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ABSTRACT

ALTERNATIVE APPROACHES AND NOISE

BENEFITS IN HYPOTHESIS-TESTING PROBLEMS IN

THE PRESENCE OF PARTIAL INFORMATION

Suat Bayram

Ph.D. in Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Sinan Gezici

July 2011

Performance of some suboptimal detectors can be enhanced by adding indepen-

dent noise to their observations. In the first part of the dissertation, the effects

of additive noise are studied according to the restricted Bayes criterion, which

provides a generalization of the Bayes and minimax criteria. Based on a generic

M -ary composite hypothesis-testing formulation, the optimal probability distri-

bution of additive noise is investigated. Also, sufficient conditions under which

the performance of a detector can or cannot be improved via additive noise are

derived. In addition, simple hypothesis-testing problems are studied in more

detail, and additional improvability conditions that are specific to simple hy-

potheses are obtained. Furthermore, the optimal probability distribution of the

additive noise is shown to include at most M mass points in a simple M -ary

hypothesis-testing problem under certain conditions. Then, global optimization,

analytical and convex relaxation approaches are considered to obtain the optimal

noise distribution. Finally, detection examples are presented to investigate the

theoretical results.
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In the second part of the dissertation, the effects of additive noise are stud-

ied for M -ary composite hypothesis-testing problems in the presence of partial

prior information. Optimal additive noise is obtained according to two criteria,

which assume a uniform distribution (Criterion 1) or the least-favorable distri-

bution (Criterion 2) for the unknown priors. The statistical characterization of

the optimal noise is obtained for each criterion. Specifically, it is shown that the

optimal noise can be represented by a constant signal level or by a randomiza-

tion of a finite number of signal levels according to Criterion 1 and Criterion 2,

respectively. In addition, the cases of unknown parameter distributions under

some composite hypotheses are considered, and upper bounds on the risks are

obtained. Finally, a detection example is provided to illustrate the theoretical

results.

In the third part of the dissertation, the effects of additive noise are stud-

ied for binary composite hypothesis-testing problems. A Neyman-Pearson (NP)

framework is considered, and the maximization of detection performance under a

constraint on the maximum probability of false-alarm is studied. The detection

performance is quantified in terms of the sum, the minimum and the maximum of

the detection probabilities corresponding to possible parameter values under the

alternative hypothesis. Sufficient conditions under which detection performance

can or cannot be improved are derived for each case. Also, statistical charac-

terization of optimal additive noise is provided, and the resulting false-alarm

probabilities and bounds on detection performance are investigated. In addition,

optimization theoretic approaches for obtaining the probability distribution of

optimal additive noise are discussed. Finally, a detection example is presented

to investigate the theoretical results.

Finally, the restricted NP approach is studied for composite hypothesis-

testing problems in the presence of uncertainty in the prior probability distri-

bution under the alternative hypothesis. A restricted NP decision rule aims to
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maximize the average detection probability under the constraints on the worst-

case detection and false-alarm probabilities, and adjusts the constraint on the

worst-case detection probability according to the amount of uncertainty in the

prior probability distribution. Optimal decision rules according to the restricted

NP criterion are investigated, and an algorithm is provided to calculate the op-

timal restricted NP decision rule. In addition, it is observed that the average

detection probability is a strictly decreasing and concave function of the con-

straint on the minimum detection probability. Finally, a detection example is

presented, and extensions to more generic scenarios are discussed.

Keywords: Hypothesis-testing, noise enhanced detection, restricted Bayes,

stochastic resonance, composite hypotheses, Bayes risk, Neyman-Pearson, max-

min, least-favorable prior.
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ÖZET

KISMİ BİLGİ BULUNAN HİPOTEZ SINAMA

PROBLEMLERİNDE ALTERNATİF YAKLAŞIMLAR VE

GÜRÜLTÜ KAZANIMLARI

Suat Bayram

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Yrd. Doç. Dr. Sinan Gezici

Temmuz 2011

Optimal olmayan bazı sezicilerin performansı, gözlemlerine bağımsız gürültü

eklenerek artırılabilir. Tezin ilk kısmında ek gürültünün etkileri, Bayes

ve minimaks kriterlerinin genelleştirilmesini sağlayan kısıtlı Bayes kriterine

göre çalışılmaktadır. Genel M ’li bileşik hipotez sınamaları baz alınarak, ek

gürültünün optimal olasılık dağılım fonksiyonu incelenmektedir. Aynı zamanda,

sezicinin performansının gürültü eklenerek geliştirilip geliştirilemeyeceğiyle ilgili

yeter koşullar türetilmektedir. Bunlara ek olarak, basit hipotez sınama problem-

leri daha ayrıntılı olarak calışılmakta ve basit hipotezlere özel ek yeter koşullar

elde edilmektedir. Ayrıca, belli koşullar altında, bir basit M ’li hipotez sınama

problemindeki optimal ek gürültünün olasılık yoğunluk fonksiyonunun, en fazla

M farklı değer arasında rasgeleleştirme içerdiği gösterilmektedir. Daha sonra, op-

timal gürültü dağılımını elde etmek için global optimizasyon, analitik ve dışbükey

gevşetme yaklaşımları ele alınmaktadır. Son olarak, kuramsal sonuçları incele-

mek için sezim örnekleri sunulmaktadır.
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Tezin ikinci kısmında, kısmi önsel bilgi bulunan bileşik M ’li hipotez sınama

problemleri için ek gürültünün etkileri çalışılmaktadır. Optimal ek gürültü,

bilinmeyen önsel olasılıklar için birbiçimli dağılım (kriter 1) veya en az uy-

gun dağılım (kriter 2) varsayan iki kritere göre elde edilmektedir. Her bir

kriter için optimal gürültünün istatistiksel özellikleri elde edilmektedir. Özel

olarak, optimal gürültünün kriter 1’e göre sabit bir sinyal seviyesiyle ya da kriter

2’ye göre sonlu sayıdaki sinyal seviyesinin rasgeleleştirilmesiyle ifade edilebileceği

gösterilmektedir. Bunlara ek olarak, bazı bileşik hipotezler altındaki parametre

dağılımlarının bilinmediği durumlar ele alınmakta ve risklerin üzerine üst sınırlar

elde edilmektedir. Son olarak, kuramsal sonuçları göstermek için bir sezim örneği

sunulmaktadır.

Tezin üçüncü kısmında, ek gürültünün ikili bileşik hipotez sınama problem-

leri üzerindeki etkileri çalışılmaktadır. Bir Neyman-Pearson (NP) çerçevesi ele

alınmakta ve en yüksek yanlış alarm olasılığı üzerindeki sınırlama altında sezim

performansının en yüksek seviyeye çıkarılmasına çalışılmaktadır. Sezim perfor-

mansı, alternatif hipotez altındaki muhtemel parametre değerlerine karşılık gelen

sezim olasılıklarının toplamı, minimumu ve maksimumu cinsinden hesaplanmak-

tadır. Her bir durum için sezim performansının geliştirilip geliştirilemeyeceğiyle

ilgili yeter koşullar türetilmektedir. Aynı zamanda, optimal ek gürültünün is-

tatistiksel özellikleri sunulmakta ve ortaya çıkan yanlış alarm olasılıkları ve sezim

performansı üzerindeki sınırlar incelenmektedir. Bunlara ilave olarak, optimal

ek gürültünün olasılık dağılımını elde etmek için optimizasyon kuramı tabanlı

yaklaşımlar tartışılmaktadır. Son olarak, kuramsal sonuçları incelemek için bir

sezim örneği sunulmaktadır.

Son olarak, alternatif hipotez altındaki önsel olasılık dağılımında belir-

sizlik bulunan bileşik hipotez sınama problemleri için kısıtlı NP yaklaşımı

çalışılmaktadır. Kısıtlı NP karar kuralı, en kötü durumdaki sezim ve yanlış

alarm olasılıkları üzerindeki kısıtlamalar altında, ortalama sezim olasılığını
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en yüksek seviyeye çıkarmayı hedefler ve en kötü durumdaki sezim olasılığı

üzerindeki kısıtlama seviyesini, önsel olasılık dağılımındaki belirsizliğin mik-

tarına göre ayarlar. Kısıtlı NP kriterine göre optimal karar kuralları incelen-

mekte ve optimal kısıtlı NP karar kuralının hesaplanması için bir algoritma

sağlanmaktadır. Bunlara ek olarak, ortalama sezim olasılığının, minimum sezim

olasığı üzerindeki kısıtlama seviyesinin kesin azalan ve içbükey bir fonksiyonu

olduğu gözlenmektedir. Son olarak, bir sezim örneği sunulmakta ve daha genel

senaryolara genişletimler tartışılmaktadır.

Anahtar Kelimeler: Hipotez sınama, gürültüyle geliştirilmiş sezim, kısıtlı Bayes,

stokastik rezonans, bileşik hipotezler, Bayes riski, Neyman-Pearson, maks-min,

en az uygun önsel.

vi



ACKNOWLEDGMENTS

I was so lucky to have Asst. Prof. Dr. Sinan Gezici as my advisor. He has

been one of the few people who had vital influence on my life. His patience,

perfectionist personality, generosity and inspirational nature have been a great

admiration for me. He has always supported me through hard times. It was a

real privilege and honor for me to work with such a visionary advisor. I would

like to, especially, thank him for providing me great research opportunities and

environment. Also I would like to thank Prof. Dr. Orhan Arıkan, Asst. Prof.

Dr. Selim Aksoy, Asst. Prof. Dr. Defne Aktaş and Asst. Prof. Dr. Ali Cafer
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Chapter 1

Introduction

1.1 Objectives and Contributions of the Disser-

tation

Although noise commonly degrades performance of a system, outputs of some

nonlinear systems can be improved by adding noise to their inputs or by increas-

ing the noise level in the system via a mechanism called stochastic resonance

(SR) [1]-[14]. SR is said to be observed when increases in noise levels cause

an increase in a metric of the quality of signal transmission or detection perfor-

mance. This counterintuitive effect is mainly due to system nonlinearities and/or

some parameters being suboptimal [14]. Improvements that can be obtained via

SR can be in various forms, such as an increase in output signal-to-noise ratio

(SNR) [1], [4], [5] or mutual information [6]-[11], [15], [16]. The first study of SR

was performed in [1] to investigate the periodic recurrence of ice gases. In that

work, the presence of noise was taken into account in order to explain a natu-

ral phenomenon. Since then, SR has been investigated for numerous nonlinear

systems, such as optical, electronic, magnetic, and neuronal systems [3]. Also, it

has extensively been studied for biological systems [17], [18].
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From a signal processing perspective, SR can be viewed as noise benefits in a

signal processing system, or, alternatively, noise enhanced signal processing [13],

[14]. Specifically, in detection theory, SR can be considered for performance im-

provements of some suboptimal detectors by adding independent noise to their

observations, or by increasing the noise level in the observations. One of the

first studies of SR for signal detection is reported in [19], which deals with signal

extraction from background noise. After that study, some works in the physics

literature also investigate SR for detection purposes [15], [16], [20]-[22]. In the

signal processing community, SR is regarded as a mechanism that can be used to

improve the performance of a suboptimal detector according to the Bayes, mini-

max, or Neyman-Pearson criteria [12], [13], [23]-[37]. In fact, noise enhancements

can also be observed in optimal detectors, as studied in [13] and [37]. Various sce-

narios are investigated in [37] for optimal Bayes, minimax, and Neyman-Pearson

detectors, which show that performance of optimal detectors can be improved

(locally) by raising the noise level in some cases. In addition, randomization be-

tween two anti-podal signal pairs and the corresponding maximum a posteriori

probability (MAP) decision rules is studied in [13], and it is shown that power

randomization can result in significant performance improvement.

In the Neyman-Pearson framework, the aim is to increase the probability of

detection under a constraint on the probability of false alarm [12], [13], [24],

[26]. In [24], an example is presented to illustrate the effects of additive noise

on the detection performance for the problem of detecting a constant signal

in Gaussian mixture noise. In [12], a theoretical framework for investigating

the effects of additive noise on suboptimal detectors is established according to

the Neyman-Pearson criterion. Sufficient conditions under which performance

of a detector can or cannot be improved via additive noise are derived, and it

is proven that optimal additive noise can be generated by a randomization of

at most two different signal levels, which is an important result since it greatly

simplifies the calculation of the optimal noise probability density function (p.d.f.).

2



An optimization theoretic framework is provided in [13] for the same problem,

which also proves the two mass point structure of the optimal additive noise

p.d.f., and, in addition, shows that an optimal noise distribution may not exist

in certain scenarios.

The study in [12] is extended to variable detectors in [25], and similar observa-

tions as in the case of fixed detectors are made. Also, the theoretical framework

in [12] is applied to sequential detection and parameter estimation problems in

[38] and [39], respectively. In [38], a binary sequential detection problem is con-

sidered, and additive noise that reduces at least one of the expected sample sizes

for the sequential detection system is obtained. In [39], improvability of esti-

mation performance via additive noise is illustrated under certain conditions for

various estimation criteria, and the form of the optimal noise p.d.f. is obtained

for each criterion. The effects of noise are investigated also for detection of weak

sinusoidal signals and for locally optimal detectors. In [33] and [34], detection

of a weak sinusoidal signal is considered, and improvements on detection per-

formance are investigated. In addition, [35] studies the optimization of noise

and detector parameters of locally optimal detectors for the detection of a small

amplitude sinusoid in non-Gaussian noise.

In [23], the effects of additive noise are investigated according to the Bayes

criterion under uniform cost assignment. It is shown that the optimal noise that

minimizes the probability of decision error has a constant value, and a Gaussian

mixture example is presented to illustrate the improvability of a suboptimal de-

tector via adding constant “noise”. On the other hand, [25] and [29] consider the

minimax criterion, which aims to minimize the maximum of the conditional risks

[40], and they investigate the effects of additive noise on suboptimal detectors.

It is shown in [29] that the optimal additive noise can be represented, under

mild conditions, by a randomization of at most M signal levels for an M -ary

hypothesis testing problem in the minimax framework.
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Although both the Bayes and minimax criteria have been considered for noise

enhanced hypothesis-testing [23], [25], [29], no studies have considered the re-

stricted Bayes criterion [41]. In the Bayesian framework, the prior information

is precisely known, whereas it is not available in the minimax framework [40].

However, having prior information with some uncertainty is the most common

situation, and the restricted Bayes criterion is well-suited in that case [41], [42].

In the restricted Bayesian framework, the aim is to minimize the Bayes risk un-

der a constraint on the individual conditional risks [41]. Depending on the value

of the constraint, the restricted Bayes criterion covers the Bayes and minimax

criteria as special cases [42]. In general, it is challenging to obtain the optimal

decision rule under the restricted Bayes criterion [42]-[46]. In [42], a number of

theorems are presented to obtain the optimal decision rule by modifying Wald’s

minimax theory [47]. However, the application of those theorems requires cer-

tain conditions to hold and commonly intensive computations. Therefore, [42]

states that the widespread application of the optimal detectors according to the

restricted Bayes criterion would require numerical methods in combination with

theoretical results derived in [42].

Although it is challenging to obtain the optimal detector according to the

restricted Bayes criterion, this criterion can be quite advantageous in practical

applications compared to the Bayes and minimax criteria, as studied in [42].

Therefore, in Chapter 2 of the dissertation, the aim is to consider suboptimal

detectors and to investigate how their performance can be improved via additive

independent noise in the restricted Bayesian framework. In other words, one mo-

tivation is to improve performance of suboptimal detectors via additive noise and

to provide reasonable performance with low computational complexity. Another

motivation is the theoretical interest to investigate the effects of noise on subop-

timal detectors and to obtain sufficient conditions under which performance of

detectors can or cannot be improved via additive noise in the restricted Bayesian

framework.
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In Chapter 2 of the dissertation, the effects of additive independent noise

on the performance of suboptimal detectors are investigated according to the

restricted Bayes criterion [48]. A generic M -ary composite hypothesis-testing

problem is considered, and sufficient conditions under which a suboptimal de-

tector can or cannot be improved are derived. In addition, various approaches

to obtaining the optimal solution are presented. For simple hypothesis-testing

problems, additional improvability conditions that are simple to evaluate are pro-

posed, and it is shown that optimal additive noise can be represented by a p.d.f.

with at most M mass points. Furthermore, optimization theoretic approaches

to obtaining the optimal noise p.d.f. are discussed; both global optimization

techniques and approximate solutions based on convex relaxation are consid-

ered. Also, an analytical approach is proposed to obtain the optimal noise p.d.f.

under certain conditions. Finally, detection examples are provided to investi-

gate the theoretical results and to illustrate the practical importance of noise

enhancement.

In Chapter 3 of the dissertation, noise enhanced detection is studied in the

presence of partial prior information [49]. Optimal additive noise is formulated

according to two different criteria. In the first one, a uniform distribution is

assumed for the unknown priors, whereas in the second one the worst-case distri-

butions are considered for the unknown priors by taking a conservative approach,

which can be regarded as a Γ-minimax approach. In both cases, the statistics

of the optimal additive noise are characterized. Specifically, it is shown that the

optimal additive noise can be represented by a constant signal level according

to the first criterion, whereas it can be represented by a discrete random vari-

able with a finite number of mass points according to the second criterion. Two

other contributions of the study in Chapter 3 are to investigate noise enhanced

detection with partial prior information in the most generic hypotheses formu-

lation; that is, M -ary composite hypotheses, and to employ a very generic cost

function in the definition of the conditional risks. Therefore, it covers some of

5



the previous studies on noise enhanced detection as special cases. For example,

if simple1 binary hypotheses, uniform cost assignment (UCA), and perfect prior

information are assumed, the results reduce to those in [23]. As another example,

if simple M -ary hypotheses and no prior information are assumed, the results

reduce to those in [29]. Furthermore, for composite hypothesis-testing problems,

the cases of unknown parameter distributions under some hypotheses are also

considered, and upper bounds on the risks are obtained. Finally, a detection

example is presented to investigate the theoretical results.

The theoretical studies in [12] and [13] on the effects of additive noise

on signal detection in the Neyman-Pearson framework consider simple binary

hypothesis-testing problems in the sense that there exists a single probability

distribution (equivalently, one possible value of the unknown parameter) under

each hypothesis. The main purpose of Chapter 4 is to study composite binary

hypothesis-testing problems, in which there can be multiple possible distribu-

tions, hence, multiple parameter values, under each hypothesis [40], [50]. The

Neyman-Pearson framework is considered by imposing a constraint on the max-

imum probability of false-alarm, and three detection criteria are studied [41]. In

the first one, the aim is to maximize the sum of the detection probabilities for all

possible parameter values under the first (alternative) hypothesis H1 (max-sum

criterion), whereas the second one focuses on the maximization of the minimum

detection probability among all parameter values under H1 (max-min criterion).

Although it is not commonly used in practice, the maximization of the maximum

detection probability among all parameter values under H1 is also studied briefly

for theoretical completeness (max-max criterion). For all detection criteria, suffi-

cient conditions under which performance of a suboptimal detector can or cannot

be improved via additive noise are derived. Also, statistical characterization of

optimal additive noise is provided in terms its p.d.f. structure in each case. In

1A simple hypothesis means that there is only one possible probability distribution under
the hypothesis, whereas a composite hypothesis corresponds to multiple possible probability
distributions.
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addition, the probability of false-alarm in the presence of optimal additive noise

is investigated for the max-sum criterion, and upper and lower bounds on the

detection performance are obtained for the max-min criterion. Furthermore, op-

timization theoretic approaches to obtaining the optimal additive noise p.d.f. are

discussed for each detection criterion. Both particle swarm optimization (PSO)

[51]-[54] and approximate solutions based on convex relaxation [55] are proposed.

Finally, a detection example is provided to investigate the theoretical results.

The main contributions in Chapter 4 can be summarized as follows: 1)

Theoretical investigation of the effects of additive noise in binary composite

hypothesis-testing problem in the Neyman-Pearson framework. 2) Extension

of the improvability and non-improvability results in [12] for simple hypothesis-

testing problems to composite hypothesis-testing problems. 3) Statistical char-

acterization of optimal additive noise according to various detection criteria. 4)

Derivation of upper and lower bounds on the detection performance of subopti-

mal detectors according to the max-min criterion.

Bayesian and minimax hypothesis-testings are two common approaches for

the formulation of testing [40], [56], [57]. In the Bayesian approach, all forms of

uncertainty are represented by a prior probability distribution, and the decision is

made based on posterior probabilities. On the other hand, no prior information

is assumed in the minimax approach, and a minimax decision rule minimizes

the maximum of risk functions defined over the parameter space [40], [58]. The

Bayesian and minimax frameworks can be considered as two extreme cases of

prior information. In the former, perfect (exact) prior information is available

whereas no prior information exists in the latter. In practice, having perfect prior

information is a very exceptional case [59]. In most cases, prior information is

incomplete and only partial prior information is available [42], [59]. Since the

Bayesian approach is ineffective in the absence of exact prior information, and

since the minimax approach, which ignores the partial prior information, can
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result in poor performance due to its conservative perspective, there have been

various studies that take partial prior information into account [42], [45], [59]-[63],

which can be considered as a mixture of Bayesian and frequentist approaches [64].

The most prominent of these approaches are the empirical Bayes, Γ-minimax,

restricted Bayes and mean-max approaches [42], [49], [59], [60], [63]. As a solution

to the impossibility of complete subjective specification of the model and the

prior distribution in the Bayesian approach, the robust Bayesian analysis has

been proposed [46], [64]. Although the robust Bayesian analysis is considered

purely in the Bayesian framework in general, it also has strong connections with

the empirical Bayes, Γ-minimax and restricted Bayes approaches [46], [64].

Among the decision rules that take partial prior information into account, the

restricted Bayes decision rule minimizes the Bayes risk under a constraint on the

individual conditional risks [41]. Depending on the value of the constraint, which

is determined according to the amount of uncertainty in the prior information, the

restricted Bayes approach covers the Bayes and minimax approaches as special

cases [42]. An important characteristic of the restricted Bayes approach is that

it combines probabilistic and non-probabilistic descriptions of uncertainty, which

are also called measurable and unmeasurable uncertainty [65], [66], because the

calculation of the Bayes (average) risk requires uncertainty to be measured and

imposing a constraint on the conditional risks is a non-probabilistic description

of uncertainty. In Chapter 5, the focus is on the application of the notion of

the restricted Bayes approach to the Neyman-Pearson (NP) framework, in which

probabilistic and non-probabilistic descriptions of uncertainty are combined [42].

In the NP approach for deciding between two simple hypotheses, the aim

is to maximize the detection probability under a constraint on the false-alarm

probability [40], [67]. When the null hypothesis is composite, it is common to

apply the false-alarm constraint for all possible distributions under that hypoth-

esis [68], [69]. On the other hand, various approaches can be taken when the

8



alternative hypothesis is composite. One approach is to search for a uniformly

most powerful (UMP) decision rule that maximizes the detection probability

under the false-alarm constraint for all possible probability distributions under

the alternative hypothesis [40], [67]. However, such a decision rule exists only

under special circumstances [40]. Therefore, a generalized notion of the NP cri-

terion, which aims to maximize the misdetection exponent uniformly over all

possible probability distributions under the alternative hypothesis subject to the

constraint on the false-alarm exponent, is employed in some studies [70]-[73].

Another approach is to maximize the average detection probability under the

false-alarm constraint [64], [74]-[76]. In this case, the problem can be formu-

lated in the same form as an NP problem for a simple alternative hypothesis

(by defining the probability distribution under the alternative hypothesis as the

expectation of the conditional probability distribution over the prior distribution

of the parameter under the alternative hypothesis). Therefore, the classical NP

lemma can be employed in this scenario. Hence, this max-mean approach for

composite alternative hypotheses can be called as the “classical” NP approach.

One important requirement for this approach is that a prior distribution of the

parameter under the alternative hypothesis should be known in order to calculate

the average detection probability. When such a prior distribution is not avail-

able, the max-min approach addresses the problem. In this approach, the aim is

to maximize the minimum detection probability (the smallest power) under the

false-alarm constraint [68], [69]. The solution to this problem is an NP decision

rule corresponding to the least-favorable distribution of the unknown parameter

under the alternative hypothesis. It should be noted that considering the least-

favorable distribution is equivalent to considering the worst-case scenario, which

can be unlikely to occur. Therefore, the max-min approach is quite conservative

in general. Some modifications to this approach are proposed by employing the

interval probability concept [77], [78].2

2The generalized likelihood ratio test (GLRT) is another approach for composite hypothesis-
testing, which can be used to test a null hypothesis against an alternative hypothesis [40], [67].

9



In Chapter 5, a generic criterion is investigated for composite hypothesis-

testing problems in the NP framework, which covers the classical NP (max-

mean) and the max-min criteria as special cases. Since this criterion can be

regarded as an application of the restricted Bayes approach (Hodges-Lehmann

rule) to the NP framework [41], [42], it is called the restricted NP approach in

order to emphasize the considered NP framework [79]. The investigation of the

restricted NP criterion provides an illustration of the Hodges-Lehmann rule in the

NP framework. A restricted NP decision rule maximizes the average detection

probability (average power) under the constraints that the minimum detection

probability (the smallest power) cannot be less than a predefined value and that

the false-alarm probability cannot be larger than a significance level. In this way,

the uncertainty in the knowledge of the prior distribution under the alternative

hypothesis is taken into account, and the constraint on the minimum (worst-case)

detection probability is adjusted depending on the amount of uncertainty.

1.2 Organization of the Dissertation

The organization of the dissertation is as follows. In Chapter 2, the effects of

additive noise are investigated according to the restricted Bayes criterion, which

provides a generalization of the Bayes and minimax criteria.

In Chapter 3, noise enhanced detection is studied for M -ary composite

hypothesis-testing problems in the presence of partial prior information.

In Chapter 4, the effects of additive noise are investigated for binary compos-

ite hypothesis-testing problems in the NP framework.

In Chapter 5, The restricted NP approach is studied for composite hypothesis-

testing problems in the presence of uncertainty in the prior probability distribu-

tion under the alternative hypothesis.
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Chapter 2

Noise Enhanced

Hypothesis-Testing in the

Restricted Bayesian Framework

This chapter is organized as follows. Section 2.1 studies composite hypothesis-

testing problems, and provides a generic formulation of the problem. In addition,

improvability and nonimprovability conditions are presented and an approximate

solution of the optimal noise problem is discussed. Then, Section 2.2 considers

simple hypothesis-testing problems and provides additional improvability condi-

tions. Also, the discrete structure of the optimal noise probability distribution

is specified. Then, detection examples are presented to illustrate the theoretical

results in Section 2.3. Finally, concluding remarks are made in Section 2.4.
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2.1 Noise EnhancedM-ary Composite Hypothesis-

Testing

2.1.1 Problem Formulation and Motivation

Consider the following M -ary composite hypothesis-testing problem:

Hi : pXθ (x) , θ ∈ Λi , i = 0, 1, . . . ,M − 1 , (2.1)

where pXθ (·) represents the p.d.f. of observation X for a given value of param-

eter, Θ = θ, and θ belongs to parameter set Λi under hypotheses Hi. The

observation (measurement), x, is a vector with K components; i.e., x ∈ RK , and

Λ0,Λ1, . . . ,ΛM−1 form a partition of the parameter space Λ. The prior distribu-

tion of Θ is denoted by w(θ), and it is assumed that w(θ) is known with some

uncertainty [41], [42]. For example, it can be a p.d.f. estimate based on previous

decisions.

A generic decision rule (detector) is considered, which can be expressed as

ϕ(x) = i , if x ∈ Γi , (2.2)

for i = 0, 1, . . . ,M−1, where Γ0,Γ1, . . . ,ΓM−1 form a partition of the observation

space Γ.

In some cases, addition of noise to observations can improve the performance

of a suboptimal detector. By adding noise n to the original observation x, the

noise modified observation is formed as y = x+n, where n has a p.d.f. denoted

by pN(·), and is independent of x. As in [12] and in Section II of [13], it is assumed

that the detector in (2.2) is fixed, and that the only means for improving the

performance of the detector is to optimize the additive noise n. In other words,

the aim is to find the best pN(·) according to the restricted Bayes criterion [41];

namely, to minimize the Bayes risk under certain constraints on the conditional
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risks, as specified below.

min
pN(·)

∫
Λ

Ry
θ (ϕ)w(θ) dθ ,

subject to max
θ∈Λ

Ry
θ (ϕ) ≤ α , (2.3)

where α represents the upper limit on the conditional risks,
∫
Λ
Ry

θ (ϕ)w(θ) dθ =

E{Ry
Θ(ϕ)} , ry(ϕ) is the Bayes risk, and Ry

θ (ϕ) denotes the conditional risk of

ϕ for a given value of θ for the noise modified observation y. More specifically,

Ry
θ (ϕ) is defined as the average cost of decision rule ϕ for a given θ,

Ry
θ (ϕ) = E {C[ϕ(Y ),Θ] | Θ = θ} =

∫
Γ

C[ϕ(y), θ] pYθ (y) dy (2.4)

where pYθ (·) is the p.d.f. of the noise modified observation for a given value of

Θ = θ, and C[i, θ] is the cost of selecting Hi when Θ = θ, for θ ∈ Λ [40].

In the restricted Bayes formulation in (2.3), any undesired effects due to the

uncertainty in the prior distribution can be controlled via parameter α, which

can be considered as an upper bound on the Bayes risk [42]. Specifically, as

the amount of uncertainty in the prior information increases, a smaller (more

restrictive) value of α is employed. In that way, the restricted Bayes formulation

provides a generalization of the Bayesian and the minimax approaches [41]. In the

Bayesian framework, the prior distribution of the parameter is perfectly known,

whereas it is completely unknown in the minimax framework. On the other hand,

the restricted Bayesian framework considers some amount of uncertainty in the

prior distribution and converges to the Bayesian and minimax formulations as

special cases depending on the value of α in (2.3) [41], [42]. Therefore, the study

of noise enhanced hypothesis-testing in this chapter covers the previous works

on noise enhanced hypothesis-testing according to the Bayesian and minimax

criteria as special cases [23], [25], [29].

Two main motivations for studying the effects of additive noise on the de-

tector performance are as follows. First, optimal detectors according to the

restricted Bayes criterion are difficult to obtain, or require intense computations
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[42]. Therefore, in some cases, a suboptimal detector with additive noise can

provide acceptable performance with low computational complexity. Second, it

is of theoretical interest to investigate the improvements that can be achieved

via additive noise [29].

In order to provide an explicit formulation of the optimization problem in

(2.3), which indicates the dependence of Ry
θ(ϕ) on the p.d.f. of the additive noise

explicitly, Ry
θ(ϕ) in (2.4) is manipulated as follows:1

Ry
θ (ϕ) =

∫
Γ

∫
RK

C[ϕ(y), θ] pXθ (y − n) pN(n) dn dy (2.5)

=

∫
RK

pN(n)

[∫
Γ

C[ϕ(y), θ]pXθ (y − n) dy

]
dn (2.6)

=

∫
RK

pN(n)Fθ(n) dn (2.7)

= E{Fθ(N)} (2.8)

where

Fθ(n) ,
∫
Γ

C[ϕ(y), θ] pXθ (y − n) dy . (2.9)

Note that Fθ(n) defines the conditional risk given θ for a constant value of ad-

ditive noise, N = n. Therefore, for n = 0, Fθ(0) = Rx
θ (ϕ) is obtained; that is,

Fθ(0) is equal to the conditional risk of the decision rule given θ for the original

observation x .

From (2.8), the optimization problem in (2.3) can be formulated as follows:

min
pN(·)

∫
Λ

E{Fθ(N)}w(θ) dθ ,

subject to max
θ∈Λ

E{Fθ(N)} ≤ α . (2.10)

If a new function F (n) is defined as in the following expression,

F (n) ,
∫
Λ

Fθ(n)w(θ) dθ , (2.11)

1Note that the independence of X and N are used to obtain (2.5) from (2.4).
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the optimization problem in (2.10) can be reformulated in the following simple

form:

min
pN(·)

E{F (N)} ,

subject to max
θ∈Λ

E{Fθ(N)} ≤ α . (2.12)

From (2.9) and (2.11), it is noted that F (0) = rx(ϕ). Namely, F (0) is equal

to the Bayes risk for the original observation x; that is, the Bayes risk in the

absence of additive noise.

2.1.2 Improvability and Nonimprovability Conditions

In general, it is quite complex to obtain a solution of the optimization problem in

(2.12) as it requires a search over all possible noise p.d.f.s. Therefore, it is useful

to determine, without solving the optimization problem, whether additive noise

can improve the performance of the original system. In the restricted Bayesian

framework, a detector is called improvable, if there exists a noise p.d.f. such that

E{F (N)} < rx(ϕ) = F (0) and max
θ∈Λ

Ry
θ (ϕ) = max

θ∈Λ
E{Fθ(N)} ≤ α (cf. (2.12)).

Otherwise, the detector is called nonimprovable.

First, the following nonimprovability condition is obtained based on the prop-

erties of Fθ in (2.9) and F in (2.11).

Theorem 1: Assume that there exits θ∗ ∈ Λ such that Fθ∗(n) ≤ α implies

F (n) ≥ F (0) for all n ∈ Sn, where Sn is a convex set2 consisting of all possible

values of additive noise n. If Fθ∗(n) and F (n) are convex functions over Sn,

then the detector is nonimprovable.

Proof: The proof employs an approach that is similar to the proof of Propo-

sition 1 in [26]. Due to the convexity of Fθ∗(·), the conditional risk in (2.8) can

2Sn can be modeled as convex because convex combination of individual noise components
can be obtained via randomization [80].
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be bounded, via Jensen’s inequality, as

Ry
θ∗(ϕ) = E{Fθ∗(N)} ≥ Fθ∗ (E{N}) . (2.13)

As Ry
θ∗(ϕ) ≤ α is a necessary condition for improvability, (2.13) implies that

Fθ∗ (E{N}) ≤ α must be satisfied. Since E{N} ∈ Sn, Fθ∗ (E{N}) ≤ α means

F (E{N}) ≥ F (0) due to the assumption in the proposition. Hence,

ry(ϕ) = E{F (N)} ≥ F (E{N}) ≥ F (0) , (2.14)

where the first inequality results from the convexity of F . Then, from (2.13) and

(2.14), it is concluded that Ry
θ∗(ϕ) ≤ α implies ry(ϕ) ≥ F (0) = rx(ϕ). Therefore,

the detector is nonimprovable. �

The conditions in Theorem 1 can be used to determine when the detector

performance cannot be improved via additive noise, which prevents unnecessary

efforts for trying to solve the optimization problem in (2.12). However, it should

also be noted that Theorem 1 provides only sufficient conditions; hence, the

detector can still be nonimprovable although the conditions in the theorem are

not satisfied.

In order to provide an example application of Theorem 1, consider a Gaussian

location testing problem [40], in which the observation has a Gaussian p.d.f.

with mean θµ and variance σ2, denoted by N (θµ, σ2), where µ and σ are known

values. Hypotheses H0 and H1 correspond to θ = 0 and θ = 1, respectively (that

is, Λ0 = {0} and Λ1 = {1}). In addition, consider a decision rule that selects

H1 if y ≥ 0.5µ and H0 otherwise. Let Sn = (−0.5µ, 0.5µ) represent the set of

additive noise values for possible performance improvement. For uniform cost

assignment (UCA) [40], (2.9) can be used to obtain F0(n) as follows:

F0(n) =

∫ ∞

−∞
C[ϕ(y), 0]pX0 (y − n)dy (2.15)

=

∫ ∞

−∞
ϕ(y)pX0 (y − n)dy (2.16)

=

∫ ∞

0.5µ

e−
(y−n)2

2σ2

√
2π σ

dy = Q

(
0.5µ− n

σ

)
, (2.17)
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where Q(x) = 1√
2π

∫∞
x

e−t2/2dt denotes the Q-function, and C[i, j] = 1 for i ̸= j

and C[i, j] = 0 for i = j are used in (2.15) due to the UCA. Similarly, F1(n) can

be obtained as F1(n) = Q
(
0.5µ+n

σ

)
. For equal priors, F (n) in (2.11) is obtained

as F (n) = 0.5(F0(n) + F1(n)) ; that is,

F (n) = 0.5Q

(
0.5µ− n

σ

)
+ 0.5Q

(
0.5µ+ n

σ

)
. (2.18)

Let α be set to Q (0.5µ/σ), which determines the upper bound on the conditional

risks. Regarding the assumption in Theorem 1, it can be shown for θ∗ = 0 that

Fθ∗(n) ≤ α implies F (n) ≥ F (0) = Q(0.5µ/σ) for all n ∈ Sn. This follows from

the facts that F0(n) ≤ α = Q (0.5µ/σ) requires that n ∈ (−0.5µ, 0] and that

F (n) in (2.18) satisfies F (n) ≥ Q(0.5µ/σ) = α for n ∈ (−0.5µ, 0] due to the

convexity of Q(x/σ) for x > 0 . In addition, it can be shown that both F0(n)

and F1(n) are convex functions over Sn, which implies that F (n) is also convex

over Sn. Then, Theorem 1 implies that the detector is nonimprovable for this

example. Therefore, there is no need to tackle the optimization problem in (2.12)

in this case, since poptN (n) = δ(n) is concluded directly from the theorem.

Next, sufficient conditions under which the detector performance can be im-

proved via additive noise are obtained. To that aim, it is first assumed that F (x)

and Fθ(x) ∀θ ∈ Λ are second-order continuously differentiable around x = 0 . In

addition, the following functions are defined for notational convenience:

f
(1)
θ (x, z) ,

K∑
i=1

zi
∂Fθ(x)

∂xi
, (2.19)

f (1)(x, z) ,
K∑
i=1

zi
∂F (x)

∂xi
, (2.20)

f
(2)
θ (x, z) ,

K∑
l=1

K∑
i=1

zlzi
∂2Fθ(x)

∂xl∂xi
, (2.21)

f (2)(x, z) ,
K∑
l=1

K∑
i=1

zlzi
∂2F (x)

∂xl∂xi
, (2.22)

where xi and zi represent the ith components of x and z, respectively. Then, the

following theorem provides sufficient conditions for improvability based on the

function definitions above.
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Theorem 2: Let θ = θ∗ be the unique maximizer of Fθ(0) and α = Fθ∗(0) .

Then, the detector is improvable

• if there exists a K-dimensional vector z such that f
(1)
θ∗ (x, z)f (1)(x, z) > 0

is satisfied at x = 0; or,

• if there exists a K-dimensional vector z such that f (1)(x, z) > 0,

f
(1)
θ∗ (x, z) < 0, and f (2)(x, z)f

(1)
θ∗ (x, z) > f

(2)
θ∗ (x, z)f (1)(x, z) are satisfied

at x = 0 .

Proof: Please see Appendix 2.5.1.

In order to comprehend the conditions in Theorem 2, it is first noted from

(2.9) that Fθ(0) represents the conditional risk given θ in the absence of additive

noise, Rx
θ (ϕ). Therefore, θ∗ in the theorem corresponds to the value of θ for

which the original conditional risk Rx
θ (ϕ) is maximum and that maximum value

is assumed to be equal to the upper limit α. In other words, it is assumed that,

in the absence of additive noise, the original detector already achieves the upper

limit on the conditional risks for the modified observations specified in (2.3).

Then, the results in the theorem imply that, under the stated conditions, it is

possible to obtain a noise p.d.f. with multiple mass points around n = 0, which

can reduce the Bayes risk under the constraint on the conditional risks.

In order to present alternative improvability conditions to those in Theorem

2, we extend the conditions that are developed for simple binary hypothesis-

testing problems in the Neyman-Pearson framework in [12] to our problem in

(2.12). To that aim, we first define a new function H(t) as

H(t) , inf

{
F (n)

∣∣ max
θ∈Λ

Fθ(n) = t , n ∈ RK

}
, (2.23)

which specifies the minimum Bayes risk for a given value of the maximum con-

ditional risk considering constant values of additive noise.
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From (2.23), it is observed that if there exists t0 ≤ α such that H(t0) < F (0),

then the system is improvable, because under such a condition there exists a

noise component n0 such that F (n0) < F (0) and max
θ∈Λ

Fθ(n0) ≤ α , meaning

that the detector performance can be improved by adding a constant n0 to the

observation. However, improvability of a detector via constant noise is not very

common in practice. Therefore, the following improvability condition is obtained

for more practical scenarios.

Theorem 3: Let the maximum value of the conditional risks in the absence

of additive noise be defined as α̃ , max
θ∈Λ

Rx
θ (ϕ) and α̃ ≤ α . If H(t) in (2.23) is

second-order continuously differentiable around t = α̃ and satisfies H
′′
(α̃) < 0,

then the detector is improvable.

Proof: Please see Appendix 2.5.2.

Similar to Theorem 2, Theorem 3 provides sufficient conditions that guarantee

the improvability of a detector according to the restricted Bayes criterion. Note

that H(t) in Theorem 3 is always a single-variable function irrespective of the

dimension of the observation vector, which facilitates simple evaluation of the

conditions in the theorem. However, the main challenge can be to obtain an

expression for H(t) in (2.23) in certain scenarios. On the other hand, Theorem

2 deals with Fθ(·) and F (·) directly, without defining an auxiliary function like

H(t). Therefore, implementation of Theorem 2 can be more efficient in some

cases. However, the functions in Theorem 2 are alwaysK-dimensional, which can

make the evaluation of its conditions more complicated than that in Theorem 3 in

some other cases. In Section 2.3, comparisons of the improvability results based

on direct evaluations of Fθ(·) and F (·), and those based on H(t) are provided.
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2.1.3 On the Optimal Additive Noise

In general, the optimization problem in (2.12) is a non-convex problem and has

very high computational complexity since the optimization needs to be performed

over functions. In Section 2.2, it is shown that (2.12) simplifies significantly in the

case of simple hypothesis-testing problems. However, in the composite case, the

solution is quite difficult to obtain in general. Therefore, a p.d.f. approximation

technique [50] can be employed in this section in order to obtain an approximate

solution of the problem.

Let the optimal noise p.d.f. be approximated by

pN(n) =
L∑
i=1

νi ψi(n− ni) , (2.24)

where νi ≥ 0,
∑L

i=1 νi = 1, and ψi(·) is a window function with ψi(x) ≥ 0 ∀x and∫
ψi(x)dx = 1, for i = 1, . . . , L. In addition, let ςi denote a scaling parameter

for the ith window function ψi(·), which controls the “width” of the window

function. The p.d.f. approximation technique in (2.24) is referred to as Parzen

window density estimation, which has the property of mean-square convergence

to the true p.d.f. under certain conditions [81]. From (2.24), the optimization

problem in (2.12) can be expressed as3

min
{νi,ni,ςi}Li=1

L∑
i=1

νifni
(ςi) ,

subject to max
θ∈Λ

L∑
i=1

νifθ,ni
(ςi) ≤ α , (2.25)

where fni
(ςi) ,

∫
F (n)ψi(n− ni)dn and fθ,ni

(ςi) ,
∫
Fθ(n)ψi(n− ni)dn .

In (2.25), the optimization is performed over all the parameters of the window

functions in (2.24). Therefore, the performance of the approximation technique

is determined mainly by the the number of window functions, L. As L increases,

3As in [12], it is possible to perform the optimization over single-variable functions by
considering mapping of the noise n via F (n) or Fθ(n).
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the approximate solution can get closer to the optimal solution for the additive

noise p.d.f. Therefore, in general, an improved detector performance can be

expected for larger values of L.

Although (2.25) is significantly simpler than (2.12), it is still not a convex

optimization problem in general. Therefore, global optimization techniques, such

as particle-swarm optimization (PSO) [51], [53], [54], genetic algorithms and

differential evolution [82], can be used to calculate the optimal solution [29], [50].

In Section 2.3, the PSO algorithm is used to obtain the optimal noise p.d.f.s for

the numerical examples.

Although the calculation of the optimal noise p.d.f. requires significant effort

as discussed above, some of its properties can be obtained without solving the

optimization problem in (2.12). To that aim, let Fmin represent the minimum

value of H(t) in (2.23); that is, Fmin = min
t
H(t). In addition, suppose that this

minimum is attained at t = tm.
4 Then, one immediate observation is that if tm

is less than or equal to the conditional risk limit α, then the noise component

nm that results in max
θ∈Λ

Fθ(nm) = tm is the optimal noise component; that is, the

optimal noise is a constant in that scenario, pN(x) = δ(x − nm) . On the other

hand, if tm > α , then it can be shown that the optimal solution of (2.12) satisfies

max
θ∈Λ

Ry
θ (ϕ) = α (Appendix 2.5.3).

2.2 Noise Enhanced Simple Hypothesis-Testing

In this section, noise enhanced detection is studied in the restricted Bayesian

framework for simple hypothesis-testing problems. In simple hypothesis-testing

problems, each hypothesis corresponds to a single probability distribution [40].

4If there are multiple t values that result in the minimum value Fmin, then the minimum of
those values can be considered.
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In other words, the generic composite hypothesis-testing problem in (2.1) reduces

to a simple hypothesis-testing problem if each Λi consists of a single element.

Since the simple hypothesis-testing problem is a special case of the composite

one, the results in Section 2.1 are also valid for this section. However, by using

the special structure of simple hypotheses, we obtain additional results in this

section that are not valid for composite hypothesis-testing problems. It should

be noted that both composite and simple hypothesis-testing problems are used

to model various practical detection examples [40], [83]; hence, specific results

can be useful in different applications.

2.2.1 Problem Formulation

The problem can be formulated as in Section 2.1.1 by defining Λi = {θi} for

i = 0, 1, . . . ,M − 1 in (2.1). In addition, instead of the prior p.d.f. w(θ), the

prior probabilities of the hypotheses can be defined by π0, π1, . . . , πM−1 with∑M−1
i=0 πi = 1 . Then, the optimal additive noise problem in (2.3) becomes

min
pN(·)

M−1∑
i=0

πiR
y
i (ϕ) ,

subject to max
i∈{0,1,...,M−1}

Ry
i (ϕ) ≤ α , (2.26)

where
∑M−1

i=0 πiR
y
i (ϕ) , ry(ϕ) is the Bayes risk and Ry

i (ϕ) is the conditional risk

of ϕ given Hi for the noise modified observation y, which is given by

Ry
i (ϕ) =

M−1∑
j=0

CjiP
y
i (Γj) , (2.27)

with Py
i (Γj) denoting the probability that y ∈ Γj when Hi is the true hypothesis,

and Cji defining the cost of deciding Hj when Hi is true. As in Section 2.1.1,

the constraint α sets an upper limit on the conditional risks, and its value is

determined depending on the amount of uncertainty in the prior probabilities.
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In order to investigate the optimal solution of (2.26), an alternative expression

for Ry
i (ϕ) is obtained first. Since the additive noise n is independent of the

observation x, Py
i (Γj) becomes

Py
i (Γj) =

∫
Γj

pYi (y)dy =

∫
Γj

∫
RK

pN(n)p
X
i (y − n) dn dy , (2.28)

where pXi (·) and pYi (·) represent the p.d.f.s of the original observation and the

noise modified observation, respectively, when hypothesisHi is true. Then, (2.27)

can be expressed, from (2.28), as

Ry
i (ϕ) =

M−1∑
j=0

Cji

∫
RK

pN(n)

∫
Γj

pXi (y − n) dy dn

=
M−1∑
j=0

Cji E{Fij(N)} = E{Fi(N)} , (2.29)

with

Fij(n) ,
∫
Γj

pXi (y − n)dy , (2.30)

Fi(n) ,
M−1∑
j=0

CjiFij(n) . (2.31)

Based on the relation in (2.29), the optimization problem in (2.26) can be

reformulated as

min
pN(·)

M−1∑
i=0

πiE{Fi(N)} ,

subject to max
i∈{0,1,...,M−1}

E{Fi(N)} ≤ α . (2.32)

If a new auxiliary function is defined as F (n) ,
∑M−1

i=0 πiFi(n), (2.32) becomes

min
pN(·)

E{F (N)} ,

subject to max
i∈{0,1,...,M−1}

E{Fi(N)} ≤ α . (2.33)

Note that under UCA; that is, when Cji = 1 for j ̸= i, and Cji = 0 for j = i,

Fi(N) becomes equal to 1− Fii(N).
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It should be noted from the definitions in (2.30) and (2.31) that Fi(0) cor-

responds to the conditional risk given Hi for the original observation x, Rx
i (ϕ).

Therefore, F (0) defines the original Bayes risk, rx(ϕ) .

2.2.2 Optimal Additive Noise

The optimization problem in (2.33) seems quite difficult to solve in general as

it requires a search over all possible noise p.d.f.s. However, in the following, it

is shown that an optimal additive noise p.d.f. can be represented by a discrete

probability distribution with at most M mass points in most practical cases. To

that aim, suppose that all possible additive noise values satisfy a ≼ n ≼ b for

any finite a and b; that is, nj ∈ [aj, bj] for j = 1, . . . , K, which is a reasonable as-

sumption since additive noise cannot have infinitely large amplitudes in practice.

Then, the following theorem states the discrete nature of the optimal additive

noise.

Theorem 4: If Fi(·) in (2.32) are continuous functions, then the p.d.f. of

an optimal additive noise can be expressed as pN(n) =
∑M

l=1 λl δ(n− nl), where∑M
l=1 λl = 1 and λl ≥ 0 for l = 1, 2, . . . ,M .

Proof: The proof employs a similar approach to those used for the related

results in [12], [29] and [50]. First, the following set is defined:

U = {(u0, u1, . . . , uM−1) : ui = Fi(n) , i = 0, 1, . . . ,M − 1 , for a ≼ n ≼ b} .

(2.34)

In addition, V is defined as the convex hull of U [84]. Since Fi(·) are continuous

functions, U is a bounded and closed subset of RM . Hence, U is a compact set.

Therefore, its convex hull V is a closed subset of RM [29]. Next, setW is defined

24



as

W =
{
(w0, w1, . . . , wM−1) : wi = E{Fi(n)} , i = 0, 1, . . . ,M − 1,

∀ pN(n), a ≼ n ≼ b
}
, (2.35)

where pN(n) is the p.d.f. of the additive noise.

As V is the convex hull of U , each element of V can be expressed as v =∑NL

l=1 λl (F0(nl), F1(nl), . . . , FM−1(nl)), where
∑NL

l=1 λl = 1, and λl ≥ 0 ∀l. On

the other hand, each v is also an element of W as it can be obtained for pN(n) =∑NL

l=1 λl δ(n− nl). Hence, V ⊆ W [29]. In addition, since for any vector random

variable Θ taking values in set Ω, its expected value, E{Θ}, is in the convex hull

of Ω [85], (2.34) and (2.35) implies that W is in the convex hull V of U ; that

is, V ⊇ W . Since V ⊆ W and V ⊇ W , it means that W = V [29]. Therefore,

according to Carathéodory’s theorem [86], [87], any point in V (or, W ) can be

expressed as the convex combination of at most (M + 1) points in U as the

dimension of U is smaller than or equal to M . Since the aim is to minimize the

average of the conditional risks, the optimal solution corresponds to the boundary

of W . As W (or, V ) is a closed set as mentioned at the beginning of the proof,

it contains its own boundary [29]. Since any point at the boundary of W can

be expressed as the convex combination of at most M elements in U [86], an

optimal noise p.d.f. can be represented by a discrete random variable with M

mass points as stated in the theorem. �

From Theorem 4, the optimization problem in (2.33) can be simplified as

min
{λl,nl}Ml=1

M∑
l=1

λlF (nl) ,

subject to max
i∈{0,1,...,M−1}

M∑
l=1

λlFi(nl) ≤ α ,

M∑
l=1

λl = 1 , λl ≥ 0 , l = 1, . . . ,M . (2.36)

The optimization in (2.36) is considerably simpler than that in (2.33) since the

former is over a set of variables instead of functions. However, (2.36) can still be
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a nonconvex optimization problem in general; hence, global optimization tech-

niques, such as PSO [51] and differential evolution [82] may be needed.

In order to provide a convex relaxation [55] of the optimization problem

in (2.36) and to obtain an approximate solution in polynomial time, one can

assume that additive noise n can take only finitely many known values specified

by ñ1, . . . , ñL [29]. This scenario, for example, corresponds to digital systems

in which the signals can take only finitely many different levels. Then, the

aim becomes the determination of the weights λ̃1, . . . , λ̃L of those possible noise

values. In that case, (2.33) can be formulated as

min
{λ̃l}L

l=1

L∑
l=1

λ̃lF (ñl) ,

subject to max
i∈{0,1,...,M−1}

L∑
l=1

λ̃lFi(ñl) ≤ α ,

L∑
l=1

λ̃l = 1 , λ̃l ≥ 0 , l = 1, . . . , L , (2.37)

which is a linearly constrained linear programming (LCLP) problem; hence, can

be solved in polynomial time [55]. It should be noted that as the optimization

is performed over more noise values (as L increases), the solution gets closer to

the optimal solution of (2.33).

As an alternative approach, an analytical solution similar to that in [12] can

also be proposed for obtaining the optimal additive noise. First, consider the

optimization problem in (2.32) for M = 2; i.e., the binary case. If functions

F0(n) and F1(n) are monotone, then t0 and t1 can be defined as t0 = F0(n) and

t1 = F1(n). Otherwise, let t0 and t1 be defined as follows:

t0(t) , inf
{
F0(n)

∣∣ F1(n) = t , n ∈ RK
}
,

t1(t) , inf
{
F1(n)

∣∣ F0(n) = t , n ∈ RK
}
. (2.38)

In general, there can exist multiple values of F1(n) corresponding to a given value

of F0(n). However, the definitions of t0 and t1 in (2.38) make sure that only the
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best (minimum) value of F1(n) corresponding to a given F0(n) is considered,

and vice versa. Therefore, t1 can be expressed as t1 = g(t0), where g(t0) is a

monotone function of t0 and is defined on the range of t0, which is denoted by

[t0,min, t0,max] with t0,min = min t0 and t0,max = max t0. We call the set of t0 for

which g(t0) and t0 satisfy the constraints (cf. (2.32)) as the feasible domain.

Then, let a new function B be defined as follows:

B(t0) , π0t0 + π1g(t0) . (2.39)

If B(t0) takes its global minimum value in the feasible domain, then the opti-

mal Bayes risk is equal to that minimum value and the optimal additive noise

can be represented by a constant value. For example, if t∗0 = arg min
t0

B(t0),

then the optimal additive noise p.d.f. can be expressed as pN(n) = δ(n − n0),

where n0 satisfies F0(n0) = t∗0.
5 On the other hand, if B(t0) achieves its global

minimum value outside the feasible domain, then an analytic solution for the

optimal additive noise p.d.f. can be obtained as explained in the following. At

the end of Section 2.1.3, it was stated that the maximum value of the optimal

conditional risks must be equal to the constraint level α for the case considered

here. This implies that the optimal (t0, t1) pair is equal to one of the following:

(α, β) or (γ, α), where β and γ are such that g(α) = β and g(γ) = α. It should

be noted that if g(t0) is a decreasing function and γ is larger than α, then the

feasible domain is an empty set implying that there is no solution satisfying the

constraint.

Since g(t0) is a monotone function and the maximum of the optimal con-

ditional risks must be equal to α, the feasible domain must be in the form of

an interval, say [a, b], and the value of t0 corresponding to the optimal solution

must be equal to either a or b. In the following derivations, it is assumed that the

value of t0 corresponding to the optimal solution is b, and B(t0) takes its global

minimum value for t0 > b. However, it should be noted that these assumptions

5If there are multiple such n0’s, then the one that minimizes F1(n0) should be chosen.
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do not reduce the generality of the results. In other words, the derivations based

on the other possible assumptions yield the same result.

Similar to [12], the following auxiliary function is defined:

Z(t0, k) , B(t0) + kt0 , (2.40)

where k ∈ R. It is observed that Z is an increasing function of k. Let the range

of t0 be partitioned into I1 = [t0,min, b) and I2 = [b, t0,max]. In addition, two new

functions are defined as follows:

v1(k) , min
t0∈I1

Z(t0, k) = Z (t01(k), k) ,

v2(k) , min
t0∈I2

Z(t0, k) = Z (t02(k), k) , (2.41)

where t01(k) is the value of t0 ∈ I1 that minimizes Z for a given k, and similarly,

t02(k) is value of t0 ∈ I2 that minimizes Z for a given k.

From (2.40) and (2.41), it is obtained for k = 0 that v2(0) = min B(t0) <

v1(0) = B(t01(k)). On the other hand, as k → ∞, v1(k) = B(t0,min) + kt0,min <

v2(k) = B(b) + kb. Therefore, there must exist a k = k0, where 0 < k0 < ∞,

such that

v = v1(k0) = Z(t01(k0), k0) = v2(k0) = Z(t02(k0), k0) . (2.42)

Consider the division of the range of t0 into two disjoint sets A and

{t01(k0), t02(k0)} such that {t01(k0), t02(k0)} ∪ A = [t0,min, t0,max]. Then, any

additive noise p.d.f. can be expressed in the following form:

pn,t0(t0) = λ1δ(t0 − t01(k0)) + λ2δ(t0 − t02(k0)) + IA(t0)pn,t0(t0) , (2.43)

where IA(t0) is an indicator function such that IA(t0) = 1 if t0 ∈ A, IA(t0) = 0

otherwise [12]. By definition, λ1+λ2+
∫
A
pn,t0(t0) dt0 = 1 should be satisfied. In
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addition, the expectation of Z in (2.40) over t0 can be bounded as follows:

E{Z(t0, k0)} = λ1v + λ2v +

∫
A

Z(t0, k0)pn,t0(t0) dt0 ,

= v +

∫
A

[Z(t0, k0)− v]pn,t0(t0) dt0 ,

≥ v , (2.44)

where the first expression is obtained from (2.42) and (2.43), and the final in-

equality is obtained from the fact that Z(t0, k0) ≥ v for t0 ∈ A (cf. (2.41) and

(2.42)). This lower bound is achieved for pn,t0(t0) = λ1δ(t0 − t01(k0)) + λ2δ(t0 −

t02(k0)), with λ1 + λ2 = 1. Hence, pn,t0(t0) = 0 for t0 ∈ A.

From (2.39) and (2.40), the Bayes risk ry(ϕ) can be expressed as ry(ϕ) =

E{B(t0)} = E{Z(t0, k0)} − k0E{t0}. Since t01(k0) < b and t02(k0) ≥ b, one can

achieve E{t0} = b by using a noise component with p.d.f. pn,t0(t0) = λ1δ(t0 −

t01(k0)) + λ2δ(t0 − t02(k0)), where λ1 + λ2 = 1 with appropriate values for λ1

and λ2. Thus, the optimal additive noise p.d.f. is pn,t0(t0) = λ1δ(t0 − t01(k0)) +

λ2δ(t0−t02(k0)), where λ1+λ2 = 1 and λ1t01(k0)+λ2t02(k0) = b, and the optimal

Bayes risk is given by ryopt(ϕ) = E{B(t0)} = v − k0b.

Since Z(t0, k0) has (local) minimum values at t0 = t01(k0) and t0 =

t02(k0), if B(t0) is continuously differentiable, then ∂Z(t01(k0), k0)/∂t0 =

∂Z(t02(k0), k0)/∂t0 = 0. Then, (2.40) implies the following equalities:

dB(t01(k0))

dt0
=
dB(t02(k0))

dt0
= −k0 . (2.45)

From (2.42), we also have the following relation:

B(t01(k0))−B(t02(k0))

t01(k0)− t02(k0)
= −k0 . (2.46)

Therefore, (2.45) and (2.46) can be used to obtain the following result:

B(t01(k0))−B(t02(k0))

t01(k0)− t02(k0)
=
dB(t01(k0))

dt0
=
dB(t02(k0))

dt0
. (2.47)

From the equalities in (2.47), one can find t01(k0) and t02(k0), and the correspond-

ing mass points n1 and n2 that satisfy t01(k0) = F0(n1) and t02(k0) = F0(n2).
6

6If there are multiple such n1’s (n2’s), then the one that minimizes F1(n1) (F1(n2)) should
be chosen.
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After obtaining n1 and n2 as described above, the corresponding weights

λ1 and λ2 calculated from the following equations: λ1 + λ2 = 1 and λ1t01(k0) +

λ2t02(k0) = b. Due to the fact that the maximum of the optimal conditional risks

must be α, b must be equal to the constraint level α or must satisfy g(b) = α.

These two cases should be checked separately and then the one corresponding

to the optimal solution should be determined. In other words, the weight pairs

corresponding to t0 = α and t1 = g(t0) = α should be calculated separately, and

then the one that results in better performance should be selected. An alternative

approach to determine b is to find where B(t0) takes its global minimum value.

If B(t0) takes its global minimum value for t0 > α, then b must be equal to α;

otherwise, b must be found from g(b) = α. After finding b, the optimal weight

pair can easily be obtained from λ1 + λ2 = 1 and λ1t01(k0) + λ2t02(k0) = b.

The analytic approach described above for the binary case can also be

extended to the M -ary case for M > 2. However, in that case, only the

mass points, n1, . . . ,nM , can be found analytically. The weights, λ1, . . . , λM ,

should be found via a numerical approach. Such a semi-analytical solution

can still provide significant computational complexity reduction in some cases

since the weights, which are not determined analytically, are easier to search

for than the mass points, as the weights are always scalar whereas the mass

points can also be multidimensional. The analytical approach to obtaining

the mass points in the M -ary case is a simple extension of that in the binary

case. Mainly, a function tM−1 should be defined as tM−1 , g(t0, . . . , tM−2) ,

inf
{
FM−1(n)

∣∣ F0(n) = t0, . . . , FM−2(n) = tM−2 , n ∈ RK
}
, function B in (2.39)

should be generalized as

B(t0, . . . , tM−2) , π0t0+ · · ·+πM−1g(t0, . . . , tM−2), and Z should be modified as

Z(t0, . . . , tM−2, k1, . . . , kM−1) , B(t0, . . . , tM−2)+k1t0+ · · ·+kM−1tM−2. The re-

sulting equations provide a generalization of those in (2.47), the details of which

are not presented here due to the space limitations.
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2.2.3 Improvability and Nonimprovability Conditions

In this section, various sufficient conditions are derived in order to determine

when the performance of a detector can or cannot be improved via additive

independent noise according to the restricted Bayes criterion.

For the nonimprovability conditions, Theorem 1 in Section 2.1.2 already pro-

vides a quite explicit statement to evaluate the nonimprovability. Therefore, it is

also practical for simple hypothesis-testing problems, as observed in the example

after Theorem 1. In accordance with the notation in this section, Theorem 1

can be restated for simple hypothesis-testing problems as follows. Assume that

there exits i ∈ {0, 1, . . . ,M − 1} such that Fi(n) ≤ α implies F (n) ≥ F (0) for

all n ∈ Sn, where Sn is a convex set consisting of all possible values of additive

noise n. If Fi(n) and F (n) are convex functions over Sn, then the detector is

nonimprovable.

Regarding the improvability conditions, in addition to Theorem 2 and The-

orem 3 in Section 2.1.2, new sufficient conditions that are specific to simple

hypothesis-testing problems are provided in the following. To that aim, it is first

assumed that Fi(x) for i = 0, 1, . . . ,M − 1 and F (x), defined in Section 2.2.1,

are second-order continuously differentiable around x = 0 . In addition, similar

to (2.19)-(2.22), the following functions are defined.

f
(1)
j (x, z) ,

K∑
i=1

zi
∂Fj(x)

∂xi
, (2.48)

f (1)(x, z) ,
K∑
i=1

zi
∂F (x)

∂xi
, (2.49)

f
(2)
j (x, z) ,

K∑
l=1

K∑
i=1

zlzi
∂2Fj(x)

∂xl∂xi
, (2.50)

f (2)(x, z) ,
K∑
l=1

K∑
i=1

zlzi
∂2F (x)

∂xl∂xi
, (2.51)

for j = 0, 1, . . . ,M − 1, where xi and zi represent the ith components of x and

z, respectively.
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Note that the result in Theorem 2 can also be used for simple hypothesis-

testing problems when there exists a unique maximizer i = i∗ of the original

conditional risks, Fi(0) = Rx
i (ϕ). In the following, more generic improvability

conditions, which cover the cases with multiple maximizers of Fi(0) as well, are

obtained for simple hypothesis-testing problems. Let Sα denote the set of indices

for which Fi(0) achieves the maximum value of α, and let S̄α represent the set

of indices with Fi(0) < α ; that is,

Sα = {i ∈ {0, 1, . . . ,M − 1} | Fi(0) = α} , (2.52)

S̄α = {i ∈ {0, 1, . . . ,M − 1} | Fi(0) < α} . (2.53)

In addition, let Sα ∪ S̄α = {0, 1, . . . ,M − 1}, meaning that Fi(0) = Rx
i (ϕ) ≤ α

for i = 0, 1, . . . ,M − 1 . Consider the functions in (2.48)-(2.51), and define set

Fn (n = 1, 2) as the set that consists of f (n)(x, z) and f
(n)
i (x, z) for i ∈ Sα ; that

is,

Fn =
{
f (n)(x, z), f

(n)
i (x, z) for i ∈ Sα

}
(2.54)

for n = 1, 2. Note that Fn has |Sα|+1 elements, where |Sα| represents the number

of elements in Sα. In addition, Fn(j) will be used to refer to the jth element of

Fn . It should be noted that Fn(1) = f (n)(x, z) and Fn(j) = f
(n)
Sα(j−1)(x, z) for

j = 2, . . . , |Sα| + 1, where Sα(j − 1) is the (j − 1)th element of Sα. Finally, the

following sets are introduced to define the set of indices j for which F1(j) is zero,

negative or positive:

Sz = {j ∈ {1, 2, . . . , |Sα|+ 1} | F1(j) = 0} , (2.55)

Sn = {j ∈ {1, 2, . . . , |Sα|+ 1} | F1(j) < 0} , (2.56)

Sp = {j ∈ {1, 2, . . . , |Sα|+ 1} | F1(j) > 0} . (2.57)

Based on the definitions in (2.48)-(2.57), the following theorem provides suf-

ficient conditions for improvability.
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Theorem 5: For simple hypothesis-testing problems, a detector is improvable

according to the restricted Bayes criterion if there exists a K-dimensional vector

z such that the following two conditions are satisfied at x = 0 :

1. F2(j) < 0 , ∀j ∈ Sz .

2. One of the following is satisfied:

• |Sn| = 0 or |Sp| = 0 .

• |Sn| is a positive even number, |Sp| > 0, and

min
j∈Sn

F2(j)
∏

l∈Sp∪Sn\{j}

F1(l) > max
j∈Sp

F2(j)
∏

l∈Sp∪Sn\{j}

F1(l) . (2.58)

• |Sn| is an odd number, |Sp| > 0, and

min
j∈Sp

F2(j)
∏

l∈Sp∪Sn\{j}

F1(l) > max
j∈Sn

F2(j)
∏

l∈Sp∪Sn\{j}

F1(l) . (2.59)

Proof: Please see Appendix 2.5.4.

Theorem 5 states that whenever the two conditions in the theorem are sat-

isfied, it can be concluded that the detection performance can be improved via

additive independent noise. It should be noted that after defining the sets in

(2.52)-(2.57), it is straightforward to check the conditions stated in the theo-

rem. An example application of Theorem 5 is provided in Section 2.3, where its

practicality and effectiveness are observed.

Finally, another improvability condition is derived as a corollary of Theorem

5.

Corollary 1: Assume that F (x) and Fi(x), i = 0, 1, . . . ,M − 1, are second-

order continuously differentiable around x = 0 and that max
i∈{0,1,...,M−1}

Fi(0) < α .

Let f denote the gradient of F (x) at x = 0. Then, the detector is improvable

• if f ̸= 0; or,
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• if F (x) is not convex around x = 0 .

Proof: Please see Appendix 2.5.5.

Although Corollary 1 provides simpler improvability conditions than those

in Theorem 5, the assumption of max
i∈{0,1,...,M−1}

Fi(0) < α makes it less practical.

In other words, Corollary 1 assumes that, in the absence of additive noise, the

maximum of the original conditional risks is strictly smaller than the upper limit,

α . Since it is usually possible to increase the maximum of the conditional risks

to reduce the Bayes risk, the scenario in Corollary 1 considers a more trivial case

than that in Theorem 5.

2.3 Numerical Results

In this section, a binary hypothesis-testing problem is studied first in order to

provide a practical example of the results presented in the previous sections. The

hypotheses are defined as

H0 : x = v , versus H1 : x = A+ v , (2.60)

where x ∈ R, A > 0 is a known scalar value, and v is symmetric Gaussian

mixture noise with the following p.d.f.

pV (x) =
Nm∑
i=1

wi ψi(x− µi) , (2.61)

where wi ≥ 0 for i = 1, . . . , Nm,
∑Nm

i=1 wi = 1, and

ψi(x) =
1√
2π σi

exp

(
−x2

2σ2
i

)
, (2.62)

for i = 1, . . . , Nm. Due to the symmetry assumption, µi = −µNm−i+1, wi =

wNm−i+1 and σi = σNm−i+1 for i = 1, . . . , ⌊Nm/2⌋. In addition, the detector is
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described by

ϕ(y) =


1 , y ≥ A/2

0 , y < A/2

, (2.63)

where y = x+ n, with n representing the additive independent noise term. The

aim is to obtain the optimal p.d.f. for the additive noise based on the optimization

problem in (2.26).

Under the assumption of UCA, (2.60)-(2.63) can be used to calculate F0(x)

and F1(x) from (2.30) and (2.31) as

F0(x) =
Nm∑
i=1

wiQ

(
A/2− x− µi

σi

)
,

F1(x) =
Nm∑
i=1

wiQ

(
A/2 + x+ µi

σi

)
, (2.64)

where Q(x) = (1/
√
2π )

∫∞
x

e−t2/2dt denotes the Q-function.

The symmetric Gaussian mixture noise specified above is observed in many

practical scenarios [88]-[90]. One important scenario is multiuser wireless com-

munications, in which the desired signal is corrupted by interference from other

users as well as by zero-mean Gaussian background noise [91]. In other words,

the signal detection example in (2.60) with symmetric Gaussian mixture noise

finds various practical applications.

Since the problem in (2.60) models a signal detection problem in the presence

of noise, we consider two common scenarios in the following simulations. In

the first one, it is assumed that the noise-only hypothesis H0 has a higher prior

probability than the signal-plus-noise hypothesisH1. An example of this scenario

is the signal acquisition problem, in which a number of correlation outputs are

compared against a threshold to determine the timing/phase of the signal [92].

In the second scenario, equal prior probabilities are assumed for the hypotheses,

which can be well-suited for binary communications systems that transmit no
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Figure 2.1: Bayes risks of original and noise modified detectors versus σ in cases
of equal priors and unequal priors for α = 0.08 and A = 1.

signal for bit 0 and a signal for bit 1 (i.e., on-off keying) [93]. For the first scenario,

it is assumed that the prior probabilities are known, with some uncertainty, to

be equal to π0 = 0.9 and π1 = 0.1, which is called the unequal priors case in the

following. On the other hand, π0 = π1 = 0.5 is considered for the equal priors

case. As mentioned in Section 2.1.1, the restricted Bayes criterion mitigates the

undesired effects due to the uncertainty in prior probabilities via parameter α ,

which sets an upper limit on the conditional risks. In the numerical results,

symmetric Gaussian mixture noise with Nm = 4 is considered, where the mean

values of the Gaussian components in the mixture noise in (2.61) are specified as

[0.033 0.52 − 0.52 − 0.033] with corresponding weights of [0.35 0.15 0.15 0.35].

In addition, for all the cases, the variances of the Gaussian components in the

mixture noise are assumed to be the same; i.e., σi = σ for i = 1, . . . , Nm in (2.62).
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Figure 2.2: Bayes risks of original and noise modified detectors versus σ in cases
of equal priors and unequal priors for α = 0.12 and A = 1.

For the detection problem described above, the optimal additive noise can be

represented by a probability distribution with at most two mass points according

to Theorem 4. Therefore, the optimal additive noise p.d.f. can be calculated as

the solution of the optimization problem in (2.36) forM = 2. In this section, the

PSO algorithm is employed to obtain the optimal solution, since it is based on

simple iterations with low computational complexity and has been successfully

applied to numerous problems in various fields [94]-[97] (please refer to [51]-[54]

for detailed descriptions of the PSO algorithm).7

Figures 2.1, 2.2 and 2.3 illustrate the Bayes risks for the noise modified and

the original (i.e., in the absence of additive noise) detectors for various values

7In the implementation of the PSO algorithm, we employ 50 particles and 1000 iterations.
Also, the other parameters are set to c1 = c2 = 2.05 and χ = 0.72984, and the inertia weight
ω is changed from 1.2 to 0.1 linearly with the iteration number. Please refer to [51] for the
details of the PSO algorithm and the definitions of the parameters.
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Table 2.1: Optimal additive noise p.d.f.s for various values of σ for α = 0.08 and
A = 1.

π0 = 0.5 / π0 = 0.9
σ λ n1 n2

0 0.4719 / 0.5333 -0.1057 / -0.2492 0.0901 / 0.0352
0.03 0.4881 / 0.5333 -0.2420 / -0.1995 0.2416 / 0.2982
0.06 0.4858 / 0.5332 -0.2360 / -0.2351 0.2360 / 0.2370
0.09 0.4997 / 0.5251 -0.2189 / -0.2189 0.2189 / 0.2189
0.117 0.5011 / 0.5029 -0.1847 / -0.1847 0.1847 / 0.1847

of σ in the cases of equal and unequal priors for α = 0.08, α = 0.12, α = 0.4,

respectively, where A = 1 is used.8 From the figures, it is observed that as σ

decreases, the improvement obtained via additive noise increases. This is mainly

due to the fact that noise enhancements commonly occur when observations have

multimodal p.d.f.s [12], and the multimodal structure is more pronounced for

small σ’s. In addition, the figures indicate that there is always more improvement

in the unequal priors case than that in the equal priors case, which is expected

since there is more room for noise enhancement in the unequal priors case due to

the asymmetry between the weights of the conditional risks in determining the

Bayes risk. Another important point to note from the figures is that the feasible

ranges of σ values are different for different values of α. In other words, for

each α, the constraint on the maximum conditional risks (cf. (2.26)) cannot be

satisfied after a specific value of σ. This is expected since as σ (which determines

the average noise power) exceeds a certain value, it becomes impossible to keep

the conditional risks below the given limit α. Therefore, Figures 2.1, 2.2 and 2.3

are plotted only up to those specific σ values. From the figures, it is observed

that those maximum σ values are 0.117, 0.31 and 1.93 for α = 0.08, α = 0.12

and α = 0.4, respectively.

8Due to the symmetry of the Gaussian mixture noise, the conditional risks in the absence
of noise, F0(0) and F1(0), are equal. Therefore, the original Bayes risks are the same for both
the equal and the unequal priors cases.
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Figure 2.3: Bayes risks of original and noise modified detectors versus σ in cases
of equal priors and unequal priors for α = 0.4 and A = 1.
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Table 2.2: Optimal additive noise p.d.f.s for various values of σ for α = 0.12 and
A = 1.

π0 = 0.5 / π0 = 0.9
σ λ n1 n2

0 0.2553 / 0.8 -0.2849 / -0.4063 0.0421 / 0.0598
0.08 0.4436 / 0.2028 -0.2266 / 0.2266 0.2266 / -0.2266
0.15 0.7492 / 1 0.0944 / -0.0959 -0.0944 /—
0.23 1 / 1 0 / -0.0693 — /—
0.31 1 / 1 0 / -0.0067 — /—

Table 2.3: Optimal additive noise p.d.f.s for various values of σ for α = 0.4 and
A = 1.

π0 = 0.5 / π0 = 0.9
σ λ n1 n2

0 0.6518 / 0.1170 -0.3578 / -0.0283 -0.2941 / -0.3879
0.5 1 / 1 0 / -0.3549 — /—
1 1 / 1 0 / -0.2366 — /—
1.5 1 / 1 0 / -0.1131 — /—
1.93 1 / 1 0 / -0.0057 — /—

In order to investigate the results in Figures 2.1, 2.2 and 2.3 further, Tables

2.1, 2.2 and 2.3 show the optimal additive noise p.d.f.s for various values of

σ in the cases of equal and unequal priors for α = 0.08, α = 0.12 and α = 0.4

respectively, where A = 1. From Theorem 4, it is known that the optimal additive

noise in this example can be represented by a discrete probability distribution

with at most two mass points, which can be described as pN(x) = λ δ(x− n1) +

(1− λ) δ(x− n2). It is observed from the tables that the optimal additive noise

p.d.f. has two mass points for certain values of σ, whereas it has a single mass

point for other σ’s. Also, in the case of equal priors for α = 0.12 and α = 0.4,

the optimal noise p.d.f.s contain only one mass point at the origin for some

values of σ, which implies that the detector is nonimprovable in those scenarios.

However, there is always improvement for the unequal priors case, which can be

also verified from Figures 2.1, 2.2 and 2.3.
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Figure 2.4: Bayes risks of original and noise modified detectors versus A in cases
of equal priors and unequal priors for α = 0.08 and σ = 0.05.
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priors for σ = 0.01, σ = 0.05 and σ = 0.1, where A = 1.

Figure 2.4 illustrates the Bayes risks for the original and the noise modified

detectors for various values of A in the cases of equal and unequal priors for

α = 0.08 and σ = 0.05. It is noted that the original conditional risks are above

the specified limit α = 0.08 for A < 1.03.9 However, after the addition of optimal

noise, the noise modified detectors result in conditional risks that are below the

limit, which is expected since the optimal noise p.d.f.s are obtained from the

solution of the constrained optimization problem in (2.26). Another observation

from Figure 2.4 is that, in the equal priors case, the improvement decreases as A

increases, and there is no improvement after a certain value of A. However, for

the unequal priors case, improvement can be observed over a wider range of A

values, which is expected due to the the same reasons argued for Figures 2.1-2.3.

9For the original detector, the conditional risks are equal; hence, Rx
0(ϕ) = Rx

1(ϕ) = rx(ϕ).
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Figure 2.5 illustrates the improvement ratio, defined as the ratio of the Bayes

risks in the absence and presence of additive noise, versus α for the cases of equal

and unequal priors for σ = 0.01, σ = 0.05 and σ = 0.1, where A = 1 is used. In

the unequal priors case, as α increases, an increase is observed in the improve-

ment ratio up to a certain value of α, and then the improvement ratio becomes

constant. Those critical α values specify the boundaries between the restricted

Bayes and the (unrestricted) Bayes criteria. When α gets larger than those val-

ues, the constraint in (2.26) is no longer active; hence, the problem reduces to

the Bayesian framework. Therefore, further increases in α do not cause any ad-

ditional performance improvements. Similarly, as the value of α decreases, the

restricted Bayes criterion converges to the minimax criterion [29]. The restricted

Bayes criterion achieves its minimum improvement ratio when it becomes equiv-

alent to the minimax criterion, and achieves its maximum improvement ratio

when it is equal to the Bayes criterion. In the case of equal priors, the improve-

ment ratio is constant with respect to α, meaning that the improvement for the

minimax criterion equals to that for the Bayes criterion. Another observation

from the figure is that an increase in σ reduces the improvement ratio, and for the

same values of σ, there is more improvement in the unequal priors case. Finally,

it should be noted that various values of α in Figure 2.5 correspond to different

amounts of uncertainty in the prior information [42]. As the prior information

gets more accurate, a larger value of α is selected; hence, the constraint on the

conditional risks becomes less strict, meaning that the restricted Bayes criterion

converges to the Bayes criterion after a certain value of α. On the other hand,

as the amount of uncertainty increases, a smaller value of α is selected, and the

restricted Bayes criterion converges to the minimax criterion when α becomes

equal to the minimax risk [40], [42].

Next, the improvability conditions in Theorem 5 are investigated for the

detection example. To that aim, it is first observed that the original con-

ditional risks F0(0) and F1(0) are equal to each other for any value of σ

43



due to the symmetry of the Gaussian mixture noise (cf. (2.64)). Therefore,

F (0) = π0F0(0) + π1F1(0) = F0(0) = F1(0) . In addition, suppose that the limit

on the conditional risks, α, is set to the original conditional risks for each value

of σ, which implies that Sα = {0, 1} in (2.52). Also, the first order derivatives of

F0(x) and F1(x) at x = 0 can be calculated from (2.64) as

F
′

0 (0) = −F ′

1 (0) =
Nm∑
i=1

wi√
2π σi

exp

(
−(A/2− µi)

2

2σ2
i

)
. (2.65)

Similarly, the second order derivatives of F0(x) and F1(x) at x = 0 are obtained

as

F
′′

0 (0) = F
′′

1 (0) =
Nm∑
i=1

wi(A/2− µi)√
2π σ3

i

exp

(
−(A/2− µi)

2

2σ2
i

)
. (2.66)

For the unequal priors case, the first and second order derivatives of F (x) =

π0F0(x) + π1F1(x) at x = 0 can be expressed as F
′
(0) = 0.8F

′
0 (0) and F

′′
(0) =

F
′′
0 (0). From (2.65), it is noted that F

′
0 (0) > 0 and F

′
1 (0) < 0 ; hence, F

′
(0) > 0

as well. Then, from (2.48)-(2.51), set Fn in (2.54) can be expressed, at x = 0, as

F1 = {0.8zF ′

0 (0), zF
′

0 (0),−zF
′

0 (0)} ,

F2 = {z2F ′′

0 (0), z
2F

′′

0 (0), z
2F

′′

0 (0)} . (2.67)

Therefore, (2.55)-(2.57) imply that, at x = 0, Sz = ∅, Sn = {3} and Sp = {1, 2}

for z > 0 and Sz = ∅, Sn = {1, 2}, and Sp = {3} for z < 0.10 Since Sz = ∅, the

first condition in Theorem 5 is automatically satisfied. For z > 0, |Sn| = 1 and

|Sp| = 2; hence, the third bullet of the second condition implies that

min{F2(1)F1(2)F1(3) , F2(2)F1(1)F1(3)} > F2(3)F1(1)F1(2) (2.68)

is required for improvability. For z < 0, |Sn| = 2 and |Sp| = 1; hence, the second

bullet of the second condition becomes active, which can be shown to yield the

same condition as in (2.68). From (2.67), the improvability condition in (2.68)

10Note that Sz = {1, 2, 3} for z = 0, in which case the first condition in Theorem 5 cannot
satisfied since F2 = {0, 0, 0}. Therefore, z = 0 is not considered in obtaining improvability
conditions.
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can be expressed more explicitly as

min

{
−z4F ′′

0 (0)
(
F

′

0 (0)
)2

, −0.8z4F
′′

0 (0)
(
F

′

0 (0)
)2}

> 0.8z4F
′′

0 (0)
(
F

′

0 (0)
)2

,

(2.69)

which is satisfied when F
′′
0 (0) < 0 . Therefore, the detector is improv-

able whenever the expression in (2.66) is negative. For the equal priors

case, F1 and F2 in (2.67) become F1 = {0, zF ′
0 (0),−zF

′
0 (0)} and F2 =

{z2F ′′
0 (0), z

2F
′′
0 (0), z

2F
′′
0 (0)}, respectively. Therefore, the first improvability con-

dition in Theorem 5 requires that F
′′
0 (0) < 0, whereas the third bullet of

the second condition requires that F2(2)F1(3) > F2(3)F1(2) for z > 0 and

F2(3)F1(2) > F2(2)F1(3) for z < 0. However, it can be shown that the con-

ditions in the third bullet are always satisfied when F
′′
0 (0) < 0. Therefore,

the same improvability condition is obtained for the equal priors case, as well.

Figure 2.6 illustrates F
′′
0 (0) versus σ for various values of A, where σ represents

the standard deviation of the Gaussian mixture noise components (σi = σ, ∀i

in (2.62)). It is observed that the detector performance can be improved for

A = 1 if σ ∈ [0.005, 0.1597], for A = 0.9 if σ ∈ [0.01, 0.1686], and for A = 0.8

if σ ∈ [0.02, 0.161]. On the other hand, the calculations show that the detector

is actually improvable for A = 1 if σ ≤ 0.16, for A = 0.9 if σ ≤ 0.17, and for

A = 0.8 if σ ≤ 0.161. Hence, the results reveal that the proposed improvability

conditions are sufficient but not necessary, and that they are quite effective in

determining the range of parameters for which the detector performance can be

improved.11

Next, the improvability conditions based on Theorem 3 are considered. For

the binary hypothesis-testing example in this section, H(t) in (2.23) becomes

H(t) = inf {π0F0(n) + π1F1(n) | max{F0(n), F1(n)} = t , n ∈ R}. From (2.64),

it can be shown that F0(n) and F1(n) are monotone increasing and decreasing

functions, respectively. In addition, due to the symmetry of the Gaussian mixture

11In fact, F
′′

0 (0) can be shown to be negative even for smaller σ values than specified above;
however, very small negative values are computed as zero due to the accuracy limitations.
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Figure 2.6: The second order derivative of F0(x) at x = 0 versus σ for various
values of A. Both Theorem 5 and Theorem 3 imply for the detection example
in this section that the detector is improvable whenever F

′′
0 (0) is negative. The

limit on the conditional risks, α, is set to the original conditional risks for each
value of σ. The graph for A = 1 is scaled by 0.1 to make view of the figure more
convenient (since only the signs of the graphs are important).
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noise, F1(n) = F0(−n), ∀n. Therefore, without loss of generality, H(t) can be

expressed as H(t) = π0t + π1F1

(
F−1
0 (t)

)
. Then, the second derivative of H(t)

can be obtained as

H
′′
(t) = π1

F
′′
0 (F

−1
0 (t))− F

′
1 (F

−1
0 (t))F

′′
0 (F

−1
0 (t))/F

′
0 (F

−1
0 (t))(

F
′
0 (F

−1
0 (t))

)2 . (2.70)

In order to evaluate the condition in Theorem 5, it is first observed that t = α̃ =

max{F0(0), F1(0)} = F0(0), since F0(0) = F1(0) (cf. (2.64)). Then, H
′′
(α̃) < 0

implies that F
′′
1 (0)−F

′
1 (0)F

′′
0 (0)/F

′
0 (0) < 0 for any π1. Since F

′′
0 (0) = F

′′
1 (0) from

(2.66), and F
′
0 (0) > 0 and F

′
1 (0) < 0 from (2.65), that improvability condition

reduces to F
′′
0 (0) < 0, which is the same condition obtained from Theorem 5.

Therefore, for this specific example, the improvability conditions in Theorem 3

and Theorem 5 are equivalent (cf. Figure 2.6). However, it should be noted that

the two conditions are not equivalent in general, and the calculation of H(t) can

be difficult in the absence of monotonicity properties related to F0 and F1.

Finally, another example is studied in order to investigate the theoretical

results on a 4-ary hypothesis-testing problem in the presence of observation noise

that is a mixture of non-Gaussian components. The hypotheses H0, H1, H2 and

H3 are defined as

H0 : x = −3
√
A+ v ,

H1 : x = −
√
A+ v ,

H2 : x =
√
A+ v ,

H3 : x = 3
√
A+ v , (2.71)

where x ∈ R, A > 0 is a known scalar value, and v is zero-mean observation

noise that is a mixture of Rayleigh distributed components; that is, pV (x) =∑Nm

i=1 wi ψi(x− µi) , where wi ≥ 0 for i = 1, . . . , Nm,
∑Nm

i=1 wi = 1, and

ψi(x) =


x
σ2
i
exp

(
−x2

2σ2
i

)
, x ≥ 0

0 , x < 0

, (2.72)
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Figure 2.7: Bayes risks of original and noise modified detectors versus σ for
α = 0.4 and A = 1.

for i = 1, . . . , Nm. In the numerical results, the same variance is considered for all

the Rayleigh components, meaning that σi = σ, ∀i. In addition, the parameters

are selected as Nm = 4, µ1 = 0.2, µ2 = 1, µ3 = −2σ
√

π
2
− 0.2, µ4 = −2σ

√
π
2
− 1,

w1 = w3 = 0.3 and w2 = w4 = 0.2.12 In addition, the detector is described by

ϕ(y) =



0 , y ≤ −2
√
A

1 , −2
√
A < y ≤ 0

2 , 0 < y ≤ 2
√
A

3 , 2
√
A < y

, (2.73)

where y = x+ n, with n representing the additive independent noise term.

12It should be noted that the dependence of the means on σ is necessary in order to keep
the noise zero-mean, since the Rayleigh distribution is specified by a single parameter, σ.
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Table 2.4: Optimal additive noise p.d.f.s for various values of σ for α = 0.4 and
A = 1.

σ λ1 λ2 λ3 λ4
0.05 0.1654 0.1218 0.3552 0.3576
0.15 0.2232 0.7768 0 0
0.25 1 0 0 0
σ n1 n2 n3 n4

0.05 -0.4916 0.2175 0.2652 -0.5331
0.15 -0.4288 0.3661 — —
0.25 -0.2819 — — —

For equal prior probabilities and UCA, Figure 2.7 illustrates the Bayes risk

versus σ when A = 1 and α = 0.4. It is observed that the additive noise

can significantly improve the detector performance (equivalently, it reduces the

average probability of error of a communications system) for small values of σ. In

addition, for the scenario in Figure 2.7, Table 2.4 illustrates the optimal additive

noise p.d.f.s for various values of σ. In accordance with Theorem 4, the optimal

noise can have up to four non-zero mass points in this problem. Furthermore,

for σ = 0.05, Figure 2.8 plots the Bayes risk versus A for the original and noise

modified detectors. A significant improvement is observed for A ∈ [0.5, 1].

2.4 Concluding Remarks

In this chapter, noise enhanced hypothesis-testing has been studied in the re-

stricted Bayesian framework. First, the most generic formulation of the problem

has been considered based onM -ary composite hypothesis-testing, and sufficient

conditions for improvability and nonimprovability of detection via additive inde-

pendent noise have been derived. In addition, an approximate formulation of the

optimal noise p.d.f. has been presented. Then, simple hypothesis-testing prob-

lems have been studied and additional improvability conditions that are specific

to simple hypotheses have been obtained. Also, the optimal noise p.d.f. has
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Figure 2.8: Bayes risks of original and noise modified detectors versus A for
α = 0.4 and σ = 0.05.
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been shown to include at most M mass points for M -ary simple hypothesis-

testing problems under certain conditions. Then, various approaches to solving

for the optimal noise p.d.f. have been considered, including global optimization

techniques, such as the PSO, and a convex relaxation technique. Finally, two de-

tection examples have been studied to illustrate the practicality of the theoretical

results.

2.5 Appendices

2.5.1 Proof of Theorem 2

A detector is improvable if there exists a noise p.d.f. pN(n) that satis-

fies E{F (N)} < F (0) and max
θ∈Λ

E{Fθ(N)} ≤ α, which can be expressed as∫
RK pN(n)F (n) dn < F (0) and

∫
RK pN(n)Fθ(n) dn ≤ α, ∀θ ∈ Λ . For a noise

p.d.f. having L infinitesimally small noise components, pN(n) =
∑L

j=1 λj δ(n −

ϵj), these conditions become

L∑
j=1

λj F (ϵj) < F (0) ,
L∑

j=1

λj Fθ(ϵj) ≤ α , ∀θ ∈ Λ . (2.74)

Since the ϵj’s are infinitesimally small, F (ϵj) and Fθ(ϵj) can be approximated

by using the Taylor series expansion as F (0) + ϵTj f + 0.5 ϵTj Hϵj and Fθ(0) +

ϵTj fθ + 0.5 ϵTj Hθϵj respectively, where H and f (Hθ and fθ) are the Hessian and

the gradient of F (x) (Fθ(x)) at x = 0, respectively. Therefore, (2.74) requires

that

L∑
j=1

λj ϵ
T
j Hϵj + 2

L∑
j=1

λj ϵ
T
j f < 0 ,

L∑
j=1

λj ϵ
T
j Hθϵj + 2

L∑
j=1

λj ϵ
T
j fθ ≤ 2 (α− Fθ(0)) , ∀θ ∈ Λ . (2.75)

Let ϵj = ρj z for j = 1, 2, . . . , L, where ρj for j = 1, 2, . . . , L are infinitesimally

small real numbers, and z is a K-dimensional real vector. Then, based on the
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function definitions in (2.19)-(2.22), the conditions in (2.75) can be simplified,

after some manipulation, as

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

< 0 , (2.76)(
f
(2)
θ (x, z) + c f

(1)
θ (x, z)

) ∣∣∣
x=0

<
2 (α− Fθ(0))∑L

j=1 λj ρ
2
j

, ∀θ ∈ Λ , (2.77)

where c , 2
∑L

j=1 λj ρj
/∑L

j=1 λj ρ
2
j .

Since α = Fθ∗(0) and α > max
θ∈Λ\θ∗

Fθ(0), the right-hand-side of (2.77) goes to

infinity for θ ̸= θ∗. Hence, we should consider only the θ = θ∗ case. Thus, (2.76)

and (2.77) can be expressed as

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

< 0 , (2.78)(
f
(2)
θ∗ (x, z) + c f

(1)
θ∗ (x, z)

) ∣∣∣
x=0

< 0 . (2.79)

It is noted that c can take any real value by definition via selection of appropriate

λi and infinitesimally small ρi values for i = 1, 2, . . . , L . Therefore, for the first

part of the theorem, under the condition of f
(1)
θ∗ (x, z)f (1)(x, z) > 0 at x = 0,

which states that the second term in (2.78) has the same sign as the second

term in (2.79), there always exists c that satisfies the improvability conditions in

(2.78) and (2.79). For the second part of the theorem, since f (1)(x, z) > 0 and

f
(1)
θ∗ (x, z) < 0 at x = 0, (2.78) and (2.79) can also be expressed as(

f (2)(x, z)f
(1)
θ∗ (x, z) + c f (1)(x, z)f

(1)
θ∗ (x, z)

) ∣∣∣
x=0

> 0 , (2.80)(
f
(2)
θ∗ (x, z)f (1)(x, z) + c f

(1)
θ∗ (x, z)f (1)(x, z)

) ∣∣∣
x=0

< 0 . (2.81)

Under the condition of f (2)(x, z)f
(1)
θ∗ (x, z) > f

(2)
θ∗ (x, z)f (1)(x, z) at x = 0, which

states that the first term in (2.80) is larger than the first term in (2.81), there

always exists c that satisfies the improvability conditions in (2.80) and (2.81).
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2.5.2 Proof of Theorem 3

Since H
′′
(α̃) < 0 and H(t) in (2.23) is second-order continuously differentiable

around t = α̃, there exist ϵ > 0, n1 and n2 such that max
θ∈Λ

Fθ(n1) = α̃ + ϵ and

max
θ∈Λ

Fθ(n2) = α̃ − ϵ. Then, it is proven in the following that an additive noise

component with pN(n) = 0.5 δ(x − n1) + 0.5 δ(x − n2) improves the detector

performance under the conditional risk constraint. First, the maximum value of

the conditional risks in the presence of additive noise is shown not to exceed α:

max
θ∈Λ

E{Fθ(N)} ≤ E

{
max
θ∈Λ

Fθ(N)

}
= 0.5(α̃+ ϵ) + 0.5(α̃− ϵ) = α̃ ≤ α . (2.82)

Then, the decrease in the Bayes risk is proven as follows. Due to the assumptions

in the theorem, H(t) is concave in an interval around t = α̃. Since E{F (N)}

can attain the value of 0.5H(α̃+ ϵ) + 0.5H(α̃− ϵ), which is always smaller than

H(α̃) due to concavity, it is concluded that E{F (N)} < H(α̃). As H(α̃) ≤ F (0)

by definition of H(t) in (2.23), E{F (N)} < F (0) is satisfied; hence, the detector

is improvable.

2.5.3 Maximum Conditional Risk Achieved by Optimal

Noise

Consider the case in which tm = argmin
t
H(t) > α . In order to prove that

“max
θ∈Λ

Ry
θ (ϕ) = α for the optimal noise” by contradiction, first assume that the

optimal solution of (2.12) is given by pÑ(x) with β , max
θ∈Λ

Rỹ
θ (ϕ) < α . As in the

proof of Theorem 4 in [12], we define another noise N with the following p.d.f.:

pN(n) =
α− β

tm − β
δ(n− nm) +

tm − α

tm − β
pÑ(n) , (2.83)

where nm is the noise component that results in the minimum Bayes risk; that

is, F (nm) = Fmin, and tm is the maximum value of the conditional risks when

noise nm is employed; that is, tm = max
θ∈Λ

Fθ(nm) .
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For the noise p.d.f. in (2.83), the Bayes risk and conditional risks can be

calculated as

ry(ϕ) = E{F (N)} =
α− β

tm − β
F (nm) +

tm − α

tm − β
rỹ(ϕ) , (2.84)

Ry
θ (ϕ) = E{Fθ(N)} =

α− β

tm − β
Fθ(nm) +

tm − α

tm − β
Rỹ

θ (ϕ) , (2.85)

for all θ ∈ Λ. Since F (nm) < rỹ(ϕ), (2.84) implies ry(ϕ) < rỹ(ϕ). On the other

hand, as Fθ(nm) ≤ tm and Rỹ
θ (ϕ) ≤ β, Ry

θ (ϕ) ≤ α is obtained. Therefore, Ñ

cannot be an optimal solution, which implies a contradiction. In other words,

any noise p.d.f. that satisfies max
θ∈Λ

Ry
θ (ϕ) < α cannot be optimal.

2.5.4 Proof of Theorem 5

Theorem 4 states that the optimal additive noise can be represented by a discrete

probability distribution with at most M mass points. Therefore, a detector is

improvable if there exists a noise p.d.f. pN(n) =
∑M

l=1 λl δ(n− nl) that satisfies

E{F (N)} < F (0) and max
i∈{0,1,...,M−1}

E{Fi(N)} ≤ α, which can be expressed as

M∑
l=1

λl F (nl) < F (0) , max
i∈{0,1,...,M−1}

M∑
l=1

λl Fi(nl) ≤ α . (2.86)

As in the proof of Theorem 2 in Appendix 2.5.1, consider the improvability

conditions in (2.86) with infinitesimally small noise components, nl = ϵl = ρl z

for l = 1, 2, . . . ,M , where ρl’s are infinitesimally small real numbers, and z is a

K-dimensional real vector. Then, similar manipulations to those in Appendix A

(cf. (2.75)-(2.77)) can be performed to obtain

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

< 0 , (2.87)(
f
(2)
i (x, z) + c f

(1)
i (x, z)

) ∣∣∣
x=0

<
2 (α− Fi(0))∑M

j=1 λj ρ
2
j

, (2.88)

for i = 0, 1, . . . ,M − 1, where c , 2
∑M

j=1 λj ρj
/∑M

j=1 λj ρ
2
j .
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Since Fi(0) < α, ∀i ∈ S̄α, the right-hand-side of (2.88) goes to infinity for

i ∈ S̄α. Hence, one can consider i ∈ Sα only. Thus, (2.87) and (2.88) can be

expressed as (
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

< 0 , (2.89)(
f
(2)
i (x, z) + c f

(1)
i (x, z)

) ∣∣∣
x=0

< 0 , ∀i ∈ Sα . (2.90)

Based on the definition in (2.54), (2.89) and (2.90) can be restated as(
F2(j) + cF1(j)

)∣∣∣
x=0

< 0 for j = 1, 2, . . . , |Sα|+ 1 . (2.91)

It is noted that c can take any real value by selecting appropriate λi and in-

finitesimally small ρi values for i = 0, 1, . . . ,M − 1. From (2.55), it is concluded

that in order for the conditions in (2.91) to hold,

F2(j)
∣∣
x=0

< 0 (2.92)

must be satisfied ∀j ∈ Sz , which is the first condition in Theorem 5.

In addition to (2.92), one of the following conditions should be satisfied for

the improvability conditions in (2.91) to hold:

• When |Sn| = 0 or |Sp| = 0, as stated in the first part of the second condition

in Theorem 5, all the second terms in (2.91) (namely, F1(1), . . . ,F1(|Sα|+

1) ) are either all non-negative or all non-positive. Therefore, there always

exists a c that satisfies the improvability conditions in (2.91) when the first

condition in Theorem 5 (cf. (2.92)) is satisfied.

• When |Sn| is a positive even number and |Sp| > 0, (2.91) can be expressed,

after some manipulation, as

F2(j)
∣∣∣
x=0

< 0 , ∀j ∈ Sz , (2.93)(
F2(j)

∏
l∈Sp∪Sn\{j}

F1(l) + c
∏

l∈Sp∪Sn

F1(l)
)∣∣∣

x=0
< 0 , ∀j ∈ Sp , (2.94)

(
F2(j)

∏
l∈Sp∪Sn\{j}

F1(l) + c
∏

l∈Sp∪Sn

F1(l)
)∣∣∣

x=0
> 0 , ∀j ∈ Sn . (2.95)
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Note that (2.94) and (2.95) are obtained by multiplying (2.91) by∏
l∈Sp∪Sn\{j}

F1(l), which is a positive (negative) quantity when j ∈ Sp

(j ∈ Sn) since |Sn| is even. The condition in (2.93) is satisfied due to the

first condition in Theorem 5. In addition, under the condition in (2.58),

there always exists a c that satisfies the improvability conditions in (2.94)

and (2.95).

• When |Sn| is an odd number and |Sp| > 0, (2.91) can be expressed by three

conditions as in (2.93)-(2.95) with the only difference being that the signs

of the inequalities in (2.94) and (2.95) are switched. In that case, the first

condition (cf. (2.93)) is satisfied due to the first condition in Theorem 5.

Also, under the condition in (2.59), there always exists a c that satisfies

the second and third conditions.

2.5.5 Proof of Corollary 1

Consider the proof of Theorem 5 above. Since α > max
i∈{0,1,...,M−1}

Fi(0), the right-

hand-side of (2.88) becomes infinity for any i. Therefore, we can consider the

condition in (2.87) only; that is,

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

< 0 . (2.96)

In terms of the gradient f and the Hessian H of F (x) at x = 0, (2.96) becomes

zTHz + c zT f < 0 . Since c can take any real value by definition (cf. Appendix

2.5.4) and z can be chosen arbitrarily small, the improvability condition can

always be satisfied if f ̸= 0 . On the other hand, if f = 0, then the improvability

condition becomes zTHz < 0 . If F (x) is not convex around x = 0 , H is not

positive semidefinite. Therefore, there exists z such that zTHz < 0 is satisfied;

hence, the detector is improvable.
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Chapter 3

Noise Enhanced M-ary

Composite Hypothesis-Testing in

the Presence of Partial Prior

Information

This chapter is organized as follows. Section 3.1 introduces M -ary compos-

ite hypothesis-testing problems under partial prior information, and defines two

criteria for the calculation of optimal additive noise. Investigations of optimal

additive noise and improvability conditions for those criteria are provided in

Sections 3.2 and 3.3. In Section 3.4, the cases of unknown parameter distribu-

tions for some composite hypotheses are studied, and upper bounds on the risks

are provided. Finally, a detection example is studied in Section 3.5 in order to

investigate the theoretical results.
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Figure 3.1: Independent noise n is added to observation x in order to improve
the performance of the detector, represented by ϕ(·).

3.1 Problem Formulation

Consider the following M -ary composite hypothesis-testing problem:

Hi : pXθ (x) , θ ∈ Λi , i = 0, 1, . . . ,M − 1 , (3.1)

where Hi denotes the ith hypothesis and pXθ (x) represents the probability den-

sity function (p.d.f.) of observation X for a given value of Θ = θ. Each

observation (measurement) x is a vector with K components; i.e., x ∈ RK ,

and Λ0,Λ1, . . . ,ΛM−1 form a partition of the parameter space Λ. The distri-

bution of the unknown parameter Θ for hypothesis i is represented by wi(θ) for

i = 0, 1, . . . ,M−1. In addition, the prior probability of hypothesis Hi is denoted

by πi for i = 0, 1, . . . ,M − 1. Composite hypothesis-testing problems as in (3.1)

are encountered in various problems, such as in non-coherent communications

receivers, pattern recognition, and time series analysis [40], [98]. Note that when

Λi’s consist of single elements, the problem reduces to a simple hypothesis-testing

problem.

A generic decision rule (detector) can be defined as

ϕ(x) = i , if x ∈ Γi , (3.2)

for i = 0, 1, . . . ,M − 1, where Γ0,Γ1, . . . ,ΓM−1 form a partition of the obser-

vation space Γ. As shown in Figure 3.1, the aim is to add noise to the original

observation x (which commonly consists of a signal component and measurement

noise) in order to improve the performance of the detector according to certain
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criteria [80]. By adding noise n to the original observation x, the modified ob-

servation is formed as y = x + n, where n has a p.d.f. denoted by pN(·), and

is independent of x. It should be noted that the additive noise can cause both

positive and negative shifts in the observations [23], [29]. As in [12] and [23], it

is assumed that the detector ϕ , described by (3.2), is fixed, and the only means

for improving the performance of the detector is to optimize the additive noise

n.

When all the prior probabilities π0, π1, . . . , πM−1 of the hypotheses in (3.1)

are known, the Bayesian approach can be taken, and the optimal additive noise

that minimizes the Bayes risk can be sought for. This problem is studied in [23]

for simple hypothesis-testing problems under uniform cost assignment (UCA).

On the other hand, when none of the prior probabilities are known, the minimax

approach can be taken to obtain the optimal additive noise that minimizes the

maximum conditional risk, which is investigated in [29] for simple hypothesis-

testing problems. In this chapter, we focus on a more generic scenario by consid-

ering both composite hypotheses and partial prior information, meaning that the

prior probabilities of some hypotheses and the probability distributions of the

unknown parameters under some hypotheses may be unknown. Such a gener-

alization can be important in practice since composite hypothesis-testing prob-

lems are encountered in many applications, and the prior information may not

be available for all hypotheses (see Section 3.5 for an example).

In order to introduce a generic problem formulation, define sets S1, . . . ,SG

that form a partition of set {0, 1, . . . ,M −1}. Suppose that the prior probability

πi of Hi is known if i ∈ S1 and it is unknown otherwise, and assume that the size

of set S1 is M −Nu. In other words, S1 corresponds to M −Nu hypotheses with

known prior probabilities. In addition, assume that the hypotheses with unknown

prior probabilities are grouped into sets S2, . . . ,SG in such a way that the sum

of the prior probabilities of the hypotheses in set Sj is known for j = 2, . . . , G.
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If no such information is available, then G = 2 can be employed; that is, all the

hypotheses with unknown probabilities can be grouped together into S2.

In order to define the optimal additive noise, we consider the following two

criteria:

Criterion 1: For all the hypotheses with unknown prior probabilities, assume

uniform distribution of the prior probability in each group Sj for j = 2, . . . , G,

and the define the corresponding Bayes risk as

r1(ϕ) =
∑
i∈S1

πiRi(ϕ) +
G∑

j=2

π̃j
|Sj|

∑
i∈Sj

Ri(ϕ) , (3.3)

where Ri(ϕ) is the conditional risk of decision rule ϕ when hypothesis i is true

[40], |Sj| denotes the number of elements in set Sj, and π̃j ,
∑

i∈Sj
πi defines

the sum of the prior probabilities of the hypotheses in Sj for j = 2, . . . , G.

According to Criterion 1, the optimal additive noise is defined as poptN (n) =

arg min
pN(n)

r1(ϕ), where r1(ϕ) is given by (3.3). It should be noted that assuming

uniform distribution for the unknown priors is a very popular classical approach

[99].

Criterion 2: For the hypotheses with unknown prior probabilities, the least-

favorable distribution of the priors is considered in each group, and the corre-

sponding risk is defined as

r2(ϕ) =
∑
i∈S1

πiRi(ϕ) +
G∑

j=2

π̃j max
i∈Sj

Ri(ϕ) . (3.4)

In other words, a conservative approach is taken in Criterion 2, and the worst-

case Bayes risk is considered as the performance metric. Such an approach can be

considered in the framework of Γ-minimax decision rules [59]. According to Cri-

terion 2, the optimal additive noise is calculated from poptN (n) = arg min
pN(n)

r2(ϕ).

In Section 3.2 and Section 3.3, the optimal additive noise will be investigated

when the probability distributions of the unknown parameters are known under

all hypotheses (the prior probabilities can still be unknown). Then, in Section
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3.4, the results will be extended to the cases in which the probability distributions

of the unknown parameters are unknown under some hypotheses.

3.2 Optimal Additive Noise According to Cri-

terion 1

According to Criterion 1, the optimal additive noise is calculated from

poptN (n) = arg min
pN(n)

∑
i∈S1

πiRi(ϕ) +
G∑

j=2

π̃j
|Sj|

∑
i∈Sj

Ri(ϕ)

 . (3.5)

Since Ri(ϕ) is the conditional risk for hypotheses i, it can be expressed as

Ri(ϕ) =

∫
Λ

Rθ(ϕ)wi(θ) dθ , (3.6)

where Rθ(ϕ) denotes the conditional risk that is defined as the average cost of

decision rule ϕ for a given θ ∈ Λ [40]. The conditional risk can be calculated

from

Rθ(ϕ) = E{C[ϕ(Y ),Θ] |Θ = θ} =

∫
Γ

C[ϕ(y), θ] pYθ (y) dy , (3.7)

where pYθ (y) is the p.d.f. of the noise modified observation for a given value of

Θ = θ, and C[j, θ] ≥ 0 is the cost of deciding Hj when Θ = θ, for θ ∈ Λ [40].

Since the additive noise is independent of the original observation, pYθ (y) =∫
RK p

X
θ (y−n) pN(n) dn. Then, the expression in (3.6) for the conditional risk of

hypotheses i can be manipulated from (3.7) as follows:

Ri(ϕ) =

∫
Λ

∫
Γ

∫
RK

C[ϕ(y), θ] pXθ (y − n) pN(n)wi(θ) dn dy dθ

=

∫
RK

pN(n)

[∫
Λ

∫
Γ

C[ϕ(y), θ]pXθ (y − n)wi(θ) dy dθ

]
dn

,
∫
RK

pN(n) fi(n) dn = E{fi(N)} (3.8)
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where

fi(n) ,
∫
Λ

∫
Γ

C[ϕ(y), θ] pXθ (y − n)wi(θ) dy dθ . (3.9)

Note that fi(n) ≥ 0 ∀n since the cost function is non-negative by definition; that

is, C[j, θ] ≥ 0 .

Based on (3.8), the optimization problem in (3.5) can be expressed as

poptN (n) = arg min
pN(n)

E

∑
i∈S1

πifi(N) +
G∑

j=2

π̃j
|Sj|

∑
i∈Sj

fi(N)


, arg min

pN(n)
E {f(N)} , (3.10)

where f(n) is defined as f(n) ,
∑

i∈S1
πifi(n) +

∑G
j=2

π̃j

|Sj |
∑

i∈Sj
fi(n). From

(3.10), the optimal noise p.d.f. can be obtained by assigning all the probability

to the minimizer of f(n); i.e.,

poptN (n) = δ(n− n0) , n0 = arg min
n

f(n) . (3.11)

In other words, the optimal additive noise according to Criterion 1 can be ex-

pressed as a constant corresponding to the minimum value of f(n). Of course,

when f(n) has multiple minima, then the optimal noise p.d.f. can be repre-

sented as poptN (n) =
∑L̃

i=1 λiδ(n − n0i), for any λi ≥ 0 such that
∑L̃

i=1 λi = 1,

where n01, . . . ,n0L̃ represent the values corresponding to the minimum values of

f(n) .

The main implication of the result in (3.11) is that among all p.d.f.s for the

additive independent noise N, the ones that assign all the probability to a single

noise value can be used as the optimal additive signal components in Figure 3.1.

In other words, in this scenario, addition of independent noise to observations

corresponds to shifting the decision region of the detector.

Based on the expressions in (3.10), a detector is called improvable according

to Criterion 1 if there exists noise N that satisfies E{f(N)} < f(0), where f(0)

represents the Bayes risk in (3.3) in the absence of additive noise. For example,
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if there exists a noise component n∗ that satisfies f(n∗) < f(0), the detector

can be classified as an improvable one according to Criterion 1. In the following,

sufficient conditions are provided to determine the improvability of a detector

without actually solving the optimization problem in (3.11).

Proposition 1: Assume that f(x) in (3.10) is second-order continuously

differentiable around x = 0 . Let f denote the gradient of f(x) at x = 0. Then,

the detector is improvable

• if f ̸= 0 ; or,

• if f(x) is strictly concave at x = 0 .

Proof: Please see Appendix 3.6.1.

Although Proposition 1 may not be very crucial for scalar observations (since

it can be easy to find the optimal solution from (3.11) directly), it can be useful

for vector observations by providing simple sufficient conditions to check if the

detector can be improved via additive noise.

3.3 Optimal Additive Noise According to Cri-

terion 2

According to Criterion 2, the optimal additive noise is calculated from

poptN (n) = arg min
pN(n)

{∑
i∈S1

πiRi(ϕ) +
G∑

j=2

π̃j max
l∈Sj

Rl(ϕ)

}
, (3.12)

which can also be expressed as

poptN (n) = arg min
pN(n)

{∑
i∈S1

πiRi(ϕ) + max
l∈S̃

G∑
j=2

π̃j Rlj(ϕ)

}
, (3.13)

63



where l , [l2 · · · lG], and S̃ , S2 × · · · × SG is the Cartesian product of sets

S2, . . . ,SG.

From (3.8), the optimization problem in (3.13) can be stated as

poptN (n) = arg min
pN(n)

max
l∈S̃

E

{∑
i∈S1

πifi(N) +
G∑

j=2

π̃j flj(N)

}

, arg min
pN(n)

max
l∈S̃

E {fl(N)} , (3.14)

where fi(·) and flj(·) are as defined in (3.9), and fl(N) ,
∑

i∈S1
πifi(N) +∑G

j=2 π̃j flj(N) .

Although the optimization problem in (3.14) seems quite difficult to solve in

general, the following proposition states that the optimization can be performed

over a significantly reduced space as the optimal solution can be characterized

by a discrete probability distribution under certain conditions. To that aim,

assume that all possible additive noise values satisfy a ≼ n ≼ b for any finite a

and b; that is, nj ∈ [aj, bj] for j = 1, . . . , K, which is a reasonable assumption

since additive noise cannot have infinitely large amplitudes in practice. Then,

the following proposition states the discrete nature of the optimal additive noise.

Proposition 2: If fl(·) in (3.14) are continuous functions, the p.d.f. of

optimal additive noise can be expressed as

pN(n) =

|S̃|∑
j=1

λj δ(n− nj) , (3.15)

where |S̃| denotes the number of elements in set S̃ (equivalently, |S̃| =

|S2| · · · |SG| ), with
∑|S̃|

j=1 λj = 1 and λj ≥ 0 for j = 1, 2, . . . , |S̃| .

Proof: The proof is omitted since the result can be proven similarly to [12],

[29]. The assumption a ≼ n ≼ b is used to guarantee the existence of the optimal

solution [29]. �

Proposition 2 implies that optimal additive noise can be represented by a

randomization of no more than |S̃| different signal levels. Therefore, the solution
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of the optimization problem in (3.14) can be obtained from the following:

min
{nj ,λj}

|S̃|
l=1

max
l∈S̃

|S̃|∑
j=1

λj fl(nj)

subject to

|S̃|∑
j=1

λj = 1 , λj ≥ 0 , j = 1, . . . , |S̃| . (3.16)

Although (3.16) is significantly simpler than (3.14), it can still be a non-

convex optimization problem. Therefore, global optimization techniques, such

as particle-swarm optimization (PSO) [51], genetic algorithms, and differential

evolution [82] can be employed to obtain the optimal additive noise p.d.f.. Alter-

natively, a convex relaxation approach can be taken as in [29] in order to obtain

an approximate solution.

3.4 Unknown Parameter Distributions for Some

Hypotheses

In the previous formulations, it is assumed that the distribution of the unknown

parameter for hypothesis i, denoted by wi(θ), is known for i = 0, 1, . . . ,M−1 (see

(3.6)).1 If this information is not available for certain hypotheses, an approach

similar to that in [63] can be taken, and the conditional risks for those hypotheses

can be defined as the worst-case conditional risks; that is, Ri(ϕ) = sup
θ∈Λi

Rθ(ϕ),

where Rθ(ϕ) is as in (3.7). In other words, for hypotheses with unknown param-

eter distributions, the maximum conditional risk is set by taking a conservative

approach. On the other hand, for hypotheses with known parameter distribu-

tions, the average conditional risk in (3.6) can still be obtained. Therefore, the

1Note that this assumption is not needed for simple hypotheses since there is only one
possible parameter value.
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definition of Ri(ϕ) can be extended as

Ri(ϕ) =


∫
Λ
Rθ(ϕ)wi(θ) dθ , if wi(θ) is known

sup
θ∈Λi

Rθ(ϕ) , if wi(θ) is unknown
, (3.17)

for i = 0, 1, . . . ,M − 1. Then, Criterion 1 in (3.3) and Criterion 2 in (3.4) can

still be used in evaluating the performance of detectors.

Remark: Instead of considering the worst-case conditional risks as in (3.17),

another approach is to assume a uniform distribution of parameter θ over Λi

when wi(θ) is unknown. In that case, all the results in Section 3.2 and Section

3.3 are still valid. Hence, we focus on the approach in (3.17) in this section.

When the parameter distributions for some hypotheses are unknown and

the extended definition of Ri(ϕ) in (3.17) is used, the discrete structures of the

probability distributions of optimal additive noise (see (3.11) and Proposition

2) may not be guaranteed anymore. In other words, the optimal additive noise

may also have continuous probability distributions in that scenario. Therefore,

in order to obtain the (approximate) p.d.f. of the optimal additive noise, the

approach in [50] can be taken in order to search over possible p.d.f.s in the form

of pN(n) =
∑

l ζl ψ(n − nl), where ζl ≥ 0,
∑

l ζl = 1, and ψl(·) is a window

function that satisfies ψl(x) ≥ 0, ∀x and
∫
ψl(x)dx = 1, ∀l.

Since the computational complexity of searching over possible additive noise

p.d.f.s in the form of pN(n) =
∑

l ζl ψ(n − nl) can be high in some cases, it

becomes important to specify theoretical upper bounds on r1(ϕ) in (3.3) and

r2(ϕ) in (3.4) (with Ri(ϕ) being given by (3.17)), which can be achieved under

certain scenarios. The following lemma presents such upper bounds.
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Lemma 1: When the conditional risk Ri(ϕ) is defined as in (3.17), r1(ϕ) in

(3.3) and r2(ϕ) in (3.4) are upper bounded as follows:

r1(ϕ) ≤ E

∑
i∈S1

πif̃i(N) +
G∑

j=2

π̃j
|Sj|

∑
i∈Sj

f̃i(N)

 (3.18)

r2(ϕ) ≤ max
l∈S̃

E

{∑
i∈S1

πif̃i(N) +
G∑

j=2

π̃j f̃lj(N)

}
(3.19)

for any additive noise p.d.f. pN(·), where

f̃i(n) ,


fi(n) , if wi(θ) is known

sup
θ∈Λi

∫
Γ
C[ϕ(y), θ] pXθ (y − n) dy , if wi(θ) is unknown

. (3.20)

Proof: The conditional risk in (3.7) can be expressed as

Rθ(ϕ) =

∫
Γ

∫
RK

C[ϕ(y), θ] pXθ (y − n) pN(n) dn dy ,

which is equal to

Rθ(ϕ) = E

{∫
Γ

C[ϕ(y), θ] pXθ (y −N) dy

}
.

Based on this expression, Ri(ϕ) in (3.17) becomes equal to

Ri(ϕ) =


E{fi(N)} , if wi(θ) is known

sup
θ∈Λi

E
{∫

Γ
C[ϕ(y), θ] pXθ (y −N) dy

}
, if wi(θ) is unknown

, (3.21)

where fi(N) is as in (3.9). When the expression in (3.21) is inserted into (3.3),

and the fact that

sup
θ∈Λi

E

{∫
Γ

C[ϕ(y), θ] pXθ (y −N) dy

}
≤ E

{
sup
θ∈Λi

∫
Γ

C[ϕ(y), θ] pXθ (y −N) dy

}
(3.22)

is employed, it can be shown that r1(ϕ) is upper bounded as in (3.18) and (3.20).

Similarly, the expression in (3.13) can be manipulated to obtain the upper bound

specified by (3.19) and (3.20). �
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Note that when all the wi(θ)’s are known, the terms on the right-hand-sides

of (3.18) and (3.19) reduce to the objective functions in the minimization prob-

lems in (3.10) and (3.14), respectively. Therefore, they become equal to r1(ϕ)

and r2(ϕ), respectively (since poptN (n) = arg min
pN(n)

r1(ϕ) in (3.10) and poptN (n) =

arg min
pN(n)

r2(ϕ) in (3.14) by definition); hence the upper bounds in Lemma 1 are

achieved. Also, in the absence of additive noise (that is, pN(n) = δ(n) and

Y = X), (3.3), (3.4), (3.20) and (3.21) can be used to show that the upper

bounds in (3.18) and (3.19) are achieved again. Specifically, in the absence of

noise, the expectation operators are removed and f̃i(N) terms are replaced by

f̃i(0) terms for the upper bounds in (3.18) and (3.19). Also, Ri(ϕ) in (3.21)

becomes equal to f̃i(0) in the absence of noise (see (3.20)). Therefore, the def-

initions of r1(ϕ) in (3.3) and r2(ϕ) in (3.4) can be used to show that the upper

bounds are achieved in this scenario. In addition, it can be shown that any addi-

tive noise component that improves (i.e., reduces) the upper bounds on r1(ϕ) or

r2(ϕ) with respect to the case without additive noise also improves the detector

performance over the noiseless case according to Criterion 1 or Criterion 2, re-

spectively. In order to verify this claim, let rX1 (ϕ) and r
X
2 (ϕ) denote, respectively,

the performance metrics r1(ϕ) and r2(ϕ) when no additive noise is employed. As

stated before, the upper bounds are achieved in the absence of additive noise

(that is, rX1 (ϕ) and rX2 (ϕ) are equal to the corresponding upper bounds in the

absence of additive noise). Next, suppose that noise with p.d.f. p
(1)
N (n) or p

(2)
N (n)

is added to the original observation x, which results in a reduction of the cor-

responding upper bound; that is, the upper bounds become strictly less than

rX1 (ϕ) and rX2 (ϕ), respectively. On the other hand, since r1(ϕ) and r2(ϕ) are

always smaller than or equal to the specified upper bounds due to Lemma 1,

they also become strictly less than rX1 (ϕ) and r
X
2 (ϕ), respectively. Hence, the de-

tector performance is improved via additive noise specified by p
(1)
N (n) and p

(2)
N (n)

according to Criterion 1 and Criterion 2, respectively, relative to the case with-

out additive noise. Therefore, if an additive noise component reduces the upper
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bound in (3.18) (in (3.19)) compared to the case without additive noise, it also

improves the detection performance according to Criterion 1 (Criterion 2) over

the noiseless case.

The additive noise components that minimize the upper bounds in (3.18)

and (3.19) can be represented by discrete probability distributions as specified

by (3.11) and Proposition 2 since the upper bounds are in the same form as the

objective functions in the minimization problems in (3.10) and (3.14). Specifi-

cally, the p.d.f. that minimizes the upper bound on r1(ϕ) can be represented by

a constant signal value, and the p.d.f. that minimizes the upper bound on r2(ϕ)

can be represented by a randomization of no more than |S̃| different signal values.

It should also be noted that although these additive noise p.d.f.s minimize the

upper bounds in Lemma 1, they may not be the optimal additive noise p.d.f.s

for the original problem in general. The optimal solution needs to be calculated

based on some p.d.f. approximations as discussed before. However, the approach

based on Lemma 1 can still be useful to obtain certain improvability conditions

and to achieve performance improvements with low complexity solutions in some

cases.

3.5 A Detection Example and Conclusions

In this section, a 4-ary hypothesis-testing problem is studied in order to provide

an example of the results presented in the previous sections. The hypotheses H0,

H1, H2 and H3 are defined as

H0 : x = −3
√
A+ v ,

H1 : x = −
√
A+ v ,

H2 : x =
√
A+ v ,

H3 : x = 3
√
A+ v , (3.23)
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where x ∈ R1, A > 0 is a known scalar value, and v is symmetric Gaussian

mixture noise with the following p.d.f.

pV (x) =
M∑
i=1

wi ψi(x− µi) , (3.24)

where wi ≥ 0 for i = 1, . . . ,M ,
∑M

i=1wi = 1, and ψi(x) =
1√
2π σi

exp
(

−x2

2σ2
i

)
for

i = 1, . . . ,M . Due to the symmetry assumption, µi = −µM−i+1, wi = wM−i+1

and σi = σM−i+1 for i = 1, . . . , ⌊M/2⌋. In addition, the detector is described by

ϕ(y) =



0 , y ≤ −2
√
A

1 , −2
√
A < y ≤ 0

2 , 0 < y ≤ 2
√
A

3 , 2
√
A < y

, (3.25)

where y = x+ n, with n representing the independent additive noise term.

The hypothesis-testing problem in (3.23) is the form of pulse amplitude mod-

ulation (PAM); that is, the information is carried in the signal amplitude. The

Gaussian mixture noise specified above can be encountered in PAM communi-

cations systems in the presence of interference or jamming [88]. In the following

example, four different amplitudes corresponding four different underlying hy-

potheses are transmitted using the PAM technique above over such a commu-

nication environment. It is assumed that only the prior probability of H1, π1,

is known. Such a scenario can be encountered in practice when previous mea-

surements can successfully discriminate between the underlying hypotheses for

H1 and the other hypotheses (H0, H2 and H3), whereas it is difficult to specify

reliably which of the underlying hypotheses for H0, H2 and H3 is actually true.

For instance, if we assume four fish species with three of them (corresponding to

H0, H2 and H3) having similar characteristics, we cannot assume a known prior
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for each of those species (as we do not have reliable information from measure-

ments); however, we can regard π0+π2+π3 (equivalently, π1) as a known value,

since these three fish species can be distinguished easily from the other one.2

Since only the prior probability of H1 is known, there are two groups (G = 2),

S1 = {1} and S2 = {0, 2, 3} (see (3.3)-(3.4)). Also, UCA is assumed in the

following calculations. Based on the expressions in (3.9), (3.10) and (3.14), f(n)

and fl(n) can be obtained, and the optimization problems in (3.11) and (3.16)

can be solved. Specifically, f(n) in (3.10) can be calculated as

f(n) = 1− 1

3

M∑
i=1

wi

[
(1− π1)Q

(
−
√
A+ n+ µi

σi

)

+ (2 + π1)Q

(
−
√
A− n− µi

σi

)
− (1 + 2π1)Q

(√
A− n− µi

σi

)]
for n = n ∈ R, and similarly fl(n) in (3.14) becomes

fl(n) = 1−
M∑
i=1

wi

[
π1Q

(
−
√
A− n− µi

σi

)
− π1Q

(√
A− n− µi

σi

)

+ (1− π1)Q

(
−
√
A− cl2n− µi

σi

)
−ml2(1− π1)Q

(√
A− n− µi

σi

)]

for l = l2 ∈ S2, where Q(x) = 1√
2π

∫∞
x

e−t2/2dt denotes the Q-function, c2 =

c3 = 1, c0 = −1, m0 = m3 = 0, and m2 = 1. For the simulation results,

symmetric Gaussian mixture noise with M = 6 is considered, where the mean

values of the Gaussian components in the mixture noise in (3.24) are specified

as ±[0.01 0.7 1.1] with corresponding weights of [0.35 0.1 0.05]. In addition, the

variances of the Gaussian components in the mixture noise are assumed to be

the same; i.e., σi = σ for i = 1, . . . ,M .

Figure 3.2 illustrates the Bayes risks for the modified and original detectors

for various values of σ when A = 1 and π1 = 0.25. From the figure, it is observed

that the use of additive noise can significantly improve the performance according

to both criteria. Also, as σ increases the improvement ratio decreases, and after

2Consider a scenario in which a device measures some parameters of the fish (such as their
length or color), and this information is transmitted to a data processing center using PAM.
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Figure 3.2: Bayes risks of the original and noise modified detectors versus σ for
A = 1 according to both criteria.
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some value of σ there is no improvement. In addition, as expected, Criterion 1,

which considers uniform distribution for the unknown priors, has smaller risks

than Criterion 2, which considers the worst case scenario. However, it should be

noted that when the priors are actually different from uniform, the additive noise

obtained according to Criterion 1 can be quite suboptimal in terms of minimizing

the true Bayes risk,
∑3

i=0 πiRi(ϕ). On the other hand, Criterion 2 considers the

worst-case scenario and obtains the additive noise that minimizes the Bayes risk

for the least-favorable distribution of the priors.

In order to investigate the result in Proposition 2, Table 3.1 shows the optimal

noise p.d.f.s for various values of σ according to Criterion 2. In accordance with

the proposition, the optimal noise p.d.f.s are expressed as randomization of three

or fewer mass points.

3.6 Appendices

3.6.1 Proof of Proposition 1

A sufficient condition for improvability is the existence of n∗ such that f(n∗) <

f(0). Consider an infinitesimally small noise component, n∗ = ϵ∗. Then, f(ϵ∗)

can be approximated by using the Taylor series expansion as f(0) + ϵT∗ f +

0.5 ϵT∗Hϵ∗, where H and f are the Hessian and the gradient of f(x) at x = 0.

Therefore, f(n∗) < f(0) requires

ϵT∗Hϵ∗ + 2ϵT∗ f < 0 . (3.26)

Let ϵ∗ = ρ∗ z , where ρ∗ is an infinitesimally small real number, and z is a K-

dimensional real vector. Then, (3.26) can be simplified, after some manipulation,
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Table 3.1: Optimal additive noise p.d.f., pN(n) = λ1δ(n − n1) + λ2δ(n − n2) +
λ3δ(n− n3), according to Criterion 2.

λ1 λ2 λ3 n1 n2 n3

σ = 0 0.2521 0.2264 0.5215 0.3011 -0.1898 -0.1495
σ = 0.05 0.1195 0.2715 0.6090 -0.3207 -0.1913 0.1913
σ = 0.1 0.1549 0.8451 0 0.5208 -0.1634 –

as

zTHz+
2

ρ∗
zT f < 0 . (3.27)

For the first part of the proposition, if f ̸= 0, then ρ∗ and z satisfying (3.27)

can always be found. For the second part of the proposition, if f(x) is strictly

concave at x = 0 , which means that H is negative definite, then ρ∗ and z

satisfying (3.27) always exist. �
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Chapter 4

Noise Enhanced Binary

Composite Hypothesis-Testing in

the Neyman-Pearson Framework

This chapter is organized as follows. Section 4.1 describes the composite

hypothesis-testing problem, and introduces the detection criteria. Then, Section

4.2 and Section 4.3 study the effects of additive noise according to the max-sum

and the max-min criteria, respectively. In Section 4.4, the results in the previous

sections are extended to the max-max case, and the main implications are briefly

summarized. A detection example in provided in Section 4.5, which is followed

by the concluding remarks.
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Figure 4.1: Independent noise n is added to data vector x in order to improve
the performance of the detector, ϕ(·) .

4.1 Problem Formulation and Motivation

Consider a composite binary hypothesis-testing problem described as

H0 : pθ0(x) , θ0 ∈ Λ0

H1 : pθ1(x) , θ1 ∈ Λ1 (4.1)

where Hi denotes the ith hypothesis for i = 0, 1. Under hypothesis Hi, data

(observation) x ∈ RK has a p.d.f. indexed by θi ∈ Λi, namely, pθi(x), where Λi is

the set of possible parameter values under hypothesis Hi. Parameter sets Λ0 and

Λ1 are disjoint, and their union forms the parameter space, Λ = Λ0 ∪Λ1 [40]. In

addition, it is assumed that the probability distributions of the parameters are

not known a priori.

The expressions in (4.1) present a generic formulation of a binary composite

hypothesis-testing problem. Such problems are encountered in various scenarios,

such as in radar systems and non-coherent communications receivers [40], [100].

In the case that both Λ0 and Λ1 consist of single elements, the problem in (4.1)

reduces to a simple hypothesis-testing problem [40].

A generic detector (decision rule), denoted by ϕ(x), is considered, which

maps the data vector into a real number in [0, 1] that represents the probability

of selecting H1 [40]. The aim is to investigate the stochastic resonance (SR)

phenomenon by analyzing the effects of additive independent noise to the original

data, x, of a given detector, as shown in Figure 4.1, where y represents the
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modified data vector given by

y = x+ n , (4.2)

with n denoting the additive noise term that is independent of x.

The Neyman-Pearson framework is considered in this study, and performance

of a detector is specified by its probabilities of detection and false-alarm [40],

[41], [68]. Since the additive noise is independent of the data, the probabilities of

detection and false-alarm can be expressed, conditioned on θ1 and θ0, respectively,

as

Py
D(θ1) =

∫
RK

ϕ(y)

[∫
RK

pθ1(y − x)pn(x)dx

]
dy , (4.3)

Py
F(θ0) =

∫
RK

ϕ(y)

[∫
RK

pθ0(y − x)pn(x)dx

]
dy , (4.4)

where pn(·) denotes the p.d.f. of the additive noise. After some manipulation,

(4.3) and (4.4) can be expressed as [12]

Py
D(θ1) = En{Fθ1(n)} , (4.5)

Py
F(θ0) = En{Gθ0(n)} , (4.6)

for θ1 ∈ Λ1 and θ0 ∈ Λ0, where

Fθ1(n) ,
∫
RK

ϕ(y)pθ1(y − n)dy , (4.7)

Gθ0(n) ,
∫
RK

ϕ(y)pθ0(y − n)dy . (4.8)

Note that Fθ1(n) and Gθ0(n) define, respectively, the probability of detection

conditioned on θ1 and the probability of false alarm conditioned on θ0 when a

constant noise n is added to the data. Also, in the absence of additive noise, i.e.,

for n = 0, the probabilities of detection and false-alarm are given by Px
D(θ1) =

Fθ1(0) and Px
F(θ0) = Gθ0(0), respectively, for given values of the parameters.

Various performance metrics can be defined for composite hypothesis-testing

problems [40], [41]. In the Neyman-Pearson framework, the main constraint is
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to keep the probability of false-alarm below a certain threshold for all possible

parameter values θ0; i.e.,

max
θ0∈Λ0

Py
F(θ0) ≤ α̃ . (4.9)

In most practical cases, the detectors are designed in such a way that they operate

at the maximum allowed false-alarm probability α̃ in order to obtain maximum

detection probabilities. Therefore, the constraint on the false-alarm probability

can be defined as α̃ = max
θ0∈Λ0

Px
F(θ0) = max

θ0∈Λ0

Gθ0(0) for practical scenarios. In other

words, in the absence of additive noise n, the detectors commonly operate at the

false-alarm probability limit.

Under the constraint in (4.9), the aim is to maximize a function of the de-

tection probabilities for possible parameter values θ1 ∈ Λ1. In this study, the

following performance criteria are considered [41]:

• Max-sum criterion: In this case, the aim is to maximize∫
θ1∈Λ1

Py
D(θ1) dθ1, which can be regarded as the “sum” of the detection

probabilities for different θ1 values. This is equivalent to assuming uniform

distribution for θ1 and maximizing the average detection probability [41].

• Max-min criterion: According to this criterion, the aim is to maximize

the worst-case detection probability, defined as min
θ1∈Λ1

Py
D(θ1) [41], [68], [69].

The worst-case detection probability corresponds to considering the least-

favorable distribution for θ1 [41].

• Max-max criterion: This criterion maximizes the best-case detection

probability, max
θ1∈Λ1

Py
D(θ1). This criterion is not very common in practice,

since maximizing the detection probability for a single parameter can result

in very low detection probabilities for the other parameters. Therefore, this

criterion will only be briefly analyzed in Section 4.4 for completeness of the

theoretical results.
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There are two main motivations for investigating the effects of additive inde-

pendent noise in (4.2) for binary composite hypothesis-testing problems. First,

it is important to quantify performance improvements that can be achieved via

additive noise, and to determine when additive noise can improve detection per-

formance. In other words, theoretical investigation of SR in binary composite

hypothesis-testing problems is of interest. Second, in many cases, the optimal

detector based on the calculation of likelihood functions is difficult to obtain

or requires intense computations [12], [40], [68]. Therefore, a suboptimal detec-

tor can be preferable in some practical scenarios. However, the performance of

a suboptimal detector may need to be enhanced in order to meet certain sys-

tem requirements. One way to enhance the performance of a suboptimal detector

without changing the detector structure is to modify its original data as in Figure

4.1 [12]. Even though calculation of optimal additive noise causes a complexity

increase for the suboptimal detector, the overall computational complexity is still

considerably lower than that of an optimal detector based on likelihood function

calculations. This is because the optimal detector needs to perform intense cal-

culations for each decision whereas the suboptimal detector with modified data

needs to update the optimal additive noise whenever the statistics of the hy-

potheses change. For instance, in a binary communications system, the optimal

detector needs to calculate the likelihood ratio for each symbol, whereas a subop-

timal detector as in Figure 4.1 needs to update n only when the channel statistics

change, which can be constant over a large number of symbols for slowly varying

channels [101].
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4.2 Max-Sum Criterion

In this section, the aim is to determine the optimal additive noise n in (4.2) that

solves the following optimization problem.

max
pn(·)

∫
θ1∈Λ1

Py
D(θ1) dθ1 (4.10)

subject to max
θ0∈Λ0

Py
F(θ0) ≤ α̃ (4.11)

where Py
D(θ1) and Py

F(θ0) are as in (4.5)-(4.8). Note that the problem in (4.10)

and (4.11) can also be regarded as a max-mean problem since the objective

function in (4.10) can be normalized appropriately so that it defines the average

detection probability assuming that all θ1 parameters are equally likely [41].1

From (4.5) and (4.6), the optimization problem in (4.10) and (4.11) can also

be expressed as

max
pn(·)

En{F (n)} (4.12)

subject to max
θ0∈Λ0

En{Gθ0(n)} ≤ α̃ (4.13)

where F (n) is defined by

F (n) ,
∫
θ1∈Λ1

Fθ1(n) dθ1 . (4.14)

Note that F (n) defines the total detection probability for a specific value of

additive noise n.

In the following sections, the effects of additive noise are investigated for this

max-sum problem, and various results related to optimal solutions are presented.

1When Λ1 does not have a finite volume, the max-mean formulation should be used since∫
θ1∈Λ1

Py
D(θ1) dθ1 may not be finite.
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4.2.1 Improvability and Non-improvability Conditions

According to the max-sum criterion, the detector is called improvable if there

exists additive independent noise n that satisfies

Py
D,sum ,

∫
θ1∈Λ1

Py
D(θ1) dθ1 >

∫
θ1∈Λ1

Px
D(θ1) dθ1 , Px

D,sum (4.15)

under the false-alarm constraint. From (4.5) and (4.14), the condition in (4.15)

can also be expressed as

Py
D,sum = En{F (n)} > F (0) = Px

D,sum . (4.16)

If the detector cannot be improved, it is called non-improvable.

In order to determine the improvability of a detector according to the max-

sum criterion without actually solving the optimization problem in (4.12) and

(4.13), the approach in [12] for simple hypothesis-testing problems can be ex-

tended to composite hypothesis-testing problems in the following manner. First,

we introduce the following function

H(t) , sup

{
F (n)

∣∣ max
θ0∈Λ0

Gθ0(n) = t , n ∈ RK

}
, (4.17)

which defines the maximum value of the total detection probability for a given

value of the maximum false-alarm probability. In other words, among all constant

noise components n that achieve a maximum false-alarm probability of t, H(t)

defines the maximum probability of detection.

From (4.17), it is observed that if there exists t0 ≤ α̃ such thatH(t0) > Px
D,sum,

then the system is improvable, since under such a condition there exists a noise

component n0 such that F (n0) > Px
D,sum and max

θ0∈Λ0

Gθ0(n0) ≤ α̃. Hence, the

detector performance can be improved by using an additive noise with pn(x) =

δ(x − n0). However, that condition may not hold in many practical scenarios

since, for constant additive noise values, larger total detection probabilities than

Px
D,sum are commonly accompanied by false-alarm probabilities that exceed the
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false-alarm limit. Therefore, a more generic improvability condition is derived in

the following theorem.

Theorem 1: Define the maximum false-alarm probability in the absence of

additive noise as α , max
θ0∈Λ0

Px
F(θ0). If H(t) in (4.17) is second-order continu-

ously differentiable around t = α and satisfies H
′′
(α) > 0, then the detector is

improvable.

Proof: Since H
′′
(α) > 0 and H(t) in (4.17) is second-order continuously

differentiable around t = α, there exist ϵ > 0, n1 and n2 such that max
θ0∈Λ0

Gθ0(n1) =

α + ϵ and max
θ0∈Λ0

Gθ0(n2) = α − ϵ. Then, it is proven in the following that an

additive noise with pn(x) = 0.5 δ(x− n1) + 0.5 δ(x− n2) improves the detection

performance under the false-alarm constraint. First, the maximum false-alarm

probability in the presence of additive noise is shown not to exceed α.

max
θ0∈Λ0

En{Gθ0(n)} ≤ En

{
max
θ0∈Λ0

Gθ0(n)

}
= 0.5(α+ ϵ) + 0.5(α− ϵ) = α . (4.18)

Then, the increase in the detection probability is proven as follows. Due to the

assumptions in the theorem, H(t) is convex in an interval around t = α. Since

En{F (n)} can attain the value of 0.5H(α + ϵ) + 0.5H(α − ϵ), which is always

larger than H(α) due to convexity, it is concluded that En{F (n)} > H(α). As

H(α) ≥ Px
D,sum by definition of H(t) in (4.17), En{F (n)} > Px

D,sum is satisfied;

hence, the detector is improvable. �

Theorem 1 provides a simple condition that guarantees the improvability

of a detector according to the max-sum criterion. Note that H(t) is always a

single-variable function irrespective of the dimension of the data vector, which

facilitates simple evaluations of the conditions in the theorem. However, the main

complexity may come into play in obtaining an expression for H(t) in (4.17) in

certain scenarios. An example is presented to in Section 4.5 to illustrate the use

of Theorem 1.
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In addition to the improvability conditions in Theorem 1, sufficient conditions

for non-improvability can be obtained by defining the following function.

Jθ0(t) , sup
{
F (n)

∣∣ Gθ0(n) = t , n ∈ RK
}
. (4.19)

This function is similar to that in [12], but it is defined for each θ0 ∈ Λ0 here,

since a composite hypothesis-testing problem is considered. Therefore, Theorem

2 in [12] can be extended in the following manner.

Theorem 2: If there exits θ0 ∈ Λ0 and a nondecreasing concave function

Ψ(t) such that Ψ(t) ≥ Jθ0(t) ∀t and Ψ(α̃) = Px
D,sum, then the detector is non-

improvable.

Proof: For the θ0 value in the theorem, the objective function in (4.12) can

be expressed as

En{F (n)} =

∫
pn(x)F (x) dx ≤

∫
pn(x)Jθ0(Gθ0(x)) dx , (4.20)

where the inequality is obtained by the definition in (4.19).

Since Ψ(t) satisfies Ψ(t) ≥ Jθ0(t) ∀t, and is concave, (4.20) becomes

En{F (n)} ≤
∫
pn(x)Ψ(Gθ0(x)) dx ≤ Ψ

(∫
pn(x)Gθ0(x) dx

)
. (4.21)

Finally, the nondecreasing property of Ψ(t) together with
∫
pn(x)Gθ0(x) dx ≤ α̃

implies that En{F (n)} ≤ Ψ(α̃). Since Ψ(α̃) = Px
D,sum, En{F (n)} ≤ Px

D,sum is

obtained for any additive noise n. Hence, the detector is non-improvable. �

The conditions in Theorem 2 can be used to determine that the detector

performance cannot be improved via additive noise, which prevents efforts for

solving the optimization problem in (4.10) and (4.11).2 However, it should also

be noted that the detector can still be non-improvable although the conditions

in the theorem are not satisfied; that is, Theorem 2 does not provide necessary

conditions for non-improvability.

2The optimization problem yields pn(x) = δ(x) when the detector is non-improvable.
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4.2.2 Characterization of Optimal Solution

In this section, the statistical characterization of optimal additive noise com-

ponents is provided. First, the maximum false-alarm probabilities of optimal

solutions are specified. Then, the structures of the optimal noise p.d.f.s are

investigated.

In order to investigate the false-alarm probabilities of the optimal solution

obtained from (4.10) and (4.11) without actually solving the optimization prob-

lem, H(t) in (4.17) can be utilized. Let Fmax represent the maximum value of

H(t), i.e., Fmax = max
t
H(t). Assume that this maximum is attained at t = tm.

3

Then, one immediate observation is that if tm is smaller than or equal to the

false-alarm limit, i.e., tm ≤ α̃, then the noise component nm that results in

max
θ0∈Λ0

Gθ0(nm) = tm is the optimal noise component; i.e., pn(x) = δ(x−nm). How-

ever, in many practical scenarios, the maximum of H(t) is attained for tm > α̃,

since larger detection probabilities can be achieved for larger false-alarm proba-

bilities. In such cases, the following theorem specifies the false-alarm probability

achieved by the optimal solution.

Theorem 3: If tm > α̃, then the optimal solution of (4.10) and (4.11)

satisfies max
θ0∈Λ0

Py
F(θ0) = α̃ .

Proof: Assume that the optimal solution to (4.10) and (4.11) is given by

pñ(x) with β , max
θ0∈Λ0

Pỹ
F(θ0) < α̃ . Define another noise n with the following

p.d.f.:

pn(x) =
α̃− β

tm − β
δ(x− nm) +

tm − α̃

tm − β
pñ(x) , (4.22)

where nm is the noise component that results in the maximum total detection

probability; that is, F (nm) = Fmax, and tm is the maximum false-alarm proba-

bility when noise nm is employed; i.e., tm = max
θ0∈Λ0

Gθ0(nm).

3If there are multiple t values that result in the maximum value Fmax, then the minimum
of those values is selected.
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For the noise p.d.f. in (4.22), the false-alarm and detection probabilities can

be obtained as

Py
D,sum = En{F (n)} =

α̃− β

tm − β
F (nm) +

tm − α̃

tm − β
Pỹ
D,sum , (4.23)

Pỹ
F(θ0) = En{Gθ0(n)} =

α̃− β

tm − β
Gθ0(nm) +

tm − α̃

tm − β
Pỹ
F(θ0) , (4.24)

for all θ0 ∈ Λ0. Since F (nm) > Pỹ
D,sum, (4.23) implies Py

D,sum > Pỹ
D,sum. On the

other hand, as Gθ0(nm) ≤ tm and Pỹ
F(θ0) ≤ β, Pỹ

F(θ0) ≤ α̃ is obtained. Therefore,

ñ cannot be an optimal solution, which indicates a contradiction. In other words,

any noise p.d.f. that satisfies max
θ0∈Λ0

Pỹ
F(θ0) < α̃ cannot be optimal. �

The main implication of Theorem 3 is that, in most practical scenarios, the

false-alarm probabilities are set to the maximum false-alarm probability limit;

i.e., max
θ0∈Λ0

Py
F(θ0) = α̃ , in order to optimize the detection performance according

to the max-sum criterion.

Another important characterization of the optimal noise involves the spec-

ification of the optimal noise p.d.f.. In [12] and [13], it is shown for simple

hypothesis-testing problems that an optimal noise p.d.f., if exists, can be repre-

sented by a randomization of at most 2 discrete signals. In general, the optimal

noise specified by (4.10) and (4.11) for the composite hypothesis-testing problem

can have more than 2 mass points. The following theorem specifies the structure

of the optimal noise p.d.f. under certain conditions.

Theorem 4: Let θ0 ∈ Λ0 = {θ01, θ02, . . . , θ0M}. Assume that the additive

noise components can take finite values specified by ni ∈ [ai, bi], i = 1, . . . , K, for

any finite ai and bi. Define set U as

U =
{
(u0, u1, . . . , uM) : u0 = F (n), u1 =Gθ01(n), . . . , uM = Gθ0M (n) ,

for a ≼ n ≼ b
}
, (4.25)

85



where a ≼ n ≼ b means that ni ∈ [ai, bi] for i = 1, . . . , K. If U is a closed subset

of RM+1, an optimal solution to (4.10) and (4.11) has the following form

pn(x) =
M+1∑
i=1

λi δ(x− ni) , (4.26)

where
∑M+1

i=1 λi = 1 and λi ≥ 0 for i = 1, 2, . . . ,M + 1.

Proof: The proof extends the results in [12] and [13] for the two mass point

probability distributions to the (M + 1) mass point ones. Since the possible

additive noise components are specified by ni ∈ [ai, bi] for i = 1, . . . , K, U in

(4.25) represents the set of all possible combinations of F (n) and Gθ0i(n) for

i = 1, . . . ,M . Let the convex hull of U be denoted by set V . Since F (n) and

Gθ0i(n) are bounded by definition, U is a bounded and closed subset of RM+1 by

the assumption in the theorem. Therefore, U is compact, and the convex hull V

of U is closed [84]. In addition, since V ⊆ RM+1, the dimension of V is smaller

than or equal to (M + 1).

Define W as the set of all possible total detection and false-alarm probabili-

ties; that is,

W =
{
(w0, w1, . . . , wM) : w0 = En{F (n)}, w1 = En{Gθ01(n)}, . . . ,

wM = En{Gθ0M (n)}, ∀pn(n), a ≼ n ≼ b
}
. (4.27)

Similar to [12] and [85], it can be shown thatW = V . Therefore, Carathéodory’s

theorem [86], [87] implies that any point in V (hence, in W ) can be expressed

as the convex combination of (M + 2) points in U . Since an optimal p.d.f. must

maximize the total detection probability, it corresponds to the boundary of V

[12]. Since V is closed, it always contains its boundary. Therefore, the optimal

p.d.f. can be expressed as the convex combination of (M + 1) elements in U . �

In other words, for composite hypothesis-testing problems with a finite num-

ber of possible parameter values under hypothesis H0, the optimal p.d.f. can be

expressed as a discrete p.d.f. with a finite number of mass points. Therefore,
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Theorem 4 generalizes the two mass points result for simple hypothesis-testing

problems [12], [13]. It should be noted that the result in Theorem 4 is valid

irrespective of the number of parameters under hypothesis H1; that is, Λ1 in

(4.1) can be discrete or continuous. However, the theorem does not guarantee a

discrete p.d.f. if the parameter space for H0 includes continuous intervals.

Regarding the first assumption in the proposition, constraining the additive

noise values as a ≼ n ≼ b is quite realistic since arbitrarily large/small values

cannot be realized in practical systems. In other words, in practice, the minimum

and maximum possible values of ni define ai and bi, respectively. In addition, the

assumption that U is a closed set guarantees the existence of the optimal solution

[13], and it holds, for example, when F and Gθ0j are continuous functions.

4.2.3 Calculation of Optimal Solution and Convex Relax-

ation

After the derivation of the improvability and non-improvability conditions, and

the characterization of optimal additive noise in the previous sections, the cal-

culation of optimal noise p.d.f.s is studied in this section.

Let pn,f (·) represent the p.d.f. of f = F (n), where F (n) is given by (4.14).

Note that pn,f (·) can be obtained from the noise p.d.f., pn(·). As studied in [12],

working with pn,f (·) is more convenient since it results in an optimization problem

in a single-dimensional space. Assume that F (n) is a one-to-one function.4 Then,

for a given value of noise n, the false-alarm probabilities in (4.8) can be expressed

as gθ0 = Gθ0(F
−1(f)), where f = F (n). Therefore, the optimization problem in

4Similar to the approach in [12], the one-to-one assumption can be removed. However, it is
employed in this study to obtain convenient expressions.
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(4.10) and (4.11) can be stated as

max
pn,f (·)

∫ ∞

0

f pn,f (f) df ,

subject to max
θ0∈Λ0

∫ ∞

0

gθ0 pn,f (f) df ≤ α̃ . (4.28)

Note that since pn,f (·) specifies a p.d.f., the optimization problem in (4.28) has

also implicit constraints that pn,f (f) ≥ 0 ∀f and
∫
pn,f (f) df = 1.

In order to solve the optimization problem in (4.28), first consider the case

in which the unknown parameter θ0 under hypothesis H0 can take finitely many

values specified by θ0 ∈ Λ0 = {θ01, θ02, . . . , θ0M}. Then, the optimal noise p.d.f.

has (M + 1) mass points, under the conditions in Theorem 4. Hence, (4.28) can

be expressed as

max
{λi,fi}M+1

i=1

M+1∑
i=1

λi fi

subject to max
θ0∈Λ0

M+1∑
i=1

λi gθ0,i ≤ α̃

M+1∑
i=1

λi = 1

λi ≥ 0 , i = 1, . . . ,M + 1 (4.29)

where fi = F (ni), gθ0,i = Gθ0(F
−1(fi)), and ni and λi are the optimal mass

points and their weights as specified in Theorem 4. Note that the optimization

problem in (4.29) may not be formulated as a convex optimization problem in

general since gθ0,i = Gθ0(F
−1(fi)) may be non-convex. Therefore, global opti-

mization algorithms, such as particle-swarm optimization (PSO) [51]-[54], genetic

algorithms and differential evolution [82], can be employed to obtain the optimal

solution. In this study, the PSO approach is used since it is based on simple iter-

ations with low computational complexity and has been successfully applied to

numerous problems in various fields [94]-[97]. In Section 4.5, the PSO technique

is applied to this optimization problem, which results in accurate calculation of

the optimal additive noise in the specified scenario (please refer to [51]-[54] for

detailed descriptions of the PSO algorithm).
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Another approach to solve the optimization problem in (4.29) is to perform

convex relaxation [55] of the problem. To that end, assume that f = F (n) can

take only finitely many known (pre-determined) values f̃1, . . . , f̃M̃ . In that case,

the optimization can be performed only over the weights λ̃1, . . . , λ̃M̃ correspond-

ing to those values. Then, (4.29) can be expressed as

max
λ̃

f̃T λ̃

subject to g̃ T
θ0
λ̃ ≤ α̃ , ∀θ0 ∈ Λ0

1T λ̃ = 1

λ̃ ≽ 0 (4.30)

where

f̃ = [f̃1 · · · f̃M̃ ]T ,

λ̃ = [λ̃1 · · · λ̃M̃ ]T ,

g̃θ0 = [Gθ0(F
−1(f̃1)) · · ·Gθ0(F

−1(f̃M̃))]T .

The optimization problem in (4.30) is a linearly constrained linear programming

(LCLP) problem. Therefore, it can be solved efficiently in polynomial time [55].

Although (4.30) is an approximation to (4.29), since it assumes that f = F (n)

can take only specific values, the solutions can get very close to each other as M̃

is increased; i.e., as more values of f = F (n) are included in the optimization

problem in (4.30). Also, it should be noted that the assumption for F (n) to take

only finitely many known values can be practical in some cases, since a digital

system cannot generate additive noise components with infinite precision due to

quantization effects; hence, there can be only finitely many possible values of n.

For the case in which the unknown parameter θ0 under hypothesisH0 can take

infinitely many values, the optimal noise may not be represented by (M+1) mass

points as in Theorem 4. In that case, an approximate solution is proposed based

on p.d.f. approximation techniques. Let the optimal p.d.f. for the optimization
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problem in (4.28) be expressed approximately by

pn,f (f) =
L∑
i=1

µi ψi(f − fi) , (4.31)

where µi ≥ 0,
∑L

i=1 µi = 1, and ψi(·) is a window function that satisfies ψi(x) ≥ 0

∀x and
∫
ψi(x)dx = 1, for i = 1, . . . , L. The p.d.f. approximation technique in

(4.31) is called Parzen window density estimation, which has the property of

mean-square convergence to the true p.d.f. under certain conditions [81]. In

general, a larger L facilitates better approximation to the true p.d.f.. A common

example of a window function is the Gaussian window, which is expressed as

ψi(f) =
1√
2π σi

e
− f2

2σ2
i .

Based on the approximate p.d.f. in (4.31), the optimization problem in (4.28)

can be stated as

max
{µi,fi,σi}Li=1

L∑
i=1

µi f̃i

subject to max
θ0∈Λ0

L∑
i=1

µi g̃θ0,i ≤ α̃

L∑
i=1

µi = 1

µi ≥ 0 , i = 1, . . . , L (4.32)

where σi represents the parameter5 of the ith window function ψi(·), f̃i =∫∞
0
f ψi(f − fi)df and g̃θ0,i =

∫∞
0
gθ0ψi(f − fi)df . Similar to the solution of

(4.29), the PSO approach can be applied to obtain the optimal solution. Also,

convex relaxation can be employed as in (4.30) when σi = σ ∀i is considered as a

pre-determined value, and the optimization problem is considered as determining

the weights for a number of pre-determined fi values.

5If there are constraints on this parameter, they should be added to the set of constraints
in (4.32).
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4.3 Max-Min Criterion

In this section, the aim is to determine the optimal additive noise n in (4.2) that

solves the following optimization problem.

max
pn(·)

min
θ1∈Λ1

Py
D(θ1) (4.33)

subject to max
θ0∈Λ0

Py
F(θ0) ≤ α̃ (4.34)

where Py
D(θ1) and Py

F(θ0) are as in (4.5)-(4.8).

4.3.1 Improvability and Non-improvability Conditions

According to this criterion, the detector is called improvable if there exists addi-

tive noise n that satisfies

min
θ1∈Λ1

Py
D(θ1) > min

θ1∈Λ1

Px
D(θ1) = min

θ1∈Λ1

Fθ1(0) , Px
D,min (4.35)

under the false-alarm constraint. Otherwise, the detector is non-improvable.

A simple sufficient condition for improvability can be obtained from the im-

provability definition in (4.35). If there exists a noise component ñ that satisfies

min
θ1∈Λ1

Fθ1(ñ) > min
θ1∈Λ1

Fθ1(0) and Gθ0(ñ) ≤ α̃ ∀θ0 ∈ Λ0, (4.5) and (4.6) implies that

addition of noise ñ to the data vector increases the probability of detection un-

der the false-alarm constraint for all θ1 values; hence, min
θ1∈Λ1

Pỹ
D(θ1) > min

θ1∈Λ1

Px
D(θ1)

is satisfied, where ỹ = x + ñ. However, such a noise component may not be

available in many practical scenarios. Therefore, a more generic improvability

condition is obtained in the following.

Similar to the max-sum case, the following function is defined for deriving

generic improvability conditions:

Hmin(t) , sup

{
min
θ1∈Λ1

Fθ1(n)
∣∣ t = max

θ0∈Λ0

Gθ0(n) , n ∈ RK

}
, (4.36)
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which defines the maximum value of the minimum detection probability for a

given value of the maximum false-alarm probability. From (4.36), it is observed

that if there exists t0 ≤ α̃ such that Hmin(t0) > Px
D,min, the system is improv-

able, since under such a condition there exists a noise component n0 such that

min
θ1∈Λ1

Fθ1(n0) > Px
D,min and max

θ0∈Λ0

Gθ0(n0) ≤ α̃. Hence, the detector performance

can be improved by using an additive noise with pn(x) = δ(x − n0). However,

as stated previously, such a condition may not hold in many practical scenar-

ios. Therefore, a more generic improvability condition is derived in the following

theorem.

Theorem 5: Let α = max
θ0∈Λ0

Px
F(θ0) denote the maximum false-alarm probabil-

ity in the absence of additive noise. If Hmin(t) in (4.36) is second-order continu-

ously differentiable around t = α and satisfies H
′′
min(α) > 0, then the detector is

improvable.

Proof: Since H
′′
min(α) > 0 and Hmin(t) is second-order continuously differen-

tiable around t = α, there exist ϵ > 0, n1 and n2 such that max
θ0∈Λ0

Gθ0(n1) = α+ ϵ

and max
θ0∈Λ0

Gθ0(n2) = α− ϵ. Then, it is proven in the following that additive noise

with pn(x) = 0.5 δ(x − n1) + 0.5 δ(x − n2) improves the detection performance

under the false-alarm constraint. First, the maximum false-alarm probability in

the presence of additive noise is shown not to exceed α.

max
θ0∈Λ0

En{Gθ0(n)} ≤ En

{
max
θ0∈Λ0

Gθ0(n)

}
= 0.5(α+ ϵ) + 0.5(α− ϵ) = α . (4.37)

Then, the increase in the detection probability is proven as follows. Since

min
θ1∈Λ1

En{Fθ1(n)} ≥ En

{
min
θ1∈Λ1

Fθ1(n)

}
(4.38)

is valid for all noise p.d.f.s,

min
θ1∈Λ1

En{Fθ1(n)} ≥ 0.5Hmin(α+ ϵ) + 0.5Hmin(α− ϵ) (4.39)

92



can be obtained. Due to the assumptions in the theorem, Hmin(t) is convex in

an interval around t = α. Therefore, (4.39) becomes

min
θ1∈Λ1

En{Fθ1(n)} ≥ 0.5Hmin(α+ ϵ) + 0.5Hmin(α− ϵ) > Hmin(α) . (4.40)

Since Hmin(α) ≥ Px
D,min by definition, (4.40) implies min

θ1∈Λ1

En{Fθ1(n)} > Px
D,min.

Therefore, the detector is improvable. �

Similar to Theorem 1 in Section 4.2.1, Theorem 5 provides a convenient suf-

ficient condition that deals with a scalar function Hmin(t) irrespective of the

dimension of the observation vector.

In order to obtain sufficient conditions for non-improvability, the following

function is defined as an extension of that in (4.19).

Jθ0,θ1(t) , sup
{
Fθ1(n)

∣∣ Gθ0(n) = t , n ∈ RK
}
. (4.41)

Then, the following theorem can be obtained as an extension of Theorem 2 in

Section 4.2.1.

Theorem 6: Let θmin
1 represent the value of θ1 ∈ Λ1 that has the minimum

detection probability in the absence of additive noise; that is,

θmin
1 , arg min

θ1∈Λ1

Px
D(θ1) . (4.42)

If there exits θ0 ∈ Λ0 and a nondecreasing concave function Ψ(t) such that Ψ(t) ≥

Jθ0,θmin
1

(t) ∀t and Ψ(α̃) = Px
D(θ

min
1 ), then the detector is non-improvable.

Proof: If the detector is non-improvable for θ1 = θmin
1 , it is non-improvable

according to the max-min criterion, since its minimum can never increase by

using additive noise components. Therefore, the result in Theorem 6 directly

follows from that in Theorem 2 by considering the non-improvability conditions

at θ1 = θmin
1 . �
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The conditions in Theorem 6 can be used to determine the scenarios in which

the detector performance cannot be improved via additive noise. Hence, unnec-

essary efforts for solving the optimization problem in (4.33) and (4.34) can be

prevented.

4.3.2 Characterization of Optimal Solution

In this section, performance bounds for the detector based on y = x+ n, where

the p.d.f. of n is obtained from (4.33) and (4.34) are derived. In addition,

statistical characterization of optimal noise p.d.f.s is provided.

In order to obtain upper and lower bounds on the performance of the detector

that employs the noise specified by the optimization problem in (4.33) and (4.34),

consider a separate optimization problem for each θ1 ∈ Λ1 as follows:

max
pn(·)

Py
D(θ1)

subject to max
θ0∈Λ0

Py
F(θ0) ≤ α̃ (4.43)

Let Py
D,opt(θ1) represent the solution of (4.43), and pnθ1

(·) denote the correspond-

ing optimal p.d.f.. In addition, let θ̃1 represent the parameter value with the

minimum Py
D,opt(θ1) among all θ1 ∈ Λ1. That is,

θ̃1 = arg min
θ1∈Λ1

Py
D,opt(θ1) . (4.44)

Then, the following theorem provides performance bounds for the noise-modified

detector according to the max-min criterion.

Theorem 7: Let Py
D,mm represent solution of the optimization problem spec-

ified by (4.33) and (4.34). It has the following lower and upper bounds:

max

{
min
θ1∈Λ1

Px
D(θ1) , min

θ1∈Λ1

P
yθ̃1
D (θ1)

}
≤ Py

D,mm ≤ min
θ1∈Λ1

Py
D,opt(θ1) , (4.45)

where Py
D,opt(θ1) is the solution of the optimization problem in (4.43), Px

D(θ1) is

the probability of detection in the absence of additive noise, and P
yθ̃1
D (θ1) is the
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probability of detection in the presence of additive noise nθ̃1
, which is specified by

the p.d.f. pnθ̃1
(·) that is the optimizer of (4.43) for θ̃1 defined by (4.44).

Proof: The upper bound in (4.45) directly follows from (4.33), (4.34) and

(4.43), since max
pn(·)

Py
D(θ1) ≥ max

pn(·)
min
θ1∈Λ1

Py
D(θ1) for all θ1 ∈ Λ1. For the lower bound,

it is first noted that the noise-modified detector can never have lower minimum

detection probability than that in the absence of noise, i.e., min
θ1∈Λ1

Px
D(θ1). In addi-

tion, using a noise with p.d.f. pnθ̃1
(·), which is the optimal noise for the problem

in (4.43) for a specific θ1 value, can never result in a larger minimum probabil-

ity min
θ1∈Λ1

Py
D(θ1) than that obtained from the solution of (4.33) and (4.34), since

the latter directly maximizes the min
θ1∈Λ1

Py
D(θ1) metric. Therefore, min

θ1∈Λ1

P
yθ̃1
D (θ1)

provides another lower bound. �

The main intuition behind the upper and lower bounds in Theorem 7 can

be explained as follows. Note that Py
D,opt(θ1) represents the maximum detec-

tion probability when an additive noise component that is optimized for a spe-

cific value of θ1 is used. Therefore, for each θ1 ∈ Λ1, P
y
D,opt(θ1) is larger than

max
pn(·)

min
θ1∈Λ1

Py
D(θ1), as the latter involves a single additive noise component that

is optimized for the minimum detection probability metric and is used for all

θ1 values. In other words, the upper bound is obtained by assuming a more

flexible optimization problem in which a different optimal noise component can

be used for each θ1 value. Considering the lower bound, the first lower bound

expression is obtained from the fact that the optimal value can never be smaller

than min
θ1∈Λ1

Px
D(θ1), which is the minimum detection probability in the absence

of additive noise. The second lower bound is obtained from the observation

that the optimal noise p.d.f. that maximizes the minimum detection probabil-

ity, min
θ1∈Λ1

Py
D(θ1), is obtained from the optimization problem in (4.33) and (4.34);

hence, the resulting optimal value, Py
D,mm, is larger than or equal to all other

min
θ1∈Λ1

Py
D(θ1) values that are obtained by using a different noise p.d.f..
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Both the lower and the upper bounds in Theorem 7 are achievable. For

example, when the detector is non-improvable, the lower bound is achieved since

Py
D,mm = min

θ1∈Λ1

Px
D(θ1) and Py

D,mm ≥ min
θ1∈Λ1

P
yθ̃1
D (θ1). Note that min

θ1∈Λ1

P
yθ̃1
D (θ1) can

be smaller than Py
D,mm in certain scenarios since the additive noise pnθ̃1

(·) that

is optimized for θ1 = θ̃1 can degrade the detection performance for other θ1

values. In fact, this is the main reason why a maximum operator in used for the

lower bound in Theorem 7. On the other hand, for scenarios in which the detector

performance can be improved, min
θ1∈Λ1

P
yθ̃1
D (θ1) can be larger than min

θ1∈Λ1

Px
D(θ1). Also,

in some cases, min
θ1∈Λ1

Py
D,opt(θ1) = Py

D,mm = min
θ1∈Λ1

P
yθ̃1
D (θ1) ≥ min

θ1∈Λ1

Px
D(θ1) can be

satisfied; that is, the upper and lower bounds in Theorem 7 can be equal. If

P
yθ̃1
D (θ̃1) ≤ P

yθ̃1
D (θ1) for all θ1 ∈ Λ1, then pnθ̃1

(·) becomes the optimal p.d.f. for the

max-min problem as well, since any other noise p.d.f. will have smaller detection

probability than P
yθ̃1
D (θ̃1) at θ1 = θ̃1, and hence will decrease the minimum

detection probability. In addition, using a different optimal noise for each θ1 will

not improve the max-min performance since P
yθ̃1
D (θ̃1) will be the limiting factor.

Therefore, min
θ1∈Λ1

Py
D,opt(θ1) = min

θ1∈Λ1

P
yθ̃1
D (θ1) is satisfied, and the lower and upper

bounds become equal in such a case.

Regarding the statistical characterization of the optimal additive noise ac-

cording to the max-min criterion, it can be shown that when parameter sets Λ0

and Λ1 in (4.1) consist of a finite number of parameters, the optimal additive

noise can be represented by a discrete random variable with a finite number of

mass points as specified below.

Theorem 8: Let θ0 ∈ Λ0 = {θ01, θ02, . . . , θ0M} and θ1 ∈ Λ1 =

{θ11, θ12, . . . , θ1N}. Assume that the additive noise components can take finite

values specified by ni ∈ [ai, bi], i = 1, . . . , K, for any finite ai and bi. Define set

U as

U =
{
(u1, . . . , uN+M) : u1 = Fθ11(n), . . . , uN = Fθ1N (n), uN+1 = Gθ01(n), . . . ,

uN+M = Gθ0M (n) , for a ≼ n ≼ b
}
, (4.46)
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where a ≼ n ≼ b means that ni ∈ [ai, bi] for i = 1, . . . , K. If U is a closed subset

of RN+M , an optimal solution to (4.33) and (4.34) has the following form

pn(x) =
N+M∑
i=1

λi δ(x− ni) , (4.47)

where
∑N+M

i=1 λi = 1 and λi ≥ 0 for i = 1, 2, . . . , N +M .

Proof: The proof is omitted since it is a straightforward extension of that of

Theorem 4. �

The main difference of Theorem 8 from Theorem 4 in Section 4.2.2 is that both

Λ0 and Λ1 should be discrete for the optimal p.d.f. to have a discrete structure

in the max-min framework. However, for the max-sum criterion, it is enough to

have a discrete Λ0 in order to have a discrete p.d.f. as stated in Theorem 4. The

reason for this is that according to the max-sum criterion, the objective function

to maximize becomes En{F (n)}, where F (n) =
∫
θ1∈Λ1

Fθ1(n) dθ1 is as defined

in (4.14). In other words, maximization of a single function is considered in the

max-sum problem under the false-alarm constraint.

4.3.3 Calculation of Optimal Solution and Convex Relax-

ation

In this section, possible approaches to solving the optimization problem in (4.33)

and (4.34) are considered. In order to express the optimization problem as opti-

mization over a single-dimensional p.d.f., consider a specific value of θ1 ∈ Λ1, for

which Fθ1(n) is one-to-one. Let this value be represented as θ̃1. Then, for a given

value n of noise, f = Fθ̃1
(n) can be used to express gθ0 = Gθ0(n) and fθ1 = Fθ1(n)
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as gθ0 = Gθ0

(
F−1

θ̃1
(f)
)
and fθ1 = Fθ1

(
F−1

θ̃1
(f)
)
, respectively. Therefore, the op-

timization problem in (4.33) and (4.34) can be reformulated as

max
pn,f

θ̃1
(·)

min
θ1∈Λ1

∫ 1

0

fθ1pn,fθ̃1
(f)df ,

subject to max
θ0∈Λ0

∫ 1

0

gθ0pn,fθ̃1
(f)df ≤ α̃ . (4.48)

First, consider the case in which the parameters can take finitely many values

specified by θ0 ∈ Λ0 = {θ01, θ02, . . . , θ0M} and θ1 ∈ Λ1 = {θ11, θ12, . . . , θ1N}. In

this case, the optimal noise p.d.f. can be represented by (N +M) mass points

under the conditions in Theorem 8. Hence, (4.48) can be expressed as

max
{λi,fi}N+M

i=1

min
θ1∈Λ1

N+M∑
i=1

λi fθ1,i

subject to max
θ0∈Λ0

N+M∑
i=1

λi gθ0,i ≤ α̃

N+M∑
i=1

λi = 1

λi ≥ 0 , i = 1, . . . , N +M (4.49)

where fi = Fθ̃1
(ni), fθ1,i = Fθ1(F

−1

θ̃1
(fi)), gθ0,i = Gθ0(F

−1

θ̃1
(fi)), and ni and λi are,

respectively, the optimal mass points and their weights as specified in Theorem

8. Since the optimization problem in (4.49) may not be formulated as a convex

optimization problem in general, global optimization techniques, such as PSO

[51]-[54] can be employed to obtain the optimal solution, as studied in Section

4.5.

Due to the complexity of the optimization problem in (4.49), an approximate

and efficient formulation can obtained by the convex relaxation approach as in

Section 4.2.3. Assume that f = Fθ̃1
(n) can take known values of f̃1, . . . , f̃M̃ only.

In that case, the optimization can be performed only over the weights λ̃1, . . . , λ̃M̃
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corresponding to those values. Hence, (4.49) becomes

max
λ̃

min
θ1∈Λ1

f̃Tθ1λ̃

subject to g̃ T
θ0
λ̃ ≤ α̃ , ∀θ0 ∈ Λ0

1T λ̃ = 1

λ̃ ≽ 0 (4.50)

where

f̃θ1 =
[
Fθ1

(
F−1

θ̃1
(f̃1)

)
· · ·Fθ1

(
F−1

θ̃1
(f̃M̃)

)]T
g̃θ0 =

[
Gθ0

(
F−1

θ̃1
(f̃1)

)
· · ·Gθ0

(
F−1

θ̃1
(f̃M̃)

)]T
λ̃ = [λ̃1 · · · λ̃M̃ ]T .

The optimization problem (4.50) can be expressed as a convex problem when we

define an auxiliary optimization variable t as follows:

max
λ̃,t

t

subject to f̃Tθ1λ̃ ≥ t , ∀θ1 ∈ Λ1

g̃ T
θ0
λ̃ ≤ α̃ , ∀θ0 ∈ Λ0

1T λ̃ = 1

λ̃ ≽ 0 (4.51)

In fact, (4.51) can be recognized as an LCLP problem if the new optimization

variable is defined as x =
[
λ̃

T
t
]T

. Therefore, it can be solved efficiently in poly-

nomial time [55]. Although (4.51) is an approximation to (4.49), the solutions

get very close as more values of f = Fθ̃1
(n) are included in the optimization.

When at least one of θ0 or θ1 can take infinitely many values, the optimal

noise may not be represented by a finite number of mass points as in Theorem

8. In such cases, the optimization problem in (4.48) can be solved over the set of

p.d.f. approximations as in Section 4.2.3. Let the optimal p.d.f. be approximated
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by

pn,fθ̃1
(f) =

L∑
i=1

µi ψi(f − fi) , (4.52)

where µi ≥ 0,
∑L

i=1 µi = 1, and ψi(·) is a window function that satisfies ψi(x) ≥ 0

∀x and
∫
ψi(x)dx = 1, for i = 1, . . . , L. Then, the optimization problem in (4.48)

can be stated as

max
{µi,fi,σi}Li=1

min
θ1∈Λ1

L∑
i=1

µi f̃θ1,i

subject to max
θ0∈Λ0

L∑
i=1

µi g̃θ0,i ≤ α̃

L∑
i=1

µi = 1

µi ≥ 0 , i = 1, . . . , L (4.53)

where σi represents the parameter of the ith window function ψi(·), f̃θ1,i =∫
fθ1ψi(f − fi)df , and g̃θ0,i =

∫
gθ0ψi(f − fi)df . Similar to the solution of (4.49),

the PSO approach can be employed, for example, to obtain the optimal solution

of (4.53). Also, the convex relaxation technique can be employed as in (4.50)

and (4.51) when σi = σ ∀i is considered as a pre-determined value.

4.4 Max-Max Criterion

In this section, the aim is to determine the optimal additive noise n in (4.2) that

solves the following optimization problem.

max
pn(·)

max
θ1∈Λ1

Py
D(θ1) (4.54)

subject to max
θ0∈Λ0

Py
F(θ0) ≤ α̃ (4.55)

where Py
D(θ1) and Py

F(θ0) are as in (4.5)-(4.8). According to the max-max cri-

terion, the detector is called improvable if there exists additive noise n that
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satisfies

max
θ1∈Λ1

Py
D(θ1) > max

θ1∈Λ1

Px
D(θ1) = max

θ1∈Λ1

Fθ1(0) , Px
D,max (4.56)

under the false-alarm constraint. Otherwise, the detector is non-improvable.

The results in the previous sections can be extended to cover the max-max

case as well. Since the derivations are quite similar, the results for this case are

stated without any proofs.

Let θmax
1 represent the value of θ1 ∈ Λ1 that has the maximum detection

probability in the absence of additive noise; that is, θmax
1 , arg max

θ1∈Λ1

Px
D(θ1). In

addition, define

Hθ1(t) , sup

{
Fθ1(n)

∣∣ max
θ0∈Λ0

Gθ0(n) = t , n ∈ RK

}
. (4.57)

Then, the detector is improvable if Hθmax
1

(t) is second-order continuously differ-

entiable around t = α and satisfies H
′′

θmax
1

(α) > 0, where α , max
θ0∈Λ0

Px
F(θ0). This

result can be proven as in Theorem 1. In fact, it directly follows from the obser-

vation that if the detector can be improved for θ1 = θmax
1 , then the maximum of

max
θ1∈Λ1

Py
D(θ1) is always larger than max

θ1∈Λ1

Px
D(θ1).

A non-improvability condition can be obtained in a similar way to that in The-

orem 6. The detector is non-improvable if there exits θ0 ∈ Λ0 and a nondecreasing

concave function Ψθ1(t) such that Ψθ1(t) ≥ Jθ0,θ1(t) ∀t and Ψθ1(α̃) = Px
D(θ1) for

all θ1 ∈ Λ1, where Jθ0,θ1(t) is given by (4.41).

Regarding the structure of the optimal noise p.d.f. for the problem in (4.54)

and (4.55), consider a composite hypothesis-testing problem with θ0 ∈ Λ0 =

{θ01, θ02, . . . , θ0M}. Then, it can be concluded that the optimal p.d.f. can be

represented by (M + 1) mass points under the conditions in Theorem 4. This

follows from the fact that the max-max problem in (4.54) and (4.55) can be

solved by choosing the p.d.f. that results in the maximum detection probability
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among the p.d.f.s that solve the following optimization problems:

max
pn(·)

Py
D(θ1) (4.58)

subject to max
θ0∈Λ0

Py
F(θ0) ≤ α̃ (4.59)

for θ1 ∈ Λ1. In other words, the optimal noise p.d.f. can be calculated for

each θ1 ∈ Λ1 separately, and the noise p.d.f. that yields the maximum detection

probability becomes the solution of the max-max problem. Since the structure of

each optimization problem is as in the max-sum formulation, Theorem 4 applies

to the max-max case as well.

Finally, for the solution of the max-max problem, the approaches in Section

4.2.3 for the max-sum problem can directly be applied, since the optimization

problems in (4.10)-(4.11) and (4.58)-(4.59) have the same structure.

4.5 Numerical Results

In this section, a composite version of the detection example in [12] and [24] is

studied in order to illustrate the theoretical results obtained in the previous sec-

tions. Namely, the following composite hypothesis-testing problem is considered:

H0 : x = w

H1 : x = A+ w (4.60)

where A is a known constant, and w is the noise term that has a Gaussian mixture

distribution specified as

pw(w) =
1

2
γ(w;−θ, σ2) +

1

2
γ(w; θ, σ2) , (4.61)

with

γ(w; θ, σ2) =
1√
2πσ2

exp

{
−(w − θ)2

2σ2

}
.
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The p.d.f. of noise w has an unknown parameter θ, which belongs to Λ0 under

hypothesis H0 and to Λ1 under H1 with Λ0 ∩ Λ1 = ∅.

From (4.60) and (4.61), the probability distributions of observation x under

hypotheses H0 and H1 are given, respectively, by

pθ0(x) =
1

2
γ(x;−θ0, σ2) +

1

2
γ(x; θ0, σ

2) , (4.62)

pθ1(x) =
1

2
γ(x;−θ1 + A, σ2) +

1

2
γ(x; θ1 + A, σ2) . (4.63)

Since additive noise can improve the performance of suboptimal detectors

only [24], a suboptimal sign detector, as in [12], is considered as the decision rule

for the problem in (4.60), which is given by

ϕ(x) =


1 , x > 0

0 , x ≤ 0

. (4.64)

Then, from (4.62)-(4.64), detection and false-alarm probabilities when constant

noise is added can be calculated as (c.f. (4.7) and (4.8))

Fθ1(x) =

∫ ∞

−∞
ϕ(y)pθ1(y − x) dy

=
1

2
Q

(
−x+ θ1 − A

σ

)
+

1

2
Q

(
−x− θ1 − A

σ

)
(4.65)

and

Gθ0(x) =

∫ ∞

−∞
ϕ(y)pθ0(y − x) dy

=
1

2
Q

(
−x+ θ0

σ

)
+

1

2
Q

(
−x− θ0

σ

)
, (4.66)

respectively, where Q(x) = 1√
2π

∫∞
x

e−t2/2 dt is the Q-function. It is noted that

both Fθ1(x) and Gθ0(x) are monotone increasing functions of x for all parameter

values.

The aim is to add noise n to observation x in (4.60), and to improve the de-

tection performance of the sign detector in (4.64) under a false-alarm constraint.
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The noise-modified observation is denoted as y = x+ n, and the probabilities of

detection and false-alarm are given by

Py
D(θ1) =

∫ ∞

−∞
Fθ1(x)pn(x) dx , Py

F(θ0) =

∫ ∞

−∞
Gθ0(x)pn(x) dx , (4.67)

respectively, where pn(·) represents the p.d.f. of the additive noise.

4.5.1 Scenario-1: Λ0 and Λ1 with finite number of ele-

ments

In the first scenario, the parameter sets under H0 and H1 are specified as θ0 ∈

Λ0 = {0.1, 0.4} and θ1 ∈ Λ1 = {2, 2.5, 4}. According to Theorem 4 and Theorem

8, the optimal additive noise has a p.d.f. of the form pn(x) =
∑Nm

i=1 λi δ(x− ni),

where Nm = 3 for the max-sum case, and Nm = 5 for the max-min case. For the

noise p.d.f. specified as pn(x) =
∑Nm

i=1 λi δ(x− ni), the detection and false-alarm

probabilities in (4.67) become

Py
D(θ1) =

Nm∑
i=1

λi
2

[
Q

(
−ni + θ1 − A

σ

)
+Q

(
−ni − θ1 − A

σ

)]
,

Py
F(θ0) =

Nm∑
i=1

λi
2

[
Q

(
−ni + θ0

σ

)
+Q

(
−ni − θ0

σ

)]
. (4.68)

For the first simulations, A = 1 and σ = 1 are used. For the max-sum

and max-min cases, the original detection probabilities (i.e., in the absence of

additive noise) can be calculated from (4.65) and (4.66) as Px
D,sum = 1.613 and

Px
D,min = 0.5007, respectively, with max

θ0
Px
F(θ0) = α = α̃ = 0.5. Then, the

PSO6 and the convex relaxation techniques are applied as described in Sections

4.2.3 and 4.3.3, and the optimal additive noise p.d.f.s are calculated for both the

max-sum and max-min cases, which are illustrated in Figure 4.2 and Figure 4.3,

6In the PSO algorithm, 50 particles and 1000 iterations are employed. In addition, the other
parameters are set to c1 = c2 = 2.05 and χ = 0.72984, and the inertia weight ω is changed
from 1.2 to 0.1 linearly with the iteration number. Please refer to [51] for the details of the
PSO algorithm and the definitions of the parameters.
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Figure 4.2: Probability mass functions of the optimal additive noise based on
the PSO and the convex relaxation techniques for the max-sum case when A = 1
and σ = 1.
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Figure 4.3: Probability mass functions of the optimal additive noise based on
the PSO and the convex relaxation techniques for the max-min case when A = 1
and σ = 1.
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Figure 4.4: Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to the max-sum
criterion for various values of σ.

respectively. For the convex solutions, the optimizations are performed over the

noise values that are specified as −15 + 0.25i for i = 0, 1, . . . , 120. The resulting

detection probabilities when the PSO algorithm is used are calculated as Py
D,sum =

2.172 and Py
D,mm = 0.711 under the constraint that max

θ0
Py

F(θ0) = 0.5. In other

words, improvement ratios of 2.172/1.613 = 1.347 and 0.711/0.5007 = 1.420 are

obtained according to the max-sum and max-min criteria, respectively. When

the convex relaxation approach is employed, the detection probabilities become

Py
D,sum = 2.171 and Py

D,mm = 0.711, which are almost the same as those obtained

by the PSO technique. It is noted from Figure 4.2 and Figure 4.3 that the convex

solutions approximate the optimal PSO solutions with 3 and 5 mass points (for

the max-sum and max-min cases, respectively) with a larger number of non-zero

mass points.

107



10
−2

10
−1

10
0

10
1

10
2

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

σ

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

Original
SR

Figure 4.5: Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to the max-min
criterion for various values of σ.
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Next, A = 1 is used, and the detection probabilities are plotted for various

values of σ in (4.61) in the absence and in the presence of additive noise (referred

to as “original” and “SR” detectors, respectively).7 Figure 4.4 illustrates the

resulting plot for the max-sum criterion. The normalized detection probability

is used in the figure, which is defined as Py
D,sum/3 as there are three possible θ1

values. It is observed from the figure that the improvement via additive noise

increases as σ decreases. Figure 4.5 illustrates the case for the max-min criterion.

Similar to the max-sum case, the improvement is observed for small σ values.

The observation that the detector becomes non-improvable for large σ values is

mainly due to the fact that the improvability is commonly caused by the multi-

modal nature of the measurement noise p.d.f. in (4.61), which reduces as σ

increases.

Figure 4.6 illustrates the sufficient conditions in Theorem 1 and Theorem 5

for the max-sum and max-min cases with respect to σ. It is obtained that the

improvement is guaranteed in the interval σ ∈ [0.1259, 2.639] for the max-sum

case and in the interval σ ∈ [0.3981, 3.978] for the max-min case. Comparison

of Figure 4.6 with Figure 4.4 and Figure 4.5 reveals that whenever the second

derivative is positive, the detector is improvable as stated in the related theorems;

however, it also indicates that the conditions in Theorem 1 and Theorem 5 are

not necessary conditions, as the detector can be improved also for smaller σ

values.

4.5.2 Scenario-2: Λ0 and Λ1 are continuous intervals

In the second scenario, Λ0 = [0.1, 0.4] and Λ1 = [2, 5] are used. As discussed in

Sections 4.2.3 and 4.3.3, an approximation to the optimal additive noise p.d.f.

as in (4.31) can be used to obtain an approximate solution in such a scenario.

Considering Gaussian window functions for p.d.f. approximation, the additive

7The PSO technique is employed for the SR case.
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Figure 4.6: The second-order derivatives of H(t) in (4.17) and Hmin(t) (4.36) at
t = α for various values of σ. Theorem 1 and Theorem 5 imply that the detector
is improvable whenever the second-order derivative at t = α is positive.
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noise p.d.f. can be expressed as8

pn(x) =
L∑
i=1

µi γ(x; ηi, σ
2
i ) . (4.69)

Then, the probabilities of detection and false-alarm can be calculated from (4.67),

after some manipulation, as

Py
D(θ1) =

L∑
i=1

µi

2

[
Q

(
−θ1 − ηi − A√

σ2 + σ2
i

)
+Q

(
θ1 − ηi − A√

σ2 + σ2
i

)]
, (4.70)

Py
F(θ0) =

L∑
i=1

µi

2

[
Q

(
−θ0 − ηi√
σ2 + σ2

i

)
+Q

(
θ0 − ηi√
σ2 + σ2

i

)]
. (4.71)

For the following simulations, L = 8 is considered, and the parameters

{µi, ηi, σi}8i=1 are obtained via the PSO algorithm for both the max-sum and

max-min cases. First, A = 1 and σ = 1 are used. In the absence of ad-

ditive noise, the detection probabilities in the max-sum and max-min cases

are given, respectively, by
∫
θ1∈Λ1

Px
D(θ1)dθ1 =

∫
θ1∈Λ1

Fθ1(0)dθ1 = 1.5417 and

min
θ1∈Λ1

Px
D(θ1) = min

θ1∈Λ1

Fθ1(0) = 0.5 with max
θ0∈Λ0

Px
F(θ0) = max

θ0∈Λ0

Gθ0(0) = α = α̃ = 0.5.

When the optimal additive noise p.d.f.s are calculated via the PSO algorithm,

the detection probabilities become
∫
θ1∈Λ1

Py
D(θ1)dθ1 = 2.1426 for the max-sum

case, and min
θ1∈Λ1

Py
D(θ1) = 0.6943 for the max-min case. In other words, improve-

ment ratios of 1.390 and 1.389 are obtained for the max-sum and max-min cases,

respectively. The optimal additive noise p.d.f.s for the max-sum and max-min

cases are shown in Figure 4.7 and Figure 4.8, respectively.

In Figure 4.9 and Figure 4.10, the detection probabilities according to the

max-sum and max-min criteria are plotted, respectively, for both the original

detector (i.e., without additive noise) and the noise-modified one when A = 1.

For the max-sum case, the detection probability is normalized as 1
3

∫ 5

2
Py
D(θ1)dθ1.

Similar to the first scenario, more improvement can be achieved as σ decreases,

and no improvement is observed for large values of σ.

8Since scalar observations are considered in this example, the optimization problem can also
be solved in the original noise domain, instead of the detection probability domain as in (4.28)
or (4.48).
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Figure 4.7: The optimal additive noise p.d.f. in (4.69) for A = 1 and σ = 1 ac-
cording to the max-sum criterion. The optimal parameters in (4.69) obtained via
the PSO algorithm are µ = [0.0969 0 0.0019 0.1401 0.1377 0.0143 0.1470 0.4621],
η = [25.4039 − 20.1423 13.7543 17.0891 29.7452 − 25.0785 17.6887 − 2.2085],
and σ = [1.3358 26.2930 11.3368 0 19.5556 11.5953 17.9838 0.0001]. The mass
centers with very small variances (ηi = 17.0891 and ηi = −2.2085) are marked
by arrows for convenience.
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Figure 4.8: The optimal additive noise p.d.f. in (4.69) for the max-min criterion
when A = 1 and σ = 1. The optimal parameters in (4.69) obtained via the
PSO algorithm are µ = [0.0067 0.1797 0.0411 0.2262 0.0064 0.0498 0 0.4902],
η = [20.1017 15.0319 0.1815 29.9668 17.2657 22.8092 − 0.7561 − 1.4484], and
σ = [16.5204 15.1445 0.8805 10.1573 12.9094 17.4184 19.0959 0.0102]. The mass
center ηi = −1.4484 is marked by an arrow for convenience as it has a very small
variance.
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Figure 4.9: Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to the max-sum
criterion for various values of σ.
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Figure 4.10: Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to the max-min
criterion for various values of σ.
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Figure 4.11: The second-order derivatives of H(t) in (4.17) and Hmin(t) (4.36) at
t = α for various values of σ. Theorem 1 and Theorem 5 imply that the detector
is improvable whenever the second-order derivative at t = α is positive.
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Finally, the improvability conditions in Theorem 1 and Theorem 5 are in-

vestigated in Figure 4.11. It is observed from the figures that the detector is

improvable in the interval σ ∈ [0.1585, 3.398] for the max-sum case and in the

interval σ ∈ [0.5012, 4.996] for the max-min case, which together with Figure 4.9

and Figure 4.10 imply that the conditions in the theorems are sufficient but not

necessary.

4.6 Concluding Remarks and Extensions

In this chapter, the effects of additive independent noise have been investigated

for composite hypothesis-testing problems. The Neyman-Pearson framework has

been considered, and performance of noise-modified detectors has been analyzed

according to the max-sum, max-min and max-max criteria. Improvability and

non-improvability conditions have been derived for each case, and the statistical

characterization of optimal additive noise p.d.f.s has been provided. A detection

example has been presented in order to explain the theoretical results.

Although the additive independent noise as in Figure 4.1 is considered in this

study, the results can be extended to other noise injection approaches than the

addition operation by considering a nonlinear transformation of the observation,

as discussed in [12]. In that case, the nonlinear operator and the original detector

can be regarded together as a new detector and the results in this study can

directly be applied.
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Chapter 5

On the Restricted

Neyman-Pearson Approach for

Composite Hypothesis-Testing in

the Presence of Prior

Distribution Uncertainty

This chapter is organized as follows. In Section 5.1, the formulation of the

restricted Neyman-Pearson (NP) criterion and motivations for employing this

criterion are presented. Some characteristics of the optimal decision rule and

algorithms to obtain the optimal solution are investigated in Section 5.2. An

example is provided in Section 5.3 in order to investigate the theoretical results.

Section 5.4 presents an alternative formulation to the restricted NP approach. Fi-

nally, extensions to more generic scenarios and concluding remarks are presented

in Section 5.5.
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5.1 Problem Formulation and Motivation

Consider a family of probability densities pθ(x) indexed by parameter θ that

takes values in a parameter set Λ, where x ∈ RK represents the observation

(data). A binary composite hypothesis-testing problem can be stated as

H0 : θ ∈ Λ0 , H1 : θ ∈ Λ1 (5.1)

where Hi denotes the ith hypothesis and Λi is the set of possible parameter

values under Hi for i = 0, 1 [40]. Parameter sets Λ0 and Λ1 are disjoint, and

their union forms the parameter space, Λ = Λ0 ∪ Λ1. It is assumed that the

probability distributions of parameter θ under H0 and H1, denoted by w0(θ) and

w1(θ), respectively, are known with some uncertainty (see [65] and [66, Part III,

Chapter VII] for discussions on the concept of uncertainty). For example, these

distributions can be obtained as probability density function (p.d.f.) estimates

based on previous decisions (experience). In that case, uncertainty is related to

estimation errors, and higher amount of uncertainty is observed as the estimation

errors increase.

In the NP framework, the aim is to maximize (a function of) the detection

probability under a constraint on the false-alarm probabilities [40]. For compos-

ite hypothesis-testing problems in the NP framework, it is common to consider

the conservative approach in which the false-alarm probability should be below a

certain constraint for all possible values of parameter θ in set Λ0 [68], [69]. In this

case, whether the probability distribution of the parameter under H0, w0(θ), is

known completely or with uncertainty does not change the problem formulation

(see Section 5.4 for extensions). On the other hand, the problem formulation

depends heavily on the amount of knowledge about the probability distribution

of the parameter under H1, w1(θ).
1 In that respect, two extreme cases can be

considered. In the first case, there is no uncertainty in w1(θ). Then, the average

1In accordance with these observations, the term uncertainty will be used to refer to uncer-
tainties in w1(θ) unless stated otherwise.
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detection probability can be considered, and the classical NP approach can be

employed to obtain the detector that maximizes the average detection proba-

bility under the given false-alarm constraint [64], [74]-[76]. In the second case,

there is full uncertainty in w1(θ), meaning that the prior distribution under H1

is completely unknown. Then, maximizing the worst-case (minimum) detection

probability can be considered under the false-alarm constraint, which is called as

the max-min criterion or the “generalized” NP criterion [68], [69]. In fact, these

two extreme cases, complete knowledge and full uncertainty of the prior distri-

bution, are rarely encountered in practice. In most practical cases, there exists

some uncertainty in w1(θ), and the classical NP and the max-min approaches do

not address those cases. The main motivation behind this study is to investigate

a criterion that takes various amounts of uncertainty into account, and covers

the approaches designed for the complete knowledge and the full uncertainty

scenarios as special cases [42].

In practice, the prior distribution w1(θ) is commonly estimated based on pre-

vious observations, and there exists some uncertainty in the knowledge of w1(θ)

due to estimation errors. Therefore, the amount of uncertainty depends on the

amount of estimation errors. If the average detection probability is calculated

based on the estimated prior distribution and the maximization of that average

detection probability is performed based on the classical NP approach, it means

that the estimation errors (hence, the uncertainty related to the prior distribu-

tion) are ignored. In such cases, very poor detection performance can be observed

when the estimated distribution differs significantly from the correct one. On the

other hand, if the max-min approach is used and the worst-case detection prob-

ability is maximized, it means that the prior information (contained in the prior

distribution estimate) about the parameter is completely ignored, and the de-

cision rule is designed as if there existed no prior information. Therefore, this

approach does not utilize the available prior information at all and employs a

very conservative perspective. In this chapter, we focus on a criterion that aims

120



to maximize the average detection probability, calculated based on the estimated

prior distribution, under the constraint that the minimum (worst-case) detection

probability stays above a certain threshold, which can be adjusted depending on

the amount of uncertainty in the prior distribution. In this way, both the prior

information in the distribution estimate is utilized and the uncertainty in this

estimate is considered. This criterion is referred to as the restricted NP criterion

in this study, since it can be considered as an application of the restricted Bayes

criterion (Hodges-Lehmann rule) to the NP framework [42]. The restricted NP

criterion generalizes the classical NP and max-min approaches and covers them

as special cases.

In order to provide a mathematical formulation of the restricted NP criterion,

we first define the detection and false-alarm probabilities of a decision rule for

given parameter values as follows:

PD(ϕ; θ) ,
∫
Γ

ϕ(x) pθ(x) dx , for θ ∈ Λ1 (5.2)

PF (ϕ; θ) ,
∫
Γ

ϕ(x) pθ(x) dx , for θ ∈ Λ0 (5.3)

where Γ represents the observation space, and ϕ(x) denotes a generic decision

rule (detector) that maps the data vector into a real number in [0, 1], which

represents the probability of selecting H1 [40]. Then, the restricted NP problem

can be formulated as the following optimization problem:

max
ϕ

∫
Λ1

PD(ϕ; θ)w1(θ) dθ (5.4)

subject to PD(ϕ; θ) ≥ β , ∀θ ∈ Λ1 (5.5)

PF (ϕ; θ) ≤ α , ∀θ ∈ Λ0 (5.6)

where α is false-alarm constraint, and β is the design parameter to compensate

for the uncertainty in w1(θ). In other words, a restricted NP decision rule max-

imizes the average detection probability, where the average is performed based

on the prior distribution estimate w1(θ), under the constraints on the worst-

case detection and false-alarm probabilities. Parameter β in (5.5) is defined as
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β , (1 − ϵ)ζ for 0 ≤ ϵ ≤ 1, with ζ denoting the max-min detection probability.

Namely, ζ is the maximum worst-case detection probability that can be obtained

as follows:

ζ = max
ϕ

min
θ∈Λ1

PD(ϕ; θ)

subject to PF (ϕ; θ) ≤ α , ∀θ ∈ Λ0 . (5.7)

From the definition of β, it is observed that β ranges from zero to ζ. In the

case of full uncertainty in w1(θ), ϵ is set to zero (i.e., β = ζ), which reduces the

restricted NP problem in (5.4)-(5.6) to the max-min problem in (5.7). On the

other hand, in the case of complete knowledge of w1(θ), ϵ can be set to 1, and

the restricted NP problem reduces to the classical NP problem, specified by (5.4)

and (5.6), which can be expressed as

max
ϕ

P avg
D (ϕ)

subject to PF (ϕ; θ) ≤ α , ∀θ ∈ Λ0 (5.8)

where P avg
D (ϕ) ,

∫
Λ1
PD(ϕ; θ)w1(θ) dθ is the average detection probability.

Therefore, the max-min and the classical NP approaches are two special cases of

the restricted NP approach.

5.2 Analysis of Restricted Neyman-Pearson

Approach

In this section, the aim is to investigate the optimal solution of the restricted NP

problem in (5.4)-(5.6). For this purpose, the definitions in (5.2) and (5.3) can be
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used to reformulate the problem in (5.4)-(5.6) as follows:

max
ϕ

∫
Γ

ϕ(x) p1(x) dx (5.9)

subject to min
θ∈Λ1

∫
Γ

ϕ(x) pθ(x) dx ≥ β (5.10)

max
θ∈Λ0

∫
Γ

ϕ(x) pθ(x) dx ≤ α (5.11)

where p1(x) ,
∫
Λ1
pθ(x)w1(θ) dθ defines the p.d.f. of the observation under H1,

which is obtained based on the prior distribution estimate w1(θ). In addition,

an alternative representation of the problem in (5.9)-(5.11) can be expressed as

max
ϕ

λ

∫
Γ

ϕ(x) p1(x) dx+ (1− λ) min
θ∈Λ1

∫
Γ

ϕ(x) pθ(x) dx (5.12)

subject to max
θ∈Λ0

∫
Γ

ϕ(x) pθ(x) dx ≤ α (5.13)

where 0 ≤ λ ≤ 1 is a design parameter that is selected according to β.

5.2.1 Characterization of Optimal Decision Rule

Based on the formulation in (5.12) and (5.13), the following theorem provides a

method to characterize the optimal solution of the restricted NP problem under

certain conditions.

Theorem 1: Define a p.d.f. v(θ) as v(θ) , λw1(θ) + (1 − λ)µ(θ), where

µ(θ) is any valid p.d.f. If ϕ∗ is the NP solution for v(θ) under the false-alarm

constraint and satisfies∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x)µ(θ) dθ dx = min
θ∈Λ1

∫
Γ

ϕ∗(x) pθ(x) dx , (5.14)

then it is a solution of the problem in (5.12) and (5.13).

Proof: Please see Appendix 5.6.1.

Theorem 1 states that if one can find a p.d.f. µ(θ) that satisfies the condi-

tion in (5.14), then the NP solution corresponding to λw1(θ) + (1 − λ)µ(θ) is
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a solution of the restricted NP problem in (5.12) and (5.13). Also it should be

noted that Theorem 1 is an optimality result; it does not guarantee existence or

uniqueness. However, in most cases, the optimal solution proposed by Theorem

1 exists, which can be proven as in [42] based on some assumptions on the in-

terchangeability of supremum and infimum operators, and on the existence of a

probability distribution (a decision rule) that minimizes (maximizes) the max-

imum (minimum) average detection probability (see Assumptions 1-3 in [42]).

In fact, those assumptions hold when a set of conditions specified in [47, pp.

191-205] are satisfied. From a practical perspective, the assumptions hold, for

example, when the probability distributions are discrete or absolutely continu-

ous (i.e., have cumulative distributions function that are absolutely continuous

with respect to the Lebesgue measure), the parameter space is compact, and the

problem is non-sequential [42]. More specifically, for the problem formulation

in this study, all the assumptions are satisfied when pθ(x), ∀θ ∈ Λ, is discrete,

or cumulative distributions corresponding to pθ(x), ∀θ ∈ Λ, are absolutely con-

tinuous (with respect to the Lebesgue measure), and the parameter space Λ is

compact.

Remark 1: In Theorem 1, the meaning of ϕ∗ being the NP solution for

v(θ) under the false-alarm constraint is that ϕ∗ solves the following optimization

problem:

max
ϕ

∫
Γ

ϕ(x)

∫
Λ1

pθ(x) v(θ) dθ dx

subject to max
θ∈Λ0

∫
Γ

ϕ(x) pθ(x) dx ≤ α (5.15)

where v(θ) = λw1(θ) + (1 − λ)µ(θ). Based on the NP lemma [40], it can be

shown that the solution of (5.15) is in the form of a likelihood ratio test (LRT);
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that is,2

ϕ∗(x) =


1 , if

∫
Λ1
pθ(x) v(θ) dθ > η pθ̃0(x)

κ(x) , if
∫
Λ1
pθ(x) v(θ) dθ = η pθ̃0(x)

0 , if
∫
Λ1
pθ(x) v(θ) dθ < η pθ̃0(x)

(5.16)

where η ≥ 0 and 0 ≤ κ(x) ≤ 1 are such that max
θ∈Λ0

PF (ϕ
∗; θ) = α, and θ̃0 is defined

as

θ̃0 = arg max
θ∈Λ0

PF (ϕ
∗; θ) . (5.17)

Therefore, the solution of the restricted NP problem in (5.12) and (5.13) can be

expressed by the LRT specified in (5.16) and (5.17), once a p.d.f. µ(θ) and the

corresponding decision rule ϕ∗ that satisfy the constraint in (5.14) are obtained

(see Section 5.2.2). It should also be noted that having multiple solutions for θ̃0

does not present a problem since it can be shown that the same average detection

probability is achieved for all the solutions.

The following corollary is presented in order to show the equivalence between

the formulation in (5.12) and (5.13) and that in (5.4)-(5.6).

Corollary 1: Under the conditions in Theorem 1, ϕ∗ solves the optimization

problem in (5.4)-(5.6) when

min
θ∈Λ1

∫
Γ
ϕ∗(x) pθ(x) dx = β.

Proof: According to Theorem 1, ϕ∗ achieves the maximum value of the

objective function in (5.12). That is, for any α-level decision rule ϕ (i.e., for any

ϕ that satisfies (5.13)),

λ

∫
Γ

ϕ(x)

∫
Λ1

pθ(x)w1(θ) dθ dx+ (1− λ) min
θ∈Λ1

∫
Γ

ϕ(x) pθ(x) dx

≤ λ

∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x)w1(θ) dθ dx+ (1− λ) min
θ∈Λ1

∫
Γ

ϕ∗(x) pθ(x) dx (5.18)

2The proof follows from the observation that (ϕ∗(x)−ϕ(x))
(∫

Λ1
pθ(x) v(θ) dθ − η pθ̃0(x)

)
≥

0, ∀x, for any decision rule ϕ due to the definition of ϕ∗ in (5.16). Then, the approach on page
24 of [40] can be used to prove that

∫
Γ
ϕ∗(x)

∫
Λ1

pθ(x) v(θ) dθ dx ≥
∫
Γ
ϕ(x)

∫
Λ1

pθ(x) v(θ) dθ dx

for any decision rule ϕ that satisfies PF (ϕ; θ) ≤ α, ∀θ ∈ Λ0.
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is satisfied. Since min
θ∈Λ1

∫
Γ
ϕ(x) pθ(x) dx ≥ β due to (5.5) and

min
θ∈Λ1

∫
Γ
ϕ∗(x) pθ(x) dx = β as stated in the corollary,

∫
Γ
ϕ(x)

∫
Λ1
pθ(x)w1(θ) dθ dx

should be smaller than or equal to
∫
Γ
ϕ∗(x)

∫
Λ1
pθ(x)w1(θ) dθ dx in order

for the inequality in (5.18) to hold. Equivalently,
∫
Λ1
PD(ϕ; θ)w1(θ) dθ ≤∫

Λ1
PD(ϕ

∗; θ)w1(θ) dθ for any α-level decision rule ϕ, which proves that ϕ∗ solves

the optimization problem in (5.4)-(5.6). �

Corollary 1 states that when the decision rule ϕ∗ specified in Theorem 1 sat-

isfies the constraint in (5.10) with equality, it also provides a solution of the

restricted NP problem specified in (5.9)-(5.11); equivalently, in (5.4)-(5.6). In

other words, the average detection probability can be maximized when the min-

imum of the detection probabilities for all possible parameter values θ ∈ Λ1 is

equal to the lower limit β. It should also be noted that Corollary 1 establishes a

formal link between parameters λ and β. For any λ, β can be calculated through

the equation in the corollary.

Another property of the optimal decision rule ϕ∗ described in Theorem 1 is

that it can be defined as an NP solution corresponding to the least-favorable

distribution v(θ) specified in Theorem 1. In other words, among a family of

p.d.f.s, v(θ) is the least-favorable one since it minimizes the average detection

probability. This observation is similar, for example, to the fact that the minimax

decision rule is the Bayes rule corresponding to the least-favorable priors [40]. In

the following theorem, an approach similar to that in [42] is taken in order to

show that v(θ) in Theorem 1 corresponds to a least-favorable distribution.

Theorem 2: Under the conditions in Theorem 1, v(θ) = λw1(θ)+(1−λ)µ(θ)

minimizes the average detection probability among all prior distributions in the

form of

ṽ(θ) = λ̃ w1(θ) + (1− λ̃) µ̃(θ) (5.19)
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for λ̃ ≥ λ, where θ ∈ Λ1 and µ̃(θ) is any probability distribution. Equivalently,∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x) v(θ) dθ dx ≤
∫
Γ

ϕ⋆(x)

∫
Λ1

pθ(x) ṽ(θ) dθ dx

for any ṽ(θ) described above, where ϕ∗ and ϕ⋆ are the α-level NP decision rules

corresponding to v(θ) and ṽ(θ), respectively.

Proof: Please see Appendix 5.6.2.

Although Theorem 2 provides a definition of the least-favorable distribution

in a family of prior distributions in the form of ṽ(θ) = λ̃ w1(θ) + (1− λ̃) µ̃(θ) for

λ̃ ≥ λ, only the case λ̃ = λ is of interest in practice since λ in (5.12) is commonly

set as a design parameter depending on the amount of uncertainty in the prior

distribution. Therefore, in calculating the optimal decision rule according to the

restricted NP criterion, the special case of Theorem 2 for λ̃ = λ will be employed

in the next section.

5.2.2 Calculation of Optimal Decision Rule

The analysis in Section 5.2.1 reveals that a density µ(θ) and a corresponding NP

rule (as specified in Remark 1) that satisfy the constraint in Theorem 1 need

to be obtained for the solution of the restricted NP problem. To this aim, the

condition in Theorem 1 can be expressed based on (5.2) as∫
Λ1

µ(θ)PD(ϕ
∗; θ) dθ = min

θ∈Λ1

PD(ϕ
∗; θ) . (5.20)

This condition requires that µ(θ) assigns non-zero probabilities only to the val-

ues of θ that result in the the global minimum of PD(ϕ
∗; θ). First, assume that

PD(ϕ
∗; θ) has a unique minimizer that achieves the global minimum (the exten-

sions in the absence of this assumption will be discussed as well). Then, µ(θ)

can be expressed as

µ(θ) = δ(θ − θ1) (5.21)
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which means that θ = θ1 with probability one under this distribution. Based on

this observation, the following algorithm can be proposed to obtain the optimal

restricted NP decision rule.

Algorithm

1. Obtain PD(ϕ
∗
θ1
; θ) for all θ1 ∈ Λ1, where ϕ

∗
θ1
denotes the α-level NP decision

rule corresponding to v(θ) = λw1(θ)+(1−λ) δ(θ−θ1) as described in (5.16)

and (5.17).

2. Calculate

θ∗1 = arg min
θ1∈Λ1

f(θ1) (5.22)

where

f(θ1) , λ

∫
Λ1

w1(θ )PD(ϕ
∗
θ1
; θ) dθ + (1− λ)PD(ϕ

∗
θ1
; θ1) . (5.23)

3. If PD(ϕ
∗
θ∗1
; θ∗1) = min

θ∈Λ1

PD(ϕ
∗
θ∗1
; θ), output ϕ∗

θ∗1
as the solution of the restricted

NP problem; otherwise, the solution does not exist.

It should be noted that f(θ1) in (5.23) is the average detection probability

corresponding to v(θ) = λw1(θ) + (1 − λ) δ(θ − θ1).
3 Since Theorem 2 (for

λ̃ = λ) states that the optimal restricted NP solution corresponds to the least-

favorable prior distribution, which results in the minimum average detection

probability, the only possible solution is the NP decision rule corresponding to

θ∗1 in (5.22), ϕ∗
θ∗1
. Therefore, only that rule is considered in the last step of the

algorithm, and the optimality condition is checked. If the condition is satisfied,

the optimal restricted NP solution is obtained. Although not common in practice,

the optimal solution may not exist in some cases since Theorem 1 does not

guarantee existence. Also, it should be noted that there may be multiple solutions

3It should be noted that λ is related to the design parameter β in (5.5) through Corollary
1. In addition, the fact that as λ increases (decreases), β decreases (increases) can be used to
adjust the corresponding parameter value.
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of (5.22), and in that case any solution of (5.22) satisfying the third condition

in the algorithm is an optimal solution according to Theorem 1. Therefore, one

such solution can be selected for the optimal restricted NP solution.

In order to extend the algorithm to the cases in which PD(ϕ
∗; θ) has multiple

values of θ that achieve the global minimum, express µ(θ) as

µ(θ) =
N∑
l=1

νl δ(θ − θl) (5.24)

where νl ≥ 0,
∑N

l=1 νl = 1, and N is the number of θ values that minimize

PD(ϕ
∗; θ). For simplicity of notation, let ϑ denote the vector of unknown param-

eters of µ(θ); that is, ϑ = [θ1 · · · θN ν1 · · · νN ]. Based on (5.24), the calculations

in the algorithm should be updated as follows:

ϑ∗ = arg min
ϑ

f(ϑ) (5.25)

where

f(ϑ) , λ

∫
Λ1

w1(θ )PD(ϕ
∗
ϑ; θ) dθ + (1− λ)

N∑
l=1

νl PD(ϕ
∗
ϑ; θl) (5.26)

with ϕ∗
ϑ denoting the NP solution corresponding to v(θ) = λw1(θ) + (1 −

λ)
∑N

l=1 νl δ(θ−θl). Then, the condition PD(ϕ
∗
ϑ∗ ;ϑ∗) = min

ϑ
PD(ϕ

∗
ϑ∗ ;ϑ) is checked

to verify the optimal solution as ϕ∗
ϑ∗ . It is noted from (5.25) that the compu-

tational complexity can increase significantly when the detection probability is

minimized by multiple θ values. In such cases, global optimization algorithms,

such as particle-swarm optimization (PSO) [51], [54], genetic algorithms and

differential evolution [82], can be used to calculate ϑ∗.

Finally, if the global minimum of PD(ϕ
∗; θ) is achieved by infinitely many θ

values, then all possible µ(θ) need to be considered, which can have prohibitive

complexity in general. In order to obtain an approximate solution in such cases,

Parzen window density estimation [81] can be employed as in [48]. Specifically,

µ(θ) is expressed approximately by a linear combination of a number of window
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functions as

µ(θ) ≈
Nw∑
l=1

ξl φl(θ − θl) , (5.27)

and the unknown parameters of µ(θ) such as θl and ξl can be collected into ϑ

as for the discrete case above. Then, (5.25) and (5.26) can be employed in the

algorithm by replacing νl and N with ξl and Nw, respectively, and by defining ϕ∗
ϑ

as the NP solution corresponding to v(θ) = λw1(θ) + (1− λ)
∑Nw

l=1 ξl φl(θ − θl).

In Section 5.3, an example is provided to illustrate how to calculate the

optimal restricted NP solution based on the techniques discussed in this section.

Since the number of minimizers of PD(ϕ
∗; θ) may not be known in advance, a

practical approach can be taken as follows. First, it is assumed that there is only

one value of θ that achieves the global minimum, and the algorithm is applied

based on this assumption (see (5.22) and (5.23)). If the condition in Step 3 is

satisfied, then the optimal solution is obtained. Otherwise, it is assumed that

there are two (or, more) θ values that achieve the global minimum, and the

algorithm is run based on (5.25) and (5.26). In this way, the complexity of the

solution can be increased gradually until a solution is obtained.

Considering the computational complexity of the three-step algorithm pro-

posed in this section, the first step involves the derivation of a generic NP decision

rule as a function of θ1. In this derivation, the threshold of the test is obtained

based on the likelihood ratio and the false-alarm constraint. Then, the expres-

sion for the detection probability can be obtained as a function of θ1. The exact

number of operations in this step depends on the form of the probability density

function of the observation. For example, in the simplest case, the likelihood

ratio test can be reduced to a single threshold test. Then, the false-alarm and

detection probabilities can be expressed in terms of the cumulative distribution

functions (CDFs) of the observation underH0 andH1, respectively. In the second

step of the algorithm, a minimization problem needs to be solved in order to ob-

tain the parameters of a candidate solution. The complexity of this step depends

130



on the number of point masses of the optimal solution (i.e., the number of min-

imizers of the detection probability PD(ϕ
∗; θ) over θ ∈ Λ1). If a one point mass

solution exists, a simple one-dimensional search leads to the candidate parame-

ter for the optimal solution. However, if the solution has multiple, say N , point

masses, then a linearly constrained minimization problem over a 2N dimensional

space needs to be solved (see (5.25)). For convex cost functions, the solution can

be obtained by interior-point methods, which are polynomial time in the worst

case, and are very fast in practice. However, for nonconvex cost functions, global

optimization techniques, such as PSO, need to be employed in order to obtain a

solution. In that case, the computational complexity depends on the number of

particles and iterations of the algorithm. Finally, the third step of the algorithm

involves checking the minimum detection probability for the candidate solution

obtained in the second step. This condition can be checked either by calculating

the minimum value directly, or by first obtaining the possible minimum points

via first order necessary conditions (taking first-order derivatives) and then by

evaluating the detection probability at those points.

5.2.3 Properties of Average Detection Probability in Re-

stricted NP Solutions

In the restricted NP approach, the average detection probability is maximized

under some constraints on the worst-case detection and false-alarm probabilities

(see (5.4)-(5.6)). On the other hand, the classical NP approach in (5.8) does not

consider the constraint on the worst-case detection probability, and maximizes

the average detection probability under the constraint on the worst-case false-

alarm probability only. Therefore, the average detection probability achieved by

the classical NP approach is larger than or equal to that of the restricted NP

approach; however, its worst-case detection probability is smaller than or equal

to that of the restricted NP solution. Considering the max-min approach in (5.7),

131



the aim is to maximize the worst-case detection probability under the constraint

on the worst-case false-alarm probability. Therefore, the worst-case detection

probability achieved by the max-min decision rule is larger than or equal to that

of the restricted NP decision rule, whereas the average detection probability of

the max-min approach is smaller than or equal to that of the restricted NP

solution.

In order to express the relations above in mathematical terms, let ϕβ
r , ϕm and

ϕc denote the solutions of the restricted NP, max-min and classical NP problems

in (5.4)-(5.6), (5.7) and (5.8), respectively. In addition, let L , min
θ∈Λ1

PD(ϕc; θ) and

U , min
θ∈Λ1

PD(ϕm; θ) define the worst-case detection probabilities of the classical

NP and max-min solutions, respectively. It should be noted that, in the restricted

NP approach, the constraint β on the worst-case detection probability (see (5.5))

cannot be larger than U , since the max-min solution provides the maximum

value of the worst-case detection probability as discussed before. On the other

hand, when β is selected to be smaller than L in the restricted NP formulation,

the worst-case detection probability constraint becomes ineffective; hence, the

restricted NP and the classical NP approaches become identical. Therefore, β in

the restricted NP formulation is defined over the interval [L,U ] in practice. As a

special case, when L = U = β, the restricted NP, the max-min and the classical

NP solutions all become equal.

For the restricted NP solution ϕβ
r , the average detection probability can be

calculated as

P avg
D (ϕβ

r ) =

∫
Λ1

PD(ϕ
β
r ; θ)w1(θ) dθ . (5.28)

The discussions above imply that P avg
D (ϕβ

r ) is constant and equal to the aver-

age detection probability of the classical NP solution for β ≤ L. In order to

characterize the behavior of P avg
D (ϕβ

r ) for β ∈ [L,U ], the following theorem is

presented.
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Theorem 3: The average detection probability of the restricted NP decision

rule, P avg
D (ϕβ

r ), is a strictly decreasing and concave function of β for β ∈ [L,U ].

Proof: Please see Appendix 5.6.3.

Theorem 3 implies that the average detection probability can be improved

monotonically as β decreases towards L. In other words, by considering a less

strict constraint (i.e., smaller β) on the worst-case detection probability, it is

possible to increase the average detection probability. However, it should be

noted that β should be selected depending on the amount of uncertainty in

the prior distribution; namely, smaller β values are selected as the uncertainty

decreases. Therefore, Theorem 3 implies that the reduction in the uncertainty can

always be used to improve the average detection probability. Another important

conclusion from Theorem 3 is that there is a diminishing return in improving the

average detection probability by reducing β due to the concavity of P avg
D (ϕβ

r ).

In other words, a unit decrease of β results in a smaller increase in the average

detection probability for smaller values of β. Figure 5.1 in Section 5.3 provides

an illustration of the results of Theorem 3.

5.3 Numerical Results

In this section, a binary hypothesis-testing problem is studied in order to pro-

vide practical examples of the results presented in the previous sections. The

hypotheses are defined as

H0 : X = V , H1 : X = Θ+ V (5.29)

whereX ∈ R, Θ is an unknown parameter, and V is symmetric Gaussian mixture

noise with the following p.d.f. pV (v) =
∑Nm

i=1 ωi ψi(v − mi), where ωi ≥ 0 for

i = 1, . . . , Nm,
∑Nm

i=1 ωi = 1, and ψi(x) = 1/(
√
2π σi) exp (−x2/(2σ2

i )) for i =

1, . . . , Nm. Due to the symmetry assumption, ml = −mNm−l+1, ωl = ωNm−l+1
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and σl = σNm−l+1 for l = 1, . . . , ⌊Nm/2⌋, where ⌊y⌋ denotes the largest integer

smaller than or equal to y. Note that if Nm is an odd number, m(Nm+1)/2 should

be zero for symmetry.

Parameter Θ in (5.29) is modeled as a random variable with a p.d.f. in the

form of

w1(θ) = ρ δ(θ − A) + (1− ρ) δ(θ + A) (5.30)

where A is exactly known, but ρ is known with some uncertainty. With this

model, the detection problem in (5.29) corresponds to the detection of a signal

that employs binary modulation, namely, binary phase shift keying (BPSK). It

should be noted that prior probabilities of symbols are not necessarily equal (i.e.,

ρ may not be equal to 0.5) in all communications systems [103]; hence, ρ should

be estimated based on (previous) measurements in practice. In the numerical

examples, the possible errors in the estimation of ρ are taken into account in the

restricted NP framework.

For the problem formulation above, the parameter sets under H0 and H1

can be specified as Λ0 = {0} and Λ1 = {−A,A}, respectively. In addition, the

conditional p.d.f. of X for a given value of Θ = θ is expressed as

pθ(x) =
Nm∑
i=1

ωi√
2π σi

exp

(
−(x− θ −mi)

2

2σ2
i

)
. (5.31)

In order to obtain the optimal restricted NP decision rule for this problem,

the algorithm in Section 5.2.2 is employed. First, it is assumed that µ(θ) can

be expressed as in (5.21); namely, µ(θ) = δ(θ − θ1), where θ1 ∈ {−A,A}, and

the algorithm is applied based on (5.22) and (5.23). When the condition in

the third step of the algorithm is satisfied, then the optimal solution is obtained.

Otherwise, µ(θ) is represented as µ(θ) = γ̃ δ(θ−A)+(1−γ̃) δ(θ+A) for γ̃ ∈ [0, 1],

and the algorithm is run based on this model (consider (5.24) with N = 2,

ν1 = 1− ν2 = γ̃, and θ1 = −θ2 = A). Note that this model includes all possible
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Figure 5.1: Average detection probability versus β for the classical NP, restricted
NP, and max-min decision rules for ρ = 0.7, ρ = 0.8 and ρ = 0.9, where A = 1,
σ = 0.2, and α = 0.2.

p.d.f.s since Λ1 = {−A,A}. As there is only one unknown variable, γ̃, in µ(θ),

the algorithm can be employed to find the value of γ̃ that minimizes the average

detection probability (see (5.25) and (5.26) with ϑ = γ̃). Then, the condition in

the third step of the algorithm is checked in order to obtain the optimal decision

rule.

In the numerical results, symmetric Gaussian mixture noise with Nm = 4 is

considered, where the mean values of the Gaussian components in the mixture

noise are specified as [0.1 0.95 − 0.95 − 0.1] with corresponding weights of

[0.35 0.15 0.15 0.35]. In addition, for all the cases, the variances of the Gaussian

components in the mixture noise are assumed to be the same; i.e., σi = σ for

i = 1, . . . , Nm.
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In Figure 5.1, the average detection probabilities of the classical NP, restricted

NP, and max-min decision rules are plotted against β, which specifies the lower

limit on the minimum (worst-case) detection probability. Various values of ρ in

(5.30) are considered, and A = 1, σ = 0.2, and α = 0.2 (see (5.6)) are used. As

discussed in Section 5.2.3, the restricted NP decision rule reduces to the classical

NP decision rule when β is smaller than or equal to the worst-case detection

probability of the classical NP decision rule.4 On the other hand, the restricted

NP and the max-min decision rules become identical when β is equal to the

worst-case detection probability of the max-min decision rule. For the restricted

NP decision rule, β is equal to the minimum detection probability (see (5.63));

hence, the x-axis in Figure 5.1 can also be considered as the minimum detection

probability except for the constant parts of the lines that correspond to the clas-

sical NP. As expected, the highest average detection probabilities are achieved

by the classical NP decision rule; however, it also results in the lowest minimum

detection probabilities, which are 0.453, 0.431 and 0.389 for ρ = 0.7, ρ = 0.8 and

ρ = 0.9, respectively. Conversely, the max-min decision rule achieves the high-

est minimum detection probabilities, but its average detection probabilities are

the worst. On the other hand, the restricted NP decision rules provide tradeoffs

between the average and the minimum detection probabilities, and cover the clas-

sical NP and the max-min decision rules as the special cases. It is also observed

from the figure that as ρ decreases, the difference between the performance of

the classical NP and the max-min decision rules reduces. In fact, for ρ = 0.5, the

restricted NP, the max-min, and the classical NP decision rule all become equal,

since it can be shown that w1(θ) in (5.30) becomes the least-favorable p.d.f. for

ρ = 0.5. Figure 5.1 can also be used to investigate the results of Theorem 3. It is

observed that the average detection probability is a strictly decreasing and con-

cave function of β for the restricted NP decision rule, as claimed in the theorem.

4Although the classical NP decision rule can be regarded as a special case of the restricted
NP decision rule for β ≤ L, the “restricted NP decision rule” term is used only for β ∈ [L,U ]
in the following discussions (see Section 5.2.3).
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Table 5.1: Parameter γ for least-favorable distribution v(θ) = γ δ(θ − 1) + (1−
γ) δ(θ + 1) corresponding to restricted NP decision rules. “NA” means that
the given minimum detection probability cannot be achieved by a restricted NP
decision rule.

Avg. Det. Prob. for ρ = 0.9 / ρ = 0.8 / ρ = 0.7 Min. Det. Prob. γ
0.7997 / 0.7597 /NA 0.4398 0.765

0.7915 / 0.7556 / 0.7197 0.4687 0.63
0.7635 / 0.7360 / 0.7086 0.5166 0.54
0.7301 / 0.7115 / 0.6930 0.5629 0.522
0.7034 / 0.6920 / 0.6806 0.6007 0.513
0.6724 / 0.6688 / 0.6652 0.6398 0.504

Finally, we would like to mention that Figure 5.1 can provide guidelines for the

designer to choose a β value by observing the corresponding average detection

probability for each β. Therefore, in practice, instead of setting a prescribed β

directly, Figure 5.1 can be used to choose a β value for the problem.

For the scenario in Figure 5.1, the least-favorable distributions are investi-

gated for the restricted NP decision rule, and they are compared against the

least-favorable distribution for the max-min decision rule. For the max-min cri-

terion, the least-favorable distribution wlf(θ) in this example can be calculated

as wlf(θ) = 0.5 δ(θ − 1) + 0.5 δ(θ + 1). Table 5.1 shows the least-favorable dis-

tributions, expressed in the form of v(θ) = γ δ(θ − 1) + (1 − γ) δ(θ + 1), for

the restricted NP solution for various parameters. The corresponding average

and minimum detection probabilities are also listed. As the minimum detection

probability increases, the least-favorable distribution gets closer to that of the

max-min decision rule. It is also noted that the least-favorable distributions are

the same for all the ρ values in this example.

Figure 5.2 plots the average and minimum detection probabilities of the re-

stricted NP decision rules versus λ in (5.12) for ρ = 0.7, ρ = 0.8 and ρ = 0.9,

where A = 1, σ = 0.2 and α = 0.2 are used. It is observed that the average

and the minimum detection probabilities are the same when 0 ≤ λ ≤ 0.555 for
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and σ = 0.2.
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ρ = 0.9, when 0 ≤ λ ≤ 0.625 for ρ = 0.8, and when 0 ≤ λ ≤ 0.714 for ρ = 0.7. In

these cases, the restricted NP decision rule is equivalent to the max-min decision

rule. On the other hand, for λ = 1, the restricted NP decision rule reduces to the

classical NP decision rule. These observations can easily be verified from (5.12)

and (5.13). Another observation from Figure 5.2 is that the max-min solution

equalizes the detection probabilities for θ ∈ Λ1 = {−1, 1} values. Therefore,

the average and the minimum detection probabilities are equal for the max-min

solutions. On the other hand, the classical NP solution maximizes the aver-

age detection probability at the expense of reducing the worst-case (minimum)

detection probability. For this reason, the difference between the average and

the minimum detection probabilities increases with λ. Finally, Figure 5.2 shows

that the difference between the average and the minimum detection probabilities

increases as ρ increases.

Figure 5.3 compares the performances of the restricted NP, the max-min,

the classical NP decision rules for various standard deviation values σ, where

A = 1, α = 0.2 and ρ = 0.9 are used. The restricted NP decision rules are

calculated for λ = 0.6 and λ = 0.8, where the weight λ is as specified in (5.12).

For each decision rule, both the average detection probability and the minimum

(worst-case) detection probability are obtained. As expected, the classical NP

decision rule achieves the highest average detection probability and the lowest

minimum detection probability for all values of σ. On the other hand, the max-

min decision rule achieves the highest minimum detection probability and the

lowest average detection probability. It is noted that the max-min decision rule

equalizes the detection probabilities for various parameter values, and results in

the same average and the minimum detection probabilities. Another observation

from Figure 5.3 is that the restricted NP decision rule gets closer to the classical

NP decision rule as λ increases, and to the max-min decision rule as λ decreases.

The restricted NP decision rule provides various advantages over the classical NP
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and the max-min decision rules when both the average and the minimum detec-

tion probabilities are considered. For example, the restricted NP decision rule

for λ = 0.8 has very close average detection probabilities to those of the classical

NP decision rule; however, it achieves significantly higher minimum detection

probabilities. Therefore, even if the prior distribution is known perfectly, it can

be advantageous to use the restricted NP decision rule when both the average and

the minimum detection probabilities are considered as performance metrics.5 Of

course, when there are uncertainties in the knowledge of the prior distribution,

the actual average probabilities achieved by the classical NP approach can be

significantly lower than those shown in Figure 5.3, which can get as low as the

lowest curve. In such scenarios, the restricted NP approach has a clear perfor-

mance advantage. Compared to the max-min decision rule, the advantage of

the restricted NP decision is to utilize the prior information, which can include

uncertainty, in order to achieve higher average detection probabilities.

Finally, in Figure 5.4, the average and the minimum detection probabilities

of the restricted NP (for λ = 0.6 and λ = 0.8), the max-min, and the classical

NP decision rules are plotted versus α for A = 1, σ = 0.2, and ρ = 0.9. As

expected, larger detection probabilities are achieved as α increases. In addition,

similar tradeoffs to those in the previous scenario are observed from the figure.

5.4 Alternative Formulation

Although the formulation in (5.4)-(5.6) takes into account uncertainties in w1(θ)

only, it is possible to extend the results in order to impose a similar constraint

also on w0(θ). In other words, knowledge on w0(θ) can also be incorporated into

the problem formulation. Therefore, in this section we provide an alternative

5In this problem, for ρ > 0.5, the minimum detection probability corresponds to θ = −1,
which occurs with probability 1 − ρ. Therefore, the minimum detection probability may be
considered as an important performance metric along with the average detection probability.
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formulation that incorporates both the uncertainties in w0(θ) and w1(θ), and

provides an explicit model for the prior uncertainties.

Consider an ε-contaminated model [104] and express the true prior distri-

bution as wtr
i (θ) = (1 − εi)wi(θ) + εihi(θ) for i = 0, 1, where wi(θ) denotes

the estimated prior distribution and hi(θ) is any unknown probability distribu-

tion. In other words, the prior distributions are known as w0(θ) and w1(θ) with

some uncertainty, and the amount of uncertainty is controlled by ε0 and ε1. For

example, w0(θ) and w1(θ) can be p.d.f. estimates based on previous decisions

(experience), and ε0 and ε1 can be determined depending on certain metrics of

the estimators, such as the variances of the parameter estimators. Let Wi denote

the set of all possible prior distributions wtr
i (θ) according to the ε-contaminated

model above. Then, the following problem formulation can be considered:

max
ϕ

min
wtr

1 (θ)∈W1

∫
PD(ϕ; θ)w

tr
1 (θ) dθ

subject to max
wtr

0 (θ)∈W0

∫
PF (ϕ; θ)w

tr
0 (θ) dθ ≤ α . (5.32)

Based on the ε-contaminated model, the problem in (5.32) can also be expressed

from (5.2) and (5.3) as

max
ϕ

(1− ε1)

∫ ∫
ϕ(x)pθ(x)w1(θ) dθ dx+ ε1 min

h1(θ)

∫ ∫
ϕ(x)pθ(x)h1(θ) dθ dx

subject to max
h0(θ)

(1− ε0)

∫ ∫
ϕ(x)pθ(x)w0(θ) dθ dx

+ ε0

∫ ∫
ϕ(x)pθ(x)h0(θ) dθ dx ≤ α . (5.33)

Let pi(x) =
∫
pθ(x)wi(θ) dθ for i = 0, 1. In addition, since

min
h1(θ)

∫ ∫
ϕ(x)pθ(x)h1(θ) dθ dx = min

θ∈Λ1

∫
ϕ(x)pθ(x) dx

and

max
h0(θ)

∫ ∫
ϕ(x)pθ(x)h0(θ) dθ dx = max

θ∈Λ0

∫
ϕ(x)pθ(x) dx ,
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(5.33) becomes

max
ϕ

(1− ε1)

∫
ϕ(x)p1(x) dx+ ε1 min

θ∈Λ1

∫
ϕ(x)pθ(x) dx (5.34)

subject to max
θ∈Λ0

∫
ϕ(x) [(1− ε0)p0(x) + ε0pθ(x)] dx ≤ α . (5.35)

It is noted from (5.12)-(5.13) and (5.34)-(5.35) that the objective functions are

in the same form but the constraints are somewhat different in the optimization

problems considered in Section 5.2 and in this section. Since the proof of Theorem

1 focuses on the maximization of the objective function considering only the NP

decision rules that satisfy the false-alarm constraint (see Appendix 5.6.1), the

same proof applies to the problem in (5.34)-(5.35) as well if we consider the NP

decision rules under the constraint in (5.35) and define v(θ) = (1 − ε1)w1(θ) +

ε1µ(θ). Therefore, Theorem 1 is valid in this scenario when the NP solution for

v(θ) under the false-alarm constraint is updated as follows (see Remark 1):

ϕ∗(x) =


1 , if

∫
Λ1
pθ(x) v(θ) dθ > η

[
(1− ε0)p0(x) + ε0pθ̃0(x)

]
κ(x) , if

∫
Λ1
pθ(x) v(θ) dθ = η

[
(1− ε0)p0(x) + ε0pθ̃0(x)

]
0 , if

∫
Λ1
pθ(x) v(θ) dθ < η

[
(1− ε0)p0(x) + ε0pθ̃0(x)

] (5.36)

where η ≥ 0 and 0 ≤ κ(x) ≤ 1 are such that

max
θ∈Λ0

∫
ϕ∗(x) [(1− ε0)p0(x) + ε0pθ(x)] dx = α ,

and θ̃0 is defined as

θ̃0 = arg max
θ∈Λ0

∫
ϕ∗(x) [(1− ε0)p0(x) + ε0pθ(x)] dx . (5.37)

Hence, the solution of the problem in (5.34) and (5.35) can be expressed by the

LRT specified in (5.36) and (5.37), once a p.d.f. µ(θ) and the corresponding

decision rule ϕ∗ that satisfy the condition in Theorem 1 are obtained.

The problem formulation in (5.32) can also be regarded as an application

of the Γ-minimax approach [64] to the NP framework, or as NP testing under

interval probability [77], [78]. Although the mathematical approach in obtaining
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the optimal solution is similar to that of the restricted NP approach investi-

gated in the previous sections, there exist significant differences between these

approaches. For the approach in this section, uncertainty needs to be modeled

by a class of possible prior distributions, then the prior distribution that mini-

mizes the detection probability is considered for the alternative hypothesis6. On

the other hand, the restricted NP approach in (5.4)-(5.6) focuses on a scenario

in which one has a single prior distribution (e.g., a prior distribution estimate

from previous experience) but can only consider decision rules whose detection

probability is constrained by a lower limit. In other words, the main idea is that

“one can utilize the prior information, but in a way that will be guaranteed to

be acceptable to the frequentist who wants to limit frequentist risk” (detection

probability in this scenario) [64]. Therefore, there is no model assumption in the

restricted NP approach; hence, no efforts are required to find the best model.

The two performance metrics, the average and the minimum detection proba-

bilities, can be investigated in order to decide the best value of β. As stated

in [105], it can be challenging to represent some uncertainty types via certain

mathematical models such as the ε-contaminated class. Therefore, the restricted

NP approach can also be useful in such scenarios.

5.5 Concluding Remarks and Extensions

In this chapter, a restricted NP framework has been investigated for compos-

ite hypothesis-testing problems in the presence of prior information uncertainty.

The optimal decision rule according to the restricted NP criterion has been char-

acterized theoretically, and an algorithm has been proposed to calculate it. In

addition, it has been observed that the restricted NP decision rule can be specified

as a classical NP decision rule corresponding to the least-favorable distribution.

6Similarly, the prior distribution that maximizes the false alarm probability is considered
for the null hypothesis.
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Furthermore, the average detection probability achieved by the restricted NP

approach has been shown to be a strictly decreasing and concave function of the

constraint on the worst-case detection probability. Finally, numerical examples

have been presented in order to investigate and illustrate the theoretical results.

Similar to the extensions of the restricted Bayesian approach in [42], the

notion of a restricted NP decision rule can be extended to cover more generic

scenarios. Consider sets of distribution families Υ0,Υ1, . . . ,ΥM such that Υ0 ⊂

Υ1 · · · ⊂ ΥM . Suppose we are certain that the prior distribution under the

alternative hypothesis lies in ΥM ; that is, w1(θ) ∈ ΥM . However, we get less sure

that it lies in Υi as i decreases. In this scenario, the restricted NP formulation

in (5.9)-(5.11) can be extended as follows:

max
ϕ

min
w1(θ)∈Υ0

∫
Γ

ϕ(x)

∫
pθ(x)w1(θ) dθ dx (5.38)

subject to min
w1(θ)∈Υi

∫
Γ

ϕ(x)

∫
pθ(x)w1(θ) dθ dx ≥ βi , i = 1, . . . ,M (5.39)

max
θ∈Λ0

∫
Γ

ϕ(x)pθ(x) dx ≤ α (5.40)

where β1 > · · · > βM specify the constraints on the worst-case detection proba-

bilities in sets Υ1, . . . ,ΥM , respectively. For this problem, the proof of Theorem

1 can be extended in a straightforward manner in order to obtain the following

result:

Theorem 4: Suppose that there exists a density v(θ) =
∑M

i=0 λi µi(θ), with

λi ≥ 0,
∑M

i=0 λi = 1, and µi(θ) ∈ Υi, such that an α-level NP decision rule ϕ∗

for v(θ) satisfies∫
Γ

ϕ∗(x)

∫
pθ(x)µi(θ) dθ dx = min

w1(θ)∈Υi

∫
Γ

ϕ∗(x)

∫
pθ(x)w1(θ) dθ dx = βi

(5.41)

for i = 1, 2, . . . ,M , and∫
Γ

ϕ∗(x)

∫
pθ(x)µ0(θ) dθ dx = min

w1(θ)∈Υ0

∫
Γ

ϕ∗(x)

∫
pθ(x)w1(θ) dθ dx . (5.42)

Then ϕ∗ solves the optimization problem in (5.38)-(5.40).
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5.6 Appendices

5.6.1 Proof of Theorem 1

The proof is similar to the proof of Theorem 1 in [42]. Let ϕ be any α-level

decision rule. Then,

λ

∫
Γ

ϕ(x)

∫
Λ1

pθ(x)w1(θ) dθ dx+ (1− λ) min
θ∈Λ1

∫
Γ

ϕ(x)pθ(x) dx (5.43)

≤ λ

∫
Γ

∫
Λ1

ϕ(x)pθ(x)w1(θ) dθ dx+ (1− λ)

∫
Λ1

∫
Γ

ϕ(x)pθ(x)µ(θ) dx dθ (5.44)

since the second term in (5.43) is smaller than or equal to that in (5.44) due to

the minimum operator. The expression in (5.44) can also be stated as∫
Γ

∫
Λ1

ϕ(x)pθ(x) [λw1(θ) + (1− λ)µ(θ)] dθ dx =

∫
Γ

∫
Λ1

ϕ(x)pθ(x)v(θ) dθ dx

(5.45)

based on the definition of v(θ) in the theorem. Since ϕ∗ is the NP decision rule

for v(θ) under the false-alarm constraint in (5.13), the expression in (5.45) must

be smaller than or equal to∫
Γ

∫
Λ1

ϕ∗(x)pθ(x)v(θ) dθ dx =

∫
Γ

∫
Λ1

ϕ∗(x)pθ(x) [λw1(θ) + (1− λ)µ(θ)] dθ dx

(5.46)

(see Remark 1). After some manipulation, (5.46) can be expressed as

λ

∫
Γ

∫
Λ1

ϕ∗(x)pθ(x)w1(θ) dθ dx+ (1− λ)

∫
Λ1

∫
Γ

ϕ∗(x)pθ(x)µ(θ) dx dθ (5.47)

= λ

∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x)w1(θ) dθ dx+ (1− λ) min
θ∈Λ1

∫
Γ

ϕ∗(x)pθ(x) dx (5.48)

where the condition in (5.14) is employed in obtaining (5.48) from (5.47).

The arguments above indicate that the expression in (5.43) is always smaller

than or equal to that in (5.48). Therefore, ϕ∗ maximizes the objective function

in (5.12) among all possible decision rules that satisfy the constraint in (5.13).

�
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5.6.2 Proof of Theorem 2

In order to prove that v(θ) is the least-favorable distribution, we need to show

that the average detection probability corresponding to v(θ) is smaller than or

equal to that corresponding to ṽ(θ) for any ṽ(θ) specified in the theorem. The

average detection probability corresponding to v(θ) is the average detection prob-

ability achieved by decision rule ϕ∗ in Theorem 1, which can be expressed as∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x)v(θ) dθ dx (5.49)

= λ

∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x)w1(θ) dθ dx+ (1− λ)

∫
Λ1

∫
Γ

ϕ∗(x)pθ(x)µ(θ) dx dθ

= λ

∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x)w1(θ) dθ dx+ (1− λ) min
θ∈Λ1

∫
Γ

ϕ∗(x)pθ(x) dx (5.50)

where the condition (5.14) in Theorem 1 is used to obtain (5.50) from (5.49).

Since
∫
Γ
ϕ∗(x)

∫
Λ1
pθ(x)w1(θ) dθ ≥ min

θ∈Λ1

∫
Γ
ϕ∗(x)pθ(x) dx, the following relations

can be obtained for any λ̃ ≥ λ :∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x)v(θ) dθ dx

≤ λ̃

∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x)w1(θ) dθ dx+ (1− λ̃) min
θ∈Λ1

∫
Γ

ϕ∗(x)pθ(x) dx (5.51)

≤ λ̃

∫
Γ

ϕ∗(x)

∫
Λ1

pθ(x)w1(θ) dθ dx+ (1− λ̃)

∫
Λ1

µ̃(θ)

∫
Γ

ϕ∗(x)pθ(x) dx dθ

(5.52)

=

∫
Γ

∫
Λ1

ϕ∗(x)pθ(x)
[
λ̃ w1(θ) + (1− λ̃) µ̃(θ)

]
dθ dx (5.53)

=

∫
Γ

∫
Λ1

ϕ∗(x)pθ(x)ṽ(θ) dθ dx (5.54)

≤
∫
Γ

∫
Λ1

ϕ⋆(x)pθ(x)ṽ(θ) dθ dx (5.55)

where ϕ⋆ is the α-level NP solution corresponding to ṽ(θ). It should be noted that

the inequality between (5.51) and (5.52) is valid for any probability distribution

µ̃(θ). In addition, (5.55) is larger than or equal to (5.54) since ϕ⋆ is the α-level

NP solution for ṽ(θ) (see Remark 1).
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From (5.51)-(5.55), it is observed that the average detection probability cor-

responding to v(θ) is smaller than or equal to that corresponding to ṽ(θ) =

λ̃ w1(θ) + (1− λ̃) µ̃(θ) for any µ̃(θ) and λ̃ ≥ λ . �

5.6.3 Proof of Theorem 3

Based on the definition of the restricted NP problem in (5.4)-(5.6), P avg
D (ϕβ

r ) in

(5.28) is a non-increasing function of β since larger β values result in a smaller

feasible set of decision rules for the optimization problem. In order to use this

observation in proving the concavity of P avg
D (ϕβ

r ), define a new decision rule as a

randomization [40], [42] of two restricted NP decision rules as follows:

ϕ , ς ϕβ1
r + (1− ς)ϕβ2

r (5.56)

where 0 ≤ β1 < β2 ≤ U and 0 < ς < 1. From the definition of ϕ, the following

equations can be obtained for the detection and false-alarm probabilities of ϕ for

specific parameter values:

PD(ϕ; θ) = ς PD(ϕ
β1
r ; θ) + (1− ς)PD(ϕ

β2
r ; θ) , θ ∈ Λ1 (5.57)

PF (ϕ; θ) = ς PF (ϕ
β1
r ; θ) + (1− ς)PF (ϕ

β2
r ; θ) , θ ∈ Λ0 . (5.58)

The relation in (5.58) can be used to show that ϕ is an α-level decision rule.

That is,

max
θ∈Λ0

PF (ϕ; θ) ≤ ς max
θ∈Λ0

PF (ϕ
β1
r ; θ) + (1− ς)max

θ∈Λ0

PF (ϕ
β2
r ; θ) ≤ α (5.59)

where (5.6) is used to obtain the second inequality.

Based on (5.56) and (5.57), the average detection probability of ϕ can be

calculated as

P avg
D (ϕ) =

∫
Λ1

PD(ϕ; θ)w1(θ) dθ = ς P avg
D (ϕβ1

r ) + (1− ς)P avg
D (ϕβ2

r ) . (5.60)
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Also, from (5.57), the worst-case detection probability of ϕ can be upper bounded

as follows:

min
θ∈Λ1

PD(ϕ; θ) ≥ ς min
θ∈Λ1

PD(ϕ
β1
r ; θ) + (1− ς) min

θ∈Λ1

PD(ϕ
β2
r ; θ) ≥ ς β1 + (1− ς) β2 .

(5.61)

Defining β , min
θ∈Λ1

PD(ϕ; θ) and β
∗ , ς β1 + (1− ς) β2, the relations in (5.60) and

(5.61) can be used to obtain the following inequalities:

P avg
D (ϕβ∗

r ) ≥ P avg
D (ϕβ

r ) ≥ P avg
D (ϕ) = ς P avg

D (ϕβ1
r ) + (1− ς)P avg

D (ϕβ2
r ) (5.62)

where the first inequality follows from the non-increasing property of P avg
D (ϕβ

r )

explained at the beginning of the proof (since β ≥ β∗ as shown in (5.61)), and

the second inequality is obtained from the fact that the restricted NP decision

rule ϕβ
r maximizes the average detection probability under a given constraint β

on the worst case detection probability (among all α-level decision rules). Thus,

the concavity of P avg
D (ϕβ

r ) is proven.

In order to prove the strictly decreasing property, it is first shown that for

any L < β < U

min
θ∈Λ1

PD(ϕ
β
r ; θ) = β . (5.63)

Assume that min
θ∈Λ1

PD(ϕ
β
r ; θ) > β. Then, there exists an α-level classical NP de-

cision rule ϕc and 0 < ς < 1 such that an α-level decision rule ϕ can be defined

as ϕ , ς ϕc + (1 − ς)ϕβ
r , which satisfies min

θ∈Λ1

PD(ϕ; θ) = β. It should be noted

that ϕc achieves a smaller minimum detection probability and a higher average

detection probability than ϕβ
r for any L < β < U by definition. Therefore, the

average detection probability of ϕ satisfies P avg
D (ϕ) > P avg

D (ϕβ
r ), which contra-

dicts with the definition of the restricted NP. Hence, min
θ∈Λ1

PD(ϕ
β
r ; θ) > β cannot

be true, which proves the result in (5.63). Next, let L < β1 < β2 < U and

suppose that P avg
D (ϕβ1

r ) = P avg
D (ϕβ2

r ). Obviously, this implies that ϕβ2
r is also a

solution corresponding to β1, which contradicts with the result in (5.63). There-

fore, P avg
D (ϕβ1

r ) > P avg
D (ϕβ2

r ) must hold. Hence, P avg
D (ϕβ

r ) is a strictly decreasing

function of β. �
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Chapter 6

Conclusions and Future Work

In this thesis, we have first analyzed noise enhanced detection in the restricted

Bayesian framework, which covers Bayesian and minimax frameworks as spe-

cial cases. We have also provided statistical characterization of optimal additive

noise, and derived improvability and nonimprovability conditions. Secondly, we

have investigated noise enhanced composite hypothesis-testing in the presence

of partial prior information. Two criteria for evaluating noise enhancement have

been proposed, and the structure of the optimal additive noise p.d.f. has been

derived for each criterion. Also, extensions to the cases with unknown parameter

distributions for some hypotheses have been discussed. Thirdly, noise enhanced

binary composite hypothesis-testing has been studied in the NP framework. The

previous studies on noise benefits for simple hypothesis-testing problems in the

NP framework have been extended to composite hypothesis-testing problems.

Optimal additive noise p.d.f.s have been derived, and improvability and nonim-

provability conditions have been obtained. Finally, the restricted NP approach

for composite hypothesis-testing in the presence of prior distribution uncertainty

has been investigated. The restricted NP criterion is an application of the re-

stricted Bayes approach (Hodges-Lehmann rule) to the NP framework. Algo-

rithms have been proposed for the calculation of the optimal decision rule, and

151



the characteristics of the optimal decision rule have been investigated. Also, the

properties of the average detection probability corresponding to restricted NP

decision rules have been studied.

As a future work, noise enhanced detection can be studied in the restricted

NP framework, and improvability and nonimprovability conditions can be inves-

tigated. Also, the restricted NP approach can be applied to the spectrum sensing

problem in cognitive radio systems [106]. In addition, the study of noise enhanced

detection in the restricted Bayesian framework can be extended to time varying

scenarios, and adaptive noise enhancement algorithms can be obtained.
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