than first 

policy, because it needs less data for calculations and faster in terms of CPU time. 

Remarks on numerical computations and suggestions on application of the heuristics are 

summarized in subsection 4.5. 

We provide three contributions to the literature. First, the heuristics provide near-optimal 

solution to homogeneous demand case, at most around 2% away from optimal value. 

Without needing long calculations for optimality, it is a solution for the retailer which is 

applicable during the final phase. Second, it is one of first studies which consider non-

homogeneous Poisson demand distribution for the final phase. Although it is not 

providing an optimal solution, it is applicable to real life due to its flexibility to apply for 

decreasing demand cases. Indeed, assumption of decreasing demand rate is common in 

real life in final phase. We even show the performance of the heuristics for the quadratic 

decreasing case, which is hard to solve optimally. Our third contribution is that we use 

the idea of estimating the future replenishments to decide replenishment quantity in a 

final phase problem.  Hence, this study is a new application of look-ahead capability on 

inventory problems. 
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In conclusion, this study is not only good at solving the retailerôs problem for the final 

phase, but also useful for academic perspective. As a future study, one can apply the 

idea of estimating future replenishments to other phases of the lifecycle of products and 

find new key points to interpret the effect of estimation in the finite horizon problems. 

Moreover, better ways to select adjustment parameter and period lengths in the myopic 

heuristic can be found. Also adjustment parameter could be changed dynamically during 

the planning horizon. 

  



83 

 

BIBLIOGRAPHY 

 

[1] J. R. Bradley and H. H. Guerrero, "Lifetime buy decisions with multiple obsolete 

parts." Production and Operations Management 18, no. 1 (2009): 114-126. 

[2] J. R. Bradley and H. H. Guerrero, "Product Design for LifeȤCycle Mismatch." 

Production and Operations Management 17, no. 5 (2008): 497-512. 

[3] K. D. Cattani and G. C. Souza, "Good buy? Delaying end-of-life purchases." 

European Journal of Operational Research 146, no. 1 (2003): 216-228. 

[4] M. A. Cohen and S. Whang, "Competing in product and service: a product life-cycle 

model." Management Science 43, no. 4 (1997): 535-545. 

[5] I. David, E. Greenshtein and A. Mehrez, "A dynamicȤprogramming approach to 

continuousȤreview obsolescent inventory problems." Naval Research Logistics (NRL) 

44, no. 8 (1997): 757-774. 

[6] R. Dekker, Ç. Pinçe, R. Zuidwijk and M. N. Jalil, "On the use of installed base 

information for spare parts logistics: a review of ideas and industry practice." 

International Journal of Production Economics (2011). 

[7] M.  W. F. M. Draper and A. E. D. Suanet, "Service Parts Logistics Management." In 

Supply Chain Management on Demand, pp. 187-210. Springer Berlin Heidelberg, 2005. 

[8] R. Ehrhardt, "The power approximation for computing (s, S) inventory policies." 

Management Science 25, no. 8 (1979): 777-786. 



84 

 

[9] European Union, "Shopping Guarantees." Your Europe, Dec. 2011. 

<http://europa.eu/youreurope/citizens/shopping/shopping-abroad/guarantees/ 

index_en.htm>. 

[10] L. Fortuin. "Reduction of the all-time requirement for spare parts." International 

Journal of Operations & Production Management 2, no. 1 (1981): 29-37. 

[11] L. Fortuin, "The all-time requirement of spare parts for service after salesð

theoretical analysis and practical results." International Journal of Operations & 

Production Management 1, no. 1 (1980): 59-70. 

[12] L. Fortuin and H. Martin, "Control of service parts." International Journal of 

Operations & Production Management 19, no. 9 (1999): 950-971. 

[13] J. H. J. Geurts and J. M. C. Moonen, "On the robustness of 'insurance type' spares 

provisioning strategies." Journal of the Operational Research Society (1992): 43-51. 

[14] G. Hadley and T. M. Whitin, "A family of dynamic inventory models." 

Management Science 8, no. 4 (1962): 458-469. 

[15] Honest John Limited, "Consumer Rights." Frequently Asked Questions, Feb. 2013. 

<http://www.honestjohn.co.uk/faq/consumer-rights/>. 

[16] K. Inderfurth and R. Kleber, "An Advanced Heuristic for MultipleȤOption Spare 

Parts Procurement after EndȤofȤProduction." Production and Operations Management 

22, no. 1 (2013): 54-70. 

[17] K. Inderfurth and K. Mukherjee, "Decision support for spare parts acquisition in 

post product life cycle." Central European Journal of Operations Research 16, no. 1 

(2008): 17-42. 



85 

 

[18] L. A. Johnson and D. C. Montgomery, ñContinuous Review Lot-Size Problem.ò 

Operations research in production planning, scheduling, and inventory control, Vol. 6, 

71-74. New York: Wiley, 1974. 

[19] J. R. Moore, "Forecasting and scheduling for past-model replacement parts." 

Management Science 18, no. 4-Part-I (1971): B-200. 

[20] Ç. Pinçe and R. Dekker, "An inventory model for slow moving items subject to 

obsolescence." European Journal of Operational Research 213, no. 1 (2011): 83-95. 

[21] M. Pourakbar, End-of-Life Inventory Decisions of Service Parts. Erasmus 

University Rotterdam, 2011. 

[22] M. Pourakbar and R. Dekker, "Customer differentiated end-of-life inventory 

problem." European Journal of Operational Research (2012). 

[23] M. Pourakbar, J. B. G. Frenk and R. Dekker, "EndȤofȤLife Inventory Decisions for 

Consumer Electronics Service Parts." Production and Operations Management 21, no. 5 

(2012): 889-906. 

[24] Productivity Portal, "Spare Parts Management." Maintenance Management, Feb. 

2013. <http://www.productivity.in/knowledgebase/Plant%20Engineering/g. Spare Parts 

Management.pdf>. 

[25] H. E. Scarf, ed. Multistage Inventory Models & Techniques. Vol. 1. Stanford 

University Press, 1963. 

[26] E. A. Silver and H. C. Meal, "A heuristic for selecting lot size quantities for the 

case of a deterministic time-varying demand rate and discrete opportunities for 

replenishment." Production and Inventory Management 14, no. 2 (1973): 64-74. 



86 

 

[27] R. Solomon, P. A. Sandborn and M. G. Pecht, "Electronic part life cycle concepts 

and obsolescence forecasting." Components and Packaging Technologies, IEEE 

Transactions on 23, no. 4 (2000): 707-717. 

[28] T. Spengler and M. Schröter, "Strategic management of spare parts in closed-loop 

supply chainsða system dynamics approach." Interfaces 33, no. 6 (2003): 7-17. 

[29] Technology Services Industry Association, "Summary Findings on Service Spare 

Parts Issues and Practices." TSIA Releases Service Spare Parts Update 2011, 2011.  

<http://www.tsia.com/about_us/press_releases/2011_press_releases/2011-07-22-spare-

parts-survey.html>. 

[30] R. H. Teunter and L. Fortuin, "End-of-life service." International Journal of 

Production Economics 59, no. 1 (1999): 487-497. 

[31] R. H. Teunter and L. Fortuin, "End-of-life service: A case study." European 

Journal of Operational Research 107, no. 1 (1998): 19-34. 

[32] R. H. Teunter and W. K. K. Haneveld, "Inventory control of service parts in the 

final phase." European Journal of Operational Research 137, no. 3 (2002): 497-511. 

[33] R. H. Teunter and W. K. K. Haneveld, "The ófinal orderô problem." European 

Journal of Operational Research 107, no. 1 (1998): 35-44. 

[34] J. P. J. Van Kooten and T. Tan, "The final order problem for repairable spare parts 

under condemnation." Journal of the Operational Research Society 60, no. 10 (2008): 

1449-1461. 

 

  



87 

 

 

 

 

 

APPENDIX 

  



88 

 

Appendix 1 Performance of Adjustment Parameter compared to THM  on 

Homogeneous Case - 1 

‗ τȟὌ ρπȟὒ πȢςυȟὬ πȢςȟὦ ςπȟὑ πȟό ρ 

Problem Algorithm 

Parameters RESULT (100 Replications Each) 

a Level 
Average 

Total 
Cost 

Variance 
Confidence 

Interval 
(0.95) 

Gap to 
THM 
(%) 

a         

Constant             

Teunter 
and 

Haneveld 
Original 

THM   47.23 36.01 47.23 ± 1.19   

Alg 1 4 48.35 44.13 48.35 ± 1.31 2.3706 

  4.5 48.43 42.01 48.43 ± 1.28 2.5436 

  5 48.27 39.94 48.26 ± 1.25 2.1964 

  5.5 48.12 36.98 48.11 ± 1.2 1.8757 

  6 48.16 37.02 48.16 ± 1.2 1.9736 

  6.5 48.16 37.02 48.16 ± 1.2 1.9736 

Alg 1 4 50.13 41.44 50.12 ± 1.27 6.1299 

  4.5 50.18 38.12 50.17 ± 1.22 6.2357 

  5 50.02 35.86 50.01 ± 1.18 5.9005 

  5.5 49.99 33.59 49.99 ± 1.15 5.8442 

  6 50.11 33.39 50.1 ± 1.14 6.0834 

  6.5 50.12 33.07 50.12 ± 1.14 6.1212 
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Appendix 2 Sample Output Report of 1 Iteration of Insys (1
st
 Heuristic) 

C: \ Users \ Raion \ Desktop \ Albatross Run \ 1371509482462.ins   Simulation Start  

 Upper Bound= 42  

 Cost for 1 is: 66.0 where next order is: 4.799999994581396  

 Cost for 2 is: 65.33333333333334 where next order is: 3.1333333129586993  

 Cost for 3 is: 66.0 where next order is: 2.2999999992275217  

 Cost for 4 is: 71.0 where next order is: 1.800000001636399  

 Cost for 5 is: 73.66666666666667 where nex t order is: 1.4666666666666668  

 Cost for 6 is: 77.71428571428571 where next order is: 1.2285714285714282  

 Optimal Residual Number for - 0.2 is 2  

 Order is given at - 0.2 :13.0  

 Upper Bound= 35  

 Cost for 1 is: 52.688428364008665 where next order is: 5.6635117 03316419  

 Cost for 2 is: 55.12561890933911 where next order is: 4.284682266832034  

 Cost for 3 is: 57.84421418200432 where next order is: 3.5952675501860383  

 Cost for 4 is: 60.47537134560346 where next order is: 3.181618720909901  

 Cost for 5 is: 65.56280945 466956 where next order is: 2.905852832198355  

 Cost for 6 is: 68.9109795325739 where next order is: 2.708877198110855  

 Optimal Residual Number for 1.527023400248051 is 1  

 Order is given at 1.527023400248051 :17.0  

 Upper Bound= 17  

 Cost for 1 is: 23.9993466 09562796 where next order is: 7.863719219308917  

 Cost for 2 is: 29.999564406375196 where next order is: 7.218292290786801  

 Cost for 3 is: 32.499673304781396 where next order is: 6.895578827272509  

 Cost for 4 is: 41.199738643825114 where next order is: 6.701950751497466  

 Cost for 5 is: 43.9997822031876 where next order is: 6.572865366416478  

 Cost for 6 is: 51.8569561741608 where next order is: 6.480661519380515  

 Optimal Residual Number for 5.9274384384733185 is 1  

 Order is given at 5.9274384384733185 :8. 0 

 Upper Bound= 9  

 Cost for 1 is: 13.616280451570857 where next order is: 8.922303833901157  

 Cost for 2 is: 19.41085363438057 where next order is: 8.629738441643502  

 Cost for 3 is: 23.308140225785422 where next order is: 8.483455746954649  

 Cost for 4 is: 3 0.246512180628347 where next order is: 8.395686130098749  

 Cost for 5 is: 37.205426817190286 where next order is: 8.337173052367161  

 Cost for 6 is: 44.17608012902023 where next order is: 8.295377996129812  

 Optimal Residual Number for 8.044607662699214 is 1  

 Order is given at 8.044607662699214 :4.0  

 Upper Bound= 5  

 Cost for 1 is: 9.117240867312974 where next order is: 9.417180089489065  

 Cost for 2 is: 16.07816057820865 where next order is: 9.289573452427765  

 Cost for 3 is: 19.058620433656486 where next order is: 9.225770133897116  

 Cost for 4 is: 25.04689634692519 where next order is: 9.187488142778726  

 Cost for 5 is: 31.039080289104316 where next order is: 9.161966815366467  

 Optimal Residual Number for 9.034360178305167 is 1  

 Order is given at 9.03436017830516 7 :2.0  

 Upper Bound= 2  

 Cost for 1 is: 7.000008146242315 where next order is: 9.79680894957918  

 Cost for 2 is: 13.000005430828207 where next order is: 9.795745266093727  

 Optimal Residual Number for 9.793617899122818 is 1  

 Order is given at 9.793617899122818 :0.0  

FINAL REPORT 

Orders  

Number Time   Size  

0 - 0.2  13.0  

1 1.527023400248051  17.0  

2 5.9274384384733185  8.0  

3 8.044607662699214  4.0  

4 9.034360178305167  2.0  

5 9.793617899122818  0.0  

Total cost: 91.91376367051015   
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Appendix 3 Insys Report for the Teunter and Haneveldôs Problem by using 1
st
 

Heuristic 

FINAL REPORT 
 
Orders  
Number Time   Size  
0 - 0.2    4.0  
1 0.2930020217119735  1.0  
2 0.4731844563503971  1.0  
3 0.9776772203873425  1.0  
4 1.6201510576913924  1.0  
5 1.8895247000547173  1.0  
6 2.191626479640092  1.0  
7 2.4643093440363453  1.0  
8 2.8033822769579397  1.0  
9 2.9319699259491223  1.0  
10 3.1429880837001107  1.0  
11 3.2124336299514025  1.0  
12 3.2468367054926714  1.0  
13 3.3897457398533746  1.0  
14 4.406194326235035  1.0  
15 4.46526556057783  1.0  
16 4.77198027963532  1.0  
17 4.920924006699904  1.0  
18 5.805435064435843  1.0  
19 5.82881289078628  1.0  
20 5.873487814027821  1.0  
21 5.921198517647042  1.0  
22 6.009210887889984  1.0  
23 6.090851983156553  1.0  
24 6.243755021939867  1.0  
25 6.245613237983178  1.0  
26 6.293172709077642  1.0  
27 6.36 4969877396664 1.0  
28 6.714528991536235  1.0  
29 6.72190868800894  1.0  
30 7.546414491208504  1.0  
31 8.519889399787354  1.0  
32 8.601495458327408  1.0  
33 8.99588774449514  1.0  
34 9.137422579252412  1.0  
35 9.260614625516673  1.0  
36 9.275349901286159  1.0  
37 9.285398467436716  1.0  
----  
Total cost: 47.45927377068042  
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Appendix 4 Linear Regression obtained from Power Approximation Method  

SUMMARY 
OUTPUT 

        

         Regression Statistics 
       Multiple R 0.929 
       R Square 0.863 
       Adjusted R Square 0.827 
       Standard Error 0.734 
       Observations 20.000 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
   Regression 4.000 51.093 12.773 23.720 0.000 
   Residual 15.000 8.077 0.538 

     Total 19.000 59.171       
   

         

  Coefficients 
Standard 

Error t Stat 
P-

value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -3.922 1.077 -3.642 0.002 -6.217 -1.627 -6.217 -1.627 

ln(H) 1.708 0.268 6.364 0.000 1.136 2.280 1.136 2.280 

ln(b/h) 0.339 0.266 1.276 0.221 -0.228 0.907 -0.228 0.907 

ln(L+1) 1.726 0.826 2.089 0.054 -0.035 3.487 -0.035 3.487 

ln(K+1) -1.431 0.350 -4.086 0.001 -2.178 -0.685 -2.178 -0.685 
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Appendix 5 Linear Regression obtained from Power Approximation Method  

SUMMARY 
OUTPUT 

        

         
Regression Statistics 

       
Multiple R 0.739 

       R Square 0.547 
       Adjusted R Square 0.521 
       Standard Error 1.221 
       

Observations 20.000 
       

         
ANOVA 

        

  df SS MS F 
Significance 

F 
   Regression 1.000 32.337 32.337 21.692 0.000 
   Residual 18.000 26.833 1.491 

     
Total 19.000 59.171       

   

         

  Coefficients 
Standard 

Error t Stat 
P-

value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -2.913 1.066 -2.733 0.014 -5.152 -0.674 -5.152 -0.674 

ln(H) 1.862 0.400 4.658 0.000 1.022 2.701 1.022 2.701 
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Appendix 6 Simulation Results for 1
st
 Heuristic, Homogeneous Rate Case  

Parameters RESULT 

Holding 
Cost 

Unit 
Cost 

Demand 
Rate 

Horizon 
Length 

Lead 
Time 

Backorder 
Cost 

Setup 
Cost 

a 
Level 

Average 
Total Cost 

0.95 Confidence 
Interval 

h u  ˂ H L b K a     

0.2 1 4 10 0.25 20 0 3.622 49.332 49.332 ± 2.232 

0.2 1 4 10 0.25 20 10 3.622 111.102 111.102 ± 6.074 

0.2 1 4 10 0.25 5 0 3.622 47.057 47.057 ± 2.136 

0.2 1 4 10 0.25 5 10 3.622 109.991 109.991 ± 5.695 

0.2 1 4 10 0.5 20 0 3.622 53.655 53.655 ± 3.067 

0.2 1 4 10 0.5 20 10 3.622 107.758 107.758 ± 5.857 

0.2 1 4 10 0.5 5 0 3.622 50.065 50.065 ± 2.706 

0.2 1 4 10 0.5 5 10 3.622 106.406 106.406 ± 5.065 

0.2 1 4 20 0.25 20 0 13.149 97.060 97.06 ± 2.483 

0.2 1 4 20 0.25 20 10 13.149 195.248 195.248 ± 4.736 

0.2 1 4 20 0.25 5 0 13.149 93.305 93.305 ± 2.435 

0.2 1 4 20 0.25 5 10 13.149 194.615 194.615 ± 5.041 

0.2 1 4 20 0.5 20 0 13.149 101.719 101.719 ± 2.765 

0.2 1 4 20 0.5 20 10 13.149 195.105 195.105 ± 4.075 

0.2 1 4 20 0.5 5 0 13.149 99.306 99.306 ± 3.254 

0.2 1 4 20 0.5 5 10 13.149 193.686 193.686 ± 4.02 
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Appendix 7 Simulation Results for 1
st
 Heuristic, Linear Decreasing Rate Case, 

h=0.2, u=1  

Parameters RESULT   

Demand 
Rate 

Horizon 
Length 

Lead 
Time 

Backorder 
Cost 

Setup 
Cost 

a 
Level 

Average 
Total Cost 

0.95 Confidence 
Interval 

% Diff 
compared 

to 
Constant 

Case 

 ˂ H L b K a       

0.8*(10-t) 10 0.25 20 0 3.622 52.848 52.848 ± 2.556 7.127 

0.8*(10-t) 10 0.25 20 10 3.622 171.102 171.102 ± 11.78 54.004 

0.8*(10-t) 10 0.25 5 0 3.622 49.009 49.009 ± 2.116 4.148 

0.8*(10-t) 10 0.25 5 10 3.622 173.701 173.701 ± 11.122 57.923 

0.8*(10-t) 10 0.5 20 0 3.622 64.656 64.656 ± 4.893 20.503 

0.8*(10-t) 10 0.5 20 10 3.622 175.686 175.686 ± 13.211 63.038 

0.8*(10-t) 10 0.5 5 0 3.622 54.035 54.035 ± 2.699 7.930 

0.8*(10-t) 10 0.5 5 10 3.622 170.176 170.176 ± 12.095 59.931 

0.4*(20-t) 20 0.25 20 0 13.149 102.252 102.252 ± 2.802 5.349 

0.4*(20-t) 20 0.25 20 10 13.149 303.974 303.974 ± 9.988 55.686 

0.4*(20-t) 20 0.25 5 0 13.149 95.003 95.003 ± 2.313 1.820 

0.4*(20-t) 20 0.25 5 10 13.149 303.666 303.666 ± 9.803 56.034 

0.4*(20-t) 20 0.5 20 0 13.149 116.253 116.253 ± 4.419 14.288 

0.4*(20-t) 20 0.5 20 10 13.149 308.402 308.402 ± 11.602 58.070 

0.4*(20-t) 20 0.5 5 0 13.149 103.567 103.567 ± 2.649 4.291 

0.4*(20-t) 20 0.5 5 10 13.149 302.771 302.771 ± 10.23 56.321 
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Appendix 8 Simulation Results for 1
st
 Heuristic, Quadratic Decreasing Rate Case, 

h=0.2, u=1 

Parameters RESULT   

Demand Rate 
Horizon 
Length 

Lead 
Time 

Backorder 
Cost 

Setup 
Cost 

a 
Level 

Averag
e Total 
Cost 

0.95 Confidence 
Interval 

% Diff 
compar
ed to 

Consta
nt Case 

 ˂ H L b K a       

-3/50*t^2+6 10 0.25 20 0 3.622 51.300 51.3 ± 2.423 3.989 

-3/50*t^2+6 10 0.25 20 10 3.622 158.134 158.134 ± 10.773 42.332 

-3/50*t^2+6 10 0.25 5 0 3.622 48.107 48.107 ± 2.074 2.231 

-3/50*t^2+6 10 0.25 5 10 3.622 160.088 160.088 ± 10.08 45.546 

-3/50*t^2+6 10 0.5 20 0 3.622 61.079 61.079 ± 4.408 13.837 

-3/50*t^2+6 10 0.5 20 10 3.622 156.406 156.406 ± 11.816 45.146 

-3/50*t^2+6 10 0.5 5 0 3.622 52.442 52.442 ± 2.55 4.748 

-3/50*t^2+6 10 0.5 5 10 3.622 155.380 155.38 ± 10.334 46.026 

-3/200*t^2+6 20 0.25 20 0 13.149 100.115 100.115 ± 2.566 3.148 

-3/200*t^2+6 20 0.25 20 10 13.149 279.418 279.418 ± 9.258 43.109 

-3/200*t^2+6 20 0.25 5 0 13.149 94.770 94.77 ± 2.236 1.570 

-3/200*t^2+6 20 0.25 5 10 13.149 275.992 275.992 ± 8.955 41.814 

-3/200*t^2+6 20 0.5 20 0 13.149 111.757 111.757 ± 4.043 9.868 

-3/200*t^2+6 20 0.5 20 10 13.149 282.822 282.822 ± 10.773 44.959 

-3/200*t^2+6 20 0.5 5 0 13.149 100.887 100.887 ± 2.573 1.592 

-3/200*t^2+6 20 0.5 5 10 13.149 276.963 276.963 ± 9.678 42.996 
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Appendix 9 Simulation Results for 2
nd

 Heuristic, Homogeneous Rate Case,  

h=0.2, u=1 

Parameters RESULT   

Demand 
Rate 

Horizon 
Length 

Lead 
Time 

Backorder 
Cost 

Setup 
Cost 

a Level 
Average 

Total Cost 
0.95 Confidence 

Interval 

% Diff 
compared 

to 1
st
 

Heuristic 

 ˂ H L b K a       

4 10 0.25 20 0 3.622 53.569 53.569 ± 3.438 8.589 

4 10 0.25 20 10 3.622 99.435 99.435 ± 3.681 -10.501 

4 10 0.25 5 0 3.622 50.092 50.092 ± 2.74 6.450 

4 10 0.25 5 10 3.622 100.897 100.897 ± 3.817 -8.268 

4 10 0.5 20 0 3.622 65.596 65.596 ± 6.631 22.255 

4 10 0.5 20 10 3.622 100.790 100.79 ± 4.068 -6.466 

4 10 0.5 5 0 3.622 55.903 55.903 ± 3.836 11.661 

4 10 0.5 5 10 3.622 95.227 95.227 ± 3.928 -10.506 

4 20 0.25 20 0 13.149 107.069 107.069 ± 4.538 10.312 

4 20 0.25 20 10 13.149 193.593 193.593 ± 4.996 -0.848 

4 20 0.25 5 0 13.149 99.810 99.81 ± 3.31 6.972 

4 20 0.25 5 10 13.149 194.380 194.38 ± 4.409 -0.121 

4 20 0.5 20 0 13.149 125.319 125.319 ± 8.525 23.201 

4 20 0.5 20 10 13.149 189.937 189.937 ± 5.464 -2.649 

4 20 0.5 5 0 13.149 109.364 109.364 ± 4.622 10.128 

4 20 0.5 5 10 13.149 181.182 181.182 ± 4.335 -6.456 

 


