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ABSTRACT

FINAL PHASE INVENTORY MANAGEMENT OF SPARE PARTS UNDER
NONHOMOGENEOUS POISSON DEMAND RATE

Sertalp BilalCay
M.S. in Industrial Engineering
Supervisor Prof. Nesim Erkip
June 203

In product lifecycle, there are three phases, initial phase, normal phase and final phase.
Final phase begins when the product is out of production, and ends when the last
contractexpires. It is generally the longest period in the lifecycle. Although the product

is not manufactured any more, spare parts of the product need to be supplied to the
market. Firms need to provide these parts at the retailer level until the end of tee phas
due to legal responsibilities. Because of lack of historical data and unavailability of
forecasting, retailers need a systematic policy to decide replenishment quantity and time
to prevent excessive holding, backordering, unit and setup costs. In dlenprave
assume that demand of the spare part is ahvomogeneous Poisson process where the
rate parameter is a nancreasing function of time. We consider all costs and lead time
are fixed and known. Due to characteristics of the final phase, the qdaharizon is

taken as finite and known.

I n this study, we developed two alternati\
total cost during the final phase. First heuristic is a continuexisw policy based on
estimation of future replenishmenks/ solving series of deterministic demand sub
problems. Second heuristic is a perieddgiew policy with variable period lengths,

which solves myopic problems, by selecting subsequent time points to check inventory



position. We also developed a simulationodel to evaluate performances of the
heuristics.

This study provides an efficient way to decide on replenishment quantity and time.
Limited numerical results show that heuristics provide -+opémal results for
homogeneous cases studied in the liteeatiMoreover, this is one of the initial studies
that considers final phase with rbomogeneous demand rate. In that sense, it makes a
contribution to the literature of final phase problems and provides a systematic way of
replenishment decisions for thetailers.

Keywords: Inventory Control, Final Phase, Spare Part



OZET

HOMOJEN OLMAYAN POI SSON TALEP DAJI LI MLI Y
SON AKAMANDMANTER Y¥NETKMK

Sertalp BilalCay

End¢stri M¢hendi sl i i Y¢é¢ksek Lic
Tez Yoneticisi Prof. Dr. Nesim Erkip
Haziran 203
Bir ¢ré¢negn yakam d°ngeéseé ¢ - akamadan ol uki
akKama. Son akKkama, créenegn ¢retimden kal deéer ¢

bitene kadar devam eder . a@edngisindekl emuzurk b u
akamadér . Bu akamada ¢réen ¢retil memesine

edilmelidir. Bu yedek parcalar perakendeci seviyesinde, yasal zorunluluklar bitene kadar

tutul mal eder . Talep ge-mi ki dvoe] atba h micreikn a
bekl et me, ésmar | ama, Lrén Ve sipariKk ma |
sistemati k bir yaklakéma i htiya- duymakt act
Poi sson dajeéeléemla geldiji ve tlaél ebpi rk ufrounnkusn
ol duju varsayeéel méxteér . Probl emdeki t ¢m  me

varsayéemé altéeénda sénérl & bir zaman aral éfj

Bu -al exmada, perakendecinin probl emini
gelikt i ri |l mi ktir. KI'k yaklakém bir s¢rekl i
talebin dej erl endi r mesi ne vV e bir di zi det er
dayanmaktadeér . Kki nci yakl akém bir aral ek

miyop olarak ¢ozile k¢ - ¢k problemlerin sonucuna g°

Gel i ktirmidl ol dujumuz bir sim¢glasyon aracé



Bu -al eékma, perakendecinin sipari kK zamaneée
°nermektedir. Yagpmasrayeldakij umazy esamhérslonu- |
daj él éemé i-in optimal -%z¢me yakén sonu-
akamada homojen ol mayan talep dajél @éméneé Kk
son akama problemilkedal botlumaupgyr ¢per dkendkea
bir siparik y°netimi ©°nermiktir.

Anahtar Kelimeler: Enventer KontroluS o n A W edekdarca Yonetimi
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Chapter 1

Introduction

In manufacturing and logistics, spare part managen{&mM) is an important
component to achieve desired service level at minimum Besides their usage for
repaiing, spare parts can also be useddplace failed componentshus extending

lifetime of the products. Decision in SPMcludes different aspects froforecasting to
inspection.Due to its large range of decisions, industy more than 50% of the
maintenance costs are due to spare parts. Moreover in some sectors more than half of the
down times are due to unavailability ofepiate spare parf24]. In 2011 presselease
Technology Services Industry Association (TSigtatel that average value of spare

parts inventory is 17% of total service revenue and spare parts are critical to delivering
prompt quality service[29]. Obviously, SPM is a vital factor folsuccess in

manufacturing and business today.



Spare part managementnsists of different phases throughout the production process.
In each phase, supply and demand structure changes and often these phases are studied
separately. A major one of these life periods is cdflie@l Phase, which is also known

as Endof-life (EOL) phase in thespare part managemeliterature. This phase starts
when the product is out of production line and continues until last costumer contract or
warranty expiresln this phasealthoughpart isno longer manufacturedhe service
requirementstill continue, hence the spare pat®uld be supplied until the erthere
arealsosome legaktipulateso firms to provide spare parts until last customer contract
expires. Therefore, unavailability of sufficient spare parts inventory can lead some
penalty costs which could be more thanduat value (due to replacement). On the other
hand, excessive invaory can leachugedisposal costat the end of the final phase.
Final Phase is known to be the longest period in a produatyldie in general32]. For
instance in European Union every goods need to haweydars of guarantee at
minimum [9]. Moreover,based on Supply of Goods and Services Act 1982, spare parts
for motor companies should be provided at least for 10 y24}sThese instances prove

that inventory control of spare parts during final phase is a vital decisientienprises

Spare partgan be stored in different levels in a mdthelon inventory system. Based

on the industry, parts may beedd to be available atetailer levelto providefast
response and lower backordering c&tpecially if production of spare parts is costly

for the company, they may want to produce spare parts in large batches, as in the case of
serial productionTherefore retailers need to order spare parts to keep their inventory at

a reasonable level.

As described above, this thesis focuses on redaled inventory management of spare
parts during final phase. This problem is originally discussed through a foreeasting
based approach by Moof&9] in 1971, where they define alme requirements of
consumable spa parts for motecar industry.In his thess, Pourakbaf21] provides a

comprehensive analysis on problafigscussing different approaches.
2



This study evaluates problem on retail erds
total cost of the retailer in a decentralized syst&éhe total cosis consisting of unit,

setup, holdingand backorder costSince we study on a decentralized systestailer

need to decide owreplenishment times and quantiti@gich areour decision variables

Since inventory management varies much based on priyghestindustry type and other

conditions, we decided to focus on the following setting:

1 Time horizon is finite and knownThis is a common setting in final phase studies
becausexpiration oflast contracts known beforehand. Time is considered as a

continuous variable over planning horizon.

1 At the end of the planning horizon, all backordered demahdald besatisfied

with a singldastorder.This one is a part of legal requirements.
On top of this setting, we made the following assumptions t& wom clearer problem:
1 Unit, setup, holding and backorder costs are constant and known at time zero.
1 Lead time is constant and known.
1 Unit demands are un#ized.

1 Demand is a Notdlomogeneous Poisson Process with aingreasing demand

rate over time.

In this study we proposed two heuristit®m different perspectiveso solve the

r e t ainvientory sn@nagemepiroblem.

Following sections in this thesis as follows; in second chapter, problem definition and

literature review abouspare partsnventory nanagement and final phase is given. In



third chapter, our proposesblution methodologyis presented. Paper followwith

computations in fourth chaptand conclusion in fifth chapter.



Chapter 2

Problem Definition and Literature

Review

2.1. Problem Definition

Spare part management consists of different echelon levels in general. Each level
requires strategic, tactical and operational decisions. These decisions cauladée

either by asingle decision maker or each level may have its own. In this thesis, we
focused om decentralized system with a focus on single retailer. Problem is based on
retailerds controll i ng s pAsstated peforagtailerisvent or
the only decision makeand sathe purpose of tts study is minimizingts total costin a

finite horizon



In management of the spare part inventory, retailer faces with some challenges. One of
the biggest challengan this managemerns unavailability ofdata fo forecasting the
future demandThis is generally the case in the final phe&iace retailer habmited or
inadequate data for forecasting and demandnisnown retailer should estimate the
future demand which maké&sventory managemembuch more diffcult. On top of that,

a certain customer service level may be desired for either cost minimization or customer
satisfaction.Service level is especially vital in case of rmero lead time.Little
tardiness in replenishmedécision time may lead unexpetteigh costs for the retailer.

Yet another vital decision appears on replenishment quaktitgerestimation of the
future demand leads smaller replenishment quantities which may increase the total
number of the setups, thus total setup costs. On the loimel overestimation of the
demand may lead higher holding costs andreover, excessnventory could be

availableat the end of thénal phase
Inthisthesiskwe defined the retailerds problem wi

1 Planning horizon is finiterad known. This assumption is based on the fact that
expiration of the last customer contract and legal responsibilities are known by
the retailer.

Unit, setup, holding and backorder cost parameters are fixed and known.

Lead time for the supplier is fixeand known. Lead time is independent from
replenishment quantity and time. Thus we assume supplier does not spend time
for production; there is always adetpianventory at supplier level.

1 Demand is a NoHomogeneougloissonprocess with a timéependentate.

This rate is assumed to be a finareasing function of time. In some cases, we
also assume that rate of the NHPP reaches zero at the end of the planning
horizon.

1 Time isa continuous variable in the planning horizon.

6



All demands are uniized.
Backodering is allowed. Demands are met whenever inventory is available.
If horizon ends with some backorders, a last order is given to meet all
backordered demands.
1 There is no salvage cost at the end of the horizon. Therefore, if inventory

position is positie at the end of the horizon, all items are disposed.

I n this thesis we f oc unsasmyle ecinelomystemandtherel er 6 s

is single type of productlence ouobjective is minimizingotal cost of the retailer

Before going intaletails, we know that retailer hago different extreme solutionkirst
extreme solution is backordering all demand during final phase and meets all these
orders at the end of horizon. Second extreme solution is placing adplgrishment

order @ thebeginning of the phase.

Assume that retaileapplies the first extreme solution abdckorders althe demand
during time horizonDue to legal responsibilities, he needs to meet all these demands in
a single order and he papackordering (penalty) castlf penalty cost issufficiently
small, this extreme solution could be the best choice for the ret@l&erwise,
systematic planning of the replenishmentgy balance the holding, setup and

backordering-osts.

There are two decisions need to be takgrihe retailer. First one of these decisions is
AWhen | need to place a replenishment or de
order for each Carpctamswerstbthesentwo decisione are?atffected

by total cost componentsetup,unit, holding and backorder cost¥loreover, these

guestions needed to be answered throughout the horizon. So our policies should be

capable of answering these questions at any time during the horizon.



Due to nature of the final phase, ouamning horizonis the time between End of

Production (EOP) and End of Service (EOS) where last customer contract expires. In

this thesis, the problem starts just before EOP to start horizon with a sufficiently large

inventory. Therefordoth heuristics starts at Firshstallment(FI) point, which islead
time length befor&OP.

Initial Phase Normal Phase Final Phase

EOP: End of Production Final Phase Planning Horizon
EOS: End of Service 0 ’
Fl: First Installement -

Lead Time

Figure 2.1 Planning horizon of the problem

In order to find satisfying answerstoet ai | er 6s probl em we

dev

These heuristics answers these questions in a systematic way for the retailer. We

detailed these heuristics in the Chapter 3.

2.2. Literature Review

The problem considered in this thesis can be classified under different stream of

literature of inventory manageent, such as Spare PafibsolescengeProduct Life
Cycle and Final Phase. In this subsection, there are numerous studiase tieddted

with more than onéopic among these streams. We try to show the importance of this
study in these streams while ohefig the problems and classifying previous studies, in

given order.



Spare PartManagement

Spare Part Inventory Management (SPIM) is a broad topic that includes various aspects.

The more relevant studies in SPIM are conducted by Fdi@in10]in 1980 audl 1981,

which define alitime requirements (final ordeof spare part inventoriesle studies on
management of spare parts of a product that have risk of failure, such as electronic
product s, for the fAservice aft atife-cgcel es o0 ¢
consist of three phases. There are initial, repeat and the final phases. He assumes

exponentially decreasing demand in his study.

Another relevant study in SPIM literature is preserigdGeurts and Moonefi3] in

1992 In their paper, theyraal yze and present how O6i nsur
needed to be keep. They use Dynamic Programming (Markov Programming) approach

in this paper, which is also supported by numerical examples. While deciding on
uncertainty parameters, they also utiliteeir approach to measure how good the

decision strategy is.
Obsolescence

The main stream of our thesis, Final Phase studies are also related with finite horizon
inventory problems with obsolescence. Hadley and WHit#j provides the classical
obsolescece problem in 1963In this study demand is a random variable and occurs in
time periods independently. Obsolescence time is known or a finite number of possible
obsolescence times are given with their respective probabilities. They solve this problem

with a dynamic programming approach.

In 1997, David et al[5] provides the continuous version of the classical obsolescence

problem defined by Hadley Whitin. They provide a dynamic programming model for the

finite horizon problem, where demand rate is fixddle lifetime of the items follows a

known random distribution. In this problem, they observe that there must be a time
9



where ordering to the end i's theordampti mal
problemo in our heur i st istucturalTgropestiessof thedy i1 s

problem.
Life Cycle

Elements such as demand direction, length of horizon and stochasticity of the parameters
lead different problem definitions in inventory studies. Hence, even for the very same
product, we need to apply different inventory policies for the different pliaseswy its

life cycle. Often, inventory studies encapsulate a certain time interval in the product life.
Such as, ouheuristicsdescribed in this thesis are useful for a specific time interval in
the product lifecycle due to its features and assumptions. There are numerous studies
that emphasize these differences. For instance, Solomor{Zt]ahowed the lifecycle

phases andheir distinct features of electroniequipment They divided electronic

pr odu c-aydesin six ipHfages. There are defined as introduction, growth, maturity,
decline, phaseut and obsolescence phases. In this sttltgy mention on lagbuy
decisionin the obsolescence phase, which is relevant to-pen®d we interest in this
thesis and it will be discussed later in detail. One of the earliest studies that focus on the
time interval we interest is performed by Cohen and Whaha 1997 Similar toour

study, they focus on the service after sales operations. On top of the management of
spare parts, they consider an independent service operator which leads competition.
Hence they -tuhseeodr eat iécgpaneppr oach i n dshrei r st
completely different from ours, they decide product price, -atigs service quality and

aftersales price in their problem.

Another interesting research that focuses on produetyitte is performed bBradley
and Guerrerg2] in 2008 This pger focuses on product design to a better utilization of
life-cycle mismatch of the components in a product. In this paper, one afehsatives

that are used to manage ldgcle mismatchi s ¢ a l-tl ierde ABD u Wt@ noer bAul yaos t

10



which correspondshe final decision of inventory operations. This is exactly the same

topic that we cover in this thesis.

Another study of Bradley and Guerref published in 2009 deals with lifetime buy
(lasttime buy) decisia for multiple obsolete partsifetime buypolicy is argued to be

the necessary when product {fgcle mismatch occurs on spare parts of a product. They
prove the existence and the uniqueness of the solution to the problem, however since the
solution cannot be expressed in clo$aan, they suggdstwo heuristics which gives

upper and lower bounds on the solution. They show results for stationary and non
stationary demand, and suggest that the heuristics give accurate results for the stationary

demand case.

In their 2011 paper, Dekker et §] inspect the various aspects of {tgcle phases of

spare part management. They mention about unique and difficult cases on managing the
spare part inventory and focus on forecasting strategiescyile phases mentioned
above are also available in thisidy, while they give an importance on the-ifgcle of

spare part demand. Interested readers may look for the case studies in Fokker Services,
IBM, IHC Merwede and Voestalpine Railpro companies, presented in this paper.

Spengler and Schrot¢28] developd tools for informationrmanagement on a closed

loop supply chain at th Endof-Life service period They model the management of
production and recovery system of spare parts and emphasize the importance of several
strategies.This study is important sincgé combines enebf-life service period with
product design with a different view. In their paper, tebgwthe difficulties to manage

spare part inventory during ewdH-life service periodlt is known that final phase lasts

for many yeardor electronicequipmen{30]. These are the loss of economies of scale
since the product is no longer manufactured, possible differences between product

generations (hence spare parts may differ), limited flexibility of the spare parts and

11



possible problems on providjrmaterials for spare parts. On a case study, they provide

the output dynamecsonmpdebmfor spare parts
Final Phase

Now, we will focus on more relevant studies to our work which focus on spare part
inventory management in the final phasénaF phase is alsealled with different

def i niti onsoflsiufcen saesr-pireorddict fip o-&ades sermiced A af
peri odo. dohsaergthednbehterynn the Final Phase periadss known as
AErmHLI fe I nventory Problemd (EOL), -di-Final
Producti on P[23h Inlthis peot we viidllQdvipw these relevant studies and
emphasize the similarities and differences of our work with them. Natethk terms

describing final phase are used interchangeably.

In their paper dated 1998, Teunter and Hanel&3{¢l describedhe final order problem
They solve thergdeobl Eémrofhéal aktent, who wi
parts from maufacturer due to discontinuity of spare part supply of the manufacturer.
Client is assumed to have a machine which needs these critical spare parts to operate.
Client wants to use this machine at least for a certain amount of time. Therefore, client
shout keep a sufficient inventory of these critical spare parts. They suggest anprder

to level policy for this last order quantity. They found it by minimizing the total
discounted cost. On 3 different examples they show that their model provides near
optimal results. There are some features of their problem, which is significantly different
from the problem considered in this thesis. Teunter and Haneveld consider the time
period where service agreement ends, while we consider time betweeof-End
Productionand Endof-Service (Final Phase) period. Moreover, they solve this problem

for only one final order, while we allow replenishments during the time hovizoch

leads different assumptions.

12



In another study of Teunter and FortyB0], they stidy on the ame problemwith
supplierbés perspective. Il n this case the
supplier. However, the ordering structure
only one last order is allowed to make for decision md&. For given cost
parameters, they reach near to optimal solutions of the quantity of the last order. They
both provide O6éoptimald final order by usi
Onegrti mal 6 final order | evelThdyghowmthattheg an
explicitly defined final order level is near to optimal final order level, which is practical

to comput e. Mor eover, i n-downt sostedgl t hewh et
defined discrete time intervals and remove some spares ffrom the stock if the
inventory | evel -dowstt abolvevéelhe Tihiesnostudy i
they take decisions after final phase started ddéietoe move pol i cyo. Al th
remove items from the stock instead of replenish wasover in this thesis, this paper

is closely related with ours since thalow actions during the time horizon

In their 1999 paper, Fortuin and Mar{ih?] define phasesf the spare part liteycle

|l tds one of t he ear | ipehsats et bdyy rtehfaetr emnsé n
Fort ui n 6 of EddofLifensertice (EOL)[31]. This is a comprehensive study

that shows different aspects of management of spare part inventory. It covers logistics,
demand and delivery, management concepts aresparts and alsdevotesa section to

show differences between spare part inventory management with traditional approaches.
They emphasize the distinction between phases of the spare pastclde which are

defined as initial, normal and final phade.the following paragraphs, we will also

review the work of Teunter and Hanev§B2] in 2002, which use the same final phas

definition as in this paper

Cattani and Souzf8] considerthe effect of delaying the end of life buy in their 2002
pger Therst udy is slightly different from Teul

time of the final order (endf-life buy) [33]. By using the information obtained by
13



delaying the final order decision, they argue that the underage and overage costs can be
redwed. For different settings they show that the cost benefit of delaying the decision is
nondecreasing function of time and concave. This is a remarkable result for the
manufacturers who can delay their final order decision. They used the newsvendor
problem as a basis to calculate costs of initial problem. On numerical experiments they

provide how effective their model is.

Draper and Suanetdéds work in 2005 iubhcl ude:
| BM6s i nvent d.rTyey sigped thad IBM diced invenfory lifecycle into

three phases: Earbife, Mid-Life and Endof-Life. Their definition of Eneof-Life

phase is precisely the same as we define final phase. They note that this phase takes 7
years on average, although it varies a lot for difié PC partsThey also stated that

Service Parts Logistics organization is responsible for the actions in theofdifd

phase andousedbéaab6l asde beginning of this g
that we mentioned above. Thaydicatethat specialized algorithms are being used for

this decision where historical data and demand forecast play a significant role. They
referthe paperof Teunter and Haneveld for mordomrmation on lasbuy problen{32].

Inderfurth and Mukherjegl7] consder different approaches in the finalgsie in their

paper dated 2008 hey differentiate the different phases of the producthfde similar

to studies mentioned above. They stated that the managing the spare part inventory
between enaf-production (EOP) to enebf-service (EOS) is especially challenging for
many industries. This time period corresponds to final phase (cppmduct life cycle)

in our study. Assumptions and observations in this paper are very close to our problem.
They show how the pblem can be modeled as a Decision Tree and can be solved by
Stochastic Dynamic Programming procedure. Moreover, they propose a relatively

simpler heuristic by inspired by the solution of the dynamic programming.
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Another study on the spare parts inventorgnagement in the final phase is conducted
by van Kooten and Te[34] on parts under condemnatiofheir model includes repairs
of the spare parts. They suggest a contindioog transient Markovian Model with
certain repair probability and repair leaché.

Pince and Dekkef20] deal with the inventory of slow moving items subject to
obsolesence in their paper dated 201Ilhey consider a continuous review inventory
system and works in a similar environment to this problem. They assume that the
demand ra drops a lower rate in a known time during the horizon. In this study, policy
changing is proposed and an approximate solution of time to shift to new control policy
is given. Advantages of such a shift are also described in the paper. During all horizon
demand is assumed to follow Poisson Process with a constant rate, which drops to
another constant rate at a known time. In that sense, their demand definition is one of the
studies that are close to our problem. The policy used in the paper -ferame
replenishment policy for both policies (initial policy and new policy) with different
parameters. Our problem is slightly different from their definition and includes setup
cost, which makes orer-one replenishment policy an undesired alternative. ker t
problem they consider, they achieve satisfying numerical results that show the

superiority of the switching.

There are also some studies that cover the different aspects of the final phase problem.
Pourakbar et a[23] suggests alternative decisionsthe final phase s as offering a

new product They discuss the effects of such alternatives and show how they are more
costefficient than keeping spare parts inventory at some point in the final phase. Hence,
their study examines the cost tramfés of such policies and give an exact expression
represents expected total cost. They also show that such an expression leads the solution
of lastorder quantity and time to switch policies simultaneously. Their study is based on

a reallife study of a major aasumer electronic goods manufacturer, which is common

in final phase studies. They developed two models, first, an alternative service policy
15



and second, a more sophisticated model for the cost function which is closetlife real

cases. In the study, damd is assumed to follow netationary Poisson process, which

is also an assumption in this thesis. Moreover, horizon is finite and cost parameters are
fixed and known similar to otuirme Howeveaol i
with review and s@pping options. Since we allow multiple orders during the final

phase and associate a setup cost for this operation, the total cost structure and the

behavior of the solutions to the problems are different from each other, respectively.

In 2012, Pourakbaand Dekker[22] combine customer differentiation with thandl

phase inventory problenNote that their study is different from other studies in the final
phase literature, where procurement (replenishment) is an available option as we assume
and they ao use nosstationary demand rate. They show that their model reaches

remarkable cost improvements on the problem.
Now, we will cover two researches that are very close to our problem, in detalil.

In the study of Inderfurth and KlebEk6] in 2013, alternate management of spare part
inventory in Endof-Production phase is studieBue to challenges in managing the
spare part inventory at this phase, they argue that options such as extra production and
remanufacturing provide flexibility to the manufacturEor this problem, they provide
orderup-to levels for extra production and remanufacturing options, very similar to our
model in this thesis. The decisions are told to be simple compared the complexity of the
problem. They show that the problem can bedebed as a stochastic dynamic
optimization problem. However, the policy to minimize average total cost is found to be
too complex. Therefore, they suggest simple orgeto policies, which are shown to be
worked well for most of the cases when policy pagters are chosen appropriately.
Their research is a great contribution to the literature, considering the number of studies

about the final phase that considers extra production.
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Note that, our study haamilarities to the problem they worked. First df & both

studies the time horizon is defined as the final phase-gepdoduction phase) and
assumed to be finite and known. Second, cost parameters are assumed to be fixed and
known. Third, demand is assumed to be stochastic. Fourth, extra prodsqtiassible

with a major setup cost. And lastly, the objective is to minimize total cost. Although the
working environment is defined very similar, our approaches differentiate in the
modeling phase. First of all, they discretize the time intervalspatods; hence their

model suggests a periodic review policy. As we will see in following sections, our
heuristics are continuougview policies, indeed. Second, they update the estimation of
the demand along the horizon while we assume that the distriboftithe demand is
known due to historical data beforehand. Third, their application areaatdnotive
sector; hence they benefit from easiness of remanufacturing which does not take major
setup time and setup cost. Our study focus on general casegdraoefacturing is not

an option. Lastly, they stated that extra production is only available with a minimum

order quantity. We allow extra production for any quantity during the final phase.

The other research that is close to our work in the litersguwenducted byeunter and
Haneveld[32] in 2002 Actually our study is inspired by the problem they defined in
their paper. Hence, we will extensively cover the details of this study in here and
describe the similarities and differences with ours. We aised this study as a

benchmark in our numerical experiments.

They study on manufacturerds spare part ir
expiration of last contract is known, they assume that the planning horizon is finite and
known. There is10 setup cost in the study; hence the replenishments are unit sized. Note

that, they allow replenishments after the beginning of the final phase, but with a higher
price. Demand is assumed to be stationary Poisson process. They propose an initial
orderupt o | evel for the i1nitial oo rddeerr, 0 , w hfi fcihi

buyo and Alifetime buyo i n -uplodevelsifotthe at ur e
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remaining horizon. Since there is no setup cost, it is™én @Ay inventory policy,

wher e-1@Sis considered as a reor de-sized ev el
replenishment orders whenever the inventory position drops below theuprtietevel

of the current time. They solved this problem optimally and provide a method which
gives (1) initial order quantity and (2) time period length where oigeto level is
constant. By using this information, one can calculate the -ongty level for any

given time.

The problem we consider shows similarities to theirs in the following asp@g¢tThe
planning horizon is finite and known. (2) The cost parameters are known and fixed
(holding, backorder). (3) Replenishments are allowed during the final phase. (4)
Demand follows Poisson process. (5) A reorder levder up to level policy is

suggested.

We can also list the different aspects of salution methodas follows. (1) Setup cost
exists and fixed. (2) Lead time is naaro and fixed(3) Poisson demand rate che

defined as nomstationary. (3 Unit cost is fixed and same during plamgihorizon.

Note that among they suggest (1) andl &3 an extension to their model. In our problem,
we assume that demand of the spare part is a nonhomogeneous Poisson process where

the rate parameter is a notreasing function of time.

In thisstudywe devel oped two heuristics for rete
during the final phase. One of these heuristics is a contimesisny policy while the

second one is a periodieview policy. Due to complexity of the problem, we provide
nearoptimal results with these heuristics. This is one of the initial studies that considers

final phase with noinomogeneous demand rate with replenishment option. In that
sense, it makes a contribution to the literature of final phase problems and provides a

sydematic way of replenishment decisions for the retailers.
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Chapter 3

Solution Methods

To solve a finite horizon problem, there are two types of policésed orthe time of
the decisionFirst type of approachis providing astatic policy, where the problem is
solved at the beginning of the horizand applied thoroughlyFor instance, in their
paper Teunter and Hanevelihd the optimal ordeup-to levels beforg¢he timehorizon

is startedand these decisions are applied throughout the hofB2n All orders are
given based onhese optimal ordeup-to levels Second approach is constructing a
rolling policy, where the decisions are givencontinuous timeSuch rolling policies
are usually applied when the system changes over timerd®rup-to level carbeused

if applicable

This problem, due to itgery nature, is hard to solve optimallgcarf showed thatfinite

horizon problems can be solvedith an optimal (i iy inventory policy by using
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dynamic programming25]. To the best o fthera is nchaptrmals k n o

solution to our problem in the literature.

I n this study, two heuristics are provi de
heuristcs are rolling policies with aapproximation to the unknown optimal solution.

There are two ded@ns variables in this problem, reorder level and orelgy to level.

Both policies use same reorder level mechanism however their selection efitder

level varies.

Our first heuristicsprovides acontinuous review policy with loekhead capability it
remaining time horizon. Replenishment decisions are independent frordgeasibns

and affected by the residual tim&or each decision, a deterministic subproblem,
between current time and end of horizon, is solved to estimate future @&dkitson b

the deterministic subproblem is obtained |
the fAContinuous Re v 18 Deteimmmistic SibpwlemP wilobde! e mo
explained in detail in section 3.2.2. This estimation helps us to decide on replenishment
guantitybecausavhenthe number of remaining orders) is known(or fixed), then

the deterministic demand subproblem problem can be solved optihalty Size
Problem) [L8]. Therefore, based on the best possible choidg, afne can choose a
replenisiment quantityto minimize expected total cost unéihd of horizon Therefore,

solution of deterministic subproblem is solely the effective parameter on ordering
guantity. On the other handreplenishment time is chosen based on the inventory
position. Byusing a reorder level, decision points can be found easily. Different reorder
levels can be used based on the structure of the system. In this thesis we used both Type

1 and Type2 service level. Notice that, since demand is ainoreasing function of

time, reorder leveli() is also formulated as a namcreasing function of time. This
definition comes with a benefit that retailers can avoid unnecessary and costly

operationsandreviewinventoryonly at discrete times.
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Second heuristic can be categorizeia periodic review policy with variable period
lengths. Instead afonsidering residual time horizotiis policy has a myopic loogver

the problemHence, hstead of estimating all remaining orders astaé 1% policy, we

are only looking forthe next expected replenishment time. The objective in each
decision point is minimizing the total cost per unit time. It uses same reorder level
definition as in first heuristic. However, ordering quantity is determined to minimize
total holding and backordeg cost for small steps. In each decision point we need to
select a period length, which gives minimum cost per unit time. Since such a search can
be exhaustive, it is assumed that a set of possible candidates for next replenishment time
is provided. So he selection is based on the minimization of total cost between
0 € 10 and estimated next order poind which resembles applications in real

life. Then, ordering quantity is found as the expected demand during next phase.

Inventory is tiecked only at the end of each period.

To sum up, first policy is a variant afell-knownreorder level order up to leveli(iy
policy, while second one is a variant of reorder pointorder level orde up to level
(YA RY policy. Different fom classical approaches, the parameters of these policies

change throughout the time horizon.

3.1. Notations and Parameters

Following notations are used in this study:

mMO: planning horizon

0: continuous tovwmetfiOvari abl e, wher e
O: setpercoepPl eni shment
0: uni t cost
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‘00 : Inventorypositionat time t

As described in ¥ Chapter,horizon length "O, cost parameters) IAG and lead

time 0 are fixedand known before the horizon.

We denoted and0 as the time and order quantity ©F replenishment respectively.
These are our decision variables. Decision parameters; reorder level and order up to

level are denoted ais 0 and"Y0 , respectively.

3.2. Decision Variablesand Levels

Without loss of generality, retailer needs to decide on two variablesotiamel quantity
0 for replenishmenDefining a reorder level helps us to decide about replenishment
times. Similarly, an ordeup-to level may be beneficial to decide about replenishment
quantity. In that sense, we define reorder and eugdo levels for both policies.
However, since our horizon is finite and demand follows ainoreasing rate over
time, we needipdate parameters and levels for these decisions fregugestyselection

of these level$or a decision pointnaybe different fronpreviousdecision
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Reorder level is defined same for both policiElserefore we will start witlselection of

reorder level and theselection of ordeup-to level will be discussed.

3.2.1. Replenishment Time and Reorder Level

For the selection of replenishment types, we used a reorder level definition which helps
to preventunnecessary setups and loss of serlg@gel. An order is placed inventory
positiondropsbelow reorderlevel. Since inventory structure can differ among different
business types, it is possible to select this reorder level in severaliteaysver, br the

rest of this studywe restrictourselvesto two types of reorder levelfor the sake of
simplicity: Typel ( ) and Type2 { ) service levelgluring lead timeHere, we used a
different Typel and Type2 service level than their traditional definition/e denote

i A respectively for Typd and Type2 service measumuring lead time

Reorder levels can be easily calculated by ugivgn parameters as provided in the

following subsections.

3.2.1.1 Reorder Levelwith Type-1 Service Measure

By definition, Typel ( service level)leads a reorder level, whichsatisfiesthe
probability of not seeingany stockout Here we use a different service measure and
focus onlydemandsduring replenishment lead time. Here, at any tinertiO, our
reorder level is the smallestteger, whose probability of no steokit is higher than

known and fixed probabilitievel |

i T ETshl £0Q4ODOT "BEABYNG'TY | h” (1)

Lead time and demand eatan dropped from the parametefseorder level function
since these are fixed throughout the studgt 1 6 |  _ 0 8Qdis the expected

demand during lead time. Then, probability of no stoak during replenishment lead
time is;
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So we can simply use the following inequality;
00
N Q 80 - - o
L1 TElMs ——— I Frho _0&0 3)

3.2.1.2. Reorder Levelwith Type-2 Service Measure

Type2 ( service level) is often called as fithte alias fraction of demand met on time.

For this service measure, probability of not backordering a demand (satisfied demand)
should be more thdn. In other words, fraction of demand not met on time during lead
time should be lesthanp T . Again, we restrict ourselves to demand during lead time

to apply this service level.

By using same definition, we can define | o as;

~
N

i T [ ETSOl GO WEE OE QdQd &0 Qo  p | (4)

One can definghe fraction of demand not met on time as;
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where] 0 is expecteddemand during lead timed | _ 0 & Gas usedabove.

Therefore, similar to Typé& reorde level,” is the smallestinteger where fraction of

demand not met on time is lebmnp T .

3.2.1.3. Change in Reorder Level
In this subsection, we will introduce a useful observation, which leads tracking the
inventory position only when a demand occurs become sufficient instead of tracking it

continuously.

In first type of service level (Typ#), for anytime 6, we have a @der level as;

BRI (6)

Here, if we increase timi then] O decreases. We can prove it for anfpj 1HO

whereo 0, then;
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this follows,

% & (8)

Sincg 0 1 0 ,itdirectly follows that

IR 1 QB 0 0miI &b v o 9)

Same can be applied for Ty@eservice measure. Taking satneandd we can easily
show for samé, fraction of demand not met on time will be 0 respectively foid

ando . Thenwe get

TR IR QB 0 0mi &b v o (10)

This condition is usefuh terms of applying the policieBecause, obviously andi

both are no#increasing functions of time. Therefore, necessary condition for a
replenishment, where inventory position is below any of service level could only happen
when a demand arrives. Therefore, checking reorder levels only whenaadiamives

will be sufficient.
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3.2.2.Replenishment Quantity and Orderup-to Levels

Based on the selection of replenishment twigch is obtained by using the reorder
level, retailer needs to decide about quantity of replenishment. This replenishment
quantityd O is a major decision for retailer which affects remaining horizon heavily. If
replenishment is overestimated, then holding cost increases. On the other hand if it is
underestimated then retailer may need additional replenishment which may increase

total séup cost.

There are some measures which is extremely important for selection of replenishment
guantity. These are residual tif@ 0, holding, backorder and setup costs and demand
rate. Although cost parameters are fixed and known, changes in resideahriin
demand rate affects replenishment quantity. Since replenishment quantity decision is
independent from past decisions, we can evaluate the remaining time horizon and
demand rate and provide a level which helps to determine the replenishment quantity.
Therefore, we used two ordap-to level definitions whichare used to decide
replenishment quantity.

Replenishment quantitgnd next replenishment tinadfectseach otherTherefore, one

can select an estimated time for next replenishrmedtthercalculate ordeup-to level.

Our heuristics are differentiated at this point. In order to provide an estimate time for
next replenishment we can make an exhaustive s@aitontinuous intervand find

the bestandidatelnsteadwe can limit ourselve® a finiteset consists of various time

periodsand select the best one among them, which iséffi@ent.

As described abovdirst alternative takes residual time into consideration while second
alternative concerns only with the given time peri@dr first heuristic uses the first
method described above while second heuristic applies the othéFlmrefore we can

say that our first heuristic takes the remaining time horizon into consideration and thus it

is a policy with lookahead capabilityOur second heuristic, in that sense, is a myopic
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policy. In here, we would like to describe how these two diffesemicturesare applied.

First we will describe how first policy consider residual time to select replenishment
guantity. We will present a sudgic, deterministic subproblem, which is used for this
task. Then quantity decision of our myopic policy, second heuristic, will be explained.

3.2.2.1.0rder-up-to Level Decisionwith Look Ahead Capability
We know that our selection of replenishment qugntvill affect the expected next
replenishment timend expected number of residual orddise relation is shown at

Replenishment
Quantity
Expected Next
Expected Number -
of Residual Orders ~ RepIeTr::Il;ment

Figure 3.1 Relation between replenishment quantity decision and its effects.

Figure3.1.

Every replenishment order affects the remaining replenishments, hence to find

replenishment quantity for only one interval needs to solve the consecutive problems as
well. Hence decision to replenishment quantity needs the residual time into

consideration As we seeevery decision to replenishment quantity needs solvieg th

subproblem between andQ

Note that the replenishment quantity belongs to a large set and the expected next
replenishment time is continuous, hence we foath and setthe expeted number of

residual orders tfind others.
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Note that sbproblem between  andOis a smaller version of theriginal problem,
where we are deciding demand at time 0, wthetime horizon is betweed  andQ
Solving this subproblemoptimally has same comgxity to solve the real problem.
Therefore, v simplified the subproblems as follow§:we assume that the demand
during residual timed HO is deterministicand equal to demangite_ 6, we can
solvethe subproblem Herce foran arbitrarytime interval of , the demand is known
and fixedto, _ i Qi We know thathie deterministic subprobleDS) can be solved
optimally if the total number ofemaining replenishment is fixed herefore, starting
from ¢ p to a suficiently large numbed, we can calculate the total cost for
deterministic subproblerand then select the one which gives minimum total ddss
approach is suggested by Johnson and Montgofd&jyto solve Continuous Review
Lot Size Problem. Trying vaous¢ values is also suggested in their studgte that, we
are | ooking for t he best selection of

finding the expected time of next replenishment and finally the replenishment quantity.

Deterministic Subproblem

Assume that total number of remaining orders.is

In this step, we will find the optimal solution to the deterministic subproblem (DS)
between 0 0 to 'O with deterministic demand rate. Definey 0 0RO

represents time.

We denot€ YO ¢ is the total cost of optimal selection ©freplenishment times for

deterministic subproblem, starting fram . For any selection of replenishment times
O b MR the total cost islenoted adYd & MR where superscript

D represents deterministic probleBy using expectation on demand rate, expected total

cost betweelw  andObecomes;
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Taking partial derivatives of this term with respechtdd s  W® ectBele  gives
optimality conditions. In optimal solution of ordering timés 8 * the resulting

terms must be equal to zero. This giges p nonlinear conditions.
For'Q cBR p

0o , 80" U 0 v , oo (12)

For'Q ¢

o', 807 6( 6o (13)

There aree  p unknowns withé  p equality conditions since we set 0  for

all solutions. Then, these equations will have a unique solution. These solutions could be
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found by using mathematical softwad@hnson and Montgomery suggest setting a value
for 0 and then solving all remaining variables. If last condition does satisfy
equality another value af should be selected §]. These conditions can be solved by

using mathematical software.

Since we know the optimal solution for the deterministic subprobleménittders, we
can simplify the total cost term. Nowest total cost for deterministic subproblem with n

orders’'YO can be defined as;

Yo & opgﬁE A ﬁjiE"Yé N0 e FB D ¢ (14)

Determining Replenishment Quantitybased on DS Solutions

As discussed before, we can solve DS optimally forgamgne . Iterating frome  p to
a sufficiently large upper boumd gives the optimal number of orders, which is denoted

by&® .Alousy selection oN can be calculated as follows:

w0 o L'O 0o
0

"E (15)

where we compare total setup cost with the total backordering cost of extreme solution

where all residual orders are backordered.

We can write;

g AOCI™®T & R wuy (16)
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After selecting best solution &xpected number of residual orders, one can calculate the
ordering quantity. For optimafl, we havad :h) :F8. Thenreplenishment quantity

for order Qs;

(17)

which corresponds to expected demand until expected next immediate replenishment

time.

3.2.2.2. Myopic Orderup-to Level Decision

As discussed before, we can seldut review period lengthamong a set of finite
candidates This alternative may represergatlife conditions better since most of
business applies periodic replenishments.

For each period length in the candidate set, wedeiihe and solve a subproblem. Since
these subproblems are considerably senéttian the subproblems we solved befave,
donodt need t o icadersandrfer these prablemie rdénstdfl for the
candidate set. For each candidatefl, define the subproblem between

Ohd 0 . Orderup-to level for anyawill be the smallest integer, which satisfies

the service level derived by holding and backordering cost parameters. Denote

1 0 0 0Qo

as the expected demand during review perddk will assume that the inventory
postion at the beginning of the period éxjuivalent tosmallest integer, that satisfies

service level derived by holding and backorder cost paramdtetsa is the jth
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candidate in theetfl. Let,0 0 is thereplenishmentjuantity for candidat&at time o.

Then,

—fo Ny (18)

which is the same solution to newsvendor problem assuming demand follows Poisson
distribution with ratg o . After solving all subproblems we will select the one give the
minimum cost per unit timeThen, fora we can find expected total siboby using
following equation.

VDOo 0O a ©0o O 08

Yoo 0 o o e 1
0080 O b & o (19)

whereO "080fMD is the expected holding and backordering cost betvéeand 0
where starting inventory level is. This cost can be calculated by using order statistics

of the Norhomogeneous Poisson Process.
Then total cost per unit time is simply

SO ¢ 3o
YO U Oftx T (20)

For each elemeritin the candidate sét we get'Y6 0 Gifr.

Here, we will select the begt fl asd which satisfies
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Now, we have the best solution for the myopitbproblem.Let 'Q is the index of

selectecperiod lengthThen the ordeup-to level is,

YO U0U:0 (22)

After finding our ordetup-to level, now we can define the real replenishment quantity,

such as:

0o Yo O (23)

3.2.3. Last Order Problem

In section 3.2.2.1, we see how replenishment quantity can be chosen by solving
deterministic subproblem for the residual time horizon. Remember that, we were solving
deterministic subproblems for fixed number of residual ord&ten we are sufficiently
close to engf-horizonQ we can solve the stochastic subproblem without simplifying

the stochasticity. Wwillcallt hi s probl em as fAdLast Order Pr

As we prove insection3.2.1.3 reorder levels are nancreasing function of time. On
top of that, if we assume that demand rate is a continuousineogasing function of

time, then these reorder levels are step functions with certain break points.
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Figure 3.2 Behavior of Reorder Level during Final Phasewhen Demand Rate is Notincreasing Function of
Time
At timeo O 0, the order up to level will become minus infinity with optimal
number of estimated replenishmefts p for sure Therefore, instead of issuing an
order, retailer may want to wait until the end of horizon and simply meet the all

backordered demands with a single replenishmsote that, he start of the last phase

whereO  Hbmay become earlier thanH

In their study, TeuntelandHaneveld shova similar effect while describing the optimal

Y phHY policy [32]. He shows that optimal ordep-to level function"Ywill reach

zero, and eventually become minus infinity, where not placing any order is the best
option.

The reason for order up to level function takes minus infinity value can be reviewed as

follows; assume that an arbitrademand occurred iggewhich is smaller thaifO 0.
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Assume our inventory position drops-th Retailer has two alternatives. Fioste is not
giving any order at timésand pays the backordering casttil end of horizonwhich

corresponds

060 B0 o (24)

The second option is giving an orderteand meets the item at 0. Then, the cost

becomes;

6 wd U o (25)

If 0 e O then the best policy is not giving any replenishment order. Therefore, it is
obvious thathe optimal order up to level foweds strictly belowzero. In order to find
optimal reorder level, let there is another demand arrives where inventaigpdsops

to -2 at timedee @incedmeeteandd e 0 ,we getd O0xae 0 0 0 . Therefore

best policy for this singular order is same as previous: do not issue a replenishment
order. Clearly, it is same for all demand after here and it is eassetdthat, procedure

can continue until minus infinity. Therefore optimal reorder level is minus infinity.
When the retailer approaches near to end of the planning horizon, best estimation for

remaining orders will get closer to zero.

Based on this obsertian, when optimal number of estimated replenishment is less than
2, time until'Ois sufficiently close for considering not giving any order until end of final

phaseMoreover the residual stochastic subproblem can be solved.
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In this step we will comparexpected total cost of two alternatives. First one is placing
any order at timé 0 . Without loss of generality, assume that we will place an

orderwith size ofaa Then, expected total cost betwasndOwill be;
Omn QOEDERA 0
O "YQOod&)i OYe BE i SO¢ & Q&E QW (26)
6 WO QE DB OND

Denotethedemand between 0 andOis

00 OROX (G000 _o&o

Then we can expand total cost formulatas)

OYéw U Vi O KO ® " m 68
080 06 0RO @ ‘0o (27)
006 6 0RO OO

whereO 06 tepresenD o i ‘Q G UM Mg D 0 Q¢ B L Bétweerd O andO
with an inventory positiodatd 0. We can expan® ‘00 as;
0’06 & OhHC "0

000 0RO Q806 ORC oK (28)
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and by using order statistics, we know tkedlemands will be distributed over horizon

where demand ratiime areas between cawitive demandriies are equal.

Demand Rate

A1=A2=A3

Al

A2
A3

0 +—— Time
t?'IOW H

Figure 3.3 Order Statistics of Arrival Timesof Demands

Then, once can calcula@ Odor any inputusing bisectioomethod

Letd _ _ 6 &0 We can rewriteZ8) as the following;

YO W

. [ORR: Rt (29)
08 Q o 0 &——
Q w ™
gag e . 5
80°060 ORCW 00 FQ

A
Qmn
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As discussed above, our second alternative is not placing any ordé@umMiidifying

(30) we canwrite;

YO T
, Q98
O 8 P Q- (,)8 KBT
Qn (30)
T gage .
——80060 OhaO0O hQ
Qmn

Note that, first term in the cost expressiof)(Bepresents the setup cost at the end of the
horizon which is dependent to demand betweend and "O which follows Poisson

Process with raté .

3.3. Heuristics

3.3.1. First Heuristic; Based on the Expected Number of Residual Orders

Since we are dealing with a finite horizon problesplenishmentimes and quantities
affect the remaining orders. In finite horizon inventory problems, generally,
replenishmentare correlated with each other. Logic behind this gabcbased on this
observationln order to shape our policye are solving a deterministic subproblem for

the remaining time horizon.

We knowthat deterministic demand variation of h@blem can bsolved optimally for
fixed number of residual ordees discussed in section 3.2.2flit is knownthat there
will be ¢ ordering points,then it leads¢ p optimality conditionsusing first

derivatives These conditions lva a unique solutianThis observation constitutes a basis
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for determining theeplenishmengjuantity in our heuristicShortly,in our first heuristic,
a deterministic subproblenat each alering time issolved by using optimality

conditions andresults of the problemsed fordetermining ordering quantity.

We assume that, retailer start the final phase with sufficient (optimal) inventoryltevel.

other words, ssume the inventoryisondee d az06t i me 0

As statedbefore this heuristic is a continuous review policy, whichaisvariant of

classicareorder level, order up to levdlRY inventory policy.

A schemeof the heuristic can bgeenn theFigure 3.4,
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Step 0: Initialization

If inventory poisiton
below reqrder level

Step 1: Defining
and Solving the
Deterministic
Subproblem

If n<N

————Increase n by lﬁ

If I=N
|

Step 2: Selecting
Best Solution to
Determine
Replenishment
Quantity

Deterministic
Subproblem

If n*>2

Step 3: Finding
Reorder Level and
Reorder Point
(Next Demand)

If inventory poisiton
above reorder level

If n*<2:

¢

Step 4: Last Order
Problem

End of Heuristic

A\
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Here, we will show steps of the first heuristic.
Step O- Initialization

Seto 0 and’Q 1T 0 represents theurrent timeand "Qs used torepresent

iteration number (namely, treimberof currentreplenishment
Step 1i Defining and Solving the Deterministic Subproblem

Setd 0 , whereo is the order time ofQ order whiled is acandidateor 0. Here,

if ' Q 1 itisconsideredas he Af i.r st order o

In order to estimate optimal number of residual ordees will consider time interval
between O O . We will solve deterministic subproblem in this interval for

different selection of number of residual replenishments.

Set¢ pinitially and solve DS as discussed in section 3.2 Phkn increasé by 1
and solve DS again. Repeat this procassl € 0, where( is a sufficiently large

upper bound of .

In practice, the total cost decreases whilencreases at first, and then increase after
some point, which is close to optimal valfe . Thereforejn practiced can be chosen
based on thebservation on thancrement in total cost whilg is getting largerWe can

say that change in cost istradways convex but close to have a convex shape.

For each subproblem with residualderst, we get the total cost witthe optimal

selection ofreplenishment times over the remaining horizon:

YO & Y6 gh0y: M FB FD; ¢
. W L wez v ez (31)
YO £ YO e h” Bh
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After obtaining total cost for each valtet plti8 i) go to step 2.
Step2i SelectingBest Solution toDecideReplenishmentQuantity

Now we have expected total costsioflifferent selection of total number of residual
orders.Among these costsye need teselect the best possibdeto minimize total cost
for residual time horizon. Let® is the bestselection of total number of residual

orderssuch that;

£ AOCI“&)’[ g FEN Y (32)

After selectingoest solution t@xpected number of residual orders, one @outate the

ordering quantity.

If £° ¢ it means weentert h e -dirl daesrt  pwhiohbslingraduced in Section

3.2.3 In this condition, we are sufficiently close to the @ri¢horizon"Oand therefore,

remaining problem can be solved optima(Bo to stepl.

If &° ¢setd O .lItmeans, wealecide to issue a replenishmender atdb  as

"Q order. Therefore, we are fixing the vala¢o.

As calculated in thé&tep 1, for optimalé®, we haved ) :F8. Thenreplenishment

guantityfor orders;

(33)

After selectionof replenishmentjuantity, nowretailer places a replenishmemtier with

asized 0 .Go to Step 3
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Step 37 Finding Reorder Level and Reorder Point

In this step, we need to wait until inventory position drops below reorder Byveksing

an important observatiomtroduced in Section 3.2.1.3ve can check inventory only
when a demand arriveather than tracking inventory position continuously, which may
be costly Here, we may use one of the two different reorder level explained in section
3.2.1. For each typef ®ervice levels, we can easily show that reorder level is a non

increasing function of time which is similar to demand rate function.

The observationeads us to define this step as followsswame that, a demand arrives
ato. Then, inventory positiors updated and we will check the reorder le\Bdsed on

the selected service measwenrder level fotime 0is calculatedby using either (3) or

(4).

If inventory position is abovéhe reorder level, themepeat step 3. Therocedure must
be repeated foevery until inventory position drops below reorder leveloaservation
suggestsOtherwise,if inventory position drops below reorder level for any 'O 0,

then go to step.1
Step4 1 Last Order Problem

Until this step ofthe heuristic, estimation of best solution for the total number of
residual replenishment is used. As described in Section 3.2.3, we can solve the
remaining subproblem when we are close to end of the planning horizon. This is our last
decision in the prdem. Based on the solution of the LOP we can give a last order at
o] or skip this decision point. Either way, we need to satisfy any backordered

demands at the end of horizon and this concludes the heuristic.

44



3.3.2. Second Heuristic; Based on th®linimization of Myopic Period

While looking for alternative of the first heuristics, we came up with an idea, which
resembles applications in the real life. Assume there is a retailer, which is alssuteto

an orderbut undecided about the quantity oétreplenishmentA basic solution to this
complex problem is setting replenishment quantity to an amwlich is most probably
cover the demand until next weekrgext month or next two monthstc.- average time
between consecutive replenishments basedistorical dataHere, his estimation of
next order is can be chosen among meaningful candidétgs.that, his selection is
done automaticallyn the first heuristic by looking ahead to remaining time horizon
Here, our objective iso selectbest cadidate whichwill minimize total cost per unit

time until next estimated order.

A major drawbackof this heuristic is,residual timeis not being considered while
deciding on replenishment quantihoosing replenishment quantity based on total cost
per period length is a suitable approach for infinite horizon. However, we may reflect

the effect of residual time into the heuristic with some extensions.

This policy can be considered as a variant @llvknown SilverMeal heuristic proposed
by Silver and Meal26]. We are minimizing total cost per period, in a finite set of
variable period lengths. In that sense this heuristic is a periodic review policy with

variable period lengths.

Assume that, seff@andidate periodf is already given or known before the problem. If

not provided, this set can be constructedily based on the nature of the given problem

Steps of the heuristic ashownin Figure3.5.
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Step 0: Initialization

A

/

If Inventory
Position less
than Reorder
Level

Step 1: Define the
subproblem for
each candidate

Solve
subproblems
optimally for all
candidates

Step 2: Set period
length

Place

Order

Step 3: Wait Until
Next Decision Point

R
Step 4: Update
infeasible
candidates < t <= H-L t>
Check Inventory
Level

H-L

End of Heuristic

Figure 3.5 Steps of the 2 heuristic
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Step O: Initialization
Seto 0andQ T
Step 1: Define the Subproblem for Each Candidate

In this step, for each candidate in the period set, we will define the subprabiéke
previous deterministic subproblems, theubproblemsthat will be presented in this

policy will be solved optimally.

By using myopic order up to levdkscribed in the section 3.2.2.2, we can find total cost
per unit time for each candidate. Dend® 0 Ofx is the total cost per unit time for
candidateéx ¥ fl. All "Y6 0s™tan be calculated easily by using)(1After solving

subproblems optimally for each candidate, go to step 2.
Step 2:Set Period Length and Place Replenishment Order

By using informatiorobtained in Step 1, we can denote

d AOGINGID (34)
N Al

Now as we decide on our period length, we carbsetd . Now we need to specify
replenishment quantity. Ase have the best solution for the myopic subproblemcan

setthe ordefrup-to levelas

Yo @ o 0 d 0o 00 (35)
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Based on our selection, we can issue a replenishment order with a&ize afttime o
which is the difference between ordgrto level and current inventory position, as

defined in subsection 3.2.2.2hen,go to step 3.
Step 3:Wait Until Next Decision Point

In first heuristic we checked our inventory whenever a demand arrives instead of
tracking it continuously. Although same conditions are still available for this policy, we
may limit ourselves to our earlier decisions. Remember that, in second step @egibhd |

is fixed. To be consistent, we will check inventory position when this period ends.
Hence for any replenishmé@twe will until © 0 & whered is the length of @
period. Whero o 0 a,ifo "O 0 go to step 4othervise it is end of

the problem
Step 4: Update Candidate Set and Check Inventory Position

Since problem horizon is finite, at some pont 0 may be larger thai® for
anya N fl , where period length becomes infeasible sinée is defined only

between THO . In order to prevent infeasible periods, we will update our candidates.

For anyan fl, if 6 a 'Q than update that membasd O 0. As an additional
step, we can remove any duplicate candidate in thé. gdter this update, akklemens

in the candidate set become feasible.

Now we will checkif our inventory position is less than our reorder level. Here, we are
using same reorder level as we used for first heuristic. By using reorder level fet Type

(1) or Type2 (4) service measure, @0 i 0 go to Step 1.

An additional step is needed otherwise. If our inventory position is larger than reorder

level, r et ai | er shoul dnot i Bherefcze, vee will sqive euri s h me
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subproblems as described in Step 1, with an ékugepstarting inventory of the period

will be equal to current inventory position. Hence; for candidatefl

3 006 0 a 0o 0 0Os8
Yoo 0 0800 e e s (36)
0000 0h U ahoo

and

Y6 O Oy —— (37)

By using total cost per unit time for each candidate, we can similarly set

d AOGIT b (38)
Nl

Finally we decided for our next decision point. Go to Steptl8 new period length

3.4. Effect of Residual Time on Solutions

Until heree wedescri bed two different heuristics
policies is a policywith look-ahead capabilitywhere residual time has an effect on our
decisions. Other one focuses on myopic decisions and tries to minimize cost per unit

timein every decision point.
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One of the very natures of retailerds fin
horizon. As discussed in section 2, for most of business types, end of final phase is
known and determini st i csafinith®izenfproblem,asitset ai |

effect is obvious on our heuristics.

Recall that we have two major drivifigrcesthat define our problem and thus affects

our heuristics: horizon length and demand rate. In general, while horizon length is
effective in ar decision on ordeup-to level, demand rate affects reorder level. At this
point, note that time horizon has no effect on reorder level, which may lead some

troubles as described below.

Suppose our demand rate is constant over time horizon, thus derobods f
Homogeneous Poisson Process and let its rate Iis this case reorder level will be
constant for both Typ& and Type2 service measure. For Tyfeservice measure,
rewrite (2) such as:

- . Q
VI €N WHAI "WEADBYXQG T (f; (39)
wherey 0 is defined as expected demand during lead time. Hete, &=  _8Q0
&t hus itodés constant and not dependent on
R TETs 2% hwRe _t
| ¢ —m | Mho _0 (40)

becomes constant fany arbitraryo.
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Reorder level r, where
demand rate is constant

r=r(0)

Figure 3.6 Effect of constant demand rate on reorder level

However, in optimal policy, reorder level should decrease towards end of horizon due to
risk of overstocking. Such a behavior is incorrect for both practical and theoretical
purposesWe know that reorder level should be as low as 0 when tif{@ i® and it

should be decrease gradually towards it

In order to reflect the effect of residual time aur dieuristics we define an adjustment

rate for reorder levellhis rate uses the following observations:

1 Effect of residual horizon at starting point should be zero.
1 Adjustment rate should decrease reorder level towbemo O 0.

1 Based on problem pareeters, gradual decrease may be slow or fast.

Such a rate can be defined as a function of time and horizon length, dependent to rate
—where itods zero at o f'O risTheredoredlenotecadjosted s 1

demand rate as

(41)

wherewis adjustment parametitatdefines shape of adjusted demand.rate
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Figure 3.7 Behavior of Adjusted Demand Rates for Various Selection of the Parameter

As shown in figure abovef i® p and demand rate is constant, adjusted demand
decrease linearlylf @ p, adjusted demand rate increase slowly at first and then
decrease sharply towards end of horizbmbis set to be infinity, than adjusted demand

rate is equal to demand rate.

Actualy, this adjustment works well for homogeneous demand cases as described in the

following subsection.

Following subsections are organized as followssubsectior3.4.1, we will show that
the usage of adjustment parameter provides-ogimal results fothe homogeneous
case. Then, we will show how the adjustment parameter can be selected for a given
problem. In the last subsection, we suggest Power Approximation method to find a

sufficiently good selection of the adjustment parameter and show the tialtstaps.
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3.41. Comparison with Teunter and Haneveld s M eféor landgeneous Cases

In 20, Teunterand Haneveldlealt with a similar problem32]. In their work, an
optimal policy for a homogeneowemand rate spare part inventory is proposed. In the
study, setup cost igliscarded;hencean Y pRY policy is proved to be optimal
Moreover, for this policy, break points throughout the horizon are given gyplitheir
method will be denoted as THM.

Compared to our study, the demand rate is differ€rtM consides homogeneous
Poisson demand rafer the spare parthile in our study, demand rate is distributed

with a norhomogeneous Poisson demand rate. deer, we have a fix setup cost,
although setup cost is not considered in the study. Therefore, if we set our setup cost as
zero, andhomogenizedur demand rate, than it will be the same problem. Simeie
problemis similar to the problem described bewe compared performance of our
heuristic with his method.

Since our first heuristic provides a closer solution to ThtM, we used it for the
comparison.Thus, we can examine effect of adjustment parameter by comparing his

optimal policy with ours.

Our first heuristic performs as thEHM suggestsvhen the setup cost zero;order size
will be unit sizedfor all ordes. It is precisely the same poligyf THM Y pRY
optimal policy The"Y p level corresponds to reorder level in our heuristic, while

level is order up to level as same.
Here, following parameters are used which are defined by Teamiadaneveld32].

6=1, (=20, "&0.2, 1 =0, _=4, 1=0.25 andlet "0=10. Now we can plot the ordemp-to

level with given parameters as follows:
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5 W Teunter

Figure 3.8 Order-up-to level by THM for Teunter and Haneveld s pr obl em

Orderup-to level (reorder level plus one unit) can be plot as follows if adjustment rate is

not used.

5 M Order up to
levels
(Heuristic 1)

Figure 3.9 Order-up-to level by First Heuristic for Homogeneous Case
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As data provides, our heuristic does not perform well for homogeneous Asse.

described previouslyn adjustment needed to reflect the effect of the residual time.

Let select an adjustmeparameteto T& Then we get the following ordeip-to level

for our first heuristic:

2 W Teunter

5 M Data for
a=4.9999

Figure 3.10 Side by side comparisonof AM and Fi r st PRWptTo lceyebwsth AQjusteé Demand
Rate

As shown, adjustment parameter is capable to imitate behavior of reorder level of the
optimal solution. The next subsection is devoted to describe which parameterthaffect

selection of adjstment parameter and howcdnbe selected.
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3.4.2. Selection of the Adjustment Parameter

We observe that selection of paramefeshould be related with backorderir(gy,
holding ("Q and setuf{v ) costs lead time ) and horizon lengtifO. If holding cost is

high and backorder cost is significantly small, then obviodsfhould be less because
otherwisecymay not be sufficient to decrease the adjusted demand rate, which may lead
excessive holding codh the opposite casé backordercost is high and holding cost is
small, thenc should be high to maintain a higher adjusted demand rate for escaping
excessive backorder cost. Due to these observatieh®uld be proportionabith c¥'Q

Moreover,should increase when horizon lengiid lead time are increasing.

Based on our observation in chargf&y we came up with three different alternatives.
First alternative gives a mild adjustment parameter, where adjusted demand rate stays
high until endof-horizon and decrease sharply a #nd. For this selectiaishould be
selected relatively highefk® p). Second alternative is selecting an aggressive
adjustment parameter, where adjusted rate decrease at first and its accdiecatines

slower as time passes by decreasedinearly & p . Third selection is moderate

selection, which is a linear combination of two alternatives.

In order to finding best estimation phrametety we get some simulation runs. For
evaluating the performance of the seledaiddvel, we consider Teuntand Haneveld s

problem with homogeneous demand rate with KAppendix 1)

For Teunterand Haneveld sriginal problem, we found that, if parameters taken 5.5
for 1° heuristi then average total cost for 100 replications is 1.87% away éptimal,

which is promising.
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For the variations of he probl em sol ved i n TJ38,uwet er

search besbvalues Assumethe standard problem has following values.

thO pfl ™ 6Q Mo c¢f nd p (42)

Best levels are found by an exhaustive search algorithm. We found the foll@iwing

values for the variations of the standard problem as follows:

Table 3-1 Best selection o#-for various cases

RESUL{OO0 Replications Each)

Variation Best THM Adjusted Heuristic Gap to
a Total Cost L THM
Level Total Cost (%)

H=20 6.5 94.027+1.45 94.301+1.469 0.2920
L=0.5 5.5 | 50.548+1.545 50.852+1.46 0.6022
b=5 0.8 | 44.451+1.242 45.197+1.238 1.6788
b=10 1.0 | 46.176+1.415 46.66+1.197 1.0476
h=0.4 1.0 52.77+1.686 53.191+1.313 0.7971

91 For standardproblem with horizon length is 20, best a level is 6.5, where total
cost is very close the optimal result, gap between costs is just 0.29%.

1 For standardproblem with lead time 0.5, we get a solution 0.60% away from
optimal cost.

1 With a backorder cost 5, best level faris significantly low, 0.8 where we
satisfy to be far from optimal solution just 1.67%.

1 For the original problem with only differencedkarder cost is 10, best selection
of Wis 1, where average total cost 1.04% away from average total cost with
Teunterand Haneveld s opt i mMBEM. pol i cy

1 And lastly, for original problem with only difference holding cost is 0.4, best

selection ofwis again 1, where total cost is 0.79% away from optimal result.
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We conclude thabis dependingn the following parameters;

1 Holding / backorder cost ratio
1 Lead Time
1 Horizon Length

We setup 20 different scenarios and gettO0 replications fomore than30 different
wlevels eachto better estimate.itWe reach the following selectionsf (3 where unit

costis fixed to 1

Table 3-2 Bestselectionof adjustment parameter

Parameters
Horizon | Backoder | Holding Lead Setup | Adjustment
Length Cost Cost Time Cost Parameter
H b h L K Best a
5 18 0.6 0.50 2 0.2
5 15 0.8 0.75 1 0.8
5 15 0.7 0.75 0 5.4
5 25 0.9 1.25 0 7.2
5 18 0.5 0.75 2 0.5
10 19 0.5 0.50 2 0.3
10 15 0.2 0.50 3 2.1
10 21 0.7 0.50 0 7.9
10 19 0.1 1.25 2 3.5
10 25 0.2 0.75 0 6
20 23 1.0 1.25 0 57.5
20 16 0.9 1.25 0 53.1
20 17 0.1 0.50 4 8.2
20 24 0.4 1.25 0 51.2
20 30 0.1 0.25 5 8.1
30 26 0.2 1.25 3 12.6
30 16 0.9 0.25 0 30.4
30 15 0.1 0.25 2 7
30 20 0.2 0.50 0 44.5
30 22 1.0 1.25 0 58.5
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3.4. 3. Power Approximation of Adjustment F
By using simulation resultgiven in Section 3.4,2we applypower approximation

method, defined by Ehrhardt in 1978).[This approximation assumes that the parameter

to be adjusted is multiplicative function of the factorsLet, the optimal selection of

adjust ment parameter fiao has the :foll owing

. ®
(I)do"O@i‘)pL')p (43)

wherewhb oo fty are the parameters to be approximafBaking the logarithm of

both sides gives us

(A

&
S
5
S

o1 €
S
C
e
S
C
o

(44)

which can be appximated by linear regressiowe take some simulation runs for the
approximation(Table 3-2). By using the linear leastquares approach as suggested by

the autho, the approximations of the parameters are listed below.

Table 3-3 Regression Results for Power Approximation

Parameter Approximation
0.02
1.71
0.34
1.73
-1.43

€1 €1 €1 1 €1

The statistical results obtained from Linear Regression are given in Appendix 4.
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Later, we conclude that parametéy should be dependent only to horizon length.
Moreover, backordering and holding cost ratio and setup costs are not sufficient to
represent the behaviowe know thato should increase whé®@ increaseswvhile other
relations of problem parameters withis unclear Hencewe ignore the effects of the
other parameters and applgpwer Approximation wherevis defined as

& A0 (45)

and apply Power Approximation.taistical details are provided in Appendix 5.

Approximation is represented as

& T8t Uo® (46)

Unfortunately, this approximation explains the behavior of adjustment parameter with
adjusted RSquare value of 0.52. Although our Power Approximation is unable to

explain adjustment parameter, we use this approximation for the computations in
Chapter 4. 8ch an approximation may lead under or overestimation of adjustment

parameter.

By usingthese resultswe get thepproximation®f cfor our experiment set
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Table 3-4 Comparison of Best and Approximate Adjustment Parameter

Parameters
Horizon | Backorder| Holding Lead Setup | Adjustment | Adjustment
Length Cost Cost Time Cost Parameter Parameter
H b h L K Best a Approximation
5 18 0.6 0.50 2 0.2 1.09
5 15 0.8 0.75 1 0.8 1.09
5 15 0.7 0.75 0 5.4 1.09
5 25 0.9 1.25 0 7.2 1.09
5 18 0.5 0.75 2 0.5 1.09
10 19 0.5 0.50 2 0.3 3.95
10 15 0.2 0.50 3 2.1 3.95
10 21 0.7 0.50 0 7.9 3.95
10 19 0.1 1.25 2 3.5 3.95
10 25 0.2 0.75 0 6 3.95
20 23 1.0 1.25 0 57.5 14.35
20 16 0.9 1.25 0 53.1 14.35
20 17 0.1 0.50 4 8.2 14.35
20 24 0.4 1.25 0 51.2 14.35
20 30 0.1 0.25 5 8.1 14.35
30 26 0.2 1.25 3 12.6 30.53
30 16 0.9 0.25 0 30.4 30.53
30 15 0.1 0.25 2 7 30.53
30 20 0.2 0.50 0 44.5 30.53
30 22 1.0 1.25 0 58.5 30.53

3.5. Ending Remarks

Residual time is an effective element in finite horizon problems, in general. Most of the
time, decisions are affected by the residual time. For our problem, even if the demand
rate stays constant, retailers may want to reduce the reorder level to mingkiné

payi ng unnecessary setup <costs. Teunter

homogeneous demand rate case with zero setup cost shows that reorder level should
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decrease towards the end of hori88]. Therefore, applying our two heuristics on the
problems without any modification may lead some excessive setup costs, since reorder
level defined by either Typ# or Type2 service level does not consider residual time on
calculations. However, we know that at some point of time, not giving a repiesnmn

order until the end is the best option for the retailer as mentioned in Section 3.2.3.

Since we know that reorder level should decrease gradually to zero, and then to minus
infinity, we decided to use an adjustment parameter, which leads underiesfithat
demand during lead time:

(47)

This underestimation is dependent to residual time untitodbrizon and can be
adjusted by the parametarBased on problem parameters, we would like to change our
underestimation of thdemand during lead time. For instance, when horizon length is
sufficiently large, we would like to increase adjustment paranigt&nce the relatively
lower values ofvleads a sharp decrease at the beginning of the horizon. As holding and
backorder cst parameters are effective in THM, we know that these two parameters
should affect our selection Gf Also, setup cost is another parameter that should be

considered.

As the best selection of parameierseems unclear, we decided to use Power
Approximaion method, where the paramedeis defined as a multiplicative function of
parameters mentioneVe decided that only horizon length is effective on adjustment
parameterThen by using Linear Regression on the logarithm of both sides, we can
estimate he parameters in the Power Approximation method. Note that for a good
estimation ofd we need a sufficiently big sample size. Small number of experiments

may lead errors in regression of parameters. Even if we approximate this parameter,
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such a relation étween adjustment paramedeand the other parameter of the problem
is not certain. We suggest using this approximation for the decision maker, for a
relatively better selection of the adjustment parameter. Decision maker can also find

another way to seeh for the best value ofby taking simulation runs.

Power Approximation provides a value for adjustment paramietard we use this
technique for all simulation results in Chapter 4 unless otherwise stated. We also show

why this adjustment is needeadthe numerical experiments.
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Chapter 4

Computations & Results

In this chapter, we used our botteuristics for various setups and measure the
effectiveness of thespolicies In 4.1 we will introduce the computation platform,
simulation software and system specifications. In 4.2 we provide verification of software
by using simple cases and parameters. Finally in section 4.3 we provide comprehensive

results for bothheuristicsand compare results

4.1. Computation Platform

Since our heuristic is designed for a stochastic problem, in order to evaluate

performance of the policies we need simulation. However, available simulation
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softwaresarenot flexible to solvehe determirstic subproblemm Therefore, we create a
userfriend simulation tool, Inventory System Simulator (Insys) for measuring and

comparing performance of the policies.

Insys is developed on Obje@riented Java language (Java JDK 1.7.0) and able to use
mathematal software MATLAB® for calculations. There are 3 external libraries in
Insys. First external library is exp4j (ver. 0.2.8) which enables the usage of symbolic
definition of demand rates by using variables. Second external library is JSC (Java
StatisticalClasses, ver. 1.0) which is used for demand distribution, such as generating
demand points according to N@omogeneous Poisson Distribution. Last external

library is matlabcontrol (ver. 4.0.0) for connecting MATLAB® functions to Insys.

Insys is capablefosimulating 100 replications in less than 2 minutes for most cases
(homogeneous case with no setup cost). All mathematical operations, such as solving (9)
and (10) optimality conditions and calculating long mathematical expressions (8) are
done via MATLABR.

Insys has also wetlesigned user interface for saving/loading problems and tracking
inventory position in continuous time. Both inventory position and level could be
tracked in continuous time. After getting runs simulation graphs (inventory movements)
are recorded as image files to the computer for detailed analysis. The simulation tool is
capable of runningrfHM, 1% Heuristicsand 29 Heuristic For THM, tool can also
provide optimal ordeup-to levels.

For numerical exp@ments in this chapter, Tyge servicelevel durng lead timeis

appliedunless otherwisetated Service level idixed oW o o
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. ™y
# Inventory System Simulator - InsyS 10 NI (RO e
— —

File Edit Options Help

Algorithm Select imulation Stats
(@ Algorithm 1 (" Algorithm 2 () Teunter
@) Option 1 () Option 2 Replication Number: -
- - Simulation Time:
Parameter Select Inventory Level:
Demand Rate Function - A(t) Cl4 Defined Time Intervals -r; IEITI FETITE - =
Next Demand:
FEr e 0 Next Order Arrival: -
Lead Time -L 0.25 Current Task:
Setup Cost -K v}
Unit Cost -u 2 Total Cost:
Holding Cost -h 0.20 Time Passed:
Backorder Cost -b 20

RUN

Service Level .Type 1-Auto v

Simulation Graph

Credits

Sertalp Bilal
Cay

Prof.Dr.
Mesim Erkip

Figure 4.1 User Interface of Insys Simulation Tool

Usage of Insys

Insys is capable to solve Final Phase Problem by usiiedristic, 2 heuristic and
THM. Note that, it set some of pdefined values for the selection of the algon. For

instance,THM works only if K=0, hence it sets setup cost value at the time of selection.

User can set the ndmomogeneous Poisson demand rate in three ways. First, the
constant rate is defi nierd b gr.SeantdpecewiseCO an ¢
|l inear cases <can be & agpvg ffzed t e e p rieeDe ndt
c0 Q® 0 o
0 0 Q& o0 ¢
CO Q@ 0 pTm
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Lastl vy, user can enter

which corresponds 0

any ogenr mnfodwncti on
™ T 1 0 (Figure B). Note that, there is no any restriction

for given function, however demand rate should be aimoreasing function to take

meaningful results.

-
= Inventory System Simulator - InSyS 1.0 l = S|
File Edit Options Help
Algorithm Select Simulation Stats
(@ Algorithm 1 (1 Algorithm 2 () Teunter
_ ) . : Replication Number: 10 of 10
(@ Option 1 (1 Option 2

Simulation Time: 10.0
Parameter Select Inventory Level: 0
y Inventory Position: 0
Demand Rate Function - A(t) 010 Defined Time Intervals -r; Y
Hext Demand: 8.744587089428174
FE 10 Next Order Arrival: N/A
Lead Time -L 0.3 Current Task: Simulation Finishad
Setup Cost -K 3 -
Unit Cost-u 0.5 Total Cost: 48.477811462765644
Holding Cost -h 0.1 Time Passed: 83
Backorder Cost -b 0.2
Service Level .T\fpe 1-Auto |
Simulation Graph
Iit)
28 ast Order
21
14
7
redits
0 It
2 4 5] g H .
7 Prof.0r. b 1= Sertalp Bilal
14 NesimErdp U L3RS Cay

Figure 4.2 Insys is simulating a casewhere demand rate is a decreasing linear function of time.

Parameter should be set in numerical format. Only f8rh2uristic, Defined time

intervals

shoul d

be

candidate period length for th& heuristic.
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In default settings, Insys provides 10 replications with the given setup and their
inventory positiodevel versus time graphs. (Figurd)INote thatall generations and

statistics are also recorded for comparison purpgaependix 2)

Simulation Graph

I¢t)

28 | ast Order
21
14
¥

0 : — I—H

2 4 5 3 H

-7
-1 44

Figure 4.3 A sample output file of Insys.

4.2. Validation and Verification of Software

As shown in the previous subsection Insys provides reasonable results for given inputs.
We know that when K=0, the ordeshould be unit sized, as the solution of deterministic

subproblems. Foo 1 standardproblem we get the following output Inventory
Position vs. time graph:
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Simulation Graph

It)

L‘JU UUUUW WHH i Hﬁ

=
—

Figure 4.4 Inventory Position-Level vs. Time Graph for Standard Problem by using £' Heuristic (Appendix 3)

Note that, all orders are unit sized as we exggee Appendix 3 for the final report on
replenishment times and quantitids seen all orders are wsized as expected. It is
because, best solution to Deterministic Subproblem is achieved wherpals to
expected demand betwean and 'O and since there is no setup cost. Hence
replenishing inventory for every singleemdand minimizes the total cost. Therefore,
order sizes will be unit sized. This theoretic solution is observable in simulation
replications, which proves the tool works correctly in terms of (1) solving DS and (2)

calculating costs.

We also see that, denthrgenerations of the software are reasonable. For different
demand rate functions_ Y we inspect the demand times and verify that times are
accurate. On a simple example, when t constant, the expected demand®@r p 1
should be 40. Over 100 replicatiyrwe see that th@5% confidence interval of total

demand is 40113 £+ 0.0345. We assume that the precision we obtain is acceptable.

To verify softwarewe set up some simple casesl compare the results with the known

optimal solutions.
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First case we observe is when setup cost is aedodemand rate is constavife know
that THM solution is optimal for this problem®5% Confidence Interval of Average
Total cost ist ® o p® ofor THM, while our £ heuristic givest @ p p& with
@ Ld (Appendix 1).

Second case is performed withiM. We solvestandardproblem withtheir algorithm
and observe the inventory movements. We see that, software is accurate in terms of
calculating ordeup-to and reorder levels, defining break points and calculating average

total costs.

Simulation Graph

It

R

{ 1
H

2 4

Figure 4.5 Inventory Movement with THM

4.3. Results

For evaluating the performance of the heuristics we set up soruefimed parameters.

The list of these cases as the following;
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Table 4-1 Setups for Problem Parameters

Parameter
Unit Cost 1
Holding Cost 0.2
Lead Time 0.25 0.5
Setup Cost 0 10
Backordering Cost 5 20
Horizon Length 10 20
(H=10)| 4 0.8.(106t) -3/50*t"2+6
Demand Rates /0 4 0.4.(201) -3/2004t°2+6

Sa for lead time we use 2 different settinggpr setup cost? for backordering cost and
2 for horizon length. For each horizon length, we evaluate (1) homogeneous demand rate
case, (2) linear decreasing demand rate case and (3) quadratic decreasing demand rate

case for nofhomogeneous Poisson process.

By using comhaations of these setups, there are totdBydifferent cases. By using
simulation, we evaluate performances of dwuristicsfor these cases. In here, we
present results ofland 2" Heuristics in orderfor homogeneous, linear decreasing and

guadratiacdecreasing order for demand rate.

For each demand rate, we create a demand list by generatiigpm@myeneous Poisson

process demands and apply same demand times to all scenarios.

4.3.1 Resultof 1% Heuristic
For the ' heuristic we take simulation rufor homogeneous, linear decreasing and

guadratic decreasing demand rates.
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For the homogeneous case uge_

for quadratic decreasing we set 0

expected total unit &b is equal for all these cases.

T, for linear decreasing. 0

—8 ¢ where

™ p T O and

_0Q0 1 mHence

Results oftonstant, linear decreasing and quadratic decreasing demaeapatanents

areprovided in the Appendig, 7 and 8, respectively

A summary of the results are provided in the following t&ble

Table 4-2 Comparison of Simulation Results for £ Heuristic Different Setups,

b=5 b=20

(L=0.25) K=0 K=10 K=0 K=10
Constant | 47.057| 109.991| 49.332 | 111.102

H=10| Lin. Dec. | 49.009| 173.701| 52.848 | 171.102
Quad. Dec. | 48.107 | 160.088| 51.300 | 158.134
Constant | 93.305| 194.615| 97.060 | 195.248

H=20| Lin. Dec. | 95.003| 303.666 | 102.252 | 303.974
Quad. Dec. | 94.770| 275.992 | 100.115 | 279.418

Table 4-3 Comparison of Simulation Results for £ Heuristic Different Setups,

b=5 b=20
(L=0.5) K=0 K=10 K=0 K=10
Constant 50.065 | 106.406| 53.655 | 107.758
H=10| Lin. Dec. | 54.035 | 170.176| 64.656 | 175.686
Quad. Dec. | 52.442 | 155.380| 61.079 | 156.406
Constant | 99.306 | 193.686| 101.719| 195.105
H=20| Lin.Dec. | 103.567| 302.771| 116.253 | 308.402
Quad. Dec. | 100.887| 276.963| 111.757 | 282.822

8

8

Notethat as we selecbrather arbitrarily, comparison of expected costs may not follow

expectations.
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4.3.2Results of 29 Heuristic

We take simulation runs of®heuristic for only homogeneous demand cifge.apply
the same setups as wsedfor 1% heuristic.Note that we have two different lead times.
Period length candidates are selected as thdetjree multipliers of these lead times.
So, for L=0.25, candidates are 0.25, 0.5, 1, 2 and 4, while for L=0.5 e@eslidre 0.5,
1,2,4 and8.

Simulation esults are provided in Append Comparison with ¥ heuristic results is
discussed in following subsection.

4.4, Performance Comparisons

We emphasize some of the important comparisons betweeiormancesof the

policies.

THM i 1% Heuristic
Since THM is only applicable for homogeneous Poisson demand rate and zero setup
cost, we evaluate this comparison on standard problem. For the standard problem,

defined in (2) we get the following average total cost.

Table 4-4 Comparison of THM and 1% Heuristic with Different Adjustment Parameter on Standard Problem

Adjustment Mean
el Pairameter (C10.95) CED ()
THM - 48.763+2.168 -
1st Heuristic - 50.582+2.065 3.730
1st Heuristic 20 49.695+2.034 1.911
1st Heuristic 3.622 49.332+2.232 1.166
1st Heuristic 1 51.036+2.753 4.661
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In 100 replicationsTHM gives a total cost8763 We applied T Heuristic with no
adjustment parameter, and then two extreme adjustment parameter (20 and 1) and finally
the adjustment parameter obtained Pawer Approximation3.622 As we expect,
without adjustment, heuristic gives a higher cost compared to ap@@dnvalue.
Extreme solution wheré p actually gives worse result than not applying adjustment

at all, this shows that good selection of the parameter is important for its performance. In
another setting, we change the holding cost to 2, while in tgenakiproblem it is 0.2.

Enlarging holding cost 10 times increased the cost as follows:

Table 4-5 Comparison of THM and 1% Heuristic with Different Adjustment Parameter for |

Adjustment Mean
sie Pa{rameter (Cl 0.95) Calp )
THM 82.463+2.397 -
1st Heuristic - 87.20L +2.216 5.740
1st Heuristic 20 86.540+2.276 4,943
1st Heuristic 3.622 86.380+£2.275 4.750
1st Heuristic 1 88.365+2.903 7.1

The gap betweenveragetotal costs THM vs. Best 1 Heuristic Resultincreased in
this experiment t@d.75%, while we reach the worst solutiovhen adjustment parameter

is fixed to 1.

1% Heuristic, Different Setup Cost Selection

We also compare the effect of adding setup cost to the profenknow that without

setup cost and under homogeneous demand rate, the optimal solution suggests
replenishments with ungtize. However, addition of setup cost changes the cost
structure. Here, we evaluate how setup cost affects the total cost in thenpriteé use

1% Heuristic with three different setup cost parameterd, &nd5, in order. For each
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setup cost, we take simulation runs (1) without adjustment operation and (2) adjustment

parameter with Power Approximation. We get the following results:

Table 4-6 Effect of Adjustment on Different Setup Cost Settings

Setup Cost ';2?;;:2?:: (CI\:/II %6_135) Decrease (%
0 - 50.582+2.065 -
0 3.622 49.332+2.232 247
1 - 67.129+2.281 -
1 3.622 63.143+2.359 5.93
5 - 93.435+2.903 -
5 3.622 86.102+2.916 7.84

This shows thabenefit of applying adjustment is increasing when setup cost is higher
Note thatwhenwe applyTHM for the cas® p, the total cost becomes 87.23ad

for0 v it becomes 247.233ince the policy orders a unit for every demand.

1% Heuristic, Different Demand Rate Functions

We compare the performance of thehkuristic on different demand rate functions. We
choose samples where the total expected demand remains same. Adjustment parameter
does not depend on the demand rate function, hence it remains same. We compare cases

where0 mandy T
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Table 4-7 Change in Total Cost for Different Demand Rates

Demand Rate  Setup Cost AF‘,OglrjaSrtnn:;t (g:eoéSS) Gap (%)
4 0 3.622 49.332 £ 2.232 -
0.8 (10t) 0 3.622 52.848 £+ 2.556 | 7.172
6-30 /50 0 3.622 51.3£2.423 3.989
4 10 3.622 111.102 £ 6.074 -
0.8 (10t) 10 3.622 171.102 £ 11.78 | 54.004
6-30 /50 10 3.622 158.134 £ 10.773| 42.332

As seen from the results, the average total cost increasagared to homogeneous
Poisson case. Although confidenicgervals are wide, total cost for quadratic decrease

case seems slightly better than linear decrease case.

15t Heuristic 1 2" Heuristic

We compare fand 2 Heuri sticso

candidate set for thé®heuristic is defined as the second degree multiples of lead time.

First, we take setup cost as zewo ( 1) and also set adjustment parameter to 3.822

get the following result

r e Yu lmmtasdd f m MHerehb ot h

Table 4-8 Comparison of THM, 1%t and 2" Heuristics for Standard Problem

: Mean
Method Candidate Set (C10.95)
THM - 48.763 + 2.168

1st Heuristic

49.332 +2.232

2nd Heuristic

0.25,05,1,2,4

53.569 * 3.438

Then we considethe standard problem with

p ando

p 1tFor both setup cost,

adjustment parameter is calculated R@ver Approximation and set to622
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Table 4-9 Comparison of &' and 2" Heuristics for L on Standard Problem

; Mean
Method Candidate Set (C10.95)
1stHeuristic - 63.143+2.359
2nd Heuristic 0.25,05,1,2,4 62.032+2.372
Foro pm
Table 4-10 Comparison of ' and 2" Heuristics for L on Standard Problem
Method Candidate Set MEET
(C10.95)
1stHeuristic - 111.102 + 6.074
2nd Heuristic 0.25,05,1,2,4 99.435 + 3.681

Also by comparing the results presented in section 4.3.1 and 4.3.2, we seé that 1
heuristic provides slightly better results thdfi ieuristic for zero setup cost case. When
we apply norzero setup cost to the problem, performances of the heuristics becomes

closer andespeciallyfor higher setup costs'%heuristic give better resultin general

4 5. Remarks and Conclusions

Computational studies give some hints about applications of the heuristics. We will

summarize these important results in here.

f On lomogeneous emand rate with zero setup cost, Heuristicperforms best.

We compare these results with THM as a benchmadkcanclude that it gives
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nearoptimal solutions for most of the cases, at most 2% away from optimal
value according to our numerical results.

On homogeneous demand rate with 1zeno setup cost"? Heuristic provides
better objective values compared to esttcombinations. Especially for high
values of setup cost"®heuristic outperforms®iheuristic. There are two reasons

for this result. (1) Although 1 heuristic benefits from estimation of future
replenishments, solving deterministic subproblems weslsome errors due to
stochasticity. Most of the time*Iheuristic ends up with more replenishments
than estimated at time 0. (2) Inclusion of setup cost"hh2uristic pushes
retailer to use longer period lengths while holding and backordering cdked
opposite. When setup cost is getting larger, review period lengths are getting
longer, which ultimately reduce total setup cost.

For norhomogeneous demand rate with zero setup cost cases, performafice of 1
heuristic is not affected by cost paramese For instance, for the standard
problem with @ v andg Tt average total costs are7.@57 and 49.332
respectively.

Results of the *Lheuristic on nofzero setup cost cases are heavily affected by
the size of setup cost. For higher setup costs, average total cost increased
significantly. Same effect is also observable dfl teuristic, but not as much as

in 1% heuristic results.

Selecion of adjustment parameter is vital for the practical purposes. Although
the existence of an explicit way to calculate hgstalue is unknownye could
explain the its relation with horizon length. Hence, Power Approximation
method only depends on haon length,s appliedand results areompared to
THM.

Candidate set for thé"®heuristic is always selected as tfi& dgree multipliers

of the lead time and this selection provides better values for homogeneous
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demand rate with zero setup cost caseseasing the size of the candidate set
obviously increase the performance of th¥ Beuristic, but may be time
consuming for practical purposes.

Both heuristics provided results in reasonable times as expedt@over,
addition of extra information such as indefinite integral of the demand rate

function is observed to be useful for numerical operations.
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Chapter 5

Conclusion

Final phase is generally the longest phase in the lifecycle of a product. It starts hen th
product is out of production and continues until last contract expires. In this phase,
companies have to supply spare parts due to legal responsibilities in the contracts.
Therefore, management of inventory of spare parts becomes an isseiaifers;since

these parts often need be keep in the retailer level. Due to uncertainty of demand and
risk of obsolescencat the end of the horizon, retailers must manage spare part inventory

careful to avoid excessive holding, backorder, setup and unit costs.

Int hi s study we focus on a retaitirecofthes pr ob
final phase, we define the horizon is finite and knoWfe also assumehatdemand is
distributed with NorHomogeneous Poisson Distribution over the horiadth a non

increasing function of time ratéll cost are taken as fixed and known as the lead time.
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Optimal solution of this problem could be obtained via Dynamic Programming, however
up to authorsé knowl edge; there isBndt any
considered here. Moreover, structure of the optimal solution via Dynamic Programming

could be difficult to capture.

I n order to provide a fast and applicabl e
two heuristics. Our first heuristic is a contous review heuristic, which uses the
solution of the deterministic subproblem for ordering quantity and time decisions. This
policy haslook-ahead capabilitpver the residual horizon, which is based on estimating
future orders. On the opposite, secondiristic uses a myopic look for solving the
problem. It is a periodic review policy, where the lengths of the periods are variable and
selected among a candidate set. It is more realistic and applicable to real life than first
policy, because it needs ledata for calculationsra faster in terms of CPU time.
Remarks on numerical computations and suggestions on application of the heuristics are

summarized in subsection 4.5.

We provide three contributions to the literature. First, heuristis providenearoptimal
solution to homogeneous demand case, at m@sind 26 away fromoptimal value
Without needinglong calculationsfor optimality, it is a solutiorfor the retailewhich is
applicableduring the final phaseSecond, it is one of first studies whiconsider non
homogeneous Poisson demand distribution for the final phase. Although it is not
providing an optimal solution, it is applicable to real life due to its flexibility to apply for
decreasing demand cases. Indeed, assumption of decreasing dateaaccommon in

real lifein final phaseWe even show the performance of the heuristics for the quadratic
decreasing case, which is hard to solve optim&iyr third contributionis thatwe use

the idea of estimatinthe future replenishments to deeideplenishment quantiiy a

final phase problemHence, this study is a new application of leadkead capability on

inventory problems.
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In conclusiont hi s study is not only good at sol v
phase, but also useful facademic perspective. As a future study, one can apply the

idea of estimating future replenishments to other phases of the lifecycle of products and
find new key points to interpret the effect of estimation in the finite horizon problems.
Moreover,betterways to selecadjustment parameter apériod lengths in the myopic

heuristic can béound Also adjustment parameteould be change dynamically during

the planning horizon.
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Appendix 1 Performance of Adjustment Parameter compared toTHM on

Homogeneous Casel

thO pfd ™ 6Q Mo ¢ nd p

Parameters R 00 Replicatio a
Average O ae e ap 1o
Problem Algorithm a Level ota ariance erva
0 0.9 %
a
Constant
THM 47.23 36.01 47.23+1.19
Alg 1 4 48.35 44.13 48.35+1.31| 2.3706
4.5 48.43 42.01 48.43 + 1.28 | 2.5436
5 48.27 39.94 48.26 + 1.25| 2.1964
5.5 48.12 36.98 48.11+1.2 | 1.8757
Teunter 6 48.16 37.02 4816 +1.2 | 1.9736
Hai':\’lel d 6.5 48.16 37.02 | 4816+12 | 1.9736
Original Alg 1 4 50.13 41.44 50.12 + 1.27 | 6.1299
4.5 50.18 38.12 50.17 + 1.22 | 6.2357
5 50.02 35.86 50.01 + 1.18| 5.9005
5.5 49.99 33.59 49.99 + 1.15| 5.8442
6 50.11 33.39 50.1+1.14 | 6.0834
6.5 50.12 33.07 50.12 + 1.14| 6.1212
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Appendix 2 Sample Output Reportof 1 Iteration of Insys (1* Heuristic)

C:\ Users \ Raion \ Desktop \ Albatross Run  \ 1371509482462.ins Simulation Start
Upper Bound= 42
Cost for 1 is: 66.0 where next order is: 4.799999994581396
Cost for 2 is: 65.33333333333334 where next order is: 3.1333333129586993
Cost for 3 is: 66.0 where next order is: 2.2999999992275217
Cost for 4 is: 71.0 where next order is: 1.800000001636399

Cost for 5 is: 73.66666666666667 where nex t order is: 1.4666666666666668

Cost for 6 is: 77.71428571428571 where next order is: 1.2285714285714282

Optimal Residual Number for -0.2is2

Order is given at -0.2:13.0

Upper Bound= 35

Cost for 1 is: 52.688428364008665 where next order is: 5.6635117 03316419

Cost for 2 is: 55.12561890933911 where next order is: 4.284682266832034

Cost for 3 is: 57.84421418200432 where next order is: 3.5952675501860383

Cost for 4 is: 60.47537134560346 where next order is: 3.181618720909901

Cost for 5 is: 65.56280945 466956 where next order is: 2.905852832198355
Cost for 6 is: 68.9109795325739 where next order is: 2.708877198110855

Optimal Residual Number for 1.527023400248051 is 1

Order is given at 1.527023400248051 :17.0

Upper Bound= 17

Cost for 1 is: 23.9993466 09562796 where next order is: 7.863719219308917
Cost for 2 is: 29.999564406375196 where next order is: 7.218292290786801

Cost for 3 is: 32.499673304781396 where next order is: 6.895578827272509

Cost for 4 is: 41.199738643825114 where next order is: 6.701950751497466
Cost for 5 is: 43.9997822031876 where next order is: 6.572865366416478

Cost for 6 is: 51.8569561741608 where next order is: 6.480661519380515

Optimal Residual Number for 5.9274384384733185 is 1

Order is given at 5.9274384384733185 :8. 0

Upper Bound=9

Cost for 1 is: 13.616280451570857 where next order is: 8.922303833901157

Cost for 2 is: 19.41085363438057 where next order is: 8.629738441643502

Cost for 3 is: 23.308140225785422 where next order is: 8.483455746954649

Cost for 4 is: 3 0.246512180628347 where next order is: 8.395686130098749
Cost for 5 is: 37.205426817190286 where next order is: 8.337173052367161

Cost for 6 is: 44.17608012902023 where next order is: 8.295377996129812

Optimal Residual Number for 8.044607662699214 is 1

Order is given at 8.044607662699214 :4.0

Upper Bound=5

Cost for 1 is: 9.117240867312974 where next order is: 9.417180089489065

Cost for 2 is: 16.07816057820865 where next order is: 9.289573452427765

Cost for 3 is: 19.058620433656486 where next order is: 9.225770133897116
Cost for 4 is: 25.04689634692519 where next order is: 9.187488142778726

Cost for 5 is: 31.039080289104316 where next order is: 9.161966815366467
Optimal Residual Number for 9.034360178305167 is 1

Order is given at 9.03436017830516 7:2.0

Upper Bound= 2

Cost for 1 is: 7.000008146242315 where next order is: 9.79680894957918

Cost for 2 is: 13.000005430828207 where next order is: 9.795745266093727
Optimal Residual Number for 9.793617899122818 is 1

Order is given at 9.793617899122818 :0.0
FINAL REPORT
Orders
Number Time Size
0 -0.2 13.0
1 1.527023400248051 17.0
2 5.9274384384733185 8.0
3 8.044607662699214 4.0
4 9.034360178305167 2.0
5 9.793617899122818 0.0
Total cost: 91.91376367051015

89



Appendix 3 Insys Report for the Teunterand Haneveld®d s Pr obl e by usi

Heuristic

FINAL REPORT

Orders

NumberTime Size
-0.2 4.0
0.2930020217119735 1.0
0.4731844563503971 1.0
0.9776772203873425 1.0
1.6201510576913924 1.0
1.8895247000547173 1.0
2.191626479640092 1.0
2.4643093440363453 1.0
2.8033822769579397 1.0
2.9319699259491223 1.0
10 3.1429880837001107 1.0
11 3.2124336299514025 1.0
12 3.2468367054926714 1.0
13 3.3897457398533746 1.0
14 4,406194326235035 1.0
15 4,46526556057783 1.0
16 4.77198027963532 1.0
17 4.920924006699904 1.0
18 5.805435064435843 1.0
19 5.82881289078628 1.0
20 5.873487814027821 1.0
21 5.921198517647042 1.0
22 6.009210887889984 1.0
23 6.090851983156553 1.0
24 6.243755021939867 1.0
25 6.245613237983178 1.0
26 6.293172709077642 1.0
27 6.36 4969877396664 1.0
28 6.714528991536235 1.0
29 6.72190868800894 1.0
30 7.546414491208504 1.0
31 8.519889399787354 1.0
32 8.601495458327408 1.0
33 8.99588774449514 1.0
34 9.137422579252412 1.0
35 9.260614625516673 1.0
36 9.275349901286159 1.0
37 9.285398467436716 1.0

Total cost: 47.45927377068042

O©CoO~NOOUPA~WNEO

90



Appendix 4 Linear Regression obtained from Power Approximation Method

SUMMARY
OUTPUT

Regression Statistics

Multiple R 0.929
R Square 0.863
Adjusted RSquare 0.827
Standard Error 0.734
Observations 20.000
ANOVA
Significance
df SS MS F F
Regression 4.000 51.093 12.773 23.720 0.000
Residual 15.000 8.077 0.538
Total 19.000 59.171
Standard P- Upper Lower Upper
Coefficients  Error tStat value Lower95% 95%  95.0% 95.0%
Intercept -3.922 1.077 -3.642 0.002 -6.217 -1.627 -6.217 -1.627
In(H) 1.708 0.268 6.364 0.000 1136 2.280 1.136 2.280
In(b/h) 0.339 0.266 1.276 0.221 -0.228 0.907 -0.228  0.907
In(L+1) 1.726 0.826 2.089 0.054 -0.035 3.487 -0.035 3.487
In(K+1) -1.431 0.350 -4.086 0.001 -2.178 -0.685 -2.178 -0.685
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Appendix 5 Linear Regression obtained from Power Approximation Method

SUMMARY
OUTPUT
Regressiostatistics
Multiple R 0.739
R Square 0.547
Adjusted R Square 0.521
Standard Error 1.221
Observations 20.000
ANOVA
Significance
df SS MS F F
Regression 1.000 32.337 32.337 21.692 0.000
Residual 18.000 26.833 1.491
Total 19.000 59.171
Standard P- Upper Lower  Upper
Coefficients  Error tStat value Lower95% 95% 95.0% 95.0%
Intercept -2.913 1.066 -2.733 0.014 -5.152 -0.674 -5.152 -0.674
In(H) 1.862 0.400 4.658 0.000 1.022 2701 1.022 2.701
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Appendix 6 Simulation Results for £' Heuristic, Homogeneous Rate Case

Parameters RESULT

Holding | Unit | Demand | Horizon | Lead | Backorder| Setup Average = 0.95Confidence

Cost | Cost Rate Length | Time Cost Cost Total Cost Interval
h u < H L b K

0.2 1 4 10 0.25 20 0 3.622 49.332 49.332 £ 2.232
0.2 1 4 10 0.25 20 10 3.622 111.102 111.102 + 6.074
0.2 1 4 10 0.25 5 0 3.622 47.057 47.057 £2.136
0.2 1 4 10 0.25 5 10 3.622 109.991 | 109.991 + 5.695
0.2 1 4 10 0.5 20 0 3.622 53.655 53.655 + 3.067
0.2 1 4 10 0.5 20 10 3.622 107.758 | 107.758 + 5.857
0.2 1 4 10 0.5 5 0 3.622 50.065 50.065 + 2.706
0.2 1 4 10 0.5 5 10 3.622 106.406 | 106.406 + 5.065
0.2 1 4 20 0.25 20 0 13.149 97.060 97.06 £ 2.483
0.2 1 4 20 0.25 20 10 | 13.149| 195.248 | 195.248 +4.736
0.2 1 4 20 0.25 5 0 13.149 93.305 93.305 + 2.435
0.2 1 4 20 0.25 5 10 13.149 194.615 194.615 +5.041
0.2 1 4 20 0.5 20 0 13.149 101.719 101.719 + 2.765
0.2 1 4 20 0.5 20 10 13.149 195.105 195.105 + 4.075
0.2 1 4 20 0.5 5 0 13.149 99.306 99.306 + 3.254
0.2 1 4 20 0.5 5 10 13.149 193.686 193.686 + 4.02
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Appendix 7 Simulation Results for £' Heuristic, Linear Decreasing Rate Case

h=0.2, u=1
Parameters RESULT

% Diff

Demand | Horizon| Lead | Backorder| Setup Average 0.95 Confidence conlgared
Rate Length | Time Cost Cost Total Cost Interval P —
Case
< H L b

0.8*%(10t) 10 0.25 20 0 3.622 52.848 52.848 £ 2.556 7.127
0.8%(104) 10 0.25 20 10 3.622 171.102 171.102 + 11.78| 54.004
0.8*%(10t) 10 0.25 5 0 3.622 49.009 49.009 £ 2.116 4.148
0.8%(104) 10 0.25 5 10 3.622 173.701 | 173.701+11.124 57.923
0.8*(10t) 10 0.5 20 0 3.622 64.656 64.656 + 4.893 | 20.503
0.8%(104) 10 0.5 20 10 3.622 175.686 | 175.686 + 13.21] 63.038
0.8%(104) 10 0.5 5 0 3.622 54.035 54.035 + 2.699 7.930
0.8*(10t) 10 0.5 5 10 3.622 170.176 170.176 £12.095 59.931
0.4*(20+) 20 0.25 20 0 13.149| 102.252 102.252 +2.802| 5.349
0.4%(20) 20 0.25 20 10 | 13.149| 303.974 | 303.974+9.988| 55.686
0.4*(201) 20 0.25 5 0 13.149 95.003 95.003 £ 2.313 1.820
0.4%(20) 20 0.25 5 10 | 13.149| 303.666 | 303.666 +9.803| 56.034
0.4*(201) 20 0.5 20 0 13.149 116.253 116.253 + 4.419| 14.288
0.4*(201) 20 0.5 20 10 13.149 308.402 308.402 £ 11.602 58.070
0.4*(201) 20 0.5 5 0 13.149 103.567 103.567+ 2.649 4.291
0.4*(201) 20 0.5 5 10 13.149 302.771 302.771 £ 10.23| 56.321
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Appendix 8 Simulation Results for £' Heuristic, Quadratic Decreasing Rate Case,

h=0.2, u=1
Parameters RESULT

% Diff
Cost Consta
nt Case

< H L b

-3/50*t"2+6 10 0.25 20 0 3.622 | 51.300 51.3+2.423 3.989
-3/50*t"2+6 10 0.25 20 10 3.622 | 158.134| 158.134 + 10.773 42.332

-3/50*t"2+6 10 0.25 5 0 3.622 | 48.107 48.107 £2.074 | 2.231
-3/50*t"2+6 10 0.25 5 10 3.622 | 160.088| 160.088 + 10.08| 45.546
-3/50*t"2+6 10 0.5 20 0 3.622 | 61.079 | 61.079+4.408 | 13.837
-3/50*t"2+6 10 0.5 20 10 3.622 | 156.406| 156.406 + 11.816 45.146

-3/50*t"2+6 10 0.5 5 0 3.622 | 52.442 52.442 + 2.55 4.748
-3/50*t"2+6 10 0.5 5 10 3.622 | 155.380| 155.38 +10.334| 46.026

-3/200*t"2+6 20 0.25 20 0 13.149| 100.115| 100.115+2.566| 3.148
-3/200*t"2+6 20 0.25 20 10 13.149| 279.418| 279.418 £9.258| 43.109

-3/200*t"2+6 20 0.25 5 0 13.149| 94.770 94.77 £ 2.236 1.570
-3/200*t"2+6 20 0.25 5 10 13.149| 275.992| 275.992 + 8.955| 41.814

-3/200*t"2+6 20 0.5 20 0 13.149| 111.757| 111.757 +4.043| 9.868
-3/200*t"2+6 20 0.5 20 10 13.149| 282.822| 282.822 +10.773 44.959

-3/200*t"2+6 20 0.5 5 0 13.149| 100.887| 100.887 +2.573| 1.592
-3/200*t"2+6 20 0.5 5 10 13.149| 276.963| 276.963 +9.678| 42.996
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Appendix 9 Simulation Results for 2 Heuristic, Homogeneous Rate Case

h=0.2, u=1
Parameters RESULT
% Diff
Demand | Horizon Lgad Backorder| Setup a Level Average  0.95 Confidence compasltred
Rate Length | Time Cost Cost Total Cost Interval tol
Heuristic

< H L b a
4 10 0.25 20 0 3.622 53.569 53.569 +3.438| 8.589
4 10 0.25 20 10 3.622 99.435 99.435+3.681| -10.501
4 10 0.25 0 3.622 50.092 50.092 £2.74 6.450
4 10 0.25 10 3.622 100.897 | 100.897 + 3.817| -8.268
4 10 0.5 20 0 3.622 65.596 65.596 + 6.631| 22.255
4 10 0.5 20 10 3.622 100.790 100.79 £ 4.068| -6.466
4 10 0.5 0 3.622 55.903 55.903 +3.836| 11.661
4 10 0.5 10 3.622 95.227 95.227 £3.928 -10.506
4 20 0.25 20 0 13.149 107.069 | 107.069 + 4.538/ 10.312
4 20 0.25 20 10 13.149 193.593 | 193.593+4.996/ -0.848
4 20 0.25 0 13.149 99.810 99.81 +3.31 6.972
4 20 0.25 10 13.149 194.380 194.38 + 4.409 -0.121
4 20 0.5 20 0 13.149 125.319 125.319 + 8.525 23.201
4 20 0.5 20 10 13.149 189.937 189.937 +5.464) -2.649
4 20 0.5 0 13.149 109.364 109.364 + 4.622] 10.128
4 20 0.5 10 13.149 181.182 181.182 + 4.335 -6.456
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