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ABSTRACT

ALTERNATIVE APPROACHES AND NOISE
BENEFITS IN HYPOTHESIS-TESTING PROBLEMS IN
THE PRESENCE OF PARTIAL INFORMATION

Suat Bayram
Ph.D. in Electrical and Electronics Engineering
Supervisor: Asst. Prof. Dr. Sinan Gezici

July 2011

Performance of some suboptimal detectors can be enhanced by adding indepen-
dent noise to their observations. In the first part of the dissertation, the effects
of additive noise are studied according to the restricted Bayes criterion, which
provides a generalization of the Bayes and minimax criteria. Based on a generic
M-ary composite hypothesis-testing formulation, the optimal probability distri-
bution of additive noise is investigated. Also, sufficient conditions under which
the performance of a detector can or cannot be improved via additive noise are
derived. In addition, simple hypothesis-testing problems are studied in more
detail, and additional improvability conditions that are specific to simple hy-
potheses are obtained. Furthermore, the optimal probability distribution of the
additive noise is shown to include at most M mass points in a simple M-ary
hypothesis-testing problem under certain conditions. Then, global optimization,
analytical and convex relaxation approaches are considered to obtain the optimal
noise distribution. Finally, detection examples are presented to investigate the

theoretical results.
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In the second part of the dissertation, the effects of additive noise are stud-
ied for M-ary composite hypothesis-testing problems in the presence of partial
prior information. Optimal additive noise is obtained according to two criteria,
which assume a uniform distribution (Criterion 1) or the least-favorable distri-
bution (Criterion 2) for the unknown priors. The statistical characterization of
the optimal noise is obtained for each criterion. Specifically, it is shown that the
optimal noise can be represented by a constant signal level or by a randomiza-
tion of a finite number of signal levels according to Criterion 1 and Criterion 2,
respectively. In addition, the cases of unknown parameter distributions under
some composite hypotheses are considered, and upper bounds on the risks are
obtained. Finally, a detection example is provided to illustrate the theoretical

results.

In the third part of the dissertation, the effects of additive noise are stud-
ied for binary composite hypothesis-testing problems. A Neyman-Pearson (NP)
framework is considered, and the maximization of detection performance under a
constraint on the maximum probability of false-alarm is studied. The detection
performance is quantified in terms of the sum, the minimum and the maximum of
the detection probabilities corresponding to possible parameter values under the
alternative hypothesis. Sufficient conditions under which detection performance
can or cannot be improved are derived for each case. Also, statistical charac-
terization of optimal additive noise is provided, and the resulting false-alarm
probabilities and bounds on detection performance are investigated. In addition,
optimization theoretic approaches for obtaining the probability distribution of
optimal additive noise are discussed. Finally, a detection example is presented

to investigate the theoretical results.

Finally, the restricted NP approach is studied for composite hypothesis-
testing problems in the presence of uncertainty in the prior probability distri-

bution under the alternative hypothesis. A restricted NP decision rule aims to

v



maximize the average detection probability under the constraints on the worst-
case detection and false-alarm probabilities, and adjusts the constraint on the
worst-case detection probability according to the amount of uncertainty in the
prior probability distribution. Optimal decision rules according to the restricted
NP criterion are investigated, and an algorithm is provided to calculate the op-
timal restricted NP decision rule. In addition, it is observed that the average
detection probability is a strictly decreasing and concave function of the con-
straint on the minimum detection probability. Finally, a detection example is

presented, and extensions to more generic scenarios are discussed.

Keywords: Hypothesis-testing, noise enhanced detection, restricted Bayes,
stochastic resonance, composite hypotheses, Bayes risk, Neyman-Pearson, max-

min, least-favorable prior.



OZET

KISMI BILGI BULUNAN HIPOTEZ SINAMA
PROBLEMLERINDE ALTERNATIF YAKLASIMLAR VE
GURULTU KAZANIMLARI

Suat Bayram
Elektrik ve Elektronik Miihendisligi, Doktora
Tez Yoneticisi: Yrd. Do¢. Dr. Sinan Gezici

Temmuz 2011

Optimal olmayan baz1 sezicilerin performansi, gozlemlerine bagimsiz giiriiltii
eklenerek artirilabilir.  Tezin ilk kisminda ek giriiltiiniin etkileri, Bayes
ve minimaks kriterlerinin genellestirilmesini saglayan kisithh Bayes kriterine
gore cahigilmaktadir. Genel M’li bilegik hipotez sinamalari baz alinarak, ek
gliriiltiiniin optimal olasilik dagilim fonksiyonu incelenmektedir. Ayni zamanda,
sezicinin performansimin giirtiltii eklenerek gelistirilip gelistirilemeyecegiyle ilgili
yeter kogullar tiiretilmektedir. Bunlara ek olarak, basit hipotez sinama problem-
leri daha ayrintili olarak calisilmakta ve basit hipotezlere ozel ek yeter kogullar
elde edilmektedir. Ayrica, belli kosullar altinda, bir basit M’li hipotez sinama
problemindeki optimal ek giiriiltiintin olasilik yogunluk fonksiyonunun, en fazla
M farkli deger arasinda rasgelelestirme icerdigi gosterilmektedir. Daha sonra, op-
timal giiriiltii dagilimini elde etmek icin global optimizasyon, analitik ve digbiikey
gevsetme yaklagimlari ele alinmaktadir. Son olarak, kuramsal sonuclari incele-

mek ic¢in sezim ornekleri sunulmaktadir.
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Tezin ikinci kisminda, kismi onsel bilgi bulunan bilegik M’li hipotez sinama
problemleri icin ek giiriiltiiniin etkileri cahsilmaktadir. Optimal ek giriiltii,
bilinmeyen 6nsel olasiliklar igin birbi¢imli dagilhim (kriter 1) veya en az uy-
gun dagilm (kriter 2) varsayan iki kritere gore elde edilmektedir. Her bir
kriter icin optimal giiriiltiiniin istatistiksel ozellikleri elde edilmektedir. Ozel
olarak, optimal giiriiltiiniin kriter 1’e gore sabit bir sinyal seviyesiyle ya da kriter
2’ye gore sonlu sayidaki sinyal seviyesinin rasgelelestirilmesiyle ifade edilebilecegi
gosterilmektedir. Bunlara ek olarak, baz bilegik hipotezler altindaki parametre
dagilimlarinin bilinmedigi durumlar ele alinmakta ve risklerin tizerine tist sinirlar
elde edilmektedir. Son olarak, kuramsal sonuglar1 gostermek icin bir sezim ornegi

sunulmaktadir.

Tezin iigiincii kisminda, ek giiriiltiintin ikili bilegik hipotez sinama problem-
leri tizerindeki etkileri gahigilmaktadir. Bir Neyman-Pearson (NP) gergevesi ele
alinmakta ve en yiiksek yanlg alarm olasiligi iizerindeki sinirlama altinda sezim
performansinin en yiiksek seviyeye c¢ikarilmasina galigilmaktadir. Sezim perfor-
mansi, alternatif hipotez altindaki muhtemel parametre degerlerine karsilik gelen
sezim olasiliklarinin toplami, minimumu ve maksimumu cinsinden hesaplanmak-
tadir. Her bir durum igin sezim performansinin geligtirilip gelistirilemeyecegiyle
ilgili yeter kosgullar tiiretilmektedir. Ayni zamanda, optimal ek giiriiltintin is-
tatistiksel ozellikleri sunulmakta ve ortaya ¢ikan yanlhs alarm olasiliklar: ve sezim
performans: tizerindeki simirlar incelenmektedir. Bunlara ilave olarak, optimal
ek giirtiltiiniin olasilik dagilimini elde etmek igin optimizasyon kurami tabanh
yaklasimlar tartigilmaktadir. Son olarak, kuramsal sonuclar1 incelemek icin bir

sezim Ornegi sunulmaktadir.

Son olarak, alternatif hipotez altindaki onsel olasilik dagiliminda belir-
sizlik bulunan bilesik hipotez sinama problemleri icin kisith NP yaklagimi
caligilmaktadir. Kisith NP karar kurali, en kotii durumdaki sezim ve yanlg

alarm olasiliklar1 tzerindeki kisitlamalar altinda, ortalama sezim olasihigini



en yiiksek seviyeye cikarmayr hedefler ve en kot durumdaki sezim olasilig:
tizerindeki kisitlama seviyesini, onsel olasilik dagilimindaki belirsizligin mik-
tarma gore ayarlar. Kisitli NP kriterine gore optimal karar kurallari incelen-
mekte ve optimal kisith NP karar kuralinin hesaplanmasi i¢in bir algoritma
saglanmaktadir. Bunlara ek olarak, ortalama sezim olasiliginin, minimum sezim
olasig1 tizerindeki kisitlama seviyesinin kesin azalan ve igbiikey bir fonksiyonu
oldugu gozlenmektedir. Son olarak, bir sezim 6rnegi sunulmakta ve daha genel

senaryolara genisletimler tartisilmaktadir.

Anahtar Kelimeler: Hipotez sinama, guriltiuyle gelistirilmis sezim, kisitly Bayes,
stokastik rezonans, bilesik hipotezler, Bayes riski, Neyman-Pearson, maks-min,

en az uygun onsel.

vi



ACKNOWLEDGMENTS

I was so lucky to have Asst. Prof. Dr. Sinan Gezici as my advisor. He has
been one of the few people who had vital influence on my life. His patience,
perfectionist personality, generosity and inspirational nature have been a great
admiration for me. He has always supported me through hard times. It was a
real privilege and honor for me to work with such a visionary advisor. I would
like to, especially, thank him for providing me great research opportunities and
environment. Also I would like to thank Prof. Dr. Orhan Arikan, Asst. Prof.
Dr. Selim Aksoy, Asst. Prof. Dr. Defne Aktas and Asst. Prof. Dr. Ali Cafer
Giirbiiz for agreeing to serve on my thesis committee. I would also like to thank

TUBITAK for its financial support which was vital for me.

I also extend my special thanks to Sara Bergene, Zakir Sozduyar, Mehmet
Barig Tabakcioglu, Kadir Ustiin, Mustafa ["Jrel, Tolga C)zaslan, Abdilkadir
Eryildirim, Saba Oz, Mahmut Yavuzer, Aykut Yildiz, Burak Sekerlisoy, Vahdet-
tin Tag, Hamza Soganci, M. Emin Tutay, Gokge Osman Balkan, Osman Giirlevik,
Yagar Kemal Alp and Semih Cayci for being wonderful friends and sharing un-

forgettable moments together.

Finally, I would like to give a special thank to my mother Zehra, my brothers
Yakup, Cavit (imdat), Acar Alp and my true friend Elif Eda Demir for their
unconditional love and support throughout my studies. They mean everything
to me. I have much gratitude towards my mother for helping me believe that

there is nothing one cannot accomplish.



Contents

1 Introduction 1
1.1 Objectives and Contributions of the Dissertation . . . . . . . . .. 1
1.2 Organization of the Dissertation . . . . . .. ... ... ... ... 10

2 Noise Enhanced Hypothesis-Testing in the Restricted Bayesian

Framework 11
2.1 Noise Enhanced M-ary Composite Hypothesis-Testing . . . . . . 12
2.1.1 Problem Formulation and Motivation . . . . . . .. .. .. 12
2.1.2  Improvability and Nonimprovability Conditions . . . . . . 15
2.1.3  On the Optimal Additive Noise . . . ... ... ... ... 20
2.2 Noise Enhanced Simple Hypothesis-Testing . . . . . . . . ... .. 21
2.2.1 Problem Formulation . . . . .. ... ... ... ... .. 22
2.2.2  Optimal Additive Noise . . . . . .. ... ... ... ... 24
2.2.3 Improvability and Nonimprovability Conditions . . . . . . 31
2.3 Numerical Results. . . . . . ... ... .. 0. 34

vi



2.4 Concluding Remarks . . . . . . .. ... ... ... 49

2.5 Appendices . . . ... 51
2.5.1 Proof of Theorem 2 . . . . . . . . . . . . ... ... .... 51
2.5.2 Proof of Theorem 3 . . . . . . . . . . . . ... ... .... 53

2.5.3 Maximum Conditional Risk Achieved by Optimal Noise . . 53

254 Proof of Theorem 5 . . . . . . . . . . . . ... ... ..., H4

2.5.5 Proofof Corollary 1 . . . . ... ... ... ... ..... 56

3 Noise Enhanced M-ary Composite Hypothesis-Testing in the

Presence of Partial Prior Information 57
3.1 Problem Formulation . . . . . . ... ... ... ... ....... 58
3.2 Optimal Additive Noise According to Criterion 1 . . . . . . . .. 61
3.3  Optimal Additive Noise According to Criterion 2 . . . . . . ... 63
3.4 Unknown Parameter Distributions for Some Hypotheses. . . . . . 65
3.5 A Detection Example and Conclusions . . . . . . ... ... ... 69
3.6 Appendices . . .. ... 73

3.6.1 Proof of Proposition 1 . . . . . ... .. ... ... .... 73

4 Noise Enhanced Binary Composite Hypothesis-Testing in the

Neyman-Pearson Framework 75
4.1 Problem Formulation and Motivation . . . . . . . . . . . . .. .. 76
4.2 Max-Sum Criterion . . . . . . . . . .. 80

vil



4.2.1 Improvability and Non-improvability Conditions . . . . . . 81

4.2.2  Characterization of Optimal Solution . . . . . ... .. .. 84

4.2.3 Calculation of Optimal Solution and Convex Relaxation . 87

4.3 Max-Min Criterion . . . . . . . . .. .. ... 91
4.3.1 Improvability and Non-improvability Conditions . . . . . . 91
4.3.2 Characterization of Optimal Solution . . . . . .. ... .. 94

4.3.3 Calculation of Optimal Solution and Convex Relaxation . 97

4.4 Max-Max Criterion . . . . . . . . . ... ... 100
4.5 Numerical Results . . . . . . . . .. ... L 102
4.5.1 Scenario-1: Ay and A; with finite number of elements . . . 104
4.5.2 Scenario-2: Ay and A; are continuous intervals . . . . . . . 109
4.6 Concluding Remarks and Extensions . . . . .. .. ... .. ... 117

On the Restricted Neyman-Pearson Approach for Composite

Hypothesis-Testing in the Presence of Prior Distribution Un-

certainty 118
5.1 Problem Formulation and Motivation . . . . . .. .. .. ... .. 119
5.2 Analysis of Restricted Neyman-Pearson Approach . . . . . .. .. 122
5.2.1 Characterization of Optimal Decision Rule . . . . . . . .. 123
5.2.2  Calculation of Optimal Decision Rule . . . . . . . ... .. 127

viil



5.2.3 Properties of Average Detection Probability in Restricted

NP Solutions . . . . . .. .. ..o 131

5.3 Numerical Results. . . . . . .. .. .. ... 0. 133
5.4 Alternative Formulation . . . . ... ... ... ... ... ... 141
5.5 Concluding Remarks and Extensions . . . . . ... ... ... .. 145
5.6 Appendices . . . ... 147
5.6.1 Proof of Theorem 1 . . . . . .. .. ... ... ... .... 147

5.6.2 Proof of Theorem 2 . . . . . . . .. .. ... .. .. .... 148

5.6.3 Proof of Theorem 3 . . . . . . ... ... ... ... .... 149

6 Conclusions and Future Work 151

X



List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

Bayes risks of original and noise modified detectors versus ¢ in

cases of equal priors and unequal priors for « = 0.08 and A =1. .

Bayes risks of original and noise modified detectors versus o in

cases of equal priors and unequal priors for « = 0.12 and A =1. .

Bayes risks of original and noise modified detectors versus o in

cases of equal priors and unequal priors for « = 0.4 and A =1. . .

Bayes risks of original and noise modified detectors versus A in

cases of equal priors and unequal priors for a« = 0.08 and o = 0.05.

Improvement ratio versus « in the cases of equal priors and un-

equal priors for ¢ = 0.01, 0 = 0.05 and o = 0.1, where A = 1.

The second order derivative of Fy(z) at = 0 versus o for vari-
ous values of A. Both Theorem 5 and Theorem 3 imply for the
detection example in this section that the detector is improvable
whenever Fj(0) is negative. The limit on the conditional risks,
«, is set to the original conditional risks for each value of o. The
graph for A =1 is scaled by 0.1 to make view of the figure more

convenient (since only the signs of the graphs are important).

36

37

39

41

42

46



2.7

2.8

3.1

3.2

4.1

4.2

4.3

4.4

4.5

Bayes risks of original and noise modified detectors versus o for

a=04and A=1. . . . . ..

Bayes risks of original and noise modified detectors versus A for

a=04and o =0.05.. . . . . . .

Independent noise n is added to observation x in order to improve

the performance of the detector, represented by ¢(-). . . . . . ..

Bayes risks of the original and noise modified detectors versus o

for A =1 according to both criteria. . . . . .. ... .. .. ...

Independent noise n is added to data vector x in order to improve

the performance of the detector, ¢(-). . . . . . ... .. ... ...

Probability mass functions of the optimal additive noise based on
the PSO and the convex relaxation techniques for the max-sum

case when A=lando=1. . . . . . . . . ... ... ...

Probability mass functions of the optimal additive noise based on
the PSO and the convex relaxation techniques for the max-min

case when A=1lando=1. . .. .. . . ... ... ....

Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to

the max-sum criterion for various valuesof o. . . . . . . . . . ..

Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to

the max-min criterion for various valuesof o. . . . . . . . . . ..

x1



4.6

4.7

4.8

4.9

4.10

The second-order derivatives of H(t) in (4.17) and H i, (t) (4.36)
at t = « for various values of 0. Theorem 1 and Theorem 5
imply that the detector is improvable whenever the second-order

derivative at t = v is positive. . . . . ..o oL

The optimal additive noise p.d.f. in (4.69) for A = 1 and
o = 1 according to the max-sum criterion. The optimal pa-
rameters in (4.69) obtained via the PSO algorithm are p =
[0.0969 0 0.0019 0.1401 0.1377 0.0143 0.1470 0.4621], n =
[25.4039 —20.1423 13.7543 17.0891 29.7452 — 25.0785 17.6887 —
2.2085], and o = [1.3358 26.2930 11.3368 0 19.5556 11.5953
17.9838 0.0001]. The mass centers with very small variances
(n; = 17.0891 and n; = —2.2085) are marked by arrows for conve-

NICNCE. . . v v v e e

The optimal additive noise p.d.f. in (4.69) for the max-
min criterion when A = 1 and ¢ = 1. The optimal pa-
rameters in (4.69) obtained via the PSO algorithm are p =
[0.0067 0.1797 0.0411 0.2262 0.0064 0.0498 0 0.4902], n =
[20.1017 15.0319 0.1815 29.9668 17.2657 22.8092 — 0.7561 —
1.4484], and o = [16.5204 15.1445 0.8805 10.1573 12.9094 17.4184
19.0959 0.0102]. The mass center 7; = —1.4484 is marked by an

arrow for convenience as it has a very small variance. . . . . . . .

Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to

the max-sum criterion for various valuesof o. . . . . . . . . . ..

Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to

the max-min criterion for various valuesofo. . . . . . . . . . ..

x1i

110



4.11 The second-order derivatives of H(t) in (4.17) and Hy,(t) (4.36)

5.1

5.2

5.3

5.4

at t = «a for various values of 0. Theorem 1 and Theorem 5
imply that the detector is improvable whenever the second-order

derivative at t = v is positive. . . . . ..o oL

Average detection probability versus [ for the classical NP, re-
stricted NP, and max-min decision rules for p = 0.7, p = 0.8 and

p=0.9 where A=1,0=02,anda=02. . ... ... .....

Average and minimum detection probabilities of the restricted NP
decision rules versus A for p = 0.7, p = 0.8 and p = 0.9, where

A=1a=02ando=02. ... ... ... ... ...

Average and minimum detection probabilities of the classical NP,
max-min, and restricted NP (for A = 0.6 and A = 0.8) decision

rules versus o for A=1,a«=0.2,and p=09. . . ... ... ...

Average and minimum detection probabilities of the classical NP,
max-min, and restricted NP (for A = 0.6 and A = 0.8) decision

rules versus a for A=1,0=02,and p=09. . . ... ... ...

xiil

116

140

142



In memory of my father ...



Chapter 1

Introduction

1.1 Objectives and Contributions of the Disser-

tation

Although noise commonly degrades performance of a system, outputs of some
nonlinear systems can be improved by adding noise to their inputs or by increas-
ing the noise level in the system via a mechanism called stochastic resonance
(SR) [1]-[14]. SR is said to be observed when increases in noise levels cause
an increase in a metric of the quality of signal transmission or detection perfor-
mance. This counterintuitive effect is mainly due to system nonlinearities and/or
some parameters being suboptimal [14]. Improvements that can be obtained via
SR can be in various forms, such as an increase in output signal-to-noise ratio
(SNR) [1], [4], [5] or mutual information [6]-[11], [15], [16]. The first study of SR
was performed in [1] to investigate the periodic recurrence of ice gases. In that
work, the presence of noise was taken into account in order to explain a natu-
ral phenomenon. Since then, SR has been investigated for numerous nonlinear
systems, such as optical, electronic, magnetic, and neuronal systems [3]. Also, it

has extensively been studied for biological systems [17], [18].



From a signal processing perspective, SR can be viewed as noise benefits in a
signal processing system, or, alternatively, noise enhanced signal processing [13],
[14]. Specifically, in detection theory, SR can be considered for performance im-
provements of some suboptimal detectors by adding independent noise to their
observations, or by increasing the noise level in the observations. One of the
first studies of SR for signal detection is reported in [19], which deals with signal
extraction from background noise. After that study, some works in the physics
literature also investigate SR for detection purposes [15], [16], [20]-[22]. In the
signal processing community, SR is regarded as a mechanism that can be used to
improve the performance of a suboptimal detector according to the Bayes, mini-
max, or Neyman-Pearson criteria [12], [13], [23]-[37]. In fact, noise enhancements
can also be observed in optimal detectors, as studied in [13] and [37]. Various sce-
narios are investigated in [37] for optimal Bayes, minimax, and Neyman-Pearson
detectors, which show that performance of optimal detectors can be improved
(locally) by raising the noise level in some cases. In addition, randomization be-
tween two anti-podal signal pairs and the corresponding maximum a posterior:
probability (MAP) decision rules is studied in [13], and it is shown that power

randomization can result in significant performance improvement.

In the Neyman-Pearson framework, the aim is to increase the probability of
detection under a constraint on the probability of false alarm [12], [13], [24],
[26]. In [24], an example is presented to illustrate the effects of additive noise
on the detection performance for the problem of detecting a constant signal
in Gaussian mixture noise. In [12], a theoretical framework for investigating
the effects of additive noise on suboptimal detectors is established according to
the Neyman-Pearson criterion. Sufficient conditions under which performance
of a detector can or cannot be improved via additive noise are derived, and it
is proven that optimal additive noise can be generated by a randomization of
at most two different signal levels, which is an important result since it greatly

simplifies the calculation of the optimal noise probability density function (p.d.f.).



An optimization theoretic framework is provided in [13] for the same problem,
which also proves the two mass point structure of the optimal additive noise
p.d.f., and, in addition, shows that an optimal noise distribution may not exist

in certain scenarios.

The study in [12] is extended to variable detectors in [25], and similar observa-
tions as in the case of fixed detectors are made. Also, the theoretical framework
in [12] is applied to sequential detection and parameter estimation problems in
[38] and [39], respectively. In [38], a binary sequential detection problem is con-
sidered, and additive noise that reduces at least one of the expected sample sizes
for the sequential detection system is obtained. In [39], improvability of esti-
mation performance via additive noise is illustrated under certain conditions for
various estimation criteria, and the form of the optimal noise p.d.f. is obtained
for each criterion. The effects of noise are investigated also for detection of weak
sinusoidal signals and for locally optimal detectors. In [33] and [34], detection
of a weak sinusoidal signal is considered, and improvements on detection per-
formance are investigated. In addition, [35] studies the optimization of noise
and detector parameters of locally optimal detectors for the detection of a small

amplitude sinusoid in non-Gaussian noise.

In [23], the effects of additive noise are investigated according to the Bayes
criterion under uniform cost assignment. It is shown that the optimal noise that
minimizes the probability of decision error has a constant value, and a Gaussian
mixture example is presented to illustrate the improvability of a suboptimal de-
tector via adding constant “noise”. On the other hand, [25] and [29] consider the
minimax criterion, which aims to minimize the maximum of the conditional risks
[40], and they investigate the effects of additive noise on suboptimal detectors.
It is shown in [29] that the optimal additive noise can be represented, under
mild conditions, by a randomization of at most M signal levels for an M-ary

hypothesis testing problem in the minimax framework.



Although both the Bayes and minimax criteria have been considered for noise
enhanced hypothesis-testing [23], [25], [29], no studies have considered the re-
stricted Bayes criterion [41]. In the Bayesian framework, the prior information
is precisely known, whereas it is not available in the minimax framework [40].
However, having prior information with some uncertainty is the most common
situation, and the restricted Bayes criterion is well-suited in that case [41], [42].
In the restricted Bayesian framework, the aim is to minimize the Bayes risk un-
der a constraint on the individual conditional risks [41]. Depending on the value
of the constraint, the restricted Bayes criterion covers the Bayes and minimax
criteria as special cases [42]. In general, it is challenging to obtain the optimal
decision rule under the restricted Bayes criterion [42]-[46]. In [42], a number of
theorems are presented to obtain the optimal decision rule by modifying Wald’s
minimax theory [47]. However, the application of those theorems requires cer-
tain conditions to hold and commonly intensive computations. Therefore, [42]
states that the widespread application of the optimal detectors according to the
restricted Bayes criterion would require numerical methods in combination with

theoretical results derived in [42].

Although it is challenging to obtain the optimal detector according to the
restricted Bayes criterion, this criterion can be quite advantageous in practical
applications compared to the Bayes and minimax criteria, as studied in [42].
Therefore, in Chapter 2 of the dissertation, the aim is to consider suboptimal
detectors and to investigate how their performance can be improved via additive
independent noise in the restricted Bayesian framework. In other words, one mo-
tivation is to improve performance of suboptimal detectors via additive noise and
to provide reasonable performance with low computational complexity. Another
motivation is the theoretical interest to investigate the effects of noise on subop-
timal detectors and to obtain sufficient conditions under which performance of
detectors can or cannot be improved via additive noise in the restricted Bayesian

framework.



In Chapter 2 of the dissertation, the effects of additive independent noise
on the performance of suboptimal detectors are investigated according to the
restricted Bayes criterion [48]. A generic M-ary composite hypothesis-testing
problem is considered, and sufficient conditions under which a suboptimal de-
tector can or cannot be improved are derived. In addition, various approaches
to obtaining the optimal solution are presented. For simple hypothesis-testing
problems, additional improvability conditions that are simple to evaluate are pro-
posed, and it is shown that optimal additive noise can be represented by a p.d.f.
with at most M mass points. Furthermore, optimization theoretic approaches
to obtaining the optimal noise p.d.f. are discussed; both global optimization
techniques and approximate solutions based on convex relaxation are consid-
ered. Also, an analytical approach is proposed to obtain the optimal noise p.d.f.
under certain conditions. Finally, detection examples are provided to investi-
gate the theoretical results and to illustrate the practical importance of noise

enhancement.

In Chapter 3 of the dissertation, noise enhanced detection is studied in the
presence of partial prior information [49]. Optimal additive noise is formulated
according to two different criteria. In the first one, a uniform distribution is
assumed for the unknown priors, whereas in the second one the worst-case distri-
butions are considered for the unknown priors by taking a conservative approach,
which can be regarded as a I'-minimax approach. In both cases, the statistics
of the optimal additive noise are characterized. Specifically, it is shown that the
optimal additive noise can be represented by a constant signal level according
to the first criterion, whereas it can be represented by a discrete random vari-
able with a finite number of mass points according to the second criterion. Two
other contributions of the study in Chapter 3 are to investigate noise enhanced
detection with partial prior information in the most generic hypotheses formu-
lation; that is, M-ary composite hypotheses, and to employ a very generic cost

function in the definition of the conditional risks. Therefore, it covers some of



the previous studies on noise enhanced detection as special cases. For example,
if simple! binary hypotheses, uniform cost assignment (UCA), and perfect prior
information are assumed, the results reduce to those in [23]. As another example,
if simple M-ary hypotheses and no prior information are assumed, the results
reduce to those in [29]. Furthermore, for composite hypothesis-testing problems,
the cases of unknown parameter distributions under some hypotheses are also
considered, and upper bounds on the risks are obtained. Finally, a detection

example is presented to investigate the theoretical results.

The theoretical studies in [12] and [13] on the effects of additive noise
on signal detection in the Neyman-Pearson framework consider simple binary
hypothesis-testing problems in the sense that there exists a single probability
distribution (equivalently, one possible value of the unknown parameter) under
each hypothesis. The main purpose of Chapter 4 is to study composite binary
hypothesis-testing problems, in which there can be multiple possible distribu-
tions, hence, multiple parameter values, under each hypothesis [40], [50]. The
Neyman-Pearson framework is considered by imposing a constraint on the maz-
imum probability of false-alarm, and three detection criteria are studied [41]. In
the first one, the aim is to maximize the sum of the detection probabilities for all
possible parameter values under the first (alternative) hypothesis H; (maz-sum
criterion), whereas the second one focuses on the maximization of the minimum
detection probability among all parameter values under H; (maz-min criterion).
Although it is not commonly used in practice, the maximization of the maximum
detection probability among all parameter values under H; is also studied briefly
for theoretical completeness (maz-mazx criterion). For all detection criteria, suffi-
cient conditions under which performance of a suboptimal detector can or cannot
be improved via additive noise are derived. Also, statistical characterization of

optimal additive noise is provided in terms its p.d.f. structure in each case. In

LA simple hypothesis means that there is only one possible probability distribution under
the hypothesis, whereas a composite hypothesis corresponds to multiple possible probability
distributions.



addition, the probability of false-alarm in the presence of optimal additive noise
is investigated for the max-sum criterion, and upper and lower bounds on the
detection performance are obtained for the max-min criterion. Furthermore, op-
timization theoretic approaches to obtaining the optimal additive noise p.d.f. are
discussed for each detection criterion. Both particle swarm optimization (PSO)
[51]-[54] and approximate solutions based on convex relaxation [55] are proposed.

Finally, a detection example is provided to investigate the theoretical results.

The main contributions in Chapter 4 can be summarized as follows: 1)
Theoretical investigation of the effects of additive noise in binary composite
hypothesis-testing problem in the Neyman-Pearson framework. 2) Extension
of the improvability and non-improvability results in [12] for simple hypothesis-
testing problems to composite hypothesis-testing problems. 3) Statistical char-
acterization of optimal additive noise according to various detection criteria. 4)
Derivation of upper and lower bounds on the detection performance of subopti-

mal detectors according to the max-min criterion.

Bayesian and minimax hypothesis-testings are two common approaches for
the formulation of testing [40], [56], [57]. In the Bayesian approach, all forms of
uncertainty are represented by a prior probability distribution, and the decision is
made based on posterior probabilities. On the other hand, no prior information
is assumed in the minimax approach, and a minimax decision rule minimizes
the maximum of risk functions defined over the parameter space [40], [58]. The
Bayesian and minimax frameworks can be considered as two extreme cases of
prior information. In the former, perfect (exact) prior information is available
whereas no prior information exists in the latter. In practice, having perfect prior
information is a very exceptional case [59]. In most cases, prior information is
incomplete and only partial prior information is available [42], [59]. Since the
Bayesian approach is ineffective in the absence of exact prior information, and

since the minimax approach, which ignores the partial prior information, can



result in poor performance due to its conservative perspective, there have been
various studies that take partial prior information into account [42], [45], [59]-[63],
which can be considered as a mixture of Bayesian and frequentist approaches [64].
The most prominent of these approaches are the empirical Bayes, I'-minimax,
restricted Bayes and mean-max approaches [42], [49], [59], [60], [63]. As a solution
to the impossibility of complete subjective specification of the model and the
prior distribution in the Bayesian approach, the robust Bayesian analysis has
been proposed [46], [64]. Although the robust Bayesian analysis is considered
purely in the Bayesian framework in general, it also has strong connections with

the empirical Bayes, I'-minimax and restricted Bayes approaches [46], [64].

Among the decision rules that take partial prior information into account, the
restricted Bayes decision rule minimizes the Bayes risk under a constraint on the
individual conditional risks [41]. Depending on the value of the constraint, which
is determined according to the amount of uncertainty in the prior information, the
restricted Bayes approach covers the Bayes and minimax approaches as special
cases [42]. An important characteristic of the restricted Bayes approach is that
it combines probabilistic and non-probabilistic descriptions of uncertainty, which
are also called measurable and unmeasurable uncertainty [65], [66], because the
calculation of the Bayes (average) risk requires uncertainty to be measured and
imposing a constraint on the conditional risks is a non-probabilistic description
of uncertainty. In Chapter 5, the focus is on the application of the notion of
the restricted Bayes approach to the Neyman-Pearson (NP) framework, in which

probabilistic and non-probabilistic descriptions of uncertainty are combined [42].

In the NP approach for deciding between two simple hypotheses, the aim
is to maximize the detection probability under a constraint on the false-alarm
probability [40], [67]. When the null hypothesis is composite, it is common to
apply the false-alarm constraint for all possible distributions under that hypoth-

esis [68], [69]. On the other hand, various approaches can be taken when the



alternative hypothesis is composite. One approach is to search for a uniformly
most powerful (UMP) decision rule that maximizes the detection probability
under the false-alarm constraint for all possible probability distributions under
the alternative hypothesis [40], [67]. However, such a decision rule exists only
under special circumstances [40]. Therefore, a generalized notion of the NP cri-
terion, which aims to maximize the misdetection exponent uniformly over all
possible probability distributions under the alternative hypothesis subject to the
constraint on the false-alarm exponent, is employed in some studies [70]-[73].
Another approach is to maximize the average detection probability under the
false-alarm constraint [64], [74]-[76]. In this case, the problem can be formu-
lated in the same form as an NP problem for a simple alternative hypothesis
(by defining the probability distribution under the alternative hypothesis as the
expectation of the conditional probability distribution over the prior distribution
of the parameter under the alternative hypothesis). Therefore, the classical NP
lemma can be employed in this scenario. Hence, this max-mean approach for
composite alternative hypotheses can be called as the “classical” NP approach.
One important requirement for this approach is that a prior distribution of the
parameter under the alternative hypothesis should be known in order to calculate
the average detection probability. When such a prior distribution is not avail-
able, the max-min approach addresses the problem. In this approach, the aim is
to maximize the minimum detection probability (the smallest power) under the
false-alarm constraint [68], [69]. The solution to this problem is an NP decision
rule corresponding to the least-favorable distribution of the unknown parameter
under the alternative hypothesis. It should be noted that considering the least-
favorable distribution is equivalent to considering the worst-case scenario, which
can be unlikely to occur. Therefore, the max-min approach is quite conservative
in general. Some modifications to this approach are proposed by employing the

interval probability concept [77], [78].2

2The generalized likelihood ratio test (GLRT) is another approach for composite hypothesis-
testing, which can be used to test a null hypothesis against an alternative hypothesis [40], [67].



In Chapter 5, a generic criterion is investigated for composite hypothesis-
testing problems in the NP framework, which covers the classical NP (max-
mean) and the max-min criteria as special cases. Since this criterion can be
regarded as an application of the restricted Bayes approach (Hodges-Lehmann
rule) to the NP framework [41], [42], it is called the restricted NP approach in
order to emphasize the considered NP framework [79]. The investigation of the
restricted NP criterion provides an illustration of the Hodges-Lehmann rule in the
NP framework. A restricted NP decision rule maximizes the average detection
probability (average power) under the constraints that the minimum detection
probability (the smallest power) cannot be less than a predefined value and that
the false-alarm probability cannot be larger than a significance level. In this way,
the uncertainty in the knowledge of the prior distribution under the alternative
hypothesis is taken into account, and the constraint on the minimum (worst-case)

detection probability is adjusted depending on the amount of uncertainty.

1.2 Organization of the Dissertation

The organization of the dissertation is as follows. In Chapter 2, the effects of
additive noise are investigated according to the restricted Bayes criterion, which

provides a generalization of the Bayes and minimax criteria.

In Chapter 3, noise enhanced detection is studied for M-ary composite

hypothesis-testing problems in the presence of partial prior information.

In Chapter 4, the effects of additive noise are investigated for binary compos-

ite hypothesis-testing problems in the NP framework.

In Chapter 5, The restricted NP approach is studied for composite hypothesis-
testing problems in the presence of uncertainty in the prior probability distribu-

tion under the alternative hypothesis.
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Chapter 2

Noise Enhanced
Hypothesis-Testing in the

Restricted Bayesian Framework

This chapter is organized as follows. Section 2.1 studies composite hypothesis-
testing problems, and provides a generic formulation of the problem. In addition,
improvability and nonimprovability conditions are presented and an approximate
solution of the optimal noise problem is discussed. Then, Section 2.2 considers
simple hypothesis-testing problems and provides additional improvability condi-
tions. Also, the discrete structure of the optimal noise probability distribution
is specified. Then, detection examples are presented to illustrate the theoretical

results in Section 2.3. Finally, concluding remarks are made in Section 2.4.
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2.1 Noise Enhanced M-ary Composite Hypothesis-

Testing

2.1.1 Problem Formulation and Motivation

Consider the following M-ary composite hypothesis-testing problem:
Hi - pr(x),0€N;, i=01,....M—1, (2.1)

where p(-) represents the p.d.f. of observation X for a given value of param-
eter, © = 6, and 6 belongs to parameter set A; under hypotheses H;. The
observation (measurement), x, is a vector with K components; i.e., x € R, and
Ao, A1, ..., Ay—1 form a partition of the parameter space A. The prior distribu-
tion of © is denoted by w(f), and it is assumed that w(f) is known with some
uncertainty [41], [42]. For example, it can be a p.d.f. estimate based on previous

decisions.

A generic decision rule (detector) is considered, which can be expressed as
o(x)=1, if xely, (2.2)

fori =0,1,...,M—1, where Iy, I'1, ..., ');_1 form a partition of the observation

space I'.

In some cases, addition of noise to observations can improve the performance
of a suboptimal detector. By adding noise n to the original observation x, the
noise modified observation is formed as y = x + n, where n has a p.d.f. denoted
by pn(+), and is independent of x. Asin [12] and in Section II of [13], it is assumed
that the detector in (2.2) is fixed, and that the only means for improving the
performance of the detector is to optimize the additive noise n. In other words,
the aim is to find the best pn(-) according to the restricted Bayes criterion [41];

namely, to minimize the Bayes risk under certain constraints on the conditional

12



risks, as specified below.

min /A R (6)w(0) d6 ,

N ()

subject to max Ry (¢) < (2.3)
S

where « represents the upper limit on the conditional risks, [, RY(¢)w(#)d0 =
E{RY(¢)} £ 1Y (¢) is the Bayes risk, and RY(¢) denotes the conditional risk of
¢ for a given value of 8 for the noise modified observation y. More specifically,

R} (¢) is defined as the average cost of decision rule ¢ for a given 6,

RY($) = E{C[6(Y).0] | © = 0} = / Cloly), 01 (y)dy  (24)

where pY (-) is the p.d.f. of the noise modified observation for a given value of

© = 6, and CJ[i, 0] is the cost of selecting H; when © = 0, for § € A [40].

In the restricted Bayes formulation in (2.3), any undesired effects due to the
uncertainty in the prior distribution can be controlled via parameter «, which
can be considered as an upper bound on the Bayes risk [42]. Specifically, as
the amount of uncertainty in the prior information increases, a smaller (more
restrictive) value of «v is employed. In that way, the restricted Bayes formulation
provides a generalization of the Bayesian and the minimax approaches [41]. In the
Bayesian framework, the prior distribution of the parameter is perfectly known,
whereas it is completely unknown in the minimax framework. On the other hand,
the restricted Bayesian framework considers some amount of uncertainty in the
prior distribution and converges to the Bayesian and minimax formulations as
special cases depending on the value of «v in (2.3) [41], [42]. Therefore, the study
of noise enhanced hypothesis-testing in this chapter covers the previous works
on noise enhanced hypothesis-testing according to the Bayesian and minimax

criteria as special cases [23], [25], [29].

Two main motivations for studying the effects of additive noise on the de-
tector performance are as follows. First, optimal detectors according to the

restricted Bayes criterion are difficult to obtain, or require intense computations
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[42]. Therefore, in some cases, a suboptimal detector with additive noise can
provide acceptable performance with low computational complexity. Second, it
is of theoretical interest to investigate the improvements that can be achieved

via additive noise [29].

In order to provide an explicit formulation of the optimization problem in
(2.3), which indicates the dependence of R} (¢) on the p.d.f. of the additive noise

explicitly, R} (¢) in (2.4) is manipulated as follows:*

R (0) = [ [ Clot). 01Ky = n) p() dndy (25
= [ o) | [ Clo). 03ty — )y an 26)
_ /R () Fy(n) dn (2.7)
~ B{R/(N)} 2.9

where

Fy(n) £ / Clé(y), 0] p(y —n) dy . (2.9)

Note that Fy(n) defines the conditional risk given 6 for a constant value of ad-
ditive noise, N = n. Therefore, for n = 0, Fy(0) = R}j(¢) is obtained; that is,
Fy(0) is equal to the conditional risk of the decision rule given 6 for the original

observation x.

From (2.8), the optimization problem in (2.3) can be formulated as follows:

min /A B{F,(N)}w(6) do |

()

subject to max E{Fp(N)} <a. (2.10)
€
If a new function F(n) is defined as in the following expression,

F(n) 2 /AFg(n)w(é’) do | (2.11)

!Note that the independence of X and N are used to obtain (2.5) from (2.4).

14



the optimization problem in (2.10) can be reformulated in the following simple
form:

min E{F(N)} ,

pN (")

subject to %laK(E{Fg(N)} <a. (2.12)
S

From (2.9) and (2.11), it is noted that F'(0) = r*(¢). Namely, F(0) is equal
to the Bayes risk for the original observation x; that is, the Bayes risk in the

absence of additive noise.

2.1.2 Improvability and Nonimprovability Conditions

In general, it is quite complex to obtain a solution of the optimization problem in
(2.12) as it requires a search over all possible noise p.d.f.s. Therefore, it is useful
to determine, without solving the optimization problem, whether additive noise
can improve the performance of the original system. In the restricted Bayesian
framework, a detector is called improvable, if there exists a noise p.d.f. such that
E{F(N)} < m™(¢) = F(0) and Igleag(RZ(gb) = IgleaK(E{Fg(N)} < a (cf. (2.12)).

Otherwise, the detector is called nonimprovable.

First, the following nonimprovability condition is obtained based on the prop-

erties of Fy in (2.9) and F' in (2.11).

Theorem 1: Assume that there exits 6* € A such that Fy«(n) < o implies
F(n) > F(0) for alln € S,,, where S, is a convex set® consisting of all possible
values of additive noise n. If Fy«(n) and F(n) are convezr functions over S,

then the detector is nonimprovable.

Proof: The proof employs an approach that is similar to the proof of Propo-

sition 1 in [26]. Due to the convexity of Fy(-), the conditional risk in (2.8) can

28, can be modeled as convex because convex combination of individual noise components
can be obtained via randomization [80].
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be bounded, via Jensen’s inequality, as
Ry (¢) = E{F}-(N)} = Fp- (E{N}) . (2.13)

As R}.(¢) < a is a necessary condition for improvability, (2.13) implies that
Fy- (E{N}) < a must be satisfied. Since E{N} € S,, Fp- (E{N}) < « means

F (E{N}) > F(0) due to the assumption in the proposition. Hence,
r(¢) = E{F(N)} > FF (E{N}) = F(0) , (2.14)

where the first inequality results from the convexity of F. Then, from (2.13) and
(2.14), it is concluded that R}.(¢) < a implies r¥(¢) > F(0) = r*(¢). Therefore,

the detector is nonimprovable. [

The conditions in Theorem 1 can be used to determine when the detector
performance cannot be improved via additive noise, which prevents unnecessary
efforts for trying to solve the optimization problem in (2.12). However, it should
also be noted that Theorem 1 provides only sufficient conditions; hence, the
detector can still be nonimprovable although the conditions in the theorem are

not satisfied.

In order to provide an example application of Theorem 1, consider a Gaussian
location testing problem [40], in which the observation has a Gaussian p.d.f.
with mean Oy and variance o2, denoted by N (6u, %), where p and o are known
values. Hypotheses H, and H; correspond to § = 0 and 6 = 1, respectively (that
is, Ag = {0} and A; = {1}). In addition, consider a decision rule that selects
Hq if y > 0.51 and Hy otherwise. Let S, = (—0.5u,0.5u) represent the set of
additive noise values for possible performance improvement. For uniform cost

assignment (UCA) [40], (2.9) can be used to obtain Fy(n) as follows:
/ Clo o (y —n)dy (2.15)
/ S (v = n)dy (2.16)

(y—n)?
e 252 0.5 —n
dy = |, 2.17
05u V2mo =¢ ( o ) (2.17)
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where Q(z) = W [2%e /2t denotes the Q-function, and Cli,j] = 1 for i # j
and C[i, j] = 0 for i = j are used in (2.15) due to the UCA. Similarly, F(n) can
be obtained as Fy(n) = @ (222). For equal priors, F(n) in (2.11) is obtained

as F'(n) = 0.5(Fy(n) + Fi(n)); that is,
F(n)=05Q (057%") +05Q (W) . (2.18)

Let a be set to @ (0.51/0), which determines the upper bound on the conditional
risks. Regarding the assumption in Theorem 1, it can be shown for 8* = 0 that
Fyp«(n) < o implies F'(n) > F(0) = Q(0.5u/0) for all n € S,. This follows from
the facts that Fy(n) < o = Q(0.5u/0) requires that n € (—0.5u,0] and that
F(n) in (2.18) satisfies F'(n) > Q(0.5u/0) = « for n € (—0.5u,0] due to the
convexity of Q(x/o) for x > 0. In addition, it can be shown that both Fy(n)
and Fi(n) are convex functions over S,, which implies that F'(n) is also convex
over S,. Then, Theorem 1 implies that the detector is nonimprovable for this
example. Therefore, there is no need to tackle the optimization problem in (2.12)

in this case, since p¥'(n) = d(n) is concluded directly from the theorem.

Next, sufficient conditions under which the detector performance can be im-
proved via additive noise are obtained. To that aim, it is first assumed that F'(x)
and Fy(x) V8 € A are second-order continuously differentiable around x = 0. In

addition, the following functions are defined for notational convenience:
K

(1) N OFy(x)
0 (Xa Z) - Z i 8:@ > (219)

=1
K

O z) 2y 52X (2.20)

i=1 0z;

ZZzlzl (%lc?xz , (2.21)

=1 i=1

2
9 (x,2) ZZzlz &Elﬁxl (2.22)

=1 =1

where x; and z; represent the ith components of x and z, respectively. Then, the
following theorem provides sufficient conditions for improvability based on the

function definitions above.
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Theorem 2: Let 6 = 6* be the unique mazximizer of Fy(0) and o = Fy+(0) .

Then, the detector is improvable

e if there exists a K-dimensional vector z such that f(l)(x, z)fY(x,2z) > 0

18 satisfied at x = 0; or,

e if there emists a K-dimensional vector z such that f1)(x,z) > 0,
fg(*l)(x,z) < 0, and fP(x, z)fe(p(x,z) > fg(f)(x,z)f(l)(x,z) are satisfied
atx =20 .

Proof: Please see Appendix 2.5.1.

In order to comprehend the conditions in Theorem 2, it is first noted from
(2.9) that Fy(0) represents the conditional risk given 6 in the absence of additive
noise, R¥(¢). Therefore, #* in the theorem corresponds to the value of 6 for
which the original conditional risk R¥(¢) is maximum and that maximum value
is assumed to be equal to the upper limit «. In other words, it is assumed that,
in the absence of additive noise, the original detector already achieves the upper
limit on the conditional risks for the modified observations specified in (2.3).
Then, the results in the theorem imply that, under the stated conditions, it is
possible to obtain a noise p.d.f. with multiple mass points around n = 0, which

can reduce the Bayes risk under the constraint on the conditional risks.

In order to present alternative improvability conditions to those in Theorem
2, we extend the conditions that are developed for simple binary hypothesis-
testing problems in the Neyman-Pearson framework in [12] to our problem in

(2.12). To that aim, we first define a new function H(t) as

H(t) éinf{ ) | Iélai{Fg )=t, nERK} : (2.23)
€

which specifies the minimum Bayes risk for a given value of the maximum con-

ditional risk considering constant values of additive noise.
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From (2.23), it is observed that if there exists ty < « such that H(ty) < F(0),
then the system is improvable, because under such a condition there exists a
noise component ny such that F(ny) < F(0) and max Fy(ng) < a, meaning
that the detector performance can be improved by adding a constant ng to the
observation. However, improvability of a detector via constant noise is not very
common in practice. Therefore, the following improvability condition is obtained

for more practical scenarios.

Theorem 3: Let the maximum value of the conditional risks in the absence

of additive noise be defined as & = max R¥(¢) and & < «. If H(t) in (2.23) is
€

second-order continuously differentiable around t = & and satisfies H”(d) <0,

then the detector is improvable.
Proof: Please see Appendix 2.5.2.

Similar to Theorem 2, Theorem 3 provides sufficient conditions that guarantee
the improvability of a detector according to the restricted Bayes criterion. Note
that H(t) in Theorem 3 is always a single-variable function irrespective of the
dimension of the observation vector, which facilitates simple evaluation of the
conditions in the theorem. However, the main challenge can be to obtain an
expression for H(t) in (2.23) in certain scenarios. On the other hand, Theorem
2 deals with Fp(-) and F(-) directly, without defining an auxiliary function like
H(t). Therefore, implementation of Theorem 2 can be more efficient in some
cases. However, the functions in Theorem 2 are always K-dimensional, which can
make the evaluation of its conditions more complicated than that in Theorem 3 in
some other cases. In Section 2.3, comparisons of the improvability results based

on direct evaluations of Fy(-) and F(-), and those based on H(t) are provided.
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2.1.3 On the Optimal Additive Noise

In general, the optimization problem in (2.12) is a non-convex problem and has
very high computational complexity since the optimization needs to be performed
over functions. In Section 2.2, it is shown that (2.12) simplifies significantly in the
case of simple hypothesis-testing problems. However, in the composite case, the
solution is quite difficult to obtain in general. Therefore, a p.d.f. approximation
technique [50] can be employed in this section in order to obtain an approximate

solution of the problem.

Let the optimal noise p.d.f. be approximated by

pr(n) =D viti(m - ), (2.24)

where v; > 0, Zle v; =1, and 1;(-) is a window function with 1;(x) > 0 Vx and
[ i(x)dx =1, for i = 1,..., L. In addition, let ¢; denote a scaling parameter
for the ith window function (), which controls the “width” of the window
function. The p.d.f. approximation technique in (2.24) is referred to as Parzen
window density estimation, which has the property of mean-square convergence
to the true p.d.f. under certain conditions [81]. From (2.24), the optimization
problem in (2.12) can be expressed as?
L

win > wfals)

{vimnisiti, i—1
L

subject to max Zl Vifon, (i) < o, (2.25)
1=

where fy, () = [ F(n)y;(n — n;)dn and fon,(s;) = J Fy(n)y;(n — n;)dn.

In (2.25), the optimization is performed over all the parameters of the window
functions in (2.24). Therefore, the performance of the approximation technique

is determined mainly by the the number of window functions, L. As L increases,

3As in [12], it is possible to perform the optimization over single-variable functions by
considering mapping of the noise n via F(n) or Fy(n).
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the approximate solution can get closer to the optimal solution for the additive
noise p.d.f. Therefore, in general, an improved detector performance can be

expected for larger values of L.

Although (2.25) is significantly simpler than (2.12), it is still not a convex
optimization problem in general. Therefore, global optimization techniques, such
as particle-swarm optimization (PSO) [51], [53], [54], genetic algorithms and
differential evolution [82], can be used to calculate the optimal solution [29], [50].
In Section 2.3, the PSO algorithm is used to obtain the optimal noise p.d.f.s for

the numerical examples.

Although the calculation of the optimal noise p.d.f. requires significant effort
as discussed above, some of its properties can be obtained without solving the
optimization problem in (2.12). To that aim, let F,,;, represent the minimum
value of H(t) in (2.23); that is, Fi, = mtin H(t). In addition, suppose that this
minimum is attained at ¢ = ¢,,.* Then, one immediate observation is that if t,,
is less than or equal to the conditional risk limit «, then the noise component
n,, that results in r(gleagc Fy(n,,) = t, is the optimal noise component; that is, the
optimal noise is a constant in that scenario, pn(x) = d(x — n,,). On the other
hand, if ¢,, > «, then it can be shown that the optimal solution of (2.12) satisfies
max R} (¢) = @ (Appendix 2.5.3).

2.2 Noise Enhanced Simple Hypothesis-Testing

In this section, noise enhanced detection is studied in the restricted Bayesian
framework for simple hypothesis-testing problems. In simple hypothesis-testing

problems, each hypothesis corresponds to a single probability distribution [40].

4If there are multiple ¢ values that result in the minimum value Fi,, then the minimum of
those values can be considered.
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In other words, the generic composite hypothesis-testing problem in (2.1) reduces

to a simple hypothesis-testing problem if each A; consists of a single element.

Since the simple hypothesis-testing problem is a special case of the composite
one, the results in Section 2.1 are also valid for this section. However, by using
the special structure of simple hypotheses, we obtain additional results in this
section that are not valid for composite hypothesis-testing problems. It should
be noted that both composite and simple hypothesis-testing problems are used
to model various practical detection examples [40], [83]; hence, specific results

can be useful in different applications.

2.2.1 Problem Formulation

The problem can be formulated as in Section 2.1.1 by defining A; = {6;} for
i=20,1,...,M —1in (2.1). In addition, instead of the prior p.d.f. w(#), the
prior probabilities of the hypotheses can be defined by mg,7,..., 71 with

S M ' w; = 1. Then, the optimal additive noise problem in (2.3) becomes
M-1
min ; ™Ry (9) ,
subject to  max RY(¢) <« (2.26)

where "M RY (¢) £ 1¥(¢) is the Bayes risk and RY () is the conditional risk

of ¢ given H,; for the noise modified observation y, which is given by
M-1
RY(¢) = Y CuPY(Ty) (2.27)
=0

with P} (T';) denoting the probability that y € T'; when #,; is the true hypothesis,
and Cj; defining the cost of deciding H; when #,; is true. As in Section 2.1.1,
the constraint o sets an upper limit on the conditional risks, and its value is

determined depending on the amount of uncertainty in the prior probabilities.
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In order to investigate the optimal solution of (2.26), an alternative expression
for RY(¢) is obtained first. Since the additive noise n is independent of the

observation x, PY(I';) becomes

P = [ iy = [ [ sy -wandy . 229)
r; r; JRE
where pX(-) and pY () represent the p.d.f.s of the original observation and the
noise modified observation, respectively, when hypothesis H; is true. Then, (2.27)
can be expressed, from (2.28), as

ﬁ/RKpN(n)/F_pf‘(y—n) dy dn

J

=
P
=
[l

S IM
@)

M CE{Fy(N)} = E{F(N)} | (2.20)

with
Py 2 [ PRy (2.30)
Fm 2 Y CuFyn) (2.31)

Based on the relation in (2.29), the optimization problem in (2.26) can be

reformulated as
M-1
min mE{F;(N)} ,
win 3 mE(R(N)

subject to  max E{F(N)} <a. (2.32)

i€{0,1,....M—1}

If a new auxiliary function is defined as F(n) £ - 11, Fj(n), (2.32) becomes

min E{F(N)} ,

N ()

subject to  max E{F(N)} <a. (2.33)

i€{0,1,..., M—1}

Note that under UCA; that is, when Cj; = 1 for j # 4, and C;; = 0 for j = 1,
F;(N) becomes equal to 1 — Fj;(N).
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It should be noted from the definitions in (2.30) and (2.31) that F;(0) cor-
responds to the conditional risk given #,; for the original observation x, R¥(¢).

Therefore, F'(0) defines the original Bayes risk, 7*(¢) .

2.2.2 Optimal Additive Noise

The optimization problem in (2.33) seems quite difficult to solve in general as
it requires a search over all possible noise p.d.f.s. However, in the following, it
is shown that an optimal additive noise p.d.f. can be represented by a discrete
probability distribution with at most M mass points in most practical cases. To
that aim, suppose that all possible additive noise values satisfy @ < n < b for
any finite @ and b; that is, n; € [a;,b;] for j = 1,..., K, which is a reasonable as-
sumption since additive noise cannot have infinitely large amplitudes in practice.
Then, the following theorem states the discrete nature of the optimal additive

noise.

Theorem 4: If F;(-) in (2.32) are continuous functions, then the p.d.f. of
an optimal additive noise can be expressed as pn(n) = St N d(n — ny), where

S N=1and\ >0 forl=1,2,..., M.

Proof: The proof employs a similar approach to those used for the related

results in [12], [29] and [50]. First, the following set is defined:
U= {(up,ur,...,up—1) : u;=Fy(n), i=0,1,...,M —1, for a = n=<b} .
(2.34)

In addition, V' is defined as the convex hull of U [84]. Since Fj(-) are continuous
functions, U is a bounded and closed subset of RM. Hence, U is a compact set.

Therefore, its convex hull V is a closed subset of R [29]. Next, set W is defined
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as
W — {(wo,wl,...,wM,l) cw = E{Em)},i=0,1,...,M—1,
Y (), ajnjb}, (2.35)

where pn(n) is the p.d.f. of the additive noise.

As V' is the convex hull of U, each element of V' can be expressed as v =
SSVEN (Fo(mg), Fi(ny), . .., Far—1(my)), where S5 N = 1, and \; > 0 VI. On
the other hand, each v is also an element of W as it can be obtained for px(n) =
SOYE N 3(n —mny). Hence, V C W [29]. In addition, since for any vector random
variable © taking values in set €2, its expected value, E{®}, is in the convex hull
of  [85], (2.34) and (2.35) implies that W is in the convex hull V' of U; that
is, VO W. Since V.C W and V O W, it means that W =V [29]. Therefore,
according to Carathéodory’s theorem [86], [87], any point in V' (or, W) can be
expressed as the convex combination of at most (M + 1) points in U as the
dimension of U is smaller than or equal to M. Since the aim is to minimize the
average of the conditional risks, the optimal solution corresponds to the boundary
of W. As W (or, V) is a closed set as mentioned at the beginning of the proof,
it contains its own boundary [29]. Since any point at the boundary of W can
be expressed as the convex combination of at most M elements in U [86], an
optimal noise p.d.f. can be represented by a discrete random variable with M

mass points as stated in the theorem. []

From Theorem 4, the optimization problem in (2.33) can be simplified as

M
min Z )\ZF(I’ll) s

oLy =1
M

subject to max ME (o) < o
: i€{0,1,.., M—1}lz_; i) <o

M
=1, N=0, I=1,...,M. (2.36)
=1

The optimization in (2.36) is considerably simpler than that in (2.33) since the

former is over a set of variables instead of functions. However, (2.36) can still be
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a nonconvex optimization problem in general; hence, global optimization tech-

niques, such as PSO [51] and differential evolution [82] may be needed.

In order to provide a convex relaxation [55] of the optimization problem
in (2.36) and to obtain an approximate solution in polynomial time, one can
assume that additive noise n can take only finitely many known values specified
by fiy,...,0n; [29]. This scenario, for example, corresponds to digital systems
in which the signals can take only finitely many different levels. Then, the
aim becomes the determination of the weights 5\1, cee Ar, of those possible noise

values. In that case, (2.33) can be formulated as

L

subject to max NE (D) < a
: i€{0,1,....M—1} ; l l( l) <a,

L
> N=1, N>0, I=1,...L, (2.37)
=1

which is a linearly constrained linear programming (LCLP) problem; hence, can
be solved in polynomial time [55]. It should be noted that as the optimization
is performed over more noise values (as L increases), the solution gets closer to

the optimal solution of (2.33).

As an alternative approach, an analytical solution similar to that in [12] can
also be proposed for obtaining the optimal additive noise. First, consider the
optimization problem in (2.32) for M = 2; i.e., the binary case. If functions
Fy(n) and Fi(n) are monotone, then ¢, and ¢; can be defined as t, = Fy(n) and

t; = Fi(n). Otherwise, let to and t; be defined as follows:

to(t) £ inf {Fy(n) | Fi(n) =t , ne R*} |

t1(t) £ inf {Fi(n) | F(n) =t , ne R*} . (2.38)

In general, there can exist multiple values of F(n) corresponding to a given value

of Fy(n). However, the definitions of t5 and ¢; in (2.38) make sure that only the
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best (minimum) value of Fj(n) corresponding to a given Fy(n) is considered,
and vice versa. Therefore, t; can be expressed as t; = g(ty), where g(ty) is a
monotone function of ¢3 and is defined on the range of ¢y, which is denoted by
[t0.mins £0.max] With tomin = minty and tgmax = maxty. We call the set of ¢, for
which ¢(to) and ¢, satisfy the constraints (cf. (2.32)) as the feasible domain.

Then, let a new function B be defined as follows:
B(to) £ 7T0t0 -+ ng(to) . (239)

If B(ty) takes its global minimum value in the feasible domain, then the opti-
mal Bayes risk is equal to that minimum value and the optimal additive noise
can be represented by a constant value. For example, if ¢j = arg n%(l)n B(ty),
then the optimal additive noise p.d.f. can be expressed as pn(n) = 6(n — ny),
where ng satisfies Fy(ng) = ¢5.> On the other hand, if B(t,) achieves its global
minimum value outside the feasible domain, then an analytic solution for the
optimal additive noise p.d.f. can be obtained as explained in the following. At
the end of Section 2.1.3, it was stated that the maximum value of the optimal
conditional risks must be equal to the constraint level a for the case considered
here. This implies that the optimal (¢, t;) pair is equal to one of the following:
(a, B) or (7, ), where 8 and «y are such that g(a) = § and g(y) = «. It should
be noted that if g(ty) is a decreasing function and ~ is larger than «a, then the
feasible domain is an empty set implying that there is no solution satisfying the

constraint.

Since ¢(ty) is a monotone function and the maximum of the optimal con-
ditional risks must be equal to «a, the feasible domain must be in the form of
an interval, say [a, b], and the value of ¢y corresponding to the optimal solution
must be equal to either a or b. In the following derivations, it is assumed that the
value of ty corresponding to the optimal solution is b, and B(tg) takes its global

minimum value for ¢, > b. However, it should be noted that these assumptions

SIf there are multiple such ny’s, then the one that minimizes Fy(ng) should be chosen.
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do not reduce the generality of the results. In other words, the derivations based

on the other possible assumptions yield the same result.

Similar to [12], the following auxiliary function is defined:
Z(to, k) = Bl(to) + kto , (2.40)

where k € R. It is observed that Z is an increasing function of k. Let the range
of ty be partitioned into Zy = [tomin, b) and Zy = [b, tomax). In addition, two new

functions are defined as follows:

”Ul(k?) = min Z(to, ]{?) =7 (t()l(k?), k?) s

to€

va(k) = min Z(to, k) = Z (tex(k), k) , (2.41)

to€EL2

where to; (k) is the value of ¢, € Z; that minimizes Z for a given k, and similarly,

to2(k) is value of ¢y € Z, that minimizes Z for a given k.

From (2.40) and (2.41), it is obtained for k = 0 that v9(0) = min B(t;) <
v1(0) = B(tp1(k)). On the other hand, as k — o0, v1(k) = B(tomin) + ktomin <
vo(k) = B(b) 4+ kb. Therefore, there must exist a k = kg, where 0 < kg < o0,

such that
V= Ul(k’o) = Z(t()l(kg), kg) = Ug(k‘o) = Z(tog(k’o), k’o) . (242)
Consider the division of the range of ty into two disjoint sets A and

{t01(k0>,t02(k0)} such that {t()l(k()),toz(ko)} UA = [tO,minatO,max]- Then, any

additive noise p.d.f. can be expressed in the following form:

Pnto(to) = Md(to — tor (ko)) + A26(to — toz2(ko)) + Za(to)Pno(to) (2.43)

where Z4(ty) is an indicator function such that Z4(tg) = 1 if tg € A, Za(ty) =0

otherwise [12]. By definition, A\; + X\ + fA Pnto (to) dto = 1 should be satisfied. In
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addition, the expectation of Z in (2.40) over ¢, can be bounded as follows:

E{Z(to, ]{?0)} = >\1U + )\QU + / Z(to, kO)pn,to (to) dto s
A

S / (Z(to, ko) — ]pme (o) dto
A
> v, (2.44)

where the first expression is obtained from (2.42) and (2.43), and the final in-
equality is obtained from the fact that Z(to, ko) > v for tp € A (cf. (2.41) and
(2.42)). This lower bound is achieved for py 4, (o) = A1d(to — to1(ko)) + Aad(to —
to2(ko)), with Ay + Ay = 1. Hence, pny,(to) = 0 for ¢y € A.

From (2.39) and (2.40), the Bayes risk r¥(¢) can be expressed as 1¥(¢) =
E{B(to)} = E{Z(to,ko)} — koE{to}. Since tp (ko) < b and tg2(ko) > b, one can
achieve E{to} = b by using a noise component with p.d.f. pny (to) = A\d(to —
tor(ko)) + A20(to — toa(ko)), where A; + Ao = 1 with appropriate values for A
and Ay. Thus, the optimal additive noise p.d.f. is pn,(to) = A10(to — to1(ko)) +
A0 (tg —toa(ko)), where A\; + Ao = 1 and Aitg1 (ko) + Aatoz(ko) = b, and the optimal
Bayes risk is given by 13 (¢) = E{B(to)} = v — kob.

Since Z(to, ko) has (local) minimum values at to = to(ko) and t, =
toa(ko), if B(ty) is continuously differentiable, then 0Z(toi(ko),ko)/Oto =

0Z (toa(ko), ko)/Oto = 0. Then, (2.40) implies the following equalities:
dB(to1(ko)) _ dB(te2(ko))

=—ko . 2.4
dto dto 0 (2:45)
From (2.42), we also have the following relation:
B - B
(o1 (ko)) — B(toz(ko)) _ gy (2.46)

to1 (ko) — toz2(ko)
Therefore, (2.45) and (2.46) can be used to obtain the following result:

(
B(toi (ko)) — B(toa(ko)) _ dB(to1(ko)) _ dB(toa(ko))
t01(k0) — tog(ko) dto dto ’

From the equalities in (2.47), one can find o, (ko) and to2(ko), and the correspond-

(2.47)

ing mass points n; and ny that satisfy to; (ko) = Fy(ny) and tga(ko) = Fy(ny).°

OIf there are multiple such n’s (ny’s), then the one that minimizes Fj(n;) (F1(nz)) should
be chosen.
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After obtaining n; and ny as described above, the corresponding weights
A1 and Ay calculated from the following equations: A; + Ap = 1 and A\ytg; (ko) +
Aatoa(ko) = b. Due to the fact that the maximum of the optimal conditional risks
must be a, b must be equal to the constraint level o or must satisfy g(b) = a.
These two cases should be checked separately and then the one corresponding
to the optimal solution should be determined. In other words, the weight pairs
corresponding to o = v and t; = g(ty) = a should be calculated separately, and
then the one that results in better performance should be selected. An alternative
approach to determine b is to find where B(t) takes its global minimum value.
If B(ty) takes its global minimum value for ¢, > «, then b must be equal to «;
otherwise, b must be found from g(b) = a. After finding b, the optimal weight
pair can easily be obtained from A; + Ay = 1 and Aitg; (ko) + Aatoa(ko) = b.

The analytic approach described above for the binary case can also be
extended to the M-ary case for M > 2. However, in that case, only the
mass points, ny,...,ny;, can be found analytically. The weights, Aq,..., Ay,
should be found via a numerical approach. Such a semi-analytical solution
can still provide significant computational complexity reduction in some cases
since the weights, which are not determined analytically, are easier to search
for than the mass points, as the weights are always scalar whereas the mass
points can also be multidimensional. The analytical approach to obtaining
the mass points in the M-ary case is a simple extension of that in the binary
case. Mainly, a function ¢,;_1 should be defined as tj;_1 £ g(to, .. ty—o) £
inf { Fyy_1(n) | Fo(n) =to,..., Fy—a(n) =ty_o, n € R¥}, function B in (2.39)
should be generalized as
Blto, ... tar—2) = moto+ - - +mar—19(to, . . ., tar—2), and Z should be modified as
Z(to, ... ta—a ki, ... kar—1) = Blto, ... tar—2) +kito+ - -+ kar—1ta—2. The re-
sulting equations provide a generalization of those in (2.47), the details of which

are not presented here due to the space limitations.
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2.2.3 Improvability and Nonimprovability Conditions

In this section, various sufficient conditions are derived in order to determine
when the performance of a detector can or cannot be improved via additive

independent noise according to the restricted Bayes criterion.

For the nonimprovability conditions, Theorem 1 in Section 2.1.2 already pro-
vides a quite explicit statement to evaluate the nonimprovability. Therefore, it is
also practical for simple hypothesis-testing problems, as observed in the example
after Theorem 1. In accordance with the notation in this section, Theorem 1
can be restated for simple hypothesis-testing problems as follows. Assume that
there exits i € {0,1,..., M — 1} such that F;(n) < « implies F(n) > F(0) for
alln € S, where S, is a convex set consisting of all possible values of additive
noise n. If F;(n) and F(n) are convezr functions over Sy, then the detector is

nonimprovable.

Regarding the improvability conditions, in addition to Theorem 2 and The-
orem 3 in Section 2.1.2, new sufficient conditions that are specific to simple
hypothesis-testing problems are provided in the following. To that aim, it is first
assumed that Fj(x) for i = 0,1,..., M — 1 and F(x), defined in Section 2.2.1,
are second-order continuously differentiable around x = 0. In addition, similar

to (2.19)-(2.22), the following functions are defined.

O (x,7) £ éz az;;;jc) , (2.48)
fV(x,z) & ézzag—g{) 7 (2.49)
12 (x,2) égzm% : (2.50)
FO(x,2) 2 li‘ilzlz 86;]?8(? , (2.51)
for j =0,1,..., M — 1, where x; and z; represent the ith components of x and

z, respectively.
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Note that the result in Theorem 2 can also be used for simple hypothesis-
testing problems when there exists a unique maximizer ¢ = ¢* of the original
conditional risks, F;(0) = R¥(¢). In the following, more generic improvability
conditions, which cover the cases with multiple maximizers of F;(0) as well, are
obtained for simple hypothesis-testing problems. Let S, denote the set of indices
for which F;(0) achieves the maximum value of o, and let S, represent the set

of indices with F;(0) < «; that is,

So={i€{0,1,....,M—1}| F,(0) = a} (2.52)

So=1{i€{0,1,...,.M -1} | F5(0) < a} . (2.53)

In addition, let S, US, = {0,1,..., M — 1}, meaning that F;(0) = R¥(¢) < «
for i =0,1,...,M — 1. Consider the functions in (2.48)-(2.51), and define set
Fn (n=1,2) as the set that consists of f(™(x,z) and fi(n) (x,z) for i € S, ; that

is,
F= { F(x,2), f™ (x,2) for i € sa} (2.54)

for n = 1,2. Note that F,, has |S,|+1 elements, where |S, | represents the number
of elements in S,. In addition, F,,(j) will be used to refer to the jth element of
Fo. It should be noted that F,(1) = f™(x,z) and F,(j) = £, ,(x,2) for
J=2,...,|8| + 1, where S,(j — 1) is the (j — 1)th element of S,. Finally, the

following sets are introduced to define the set of indices j for which Fi(j) is zero,

negative or positive:

S.={je{l,2,....|S| +1} | Fi(j) =0} , (2.55)
Se=1{j€{1,2,...|Sal +1} | Fi(j) < O} | (2.56)
Sy={je{l,2,...,[Sul +1} | Fi(j) > 0} . (2.57)

Based on the definitions in (2.48)-(2.57), the following theorem provides suf-

ficient conditions for improvability.
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Theorem 5: For simple hypothesis-testing problems, a detector is improvable
according to the restricted Bayes criterion if there exists a K-dimensional vector

z such that the following two conditions are satisfied at x = 0

1. /() <0,Vjes,.
2. One of the following is satisfied:

e |S,|=00r|S,=0.

e |S,| is a positive even number, |S,| > 0, and

min F2(7) H Fi(l) > max Fa2(7) H Fi(l). (2.58)
I=on 1€5,USR\ {5} 7= 1eSpUS\{35}

e |S,| is an odd number, |S,| > 0, and

min 7(j) [[ AO > maxFHG) [ AO. (259

jes jes
v 1€5,US,\{j} " 1€S,USn\ {5}

Proof: Please see Appendix 2.5.4.

Theorem 5 states that whenever the two conditions in the theorem are sat-
isfied, it can be concluded that the detection performance can be improved via
additive independent noise. It should be noted that after defining the sets in
(2.52)-(2.57), it is straightforward to check the conditions stated in the theo-
rem. An example application of Theorem 5 is provided in Section 2.3, where its

practicality and effectiveness are observed.

Finally, another improvability condition is derived as a corollary of Theorem

Corollary 1: Assume that F(x) and Fi(x), 1 =0,1,..., M — 1, are second-
order continuously differentiable around x = 0 and that  max  F;(0) < c.

Let £ denote the gradient of F(x) at x = 0. Then, the detector is improvable

o iff #£0; or,

33



e if F(x) is not convexr around x =0 .

Proof: Please see Appendix 2.5.5.

Although Corollary 1 provides simpler improvability conditions than those
in Theorem 5, the assumption of (0 max 1}Fi(O) < « makes it less practical.
In other words, Corollary 1 assumes 7tﬂz;t, in the absence of additive noise, the
maximum of the original conditional risks is strictly smaller than the upper limit,
a . Since it is usually possible to increase the maximum of the conditional risks

to reduce the Bayes risk, the scenario in Corollary 1 considers a more trivial case

than that in Theorem 5.

2.3 Numerical Results

In this section, a binary hypothesis-testing problem is studied first in order to
provide a practical example of the results presented in the previous sections. The

hypotheses are defined as
Ho : z=v, versus H; : x=A+v, (2.60)

where x € R, A > 0 is a known scalar value, and v is symmetric Gaussian

mixture noise with the following p.d.f.

pv(r) = iwi Vil — ) (2.61)

where w; > 0 fori=1,..., N, Zij\j{wizl, and

i) = — exp(_xQ), (2.62)

V21 o; 207
for i« = 1,..., N,,. Due to the symmetry assumption, pu; = —pun,, —i+1, W; =
wn,,—i+1 and o; = oy, ;41 for i = 1,... | N,/2]. In addition, the detector is
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described by

1, y>A/2
o(y) = : (2.63)
0, y<A/2
where y = x + n, with n representing the additive independent noise term. The

aim is to obtain the optimal p.d.f. for the additive noise based on the optimization

problem in (2.26).

Under the assumption of UCA, (2.60)-(2.63) can be used to calculate Fy(z)
and Fi(x) from (2.30) and (2.31) as

Ena(2)

’L

sz (M—x“‘> , (2.64)

’L

where Q(z) = (1/v2r) [ e~*/2dt denotes the Q-function.

The symmetric Gaussian mixture noise specified above is observed in many
practical scenarios [88]-[90]. One important scenario is multiuser wireless com-
munications, in which the desired signal is corrupted by interference from other
users as well as by zero-mean Gaussian background noise [91]. In other words,
the signal detection example in (2.60) with symmetric Gaussian mixture noise

finds various practical applications.

Since the problem in (2.60) models a signal detection problem in the presence
of noise, we consider two common scenarios in the following simulations. In
the first one, it is assumed that the noise-only hypothesis H, has a higher prior
probability than the signal-plus-noise hypothesis H;. An example of this scenario
is the signal acquisition problem, in which a number of correlation outputs are
compared against a threshold to determine the timing/phase of the signal [92].
In the second scenario, equal prior probabilities are assumed for the hypotheses,

which can be well-suited for binary communications systems that transmit no
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Figure 2.1: Bayes risks of original and noise modified detectors versus o in cases
of equal priors and unequal priors for o = 0.08 and A = 1.

signal for bit 0 and a signal for bit 1 (i.e., on-off keying) [93]. For the first scenario,
it is assumed that the prior probabilities are known, with some uncertainty, to
be equal to mg = 0.9 and m; = 0.1, which is called the unequal priors case in the
following. On the other hand, my = m = 0.5 is considered for the equal priors
case. As mentioned in Section 2.1.1, the restricted Bayes criterion mitigates the
undesired effects due to the uncertainty in prior probabilities via parameter «,
which sets an upper limit on the conditional risks. In the numerical results,
symmetric Gaussian mixture noise with NV, = 4 is considered, where the mean
values of the Gaussian components in the mixture noise in (2.61) are specified as
[0.033 0.52 — 0.52 — 0.033] with corresponding weights of [0.35 0.15 0.15 0.35].
In addition, for all the cases, the variances of the Gaussian components in the

mixture noise are assumed to be the same; i.e., 0; = o fori =1,..., N, in (2.62).
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Figure 2.2: Bayes risks of original and noise modified detectors versus o in cases
of equal priors and unequal priors for « = 0.12 and A = 1.

For the detection problem described above, the optimal additive noise can be
represented by a probability distribution with at most two mass points according
to Theorem 4. Therefore, the optimal additive noise p.d.f. can be calculated as
the solution of the optimization problem in (2.36) for M = 2. In this section, the
PSO algorithm is employed to obtain the optimal solution, since it is based on
simple iterations with low computational complexity and has been successfully
applied to numerous problems in various fields [94]-[97] (please refer to [51]-[54]
for detailed descriptions of the PSO algorithm).”

Figures 2.1, 2.2 and 2.3 illustrate the Bayes risks for the noise modified and

the original (i.e., in the absence of additive noise) detectors for various values

“In the implementation of the PSO algorithm, we employ 50 particles and 1000 iterations.
Also, the other parameters are set to ¢; = ¢o = 2.05 and x = 0.72984, and the inertia weight
w is changed from 1.2 to 0.1 linearly with the iteration number. Please refer to [51] for the
details of the PSO algorithm and the definitions of the parameters.
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Table 2.1: Optimal additive noise p.d.f.s for various values of ¢ for & = 0.08 and

A=1.

o = O.5/7T0 =0.9

o A ny T

0 0.4719/0.5333  -0.1057 /-0.2492  0.0901 / 0.0352
0.03 | 0.4881/0.5333  -0.2420/-0.1995  0.2416 / 0.2982
0.06 | 0.4858/0.5332  -0.2360/-0.2351  0.2360 /0.2370
0.09 | 0.4997/0.5251  -0.2189/-0.2189  0.2189/0.2189
0.117 | 0.5011 /0.5029  -0.1847 /-0.1847  0.1847 /0.1847

of o in the cases of equal and unequal priors for a = 0.08, o = 0.12, @ = 0.4,
respectively, where A = 1 is used.® From the figures, it is observed that as o
decreases, the improvement obtained via additive noise increases. This is mainly
due to the fact that noise enhancements commonly occur when observations have
multimodal p.d.f.s [12], and the multimodal structure is more pronounced for
small ¢’s. In addition, the figures indicate that there is always more improvement
in the unequal priors case than that in the equal priors case, which is expected
since there is more room for noise enhancement in the unequal priors case due to
the asymmetry between the weights of the conditional risks in determining the
Bayes risk. Another important point to note from the figures is that the feasible
ranges of o values are different for different values of a. In other words, for
each a, the constraint on the maximum conditional risks (cf. (2.26)) cannot be
satisfied after a specific value of . This is expected since as o (which determines
the average noise power) exceeds a certain value, it becomes impossible to keep
the conditional risks below the given limit .. Therefore, Figures 2.1, 2.2 and 2.3
are plotted only up to those specific ¢ values. From the figures, it is observed
that those maximum o values are 0.117, 0.31 and 1.93 for a = 0.08, a = 0.12

and a = 0.4, respectively.

8Due to the symmetry of the Gaussian mixture noise, the conditional risks in the absence
of noise, Fy(0) and F3(0), are equal. Therefore, the original Bayes risks are the same for both
the equal and the unequal priors cases.
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Table 2.2: Optimal additive noise p.d.f.s for various values of ¢ for & = 0.12 and

A=1.

o = 0.5/71'() =0.9

o A ny N9

0 0.2553 /0.8 -0.2849 /-0.4063  0.0421 /0.0598
0.08 | 0.4436 /0.2028  -0.2266 /0.2266  0.2266 /-0.2266

0.15 | 0.7492/1 0.0944 /-0.0959  -0.0944 / —
0.23 1/1 0/-0.0693 —/—
0.31 1/1 0/-0.0067 —/—

Table 2.3: Optimal additive noise p.d.f.s for various values of ¢ for @ = 0.4 and
A=1.

T = 0.5/71'0 =09
o A ny Mo
0 |0.6518/0.1170 -0.3578 /-0.0283  -0.2941 /-0.3879
0.5 1/1 0/-0.3549 —/—
1 1/1 0/-0.2366 —/—
1.5 1/1 0/-0.1131 —/—
1.93 1/1 0/-0.0057 —/—

In order to investigate the results in Figures 2.1, 2.2 and 2.3 further, Tables
2.1, 2.2 and 2.3 show the optimal additive noise p.d.f.s for various values of
o in the cases of equal and unequal priors for a = 0.08, @« = 0.12 and o = 0.4
respectively, where A = 1. From Theorem 4, it is known that the optimal additive
noise in this example can be represented by a discrete probability distribution
with at most two mass points, which can be described as py(z) = Ad(x —ny) +
(1 = X)d(x — ng). It is observed from the tables that the optimal additive noise
p.d.f. has two mass points for certain values of o, whereas it has a single mass
point for other ¢’s. Also, in the case of equal priors for « = 0.12 and o = 0.4,
the optimal noise p.d.f.s contain only one mass point at the origin for some
values of ¢, which implies that the detector is nonimprovable in those scenarios.
However, there is always improvement for the unequal priors case, which can be

also verified from Figures 2.1, 2.2 and 2.3.
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Figure 2.5: Improvement ratio versus « in the cases of equal priors and unequal
priors for ¢ = 0.01, 0 = 0.05 and ¢ = 0.1, where A = 1.

Figure 2.4 illustrates the Bayes risks for the original and the noise modified
detectors for various values of A in the cases of equal and unequal priors for
a = 0.08 and ¢ = 0.05. It is noted that the original conditional risks are above
the specified limit o = 0.08 for A < 1.03.? However, after the addition of optimal
noise, the noise modified detectors result in conditional risks that are below the
limit, which is expected since the optimal noise p.d.f.s are obtained from the
solution of the constrained optimization problem in (2.26). Another observation
from Figure 2.4 is that, in the equal priors case, the improvement decreases as A
increases, and there is no improvement after a certain value of A. However, for
the unequal priors case, improvement can be observed over a wider range of A

values, which is expected due to the the same reasons argued for Figures 2.1-2.3.

9For the original detector, the conditional risks are equal; hence, R%(¢) = R¥(¢) = 7%().
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Figure 2.5 illustrates the improvement ratio, defined as the ratio of the Bayes
risks in the absence and presence of additive noise, versus « for the cases of equal
and unequal priors for ¢ = 0.01, 0 = 0.05 and ¢ = 0.1, where A =1 is used. In
the unequal priors case, as « increases, an increase is observed in the improve-
ment ratio up to a certain value of o, and then the improvement ratio becomes
constant. Those critical « values specify the boundaries between the restricted
Bayes and the (unrestricted) Bayes criteria. When « gets larger than those val-
ues, the constraint in (2.26) is no longer active; hence, the problem reduces to
the Bayesian framework. Therefore, further increases in a do not cause any ad-
ditional performance improvements. Similarly, as the value of o decreases, the
restricted Bayes criterion converges to the minimax criterion [29]. The restricted
Bayes criterion achieves its minimum improvement ratio when it becomes equiv-
alent to the minimax criterion, and achieves its maximum improvement ratio
when it is equal to the Bayes criterion. In the case of equal priors, the improve-
ment ratio is constant with respect to «, meaning that the improvement for the
minimax criterion equals to that for the Bayes criterion. Another observation
from the figure is that an increase in o reduces the improvement ratio, and for the
same values of o, there is more improvement in the unequal priors case. Finally,
it should be noted that various values of « in Figure 2.5 correspond to different
amounts of uncertainty in the prior information [42]. As the prior information
gets more accurate, a larger value of « is selected; hence, the constraint on the
conditional risks becomes less strict, meaning that the restricted Bayes criterion
converges to the Bayes criterion after a certain value of a. On the other hand,
as the amount of uncertainty increases, a smaller value of « is selected, and the
restricted Bayes criterion converges to the minimax criterion when o becomes

equal to the minimax risk [40], [42].

Next, the improvability conditions in Theorem 5 are investigated for the
detection example. To that aim, it is first observed that the original con-

ditional risks Fp(0) and Fj(0) are equal to each other for any value of o
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due to the symmetry of the Gaussian mixture noise (cf. (2.64)). Therefore,
F(0) = moFo(0) + m F1(0) = Fy(0) = F1(0). In addition, suppose that the limit
on the conditional risks, «, is set to the original conditional risks for each value
of o, which implies that S, = {0, 1} in (2.52). Also, the first order derivatives of
Fy(x) and Fi(z) at © = 0 can be calculated from (2.64) as

F(0) = —F/(0) = Zj \/;”_M exp (—W) . (2.65)

Similarly, the second order derivatives of Fy(x) and Fi(x) at = 0 are obtained

as

NTYL

R0 = B0 = 30 WO g (LBEZBEY g

For the unequal priors case, the first and second order derivatives of F(z) =
ToFy(z) + m Fi(x) at © = 0 can be expressed as F'(0) = 0.8, (0) and F"(0) =

F;(0). From (2.65), it is noted that Fy (0) > 0 and F,(0) < 0; hence, F'(0) > 0
as well. Then, from (2.48)-(2.51), set F,, in (2.54) can be expressed, at z = 0, as

Fi = {0.82F, (0), zF, (0), —zF, (0)} ,

Fy = {22F} (0),22F} (0). 2 F3 (0)} . (2.67)

Therefore, (2.55)-(2.57) imply that, at z =0, S, =0, S, = {3} and S, = {1, 2}
for 2> 0and S, =0, S, = {1,2}, and S, = {3} for z < 0.!° Since S, = 0, the
first condition in Theorem 5 is automatically satisfied. For z > 0, |S,| = 1 and

|Sp| = 2; hence, the third bullet of the second condition implies that

is required for improvability. For z < 0, |S,,| = 2 and |S,| = 1; hence, the second
bullet of the second condition becomes active, which can be shown to yield the

same condition as in (2.68). From (2.67), the improvability condition in (2.68)

ONote that S, = {1,2,3} for z = 0, in which case the first condition in Theorem 5 cannot
satisfied since F5 = {0,0,0}. Therefore, z = 0 is not considered in obtaining improvability
conditions.
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can be expressed more explicitly as

’

min {—z‘lF(;’(O) (FO'(0)>2 . —0.821E(0) (FO (0))2} > 0.824F (0) (FO (0))2 ,
(2.69)

which is satisfied when Fj(0) < 0. Therefore, the detector is improv-
able whenever the expression in (2.66) is negative. For the equal priors
case, F1 and F, in (2.67) become F; = {0,zF,(0),—2F,(0)} and F, =
{22F,(0), 22 F, (0), 22F, (0)}, respectively. Therefore, the first improvability con-
dition in Theorem 5 requires that Fj (0) < 0, whereas the third bullet of
the second condition requires that F2(2)Fi(3) > F2(3)Fi(2) for z > 0 and
Fa(3)F1(2) > Fo(2)F1(3) for z < 0. However, it can be shown that the con-
ditions in the third bullet are always satisfied when F, (0) < 0. Therefore,
the same improvability condition is obtained for the equal priors case, as well.
Figure 2.6 illustrates [, (0) versus o for various values of A, where o represents
the standard deviation of the Gaussian mixture noise components (o; = o, Vi
in (2.62)). It is observed that the detector performance can be improved for
A =1if o € [0.005,0.1597], for A = 0.9 if o € [0.01,0.1686], and for A = 0.8
if o € [0.02,0.161]. On the other hand, the calculations show that the detector
is actually improvable for A = 1 if ¢ < 0.16, for A = 0.9 if ¢ < 0.17, and for
A =0.8if 0 <0.161. Hence, the results reveal that the proposed improvability
conditions are sufficient but not necessary, and that they are quite effective in
determining the range of parameters for which the detector performance can be

improved.!*

Next, the improvability conditions based on Theorem 3 are considered. For
the binary hypothesis-testing example in this section, H(¢) in (2.23) becomes
H(t) = inf {moFo(n) + m Fi(n) | max{Fy(n), Fi(n)} =t, n € R}. From (2.64),
it can be shown that Fy(n) and Fj(n) are monotone increasing and decreasing

functions, respectively. In addition, due to the symmetry of the Gaussian mixture

UTn fact, F(;/ (0) can be shown to be negative even for smaller o values than specified above;
however, very small negative values are computed as zero due to the accuracy limitations.
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Figure 2.6: The second order derivative of Fy(z) at x = 0 versus o for various
values of A. Both Theorem 5 and Theorem 3 imply for the detection example
in this section that the detector is improvable whenever F} (0) is negative. The
limit on the conditional risks, «, is set to the original conditional risks for each
value of 0. The graph for A =1 is scaled by 0.1 to make view of the figure more
convenient (since only the signs of the graphs are important).
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noise, Fy(n) = Fy(—n), ¥Yn. Therefore, without loss of generality, H(t) can be
expressed as H(t) = mot + m Fy (F, '(t)). Then, the second derivative of H(t)

can be obtained as

H”(t) = F(;/(FO_I(t)) — Fll(F()_l<t>>F(;/(F(Q]_l(t))/FO/(FO_l(t)) ) (27())

(Fo (Fy (1))

In order to evaluate the condition in Theorem 5, it is first observed that t = & =

max{ Fy(0), F1(0)} = Fy(0), since Fy(0) = F1(0) (cf. (2.64)). Then, H" (&) < 0
implies that F| (0)—F, (0)F, (0)/F, (0) < 0 for any m;. Since F}, (0) = F} (0) from
(2.66), and Fy (0) > 0 and F,(0) < 0 from (2.65), that improvability condition
reduces to I}, (0) < 0, which is the same condition obtained from Theorem 5.
Therefore, for this specific example, the improvability conditions in Theorem 3
and Theorem 5 are equivalent (cf. Figure 2.6). However, it should be noted that

the two conditions are not equivalent in general, and the calculation of H(¢) can

be difficult in the absence of monotonicity properties related to Fy and Fj.

Finally, another example is studied in order to investigate the theoretical
results on a 4-ary hypothesis-testing problem in the presence of observation noise

that is a mixture of non-Gaussian components. The hypotheses Hg, H1, Ho and

Hs are defined as

Ho @ = —3VA+v ,

Hy = —\/Z +v,

Hy : v=VA+v,

Hs : z=3VA+v, (2.71)
where z € R, A > 0 is a known scalar value, and v is zero-mean observation

noise that is a mixture of Rayleigh distributed components; that is, py(z) =

Zf\;ﬁ w; Yi(x — p;), where w; > 0 for i =1,..., Ny, Zfiﬁ w; = 1, and

—5 exp <579f> , x>0
wl(x) = g v 5 (272)

0, z <0
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Figure 2.7: Bayes risks of original and noise modified detectors versus o for
a=04and A=1.

fori =1,..., Np,. In the numerical results, the same variance is considered for all

the Rayleigh components, meaning that o; = o, Vi. In addition, the parameters

are selected as N, =4, 1 = 0.2, puo =1, p3 = —20\/§— 0.2, py = —20\/§— 1,

w; = wsy = 0.3 and wy = wy = 0.2.'2 In addition, the detector is described by

y<—2\/z

—21/A < y <0
(2.73)

0<y§2\/z

2\/Z<y

where y = x + n, with n representing the additive independent noise term.

12Tt should be noted that the dependence of the means on ¢ is necessary in order to keep
the noise zero-mean, since the Rayleigh distribution is specified by a single parameter, o.
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Table 2.4: Optimal additive noise p.d.f.s for various values of o for a = 0.4 and

A=1.

o )\1 )\2 /\3 )\4
0.05 | 0.1654 0.1218 0.3552 0.3576
0.15 | 0.2232 0.7768 0 0
0.25 1 0 0 0

o n, N9 ns Ty

0.05 | -0.4916 0.2175 0.2652 -0.5331
0.15 | -0.4288 0.3661 — —
0.25 | -0.2819 — — —

For equal prior probabilities and UCA, Figure 2.7 illustrates the Bayes risk
versus ¢ when A = 1 and a« = 0.4. It is observed that the additive noise
can significantly improve the detector performance (equivalently, it reduces the
average probability of error of a communications system) for small values of o. In
addition, for the scenario in Figure 2.7, Table 2.4 illustrates the optimal additive
noise p.d.f.s for various values of o. In accordance with Theorem 4, the optimal
noise can have up to four non-zero mass points in this problem. Furthermore,
for o = 0.05, Figure 2.8 plots the Bayes risk versus A for the original and noise

modified detectors. A significant improvement is observed for A € [0.5,1].

2.4 Concluding Remarks

In this chapter, noise enhanced hypothesis-testing has been studied in the re-
stricted Bayesian framework. First, the most generic formulation of the problem
has been considered based on M-ary composite hypothesis-testing, and sufficient
conditions for improvability and nonimprovability of detection via additive inde-
pendent noise have been derived. In addition, an approximate formulation of the
optimal noise p.d.f. has been presented. Then, simple hypothesis-testing prob-
lems have been studied and additional improvability conditions that are specific

to simple hypotheses have been obtained. Also, the optimal noise p.d.f. has
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been shown to include at most M mass points for M-ary simple hypothesis-
testing problems under certain conditions. Then, various approaches to solving
for the optimal noise p.d.f. have been considered, including global optimization
techniques, such as the PSO, and a convex relaxation technique. Finally, two de-
tection examples have been studied to illustrate the practicality of the theoretical

results.

2.5 Appendices

2.5.1 Proof of Theorem 2

A detector is improvable if there exists a mnoise p.d.f. pn(n) that satis-
fies E{F(N)} < F(0) and IglaK(E{Fg(N)} < «, which can be expressed as
€
Jax Pn(n) F(n)dn < F(0) and [, pn(n) Fy(n)dn < o, V6 € A. For a noise
p.d.f. having L infinitesimally small noise components, pn(n) = Zle Ajo(n —
€;), these conditions become
L L
D N F(g) <F(0), Y NFye)<a,VoecA. (2.74)
j=1 j=1
Since the €;’s are infinitesimally small, F'(¢;) and Fy(€;) can be approximated
by using the Taylor series expansion as F(0) + €] f + 0.5 €, He; and Fy(0) +
e]ng + 0.5 GJTng]- respectively, where H and f (Hy and fy) are the Hessian and
the gradient of F/(x) (Fyp(x)) at x = 0, respectively. Therefore, (2.74) requires
that
L L
Z)\jﬁ?HEj +2Z)\]€ff <0 s
j=1

j=1

L L
> Nj€e[Hpe; +2) Nelfy<2(a—Fy0) , VOEA. (2.75)
j=1

J=1

Lete; = pjzforj=1,2,..., L, where p; for j = 1,2,..., L are infinitesimally

small real numbers, and z is a K-dimensional real vector. Then, based on the
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function definitions in (2.19)-(2.22), the conditions in (2.75) can be simplified,

after some manipulation, as

(fP(x2) +c fV(x,2))
(fe(Q) (x,2z) + cfe(l)(x, z))

W< 0, (2.76)
2 (a — F5(0))
x=0 Zf:1 Aj P?

where ¢ £ 2 Zle Aj Pj/ Zf:l Aj ,0? :

VO e A, (2.77)

Since oo = Fp«(0) and o > en}\z@( Fy(0), the right-hand-side of (2.77) goes to
E *

infinity for § # 0*. Hence, we should consider only the § = 6* case. Thus, (2.76)

and (2.77) can be expressed as

(f(Q)(x, z) + cf(l)(x,z)) ‘ <0, (2.78)

x=0
( 9(3) (x,2) + cfﬁ)(x, z))

<0. (2.79)

x=0

It is noted that ¢ can take any real value by definition via selection of appropriate
A; and infinitesimally small p; values for ¢ =1,2,..., L. Therefore, for the first
part of the theorem, under the condition of fe(i)(x7 z)fV(x,z) > 0 at x = 0,
which states that the second term in (2.78) has the same sign as the second
term in (2.79), there always exists ¢ that satisfies the improvability conditions in
(2.78) and (2.79). For the second part of the theorem, since fM(x,z) > 0 and
fe(i)(x,z) < 0at x =0, (2.78) and (2.79) can also be expressed as

(f(Q) (x, z)fé*l) (x,2) + ¢ f(l)(x, z)fg(*l) (x, z))
(1262 Vx2) + e 1 (x,2) [0 (x,2))

>0 2.80
0 (2.80)

<0. (2.81)

x=0

Under the condition of £ (x,z) éf) (x,2) > f(,(f) (x,2)fV(x,2) at x = 0, which
states that the first term in (2.80) is larger than the first term in (2.81), there

always exists ¢ that satisfies the improvability conditions in (2.80) and (2.81).
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2.5.2 Proof of Theorem 3

Since H" (&) < 0 and H(t) in (2.23) is second-order continuously differentiable
around ¢t = @&, there exist € > 0, n; and ny such that max Fy(ny) = &+ € and
max Fy(ng) = & — €. Then, it is proven in the following that an additive noise
component with pn(n) = 0.56(x — ny) + 0.50(x — ng) improves the detector
performance under the conditional risk constraint. First, the maximum value of

the conditional risks in the presence of additive noise is shown not to exceed a:

max E{Fy(N)} <E {rgleaii FQ(N)} =05(ad+¢)+05a—¢)=a<a. (2.82)

Then, the decrease in the Bayes risk is proven as follows. Due to the assumptions
in the theorem, H(t) is concave in an interval around ¢t = &. Since E{F(N)}
can attain the value of 0.5 H (& +€) 4+ 0.5 H(& — €), which is always smaller than
H(&) due to concavity, it is concluded that E{F(N)} < H(&). As H(a) < F(0)
by definition of H(t) in (2.23), E{F(N)} < F(0) is satisfied; hence, the detector

is improvable.

2.5.3 Maximum Conditional Risk Achieved by Optimal

Noise

Consider the case in which ¢, = arg mtin H(t) > a. In order to prove that
“ max R} (¢) = a for the optimal noise” by contradiction, first assume that the
€
optimal solution of (2.12) is given by pg(x) with g = max RY(¢) < . As in the
€

proof of Theorem 4 in [12], we define another noise N with the following p.d.f.:

:;__% 5(n—mny) + i:—:gm(n) , (2.83)

pn(n) =

where n,, is the noise component that results in the minimum Bayes risk; that
is, F(ny,) = Fm, and t, is the maximum value of the conditional risks when
noise ny, is employed; that is, ¢, = max Fp(ny,) .

0eA
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For the noise p.d.f. in (2.83), the Bayes risk and conditional risks can be

calculated as

P6) =BFN) = £ ) + 25056 (28
R(0) = (RN} = £ Fona) + =G Ri0) . (289)

for all @ € A. Since F(n,,) < r¥(¢), (2.84) implies 7Y(¢) < r¥(¢). On the other
hand, as Fy(n,) < t, and Rg((b) < B, R¥(¢) < « is obtained. Therefore, N
cannot be an optimal solution, which implies a contradiction. In other words,

any noise p.d.f. that satisfies max R} (¢) < @ cannot be optimal.
S

2.5.4 Proof of Theorem 5

Theorem 4 states that the optimal additive noise can be represented by a discrete
probability distribution with at most M mass points. Therefore, a detector is
improvable if there exists a noise p.d.f. px(n) = 217, \;d(n — n;) that satisfies
E{F(N)} < F(0) and eolnax, E{F;(N)} < a, which can be expressed as

77777

Z)\l F(n;) < F(0) , max Z)\lFi(nl) <a. (2.86)

i€{0,1,..., M~1} “—

As in the proof of Theorem 2 in Appendix 2.5.1, consider the improvability
conditions in (2.86) with infinitesimally small noise components, n; = €, = p;z
for | =1,2,..., M, where p;’s are infinitesimally small real numbers, and z is a
K-dimensional real vector. Then, similar manipulations to those in Appendix A

(cf. (2.75)-(2.77)) can be performed to obtain

(FD(x,2) + ¢ fO(x,2))
(12 +cfV(x2))

o <0, (2.87)
2 (a — Fi(0))
_ < M 2
x=0 2]:1 )‘j P;

forizO,l,...,M—l,WherecéQZjNil)\jpj/ij\il)\jp?.

, (2.88)
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Since F;(0) < «, Vi € S,, the right-hand-side of (2.88) goes to infinity for
i € S,. Hence, one can consider i € S, only. Thus, (2.87) and (2.88) can be

expressed as
(fP(x,2) + e [V(x,2))
(fi(2) (x,z) + Cfi(l)(xa Z))

<0, (2.89)

x=0

<0,Vi€eS, . (2.90)

x=0

Based on the definition in (2.54), (2.89) and (2.90) can be restated as

(F) + e A())

<0 for j=1,2,...,|S.| +1. (2.91)
0

It is noted that ¢ can take any real value by selecting appropriate \; and in-
finitesimally small p; values for i =0, 1,..., M — 1. From (2.55), it is concluded

that in order for the conditions in (2.91) to hold,
F2() | 4o <0 (2.92)

must be satisfied Vj € &, , which is the first condition in Theorem 5.

In addition to (2.92), one of the following conditions should be satisfied for

the improvability conditions in (2.91) to hold:

e When |S,| = 0or|S,| =0, as stated in the first part of the second condition
in Theorem 5, all the second terms in (2.91) (namely, Fi(1),..., Fi(|Sa| +
1)) are either all non-negative or all non-positive. Therefore, there always
exists a ¢ that satisfies the improvability conditions in (2.91) when the first

condition in Theorem 5 (cf. (2.92)) is satisfied.

e When |S,| is a positive even number and |S,| > 0, (2.91) can be expressed,

after some manipulation, as

Falg)| _ <0 VIES:, (2.93)

(o) II AO+c [T A7) <o.vies,, (o)
1€5,US\ {5} 1€5,USn x=0

<f2(J) H Fi(l) +¢ H f1(l)> >0,V €S,. (2.95)
15,080\ {7} 1€5,USn x=0
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Note that (2.94) and (2.95) are obtained by multiplying (2.91) by
[T F(), which is a positive (negative) quantity when j € S,

1eSpUS\{j}

(j € S,) since |S,| is even. The condition in (2.93) is satisfied due to the

first condition in Theorem 5. In addition, under the condition in (2.58),

there always exists a ¢ that satisfies the improvability conditions in (2.94)

and (2.95).

e When |S,| is an odd number and |S,| > 0, (2.91) can be expressed by three
conditions as in (2.93)-(2.95) with the only difference being that the signs
of the inequalities in (2.94) and (2.95) are switched. In that case, the first
condition (cf. (2.93)) is satisfied due to the first condition in Theorem 5.
Also, under the condition in (2.59), there always exists a ¢ that satisfies

the second and third conditions.

2.5.5 Proof of Corollary 1

Consider the proof of Theorem 5 above. Since a > . max }E-(O), the right-
ie{0,1,...M~1
hand-side of (2.88) becomes infinity for any i. Therefore, we can consider the

condition in (2.87) only; that is,

(f?(x,2) +c fP(x,2))

<0. (2.96)

x=0

In terms of the gradient f and the Hessian H of F'(x) at x = 0, (2.96) becomes
z'Hz + cz”'f < 0. Since ¢ can take any real value by definition (cf. Appendix
2.5.4) and z can be chosen arbitrarily small, the improvability condition can
always be satisfied if f # 0. On the other hand, if f = 0, then the improvability
condition becomes z'Hz < 0. If F(x) is not convex around x = 0, H is not
positive semidefinite. Therefore, there exists z such that z' Hz < 0 is satisfied;

hence, the detector is improvable.
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Chapter 3

Noise Enhanced M-ary
Composite Hypothesis-Testing in
the Presence of Partial Prior

Information

This chapter is organized as follows. Section 3.1 introduces M-ary compos-
ite hypothesis-testing problems under partial prior information, and defines two
criteria for the calculation of optimal additive noise. Investigations of optimal
additive noise and improvability conditions for those criteria are provided in
Sections 3.2 and 3.3. In Section 3.4, the cases of unknown parameter distribu-
tions for some composite hypotheses are studied, and upper bounds on the risks
are provided. Finally, a detection example is studied in Section 3.5 in order to

investigate the theoretical results.
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Y ®(-) — Decision

1
T
n

Figure 3.1: Independent noise n is added to observation x in order to improve
the performance of the detector, represented by ¢(-).

3.1 Problem Formulation

Consider the following M-ary composite hypothesis-testing problem:
Hi : py(x),0€h,, i=0/1,....M—1, (3.1)

where H; denotes the ith hypothesis and pj (x) represents the probability den-
sity function (p.d.f.) of observation X for a given value of © = . Each
observation (measurement) x is a vector with K components; ie., x € RE,
and Ag,Aq,...,Ay_1 form a partition of the parameter space A. The distri-
bution of the unknown parameter © for hypothesis i is represented by w; () for
1=20,1,..., M —1. In addition, the prior probability of hypothesis H; is denoted
by m; for i = 0,1,..., M — 1. Composite hypothesis-testing problems as in (3.1)
are encountered in various problems, such as in non-coherent communications
receivers, pattern recognition, and time series analysis [40], [98]. Note that when
A;’s consist of single elements, the problem reduces to a simple hypothesis-testing

problem.

A generic decision rule (detector) can be defined as
o(x)=1, if xeTly, (3.2)

for ¢ =0,1,...,M — 1, where ['p,I'1,...,I"y;_1 form a partition of the obser-
vation space I'. As shown in Figure 3.1, the aim is to add noise to the original
observation x (which commonly consists of a signal component and measurement

noise) in order to improve the performance of the detector according to certain
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criteria [80]. By adding noise n to the original observation x, the modified ob-
servation is formed as y = x + n, where n has a p.d.f. denoted by pn(-), and
is independent of x. It should be noted that the additive noise can cause both
positive and negative shifts in the observations [23], [29]. As in [12] and [23], it
is assumed that the detector ¢, described by (3.2), is fixed, and the only means
for improving the performance of the detector is to optimize the additive noise

n.

When all the prior probabilities 7, 71, ..., 71 of the hypotheses in (3.1)
are known, the Bayesian approach can be taken, and the optimal additive noise
that minimizes the Bayes risk can be sought for. This problem is studied in [23]
for simple hypothesis-testing problems under uniform cost assignment (UCA).
On the other hand, when none of the prior probabilities are known, the minimax
approach can be taken to obtain the optimal additive noise that minimizes the
maximum conditional risk, which is investigated in [29] for simple hypothesis-
testing problems. In this chapter, we focus on a more generic scenario by consid-
ering both composite hypotheses and partial prior information, meaning that the
prior probabilities of some hypotheses and the probability distributions of the
unknown parameters under some hypotheses may be unknown. Such a gener-
alization can be important in practice since composite hypothesis-testing prob-
lems are encountered in many applications, and the prior information may not

be available for all hypotheses (see Section 3.5 for an example).

In order to introduce a generic problem formulation, define sets Sy, ..., g
that form a partition of set {0, 1,..., M —1}. Suppose that the prior probability
m; of H; is known if ¢ € &7 and it is unknown otherwise, and assume that the size
of set &1 is M — N,. In other words, S; corresponds to M — N, hypotheses with
known prior probabilities. In addition, assume that the hypotheses with unknown
prior probabilities are grouped into sets S, ..., g in such a way that the sum

of the prior probabilities of the hypotheses in set S; is known for j = 2,...,G.
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If no such information is available, then G = 2 can be employed; that is, all the

hypotheses with unknown probabilities can be grouped together into S,.

In order to define the optimal additive noise, we consider the following two

criteria:

Criterion 1: For all the hypotheses with unknown prior probabilities, assume
uniform distribution of the prior probability in each group S; for j = 2,...,G,
and the define the corresponding Bayes risk as

G~
ri(¢) =Y mRi(¢) + ﬁ > Ri(9) (3.3)
i€S1 j=2 "Il ies;
where R;(¢) is the conditional risk of decision rule ¢ when hypothesis i is true
[40], |S;| denotes the number of elements in set S;, and 7; = >, s, T defines
the sum of the prior probabilities of the hypotheses in §; for 7 = 2,...,G.
According to Criterion 1, the optimal additive noise is defined as pﬁ)t(n) =
arg m%n) r1(¢), where 11(¢) is given by (3.3). It should be noted that assuming
pPN(n

uniform distribution for the unknown priors is a very popular classical approach

[99).

Criterion 2: For the hypotheses with unknown prior probabilities, the least-
favorable distribution of the priors is considered in each group, and the corre-
sponding risk is defined as

a
ro(¢) = zGZSI miRi(o) + JZQ T I}é%f Ri(¢) - (3.4)
In other words, a conservative approach is taken in Criterion 2, and the worst-
case Bayes risk is considered as the performance metric. Such an approach can be
considered in the framework of [-minimax decision rules [59]. According to Cri-

terion 2, the optimal additive noise is calculated from p¥‘(n) = arg m%n) ro(9).
PN

In Section 3.2 and Section 3.3, the optimal additive noise will be investigated
when the probability distributions of the unknown parameters are known under

all hypotheses (the prior probabilities can still be unknown). Then, in Section
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3.4, the results will be extended to the cases in which the probability distributions

of the unknown parameters are unknown under some hypotheses.

3.2 Optimal Additive Noise According to Cri-

terion 1

According to Criterion 1, the optimal additive noise is calculated from

pR¥'(n) = arg min Zm ; Z ZR . (3.5)

P (n) | ]‘ i€S;

Since R;(¢) is the conditional risk for hypotheses i, it can be expressed as

Ri() = /A Ro()wi(0) df . (3.6)

where Ry(¢) denotes the conditional risk that is defined as the average cost of
decision rule ¢ for a given § € A [40]. The conditional risk can be calculated

from

Ro(6) = BE{C[6(Y), 0] |© = 0} = / Wy, (37

where p} (y) is the p.d.f. of the noise modified observation for a given value of

© =6, and C[j,0] > 0 is the cost of deciding H; when © = 6, for § € A [40].

Since the additive noise is independent of the original observation, p} (y) =
Jex P (y —n) pn(n) dn. Then, the expression in (3.6) for the conditional risk of

hypotheses ¢ can be manipulated from (3.7) as follows:

Rito) = [ [ [ Clow).6155 (5 — ) () wi(6) i dy do
= [ o) | [ [ Cto). o v ) w6) dy a0] an

a / () fi(m) dn = B{A(N)} (38)
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where

s / / Cloly), 0] i (y — ) wy(0) dy db . (3.9)

Note that f;(n) > 0 Vn since the cost function is non-negative by definition; that
is, C[4,0] > 0.

Based on (3.8), the optimization problem in (3.5) can be expressed as

> f(N)

€S | J | i€S;

£ arg min E{f(N)} , (3.10)

pN(n)

where f(n) is defined as f(n) £ Y, g mfi(n) + Z] 5 |S ‘ ZZGS fi(n). From

(3.10), the optimal noise p.d.f. can be obtained by assigning all the probability

P (n) = arg min B¢ > fi(N) Z

pN(n)

to the minimizer of f(n); i.e.,
p¥'(n) = 6(n—ngy) , mny = arg min f(n) . (3.11)

In other words, the optimal additive noise according to Criterion 1 can be ex-
pressed as a constant corresponding to the minimum value of f(n). Of course,
when f(n) has multiple minima, then the optimal noise p.d.f. can be repre-
sented as pr'(n) = Zle Aid(n — ng;), for any )\; > 0 such that ZL Ai =1,
where ngy, ..., n,; represent the values corresponding to the minimum values of

f(n).

The main implication of the result in (3.11) is that among all p.d.f.s for the
additive independent noise IN, the ones that assign all the probability to a single
noise value can be used as the optimal additive signal components in Figure 3.1.
In other words, in this scenario, addition of independent noise to observations

corresponds to shifting the decision region of the detector.

Based on the expressions in (3.10), a detector is called improvable according
to Criterion 1 if there exists noise N that satisfies E{f(IN)} < f(0), where f(0)

represents the Bayes risk in (3.3) in the absence of additive noise. For example,
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if there exists a noise component n, that satisfies f(n,) < f(0), the detector
can be classified as an improvable one according to Criterion 1. In the following,
sufficient conditions are provided to determine the improvability of a detector

without actually solving the optimization problem in (3.11).

Proposition 1: Assume that f(x) in (3.10) is second-order continuously
differentiable around x = 0. Let f denote the gradient of f(x) at x = 0. Then,
the detector is improvable

o iff £0; or,

o if f(x) is strictly concave at x =0 .

Proof: Please see Appendix 3.6.1.

Although Proposition 1 may not be very crucial for scalar observations (since
it can be easy to find the optimal solution from (3.11) directly), it can be useful
for vector observations by providing simple sufficient conditions to check if the

detector can be improved via additive noise.

3.3 Optimal Additive Noise According to Cri-

terion 2

According to Criterion 2, the optimal additive noise is calculated from

G
p’(n) = arg min {Z miRi(¢) + Zﬁj max Rz(¢)} , (3.12)
j=2 !

p(n) 1€S]

which can also be expressed as

G
PN (n) = arg m%n) {Z miRi(¢) + rglaéxZﬁj sz(¢)} ; (3.13)
pN(n S =2

IS
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where I £ [l --- Ig], and S £ S, x - x Sg is the Cartesian product of sets

Sa, ..., 8.

From (3.8), the optimization problem in (3.13) can be stated as

G
P! (n) = arg min max E {Z mifi(N) + Z 7T flj(N)}

pn(n) 1e8 ‘s,

£ arg min max E{f;(N)} , (3.14)

pN(n) €S
where f;(-) and f;,(-) are as defined in (3.9), and fi(N) £ 3. o m fi(N) +
Z]-ng 7 fi,(N).

Although the optimization problem in (3.14) seems quite difficult to solve in
general, the following proposition states that the optimization can be performed
over a significantly reduced space as the optimal solution can be characterized
by a discrete probability distribution under certain conditions. To that aim,
assume that all possible additive noise values satisty a < n < b for any finite a
and b; that is, n; € [a;,b;] for j = 1,..., K, which is a reasonable assumption
since additive noise cannot have infinitely large amplitudes in practice. Then,

the following proposition states the discrete nature of the optimal additive noise.

Proposition 2: If fi(-) in (3.14) are continuous functions, the p.d.f. of

optimal additive noise can be expressed as

S|

pn(m) =) A dn—ny), (3.15)

j=1
where |S| denotes the number of elements in set S (equivalently, |S| =

1So| - |Sa] ), with 315 N =1 and Ay > 0 for j =1,2,...,|3].

Proof: The proof is omitted since the result can be proven similarly to [12],
[29]. The assumption @ < n =< b is used to guarantee the existence of the optimal

solution [29]. O

Proposition 2 implies that optimal additive noise can be represented by a

randomization of no more than |S| different signal levels. Therefore, the solution
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of the optimization problem in (3.14) can be obtained from the following:
IS

min  max Z)\j fi(ny)
j=1

{mj A1) 1€8

S|
subject to Z)\jzl, A >0, jzl,...,\S\. (3.16)

j=1
Although (3.16) is significantly simpler than (3.14), it can still be a non-
convex optimization problem. Therefore, global optimization techniques, such
as particle-swarm optimization (PSO) [51], genetic algorithms, and differential
evolution [82] can be employed to obtain the optimal additive noise p.d.f.. Alter-
natively, a convex relaxation approach can be taken as in [29] in order to obtain

an approximate solution.

3.4 Unknown Parameter Distributions for Some

Hypotheses

In the previous formulations, it is assumed that the distribution of the unknown
parameter for hypothesis i, denoted by w;(#), is known for i = 0,1,..., M —1 (see
(3.6)).! If this information is not available for certain hypotheses, an approach
similar to that in [63] can be taken, and the conditional risks for those hypotheses
can be defined as the worst-case conditional risks; that is, R;(¢) = sup Re(¢),
where Ry(¢) is as in (3.7). In other words, for hypotheses with unknoav&efﬁiparam—
eter distributions, the maximum conditional risk is set by taking a conservative

approach. On the other hand, for hypotheses with known parameter distribu-

tions, the average conditional risk in (3.6) can still be obtained. Therefore, the

!Note that this assumption is not needed for simple hypotheses since there is only one
possible parameter value.
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definition of R;(¢) can be extended as

[y Ro(@)w;(0)do , if w;(f) is known
Ri(¢) = : (3.17)
sup Ry(9) , if w;(0) is unknown
0cA;
fori =0,1,...,M — 1. Then, Criterion 1 in (3.3) and Criterion 2 in (3.4) can

still be used in evaluating the performance of detectors.

Remark: Instead of considering the worst-case conditional risks as in (3.17),
another approach is to assume a uniform distribution of parameter 6 over A;
when w;(€) is unknown. In that case, all the results in Section 3.2 and Section

3.3 are still valid. Hence, we focus on the approach in (3.17) in this section.

When the parameter distributions for some hypotheses are unknown and
the extended definition of R;(¢) in (3.17) is used, the discrete structures of the
probability distributions of optimal additive noise (see (3.11) and Proposition
2) may not be guaranteed anymore. In other words, the optimal additive noise
may also have continuous probability distributions in that scenario. Therefore,
in order to obtain the (approximate) p.d.f. of the optimal additive noise, the
approach in [50] can be taken in order to search over possible p.d.f.s in the form
of pn(n) = >, G¢¥(n — ny), where > 0, >, = 1, and ¢(-) is a window
function that satisfies ¢;(x) > 0, ¥x and [ ¢y(x)dx = 1, V.

Since the computational complexity of searching over possible additive noise
p.d.f.s in the form of py(n) = >, G¥(n — n;) can be high in some cases, it
becomes important to specify theoretical upper bounds on r1(¢) in (3.3) and
ro(¢) in (3.4) (with R;(¢) being given by (3.17)), which can be achieved under

certain scenarios. The following lemma presents such upper bounds.
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Lemma 1: When the conditional risk R;(¢) is defined as in (3.17), r1(¢) in
(3.3) and ro(¢) in (3.4) are upper bounded as follows:

r(9) <ELY mfiN +Z i 3 AN (3.18)

€S | J| i€S;

T2(¢) Sma?(E{Zﬂ—zfz +Z7r] fl } (319)
les 1€ST
for any additive noise p.d.f. pn(-), where
. fi(n), if w;(#) is known
fi(n) £ . (3.20)
sup [ Clo(y).0)py (y —n)dy , if w;(6) is unknown
oel;

Proof: The conditional risk in (3.7) can be expressed as

_ / / Cloy), 617 (y — m) pr(m) dndly

which is equal to

Ra(0) = E{ [ Clo). 015 (v - Nty |

Based on this expression, R;(¢) in (3.17) becomes equal to

E{fi(N)}, if w;(0) is known
Ri(¢) = . (3.21)
sup E{[.Clé(y),0pi(y —N)dy} , if w;(f) is unknown

where f;(IN) is as in (3.9). When the expression in (3.21) is inserted into (3.3),
and the fact that

SUPE{/FC[QS(Y%H]P?(Y—N) dy} < E{sup/C[cb(Y),@]p‘é((y—N) dy}

0e; 0eA; JT
(3.22)

is employed, it can be shown that r(¢) is upper bounded as in (3.18) and (3.20).
Similarly, the expression in (3.13) can be manipulated to obtain the upper bound

specified by (3.19) and (3.20). O
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Note that when all the w;(#)’s are known, the terms on the right-hand-sides
of (3.18) and (3.19) reduce to the objective functions in the minimization prob-
lems in (3.10) and (3.14), respectively. Therefore, they become equal to r1(¢)
and 75(¢), respectively (since pR*(n) = argprlilgg) r1(¢) in (3.10) and p¥'(n) =
argprlilgl) r2(¢) in (3.14) by definition); hence the upper bounds in Lemma 1 are
achieved. Also, in the absence of additive noise (that is, pn(n) = d(n) and
Y = X), (3.3), (3.4), (3.20) and (3.21) can be used to show that the upper
bounds in (3.18) and (3.19) are achieved again. Specifically, in the absence of

noise, the expectation operators are removed and ﬁ(N) terms are replaced by

fi(0) terms for the upper bounds in (3.18) and (3.19). Also, R;(¢) in (3.21)
becomes equal to f;(0) in the absence of noise (see (3.20)). Therefore, the def-
initions of 71(¢) in (3.3) and r9(¢) in (3.4) can be used to show that the upper
bounds are achieved in this scenario. In addition, it can be shown that any addi-
tive noise component that improves (i.e., reduces) the upper bounds on r1(¢) or
ro(¢) with respect to the case without additive noise also improves the detector
performance over the noiseless case according to Criterion 1 or Criterion 2, re-
spectively. In order to verify this claim, let 77 (¢) and 2 (¢) denote, respectively,
the performance metrics r1(¢) and r2(¢) when no additive noise is employed. As
stated before, the upper bounds are achieved in the absence of additive noise
(that is, r{*(¢) and 735 (4) are equal to the corresponding upper bounds in the
absence of additive noise). Next, suppose that noise with p.d.f. pl(\ll) (n) or pl@ (n)
is added to the original observation x, which results in a reduction of the cor-
responding upper bound; that is, the upper bounds become strictly less than
r¥(4) and ry (¢), respectively. On the other hand, since r1(¢) and ro(¢) are
always smaller than or equal to the specified upper bounds due to Lemma 1,
they also become strictly less than 77 (¢) and r: (¢)), respectively. Hence, the de-
tector performance is improved via additive noise specified by pl(\lr) (n) and pl(i) (n)
according to Criterion 1 and Criterion 2, respectively, relative to the case with-

out additive noise. Therefore, if an additive noise component reduces the upper
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bound in (3.18) (in (3.19)) compared to the case without additive noise, it also
improves the detection performance according to Criterion 1 (Criterion 2) over

the noiseless case.

The additive noise components that minimize the upper bounds in (3.18)
and (3.19) can be represented by discrete probability distributions as specified
by (3.11) and Proposition 2 since the upper bounds are in the same form as the
objective functions in the minimization problems in (3.10) and (3.14). Specifi-
cally, the p.d.f. that minimizes the upper bound on r(¢) can be represented by
a constant signal value, and the p.d.f. that minimizes the upper bound on ry(¢)
can be represented by a randomization of no more than |S| different signal values.
It should also be noted that although these additive noise p.d.f.s minimize the
upper bounds in Lemma 1, they may not be the optimal additive noise p.d.f.s
for the original problem in general. The optimal solution needs to be calculated
based on some p.d.f. approximations as discussed before. However, the approach
based on Lemma 1 can still be useful to obtain certain improvability conditions
and to achieve performance improvements with low complexity solutions in some

cases.

3.5 A Detection Example and Conclusions

In this section, a 4-ary hypothesis-testing problem is studied in order to provide

an example of the results presented in the previous sections. The hypotheses H,,

Hi, Ho and Hs are defined as

Ho : 1=-3VA+v,
Hy - .r:—\/Z—l—v,
Ho : z=VA+0,

Hy - 2=3VA+v, (3.23)
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where + € R}, A > 0 is a known scalar value, and v is symmetric Gaussian

mixture noise with the following p.d.f.

pv(r) = Zwi Yi(x — ) (3.24)

where w; > 0 for i =1,..., M, Zf\il w; = 1, and ¥;(z) = \/%U_ exp <;—(f§> for
1 =1,..., M. Due to the symmetry assumption, p; = —pp—it1, W; = Wpr—it1

and 0; = op_ipq for i =1,..., | M/2]. In addition, the detector is described by

0, y<-2VA4A
1, —-2V/A<y<o0
P(y) = 4 : (3.25)
2, 0<y<2/A
3, 2VA<y

where y = x + n, with n representing the independent additive noise term.

The hypothesis-testing problem in (3.23) is the form of pulse amplitude mod-
ulation (PAM); that is, the information is carried in the signal amplitude. The
Gaussian mixture noise specified above can be encountered in PAM communi-
cations systems in the presence of interference or jamming [88]. In the following
example, four different amplitudes corresponding four different underlying hy-
potheses are transmitted using the PAM technique above over such a commu-
nication environment. It is assumed that only the prior probability of H;, w1,
is known. Such a scenario can be encountered in practice when previous mea-
surements can successfully discriminate between the underlying hypotheses for
‘H; and the other hypotheses (Hg, Ho and Hs), whereas it is difficult to specify
reliably which of the underlying hypotheses for Hy, Ho and Hjs is actually true.
For instance, if we assume four fish species with three of them (corresponding to

Ho, Ho and H3) having similar characteristics, we cannot assume a known prior
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for each of those species (as we do not have reliable information from measure-
ments); however, we can regard my + 7o + w3 (equivalently, 1) as a known value,

since these three fish species can be distinguished easily from the other one.?

Since only the prior probability of H; is known, there are two groups (G = 2),
S = {1} and S; = {0,2,3} (see (3.3)-(3.4)). Also, UCA is assumed in the
following calculations. Based on the expressions in (3.9), (3.10) and (3.14), f(n)
and fi(n) can be obtained, and the optimization problems in (3.11) and (3.16)

can be solved. Specifically, f(n) in (3.10) can be calculated as

fm)=1- %iw [(1 ~m)Q (‘m;””")

+(2+7r1)c2<_m_”_’“> —(1+2W1)Q<M)]

g; g;

for n =n € R, and similarly f;(n) in (3.14) becomes

Pl =1-3 us [7“@ (_m;,nw) e (@)

+ (1 —771)Q <_\/Z_Cl2n_ui> —ml2(1 —7T1)Q (M)]

0; g;

for I =l € Sy, where Q(x) = \/%f;o e~ "/2dt denotes the Q-function, ¢, =
cg =1, ¢cg = —1, myg = mg = 0, and my = 1. For the simulation results,
symmetric Gaussian mixture noise with M = 6 is considered, where the mean
values of the Gaussian components in the mixture noise in (3.24) are specified
as £[0.01 0.7 1.1] with corresponding weights of [0.35 0.1 0.05]. In addition, the
variances of the Gaussian components in the mixture noise are assumed to be

the same; ie., o, =0 fori=1,..., M.

Figure 3.2 illustrates the Bayes risks for the modified and original detectors
for various values of 0 when A = 1 and m; = 0.25. From the figure, it is observed
that the use of additive noise can significantly improve the performance according

to both criteria. Also, as o increases the improvement ratio decreases, and after

2Consider a scenario in which a device measures some parameters of the fish (such as their
length or color), and this information is transmitted to a data processing center using PAM.
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Figure 3.2: Bayes risks of the original and noise modified detectors versus o for

A =1 according to both criteria.
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some value of o there is no improvement. In addition, as expected, Criterion 1,
which considers uniform distribution for the unknown priors, has smaller risks
than Criterion 2, which considers the worst case scenario. However, it should be
noted that when the priors are actually different from uniform, the additive noise
obtained according to Criterion 1 can be quite suboptimal in terms of minimizing
the true Bayes risk, 327 mR,(¢). On the other hand, Criterion 2 considers the
worst-case scenario and obtains the additive noise that minimizes the Bayes risk

for the least-favorable distribution of the priors.

In order to investigate the result in Proposition 2, Table 3.1 shows the optimal
noise p.d.f.s for various values of o according to Criterion 2. In accordance with
the proposition, the optimal noise p.d.f.s are expressed as randomization of three

or fewer mass points.

3.6 Appendices

3.6.1 Proof of Proposition 1

A sufficient condition for improvability is the existence of n, such that f(n,) <
f(0). Consider an infinitesimally small noise component, n, = €,. Then, f(e.)
can be approximated by using the Taylor series expansion as f(0) + €lf +
0.5 € He,, where H and f are the Hessian and the gradient of f(x) at x = 0.
Therefore, f(n,) < f(0) requires

e He, +2€lf <0 . (3.26)

Let €, = p. z, where p, is an infinitesimally small real number, and z is a K-

dimensional real vector. Then, (3.26) can be simplified, after some manipulation,
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Table 3.1: Optimal additive noise p.d.f., py(n) = \d(n —ny) + Aad(n — ny) +

A30(n — ng), according to Criterion 2.

as

)\1 )\2 )\3 nq N9 ns
oc=0 |0.2521 | 0.2264 | 0.5215 | 0.3011 | -0.1898 | -0.1495
o =0.050.1195 | 0.2715 | 0.6090 | -0.3207 | -0.1913 | 0.1913
oc=0.1 ]0.1549 | 0.8451 0 0.5208 | -0.1634 -

2
z’Hz+ —2z'f<0.

5 (3.27)

For the first part of the proposition, if f # 0, then p, and z satisfying (3.27)
can always be found. For the second part of the proposition, if f(x) is strictly
concave at x = 0, which means that H is negative definite, then p, and z

satisfying (3.27) always exist. [J
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Chapter 4

Noise Enhanced Binary
Composite Hypothesis-Testing in

the Neyman-Pearson Framework

This chapter is organized as follows. Section 4.1 describes the composite
hypothesis-testing problem, and introduces the detection criteria. Then, Section
4.2 and Section 4.3 study the effects of additive noise according to the max-sum
and the max-min criteria, respectively. In Section 4.4, the results in the previous
sections are extended to the max-max case, and the main implications are briefly
summarized. A detection example in provided in Section 4.5, which is followed

by the concluding remarks.
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Y ®(-) — Decision

1
T
n

Figure 4.1: Independent noise n is added to data vector x in order to improve
the performance of the detector, ¢(-).

4.1 Problem Formulation and Motivation

Consider a composite binary hypothesis-testing problem described as

7‘[0 : ng(X) , 906/\0

H, p91<X) , 016/\1 (41)

where H; denotes the ith hypothesis for ¢ = 0,1. Under hypothesis H;, data
(observation) x € RX has a p.d.f. indexed by 0; € A;, namely, py, (x), where A; is
the set of possible parameter values under hypothesis H;. Parameter sets Ay and
A, are disjoint, and their union forms the parameter space, A = Ag U A; [40]. In
addition, it is assumed that the probability distributions of the parameters are

not known a priori.

The expressions in (4.1) present a generic formulation of a binary composite
hypothesis-testing problem. Such problems are encountered in various scenarios,
such as in radar systems and non-coherent communications receivers [40], [100].
In the case that both Ag and A; consist of single elements, the problem in (4.1)

reduces to a simple hypothesis-testing problem [40].

A generic detector (decision rule), denoted by ¢(x), is considered, which
maps the data vector into a real number in [0, 1] that represents the probability
of selecting H; [40]. The aim is to investigate the stochastic resonance (SR)
phenomenon by analyzing the effects of additive independent noise to the original

data, x, of a given detector, as shown in Figure 4.1, where y represents the
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modified data vector given by
y=x+n, (4.2)
with n denoting the additive noise term that is independent of x.

The Neyman-Pearson framework is considered in this study, and performance
of a detector is specified by its probabilities of detection and false-alarm [40],
[41], [68]. Since the additive noise is independent of the data, the probabilities of
detection and false-alarm can be expressed, conditioned on 6; and 6, respectively,

as

P30 = [ o] [ty ~xmxia] ay 43)
ppen = [ o] [ ol = xma(xiax] dy (4.4

where py () denotes the p.d.f. of the additive noise. After some manipulation,

(4.3) and (4.4) can be expressed as [12]
PP (01) = En{Fp,(n)} , (4.5)

PE(00) = En{Go,(n)} (4.6)

for #; € Ay and 6y € Ay, where

Fuw) 2 [ oy~ mdy (4.7
G, (n) = | pe(y —m)dy . (4.8)

Note that Fp,(n) and Gy,(n) define, respectively, the probability of detection
conditioned on #; and the probability of false alarm conditioned on 6, when a
constant noise n is added to the data. Also, in the absence of additive noise, i.e.,
for n = 0, the probabilities of detection and false-alarm are given by P¥(6;) =

Fy,(0) and P¥(6y) = G, (0), respectively, for given values of the parameters.

Various performance metrics can be defined for composite hypothesis-testing

problems [40], [41]. In the Neyman-Pearson framework, the main constraint is
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to keep the probability of false-alarm below a certain threshold for all possible

parameter values 6y; i.e.,

PY(6y) < & . 4.
max Py(0) < & (4.9)

In most practical cases, the detectors are designed in such a way that they operate
at the maximum allowed false-alarm probability & in order to obtain maximum
detection probabilities. Therefore, the constraint on the false-alarm probability
can be defined as & = mmax PR Px(6y) = max Gy, (0) for practical scenarios. In other

words, in the absence of additive noise n, the detectors commonly operate at the

false-alarm probability limit.

Under the constraint in (4.9), the aim is to maximize a function of the de-
tection probabilities for possible parameter values #; € A;. In this study, the

following performance criteria are considered [41]:

e Max-sum criterion: In this case, the aim is to maximize
fe AL ¥(61) dfy, which can be regarded as the “sum” of the detection
probabilities for different #; values. This is equivalent to assuming uniform

distribution for #; and maximizing the average detection probability [41].

e Max-min criterion: According to this criterion, the aim is to maximize
the worst-case detection probability, defined as emle\l PY(6,) [41], [68], [69].
1€M

The worst-case detection probability corresponds to considering the least-

favorable distribution for 6; [41].

e Max-max criterion: This criterion maximizes the best-case detection
probability, erlngﬁ PY(#1). This criterion is not very common in practice,
since maximizing the detection probability for a single parameter can result
in very low detection probabilities for the other parameters. Therefore, this
criterion will only be briefly analyzed in Section 4.4 for completeness of the

theoretical results.
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There are two main motivations for investigating the effects of additive inde-
pendent noise in (4.2) for binary composite hypothesis-testing problems. First,
it is important to quantify performance improvements that can be achieved via
additive noise, and to determine when additive noise can improve detection per-
formance. In other words, theoretical investigation of SR in binary composite
hypothesis-testing problems is of interest. Second, in many cases, the optimal
detector based on the calculation of likelihood functions is difficult to obtain
or requires intense computations [12], [40], [68]. Therefore, a suboptimal detec-
tor can be preferable in some practical scenarios. However, the performance of
a suboptimal detector may need to be enhanced in order to meet certain sys-
tem requirements. One way to enhance the performance of a suboptimal detector
without changing the detector structure is to modify its original data as in Figure
4.1 [12]. Even though calculation of optimal additive noise causes a complexity
increase for the suboptimal detector, the overall computational complexity is still
considerably lower than that of an optimal detector based on likelihood function
calculations. This is because the optimal detector needs to perform intense cal-
culations for each decision whereas the suboptimal detector with modified data
needs to update the optimal additive noise whenever the statistics of the hy-
potheses change. For instance, in a binary communications system, the optimal
detector needs to calculate the likelihood ratio for each symbol, whereas a subop-
timal detector as in Figure 4.1 needs to update n only when the channel statistics
change, which can be constant over a large number of symbols for slowly varying

channels [101].
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4.2 Max-Sum Criterion

In this section, the aim is to determine the optimal additive noise n in (4.2) that

solves the following optimization problem.

max / PY(61) dby (4.10)

pn(") 01€M1

subject to max P%.(6p) < & (4.11)
OoeNo

where P{)(61) and Py (6y) are as in (4.5)-(4.8). Note that the problem in (4.10)
and (4.11) can also be regarded as a maz-mean problem since the objective
function in (4.10) can be normalized appropriately so that it defines the average

detection probability assuming that all ; parameters are equally likely [41].!

From (4.5) and (4.6), the optimization problem in (4.10) and (4.11) can also

be expressed as

HI%}){ En{F(n)} (4.12)

Pn(-

subject to max E,{Gy,(n)} < & (4.13)
foeNo

where F'(n) is defined by

F(n) £ /9 . Fp,(n) do; . (4.14)

Note that F'(n) defines the total detection probability for a specific value of

additive noise n.

In the following sections, the effects of additive noise are investigated for this

max-sum problem, and various results related to optimal solutions are presented.

"When A; does not have a finite volume, the max-mean formulation should be used since
Jo,en, PH(01) d91 may not be finite.
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4.2.1 Improvability and Non-improvability Conditions

According to the max-sum criterion, the detector is called improvable if there
exists additive independent noise n that satisfies
Phon? [ PRO)a8 > [ PR AP,, (@19
f1eA 01eAq
under the false-alarm constraint. From (4.5) and (4.14), the condition in (4.15)

can also be expressed as

Py

D,sum

= Eo{F(n)} > F(0) = PX

D,sum -

(4.16)
If the detector cannot be improved, it is called non-improvable.

In order to determine the improvability of a detector according to the max-
sum criterion without actually solving the optimization problem in (4.12) and
(4.13), the approach in [12] for simple hypothesis-testing problems can be ex-
tended to composite hypothesis-testing problems in the following manner. First,
we introduce the following function

H(t) = sup {F(n) | Inax Gg(n)=t, ne ]RK} : (4.17)

b€Ao

which defines the maximum value of the total detection probability for a given
value of the maximum false-alarm probability. In other words, among all constant
noise components n that achieve a maximum false-alarm probability of ¢, H ()

defines the maximum probability of detection.

From (4.17), it is observed that if there exists tg < & such that H(¢y) > P

X
D,sum>
then the system is improvable, since under such a condition there exists a noise

X
D,sum

component ng such that F(ng) > P and max Gy, (ng) < &. Hence, the

OoeNo

detector performance can be improved by using an additive noise with py(x) =
d(x — ng). However, that condition may not hold in many practical scenarios
since, for constant additive noise values, larger total detection probabilities than

PX

B sum are commonly accompanied by false-alarm probabilities that exceed the
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false-alarm limit. Therefore, a more generic improvability condition is derived in

the following theorem.

Theorem 1: Define the maximum false-alarm probability in the absence of

additive noise as o = max PX(6o). If H(t) in (4.17) is second-order continu-
0€N0

ously differentiable around t = o and satisfies H' (o)) > 0, then the detector is

improvable.

Proof: Since H"(a) > 0 and H(t) in (4.17) is second-order continuously
differentiable around t = «, there exist € > 0, n; and ny such that ;glea/\)g Go,(n1) =
a + € and [max Gg,(n2) = a —e. Then, it is proven in the following that an
additive noise with p,(x) = 0.50(x —ny) + 0.50(x — ng) improves the detection
performance under the false-alarm constraint. First, the maximum false-alarm
probability in the presence of additive noise is shown not to exceed a.

max En{Gg,(n)} < E, {erzleax G@O(l’l)} =05(a+¢€)+05(a—¢) =a. (4.18)

Ao

Then, the increase in the detection probability is proven as follows. Due to the
assumptions in the theorem, H(t) is convex in an interval around ¢ = «. Since
En{F(n)} can attain the value of 0.5 H(a + €) 4+ 0.5 H(a — €), which is always
larger than H(«) due to convexity, it is concluded that En{F'(n)} > H(«). As
H(a) > PY g by definition of H(t) in (4.17), Ex{F(n)} > P¥, is satisfied;

hence, the detector is improvable. [J

Theorem 1 provides a simple condition that guarantees the improvability
of a detector according to the max-sum criterion. Note that H(t) is always a
single-variable function irrespective of the dimension of the data vector, which
facilitates simple evaluations of the conditions in the theorem. However, the main
complexity may come into play in obtaining an expression for H(¢) in (4.17) in
certain scenarios. An example is presented to in Section 4.5 to illustrate the use

of Theorem 1.

82



In addition to the improvability conditions in Theorem 1, sufficient conditions

for non-improvability can be obtained by defining the following function.
Joo(t) £ sup {F(n) | Go,(n) =t , ne R*} . (4.19)

This function is similar to that in [12], but it is defined for each 6, € Ag here,
since a composite hypothesis-testing problem is considered. Therefore, Theorem

2 in [12] can be extended in the following manner.

Theorem 2: If there exits 0y € Ny and a nondecreasing concave function

U(t) such that V(t) > Jp,(t) Yt and V(&) = Py

D.sum> then the detector is non-

improvable.

Proof: For the 6, value in the theorem, the objective function in (4.12) can

be expressed as

EuFm)} = [ pulF () dx < [ palx)a (Col)dx . (120
where the inequality is obtained by the definition in (4.19).

Since W(t) satisfies W(t) > Jy,(t) Vt, and is concave, (4.20) becomes

BP0} < [ 00 x <0 ( [ paoGaboax) . (a2

Finally, the nondecreasing property of W(¢) together with [ p,(x)Gy,(x) dx < &
implies that E,{F(n)} < ¥U(&). Since ¥(a) = P¥

D,sum>

EU{F(H)} S Pg,sum is

obtained for any additive noise n. Hence, the detector is non-improvable. [

The conditions in Theorem 2 can be used to determine that the detector
performance cannot be improved via additive noise, which prevents efforts for
solving the optimization problem in (4.10) and (4.11).2 However, it should also
be noted that the detector can still be non-improvable although the conditions
in the theorem are not satisfied; that is, Theorem 2 does not provide necessary

conditions for non-improvability.

2The optimization problem yields p,(x) = §(x) when the detector is non-improvable.
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4.2.2 Characterization of Optimal Solution

In this section, the statistical characterization of optimal additive noise com-
ponents is provided. First, the maximum false-alarm probabilities of optimal
solutions are specified. Then, the structures of the optimal noise p.d.f.s are

investigated.

In order to investigate the false-alarm probabilities of the optimal solution
obtained from (4.10) and (4.11) without actually solving the optimization prob-
lem, H(t) in (4.17) can be utilized. Let Fi,ax represent the maximum value of
H(t), i.e., Fpax = max H(t). Assume that this maximum is attained at t = t,.?
Then, one immediate observation is that if ¢,, is smaller than or equal to the
false-alarm limit, i.e., t,, < @, then the noise component n, that results in
(glg\}é G, (ny,) = ty, is the optimal noise component; i.e., p,(x) = d(x—n,,). How-
ever, in many practical scenarios, the maximum of H(t) is attained for ¢,, > &,
since larger detection probabilities can be achieved for larger false-alarm proba-

bilities. In such cases, the following theorem specifies the false-alarm probability

achieved by the optimal solution.

Theorem 3: If t,, > &, then the optimal solution of (4.10) and (4.11)

satisfies max PY(0y) = & .
ﬁ 906/\0 F( 0)

Proof: Assume that the optimal solution to (4.10) and (4.11) is given by
pa(x) with g = mnax PY () < &. Define another noise n with the following
p.d.f.:

a— B -
tm — B tm — 3

where n,, is the noise component that results in the maximum total detection

Pu(x) = 0(x — ) + pa(x) , (4.22)

probability; that is, F'(n,) = Flax, and ¢, is the maximum false-alarm proba-

bility when noise n,, is employed; i.e., t,, = max Go, ().
0€Ao

3If there are multiple ¢ values that result in the maximum value Fj,.y, then the minimum
of those values is selected.
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For the noise p.d.f. in (4.22), the false-alarm and detection probabilities can

be obtained as

a— 8 b —
P)]s,sum = EH{F(H)} = tm _ 6 F(Ilm) + tm _ 6 P}]S,sum ) (423)
i a— b — &
P(0) = Bu{Cay(n)} = - _% G (1) + 12— P(60) (4.24)
for all 6y € Ag. Since F(n,,) > P%,sum’ (4.23) implies PY, > PyD,sum’ On the

other hand, as Gy, (ny,) < t,, and P%(@O) <8, P%(GO) < & is obtained. Therefore,
n cannot be an optimal solution, which indicates a contradiction. In other words,

any noise p.d.f. that satisfies Imax PY(6y) < & cannot be optimal. [J
o€

The main implication of Theorem 3 is that, in most practical scenarios, the
false-alarm probabilities are set to the maximum false-alarm probability limit;
ie., max PY.(6y) = &, in order to optimize the detection performance according

Op€No

to the max-sum criterion.

Another important characterization of the optimal noise involves the spec-
ification of the optimal noise p.d.f.. In [12] and [13], it is shown for simple
hypothesis-testing problems that an optimal noise p.d.f., if exists, can be repre-
sented by a randomization of at most 2 discrete signals. In general, the optimal
noise specified by (4.10) and (4.11) for the composite hypothesis-testing problem
can have more than 2 mass points. The following theorem specifies the structure

of the optimal noise p.d.f. under certain conditions.

Theorem 4: Let 6y € Ag = {001,002, ---,00m}. Assume that the additive
noise components can take finite values specified by n; € [a;,b;], i =1,..., K, for

any finite a; and b;. Define set U as

U= {(uo,w1,...,un) : up=F(n), uy =Ggy,(n),..., upyy = Gy, (n) ,

for ajnjb} , (4.25)
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where a <= n = b means that n; € [a;,b;] fori=1,..., K. IfU is a closed subset
of RM+L " an optimal solution to (4.10) and (4.11) has the following form

M+1

pa(x) = > Aid(x—mn), (4.26)
i=1
where Zij\ifl)\i: Land \; >0 fori=1,2,..., M + 1.

Proof: The proof extends the results in [12] and [13] for the two mass point
probability distributions to the (M + 1) mass point ones. Since the possible
additive noise components are specified by n; € [a;,b;] for i = 1,..., K, U in
(4.25) represents the set of all possible combinations of F(n) and Gy, (n) for
i =1,...,M. Let the convex hull of U be denoted by set V. Since F'(n) and
Gy,;(n) are bounded by definition, U is a bounded and closed subset of R¥*! by
the assumption in the theorem. Therefore, U is compact, and the convex hull V'
of U is closed [84]. In addition, since V' C R™*1 the dimension of V is smaller

than or equal to (M + 1).

Define W as the set of all possible total detection and false-alarm probabili-

ties; that is,

W = {(wo,wl, coowyy) s we = Ep{F(n)}, wy = Ex{Gy,,(n)},...,

wy = En{Gg,,, (0)}, Vpu(n), a <n <b}. (4.27)

Similar to [12] and [85], it can be shown that W = V. Therefore, Carathéodory’s
theorem [86], [87] implies that any point in V' (hence, in W) can be expressed
as the convex combination of (M + 2) points in U. Since an optimal p.d.f. must
maximize the total detection probability, it corresponds to the boundary of V'
[12]. Since V' is closed, it always contains its boundary. Therefore, the optimal

p.d.f. can be expressed as the convex combination of (M + 1) elements in U. OJ

In other words, for composite hypothesis-testing problems with a finite num-
ber of possible parameter values under hypothesis Hj, the optimal p.d.f. can be

expressed as a discrete p.d.f. with a finite number of mass points. Therefore,
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Theorem 4 generalizes the two mass points result for simple hypothesis-testing
problems [12], [13]. It should be noted that the result in Theorem 4 is valid
irrespective of the number of parameters under hypothesis H;; that is, A; in
(4.1) can be discrete or continuous. However, the theorem does not guarantee a

discrete p.d.f. if the parameter space for Hg includes continuous intervals.

Regarding the first assumption in the proposition, constraining the additive
noise values as @ < n =< b is quite realistic since arbitrarily large/small values
cannot be realized in practical systems. In other words, in practice, the minimum
and maximum possible values of n; define a; and b;, respectively. In addition, the
assumption that U is a closed set guarantees the ezistence of the optimal solution

[13], and it holds, for example, when F' and Gg,, are continuous functions.

4.2.3 Calculation of Optimal Solution and Convex Relax-

ation

After the derivation of the improvability and non-improvability conditions, and
the characterization of optimal additive noise in the previous sections, the cal-

culation of optimal noise p.d.f.s is studied in this section.

Let pn f(-) represent the p.d.f. of f = F(n), where F(n) is given by (4.14).
Note that py f(-) can be obtained from the noise p.d.f., pn(-). As studied in [12],
working with py, ¢(+) is more convenient since it results in an optimization problem
in a single-dimensional space. Assume that F'(n) is a one-to-one function.* Then,
for a given value of noise n, the false-alarm probabilities in (4.8) can be expressed

as gg, = Go,(F~'(f)), where f = F(n). Therefore, the optimization problem in

4Similar to the approach in [12], the one-to-one assumption can be removed. However, it is
employed in this study to obtain convenient expressions.
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(4.10) and (4.11) can be stated as

Pn,f (")

max /O Foas(f) df |

()

subject to max / Goo Pof(f)df < @ . (4.28)
0

Note that since py f(-) specifies a p.d.f., the optimization problem in (4.28) has

also implicit constraints that p, ¢(f) > 0 Vf and [ pn ¢(f)df = 1.

In order to solve the optimization problem in (4.28), first consider the case
in which the unknown parameter 6, under hypothesis H, can take finitely many
values specified by 0y € Ag = {61,002, - - -,00n }- Then, the optimal noise p.d.f.
has (M + 1) mass points, under the conditions in Theorem 4. Hence, (4.28) can

be expressed as
M+1

max Z )\z fz
i=1

M1
N fiyitt
M+1

subject to max A < &
J oe g Zl: i 960, >
1=

>a-
=1
AN>0, =1, M+1 (4.29)

where f; = F(n;), go,; = Go,(F7'(fi)), and n; and ); are the optimal mass
points and their weights as specified in Theorem 4. Note that the optimization
problem in (4.29) may not be formulated as a convex optimization problem in
general since gg,; = Go,(F~'(f;)) may be non-convex. Therefore, global opti-
mization algorithms, such as particle-swarm optimization (PSO) [51]-[54], genetic
algorithms and differential evolution [82], can be employed to obtain the optimal
solution. In this study, the PSO approach is used since it is based on simple iter-
ations with low computational complexity and has been successfully applied to
numerous problems in various fields [94]-[97]. In Section 4.5, the PSO technique
is applied to this optimization problem, which results in accurate calculation of
the optimal additive noise in the specified scenario (please refer to [51]-[54] for

detailed descriptions of the PSO algorithm).
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Another approach to solve the optimization problem in (4.29) is to perform
convex relazation [55] of the problem. To that end, assume that f = F(n) can
take only finitely many known (pre-determined) values fioooif 17+ In that case,

the optimization can be performed only over the weights 5\1, ..., Ay correspond-

ing to those values. Then, (4.29) can be expressed as
max X
bY

subject to gg—g& <a, Vel

1"x =1
A=0 (4.30)
where
f = [fl : fM]T 5
A=Al

&0, = [Goo(F(J1)) - Gy (FH ()] -

The optimization problem in (4.30) is a linearly constrained linear programming
(LCLP) problem. Therefore, it can be solved efficiently in polynomial time [55].
Although (4.30) is an approximation to (4.29), since it assumes that f = F(n)
can take only specific values, the solutions can get very close to each other as M
is increased; i.e., as more values of f = F(n) are included in the optimization
problem in (4.30). Also, it should be noted that the assumption for F'(n) to take
only finitely many known values can be practical in some cases, since a digital
system cannot generate additive noise components with infinite precision due to

quantization effects; hence, there can be only finitely many possible values of n.

For the case in which the unknown parameter 8y under hypothesis H, can take
infinitely many values, the optimal noise may not be represented by (M +1) mass
points as in Theorem 4. In that case, an approximate solution is proposed based

on p.d.f. approximation techniques. Let the optimal p.d.f. for the optimization
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problem in (4.28) be expressed approximately by

pos(f) = Z/iz‘ Vi(f = fi) (4.31)

i=1

where ; > 0, 2% j1; = 1, and 1;(-) is a window function that satisfies 1;(x) > 0
Vx and [¢;(x)dx =1, for i = 1,..., L. The p.d.f. approximation technique in
(4.31) is called Parzen window density estimation, which has the property of
mean-square convergence to the true p.d.f. under certain conditions [81]. In
general, a larger L facilitates better approximation to the true p.d.f.. A common

example of a window function is the Gaussian window, which is expressed as

2

L
’lybl(f) = \/ﬁ(}'ie .

Based on the approximate p.d.f. in (4.31), the optimization problem in (4.28)

can be stated as

L
max Z i fz

{Hmfi,o’i}iLzl i—1
L
bject t i Go i < @
subject to ;glea[i() 2u G001 < Qv
L
=
i=1
i >0 1=1,...,L (4.32)

where o; represents the parameter® of the ith window function (-), fi =
fooof@/),-(f — fi)df and gp,; = fooo 9o, 0i(f — fi)df. Similar to the solution of
(4.29), the PSO approach can be applied to obtain the optimal solution. Also,
convex relaxation can be employed as in (4.30) when o; = ¢ Vi is considered as a
pre-determined value, and the optimization problem is considered as determining

the weights for a number of pre-determined f; values.

5If there are constraints on this parameter, they should be added to the set of constraints
in (4.32).
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4.3 Max-Min Criterion

In this section, the aim is to determine the optimal additive noise n in (4.2) that

solves the following optimization problem.

Iprll]%( ellrgza PY(61) (4.33)
subject to max P¥(6y) < & (4.34)
BocAo

where PY)(0;) and P}.(6) are as in (4.5)-(4.8).

4.3.1 Improvability and Non-improvability Conditions

According to this criterion, the detector is called improvable if there exists addi-

tive noise n that satisfies

min PY(6;) > emin P%(6;) = min Fy, (0) = P (4.35)

01eAq 1E€A 01eAq D,min

under the false-alarm constraint. Otherwise, the detector is non-improvable.

A simple sufficient condition for improvability can be obtained from the im-
provability definition in (4.35). If there exists a noise component n that satisfies
91111/1\1 Fy, (n) > emi/{l Fy,(0) and Gy, (D) < & V0, € Ay, (4.5) and (4.6) implies that

1€A1 1€A1

addition of noise n to the data vector increases the probability of detection un-

der the false-alarm constraint for all #; values; hence, min P¥(6;) > min P%(6;)
01eM 01€A

is satisfied, where y = x + n. However, such a noise component may not be

available in many practical scenarios. Therefore, a more generic improvability

condition is obtained in the following.

Similar to the max-sum case, the following function is defined for deriving

generic improvability conditions:

Hyin(t) 2 sup { min Fy, (n) ] t = max Gg,(n) , n € ]RK} , (4.36)

01eA 6o
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which defines the maximum value of the minimum detection probability for a
given value of the maximum false-alarm probability. From (4.36), it is observed
that if there exists ¢y < & such that Hyn(to) > PF 4, the system is improv-
able, since under such a condition there exists a noise component ny such that
min Fy, (ng) > P¥ .., and max Gy, (ng) < @. Hence, the detector performance
01eA ’ Ooeo

can be improved by using an additive noise with p,(x) = d(x — ny). However,
as stated previously, such a condition may not hold in many practical scenar-

ios. Therefore, a more generic improvability condition is derived in the following

theorem.

Theorem 5: Let a = max PX(6y) denote the mazimum false-alarm probabil-
0€A0

ity in the absence of additive noise. If Hyin(t) in (4.36) is second-order continu-

ously differentiable around t = o and satisfies H,; (a) > 0, then the detector is

improvable.

Proof: Since H,.; () > 0 and Hyy(t) is second-order continuously differen-
tiable around t = «, there exist € > 0, n; and ny such that gélg\;z Go,(n1) = a+e€
and 91(1)1€aA>(<) Gg,(n2) = o — €. Then, it is proven in the following that additive noise
with py(x) = 0.56(x — ny) + 0.55(x — ny) improves the detection performance
under the false-alarm constraint. First, the maximum false-alarm probability in

the presence of additive noise is shown not to exceed «.

max E,{Gg,(n)} < E, {ggl&}é G@O(l’l)} =05(a+¢€)+05(a—¢€) =a. (4.37)

6o

Then, the increase in the detection probability is proven as follows. Since

in E,{F, >E, in Fy, 4.38
breny {Fo(n)} = {e?lelfl o (n)} (4.38)
is valid fOI’ all noise pde,

emi/{l En{Fy,(n)} > 0.5 Hyin(a + €) + 0.5 Hpin (v — €) (4.39)
1€M1
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can be obtained. Due to the assumptions in the theorem, H,,,(t) is convex in

an interval around ¢t = «. Therefore, (4.39) becomes

emi}\l En{Fy,(n)} > 0.5 Hyin(a 4+ €) + 0.5 Hpin(ov — €) > Hyin(v) . (4.40)
1€/

Since Hpin(a) > PY ., by definition, (4.40) implies gmi}\l En{Fy,(n)} > P¥
1€M

D,min D,min*

Therefore, the detector is improvable. [

Similar to Theorem 1 in Section 4.2.1, Theorem 5 provides a convenient suf-
ficient condition that deals with a scalar function H,,;,(t) irrespective of the

dimension of the observation vector.

In order to obtain sufficient conditions for non-improvability, the following

function is defined as an extension of that in (4.19).
J90,91 (t) é sup {F91 (Il) | G@O(l’l) =t , 1 € RK} . (441)

Then, the following theorem can be obtained as an extension of Theorem 2 in

Section 4.2.1.

Theorem 6: Let 01" represent the value of 6, € Ay that has the minimum

detection probability in the absence of additive noise; that is,

g™ £ arg min P3(6,) . (4.42)

916/\1

If there exits 0y € Ny and a nondecreasing concave function V(t) such that V(t) >

Jgo,omin (1) VE and V(&) = P¥(6"), then the detector is non-improvable.

Proof: If the detector is non-improvable for f; = 6™ it is non-improvable
according to the max-min criterion, since its minimum can never increase by
using additive noise components. Therefore, the result in Theorem 6 directly
follows from that in Theorem 2 by considering the non-improvability conditions

at 6 = gmin, [
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The conditions in Theorem 6 can be used to determine the scenarios in which
the detector performance cannot be improved via additive noise. Hence, unnec-
essary efforts for solving the optimization problem in (4.33) and (4.34) can be

prevented.

4.3.2 Characterization of Optimal Solution

In this section, performance bounds for the detector based on y = x + n, where
the p.d.f. of n is obtained from (4.33) and (4.34) are derived. In addition,

statistical characterization of optimal noise p.d.f.s is provided.

In order to obtain upper and lower bounds on the performance of the detector
that employs the noise specified by the optimization problem in (4.33) and (4.34),

consider a separate optimization problem for each 6; € A; as follows:

max PY (6;)
Pn(")

subject to max PY(6y) < & (4.43)

fo€Ao
Let P, . (01) represent the solution of (4.43), and pp, (-) denote the correspond-
ing optimal p.d.f.. In addition, let 6, represent the parameter value with the

minimum Pﬂopt(@l) among all §; € A;. That is,

0 = arg min P}, (61) . (4.44)

01 €A1
Then, the following theorem provides performance bounds for the noise-modified

detector according to the max-min criterion.

Theorem 7: Let PY,

D,mm

ified by (4.33) and (4.34). It has the following lower and upper bounds:

represent solution of the optimization problem spec-

max { min PF(6,) , nrl'/I\11P“>];él (91)} <Py om < erlrg/{llp%")ptwl) ; (4.45)

61€A1 01€ D,mm
where Py, (61) is the solution of the optimization problem in (4.43), P¥(6:) is

the probability of detection in the absence of additive noise, and Pi;él (61) is the
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probability of detection in the presence of additive noise ng, , which is specified by

the p.d.f. pn§1(~) that is the optimizer of (4.43) for 6, defined by (4.44).

Proof: The upper bound in (4.45) directly follows from (4.33), (4.34) and

(4.43), since ma(o)< PY(6,) > ngo)( emi/{l PY(6,) for all §; € A;. For the lower bound,
Pnl( pn(-) V1€ML

it is first noted that the noise-modified detector can never have lower minimum

detection probability than that in the absence of noise, i.e., em'jx\l P¥(61). In addi-
1€/

tion, using a noise with p.d.f. Png, (+), which is the optimal noise for the problem
in (4.43) for a specific 6; value, can never result in a larger minimum probabil-

ity emi}\l PY () than that obtained from the solution of (4.33) and (4.34), since
1€MA1

the latter directly maximizes the min P}(6;) metric. Therefore, min P;él (01)
01€M 01€M

provides another lower bound. []

The main intuition behind the upper and lower bounds in Theorem 7 can
be explained as follows. Note that P%,Opt(é’l) represents the maximum detec-
tion probability when an additive noise component that is optimized for a spe-

cific value of 0; is used. Therefore, for each 6; € Ay, PY_ .(0:) is larger than

D,opt
I;llfac 9I1n€i/IX11 PY(61), as the latter involves a single additive noise component that
is optimized for the minimum detection probability metric and is used for all
0, values. In other words, the upper bound is obtained by assuming a more
flexible optimization problem in which a different optimal noise component can
be used for each #; value. Considering the lower bound, the first lower bound

expression is obtained from the fact that the optimal value can never be smaller

than 9mi/1\1 P¥(61), which is the minimum detection probability in the absence
1€M

of additive noise. The second lower bound is obtained from the observation
that the optimal noise p.d.f. that maximizes the minimum detection probabil-

ity, Hmi/{l PY(61), is obtained from the optimization problem in (4.33) and (4.34);
1€01

y

D,mm>

hence, the resulting optimal value, P is larger than or equal to all other

emij{l PY(6,) values that are obtained by using a different noise p.d.f..
1€EMA1
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Both the lower and the upper bounds in Theorem 7 are achievable. For
example, when the detector is non-improvable, the lower bound is achieved since

Py = 9%11{11?6(91) and Py

. Y4 . Yo
Domm Daum = minPpt(0;). Note that min Py (6;) can
01€M 01€M

be smaller than PY.

D.mm 1 certain scenarios since the additive noise Png, (+) that

is optimized for #; = 671 can degrade the detection performance for other 6,
values. In fact, this is the main reason why a maximum operator in used for the
lower bound in Theorem 7. On the other hand, for scenarios in which the detector
performance can be improved, min P;él (01) can be larger than erlréi/{ll P¥(61). Also,

01eAq

va
: Py y : 9y - DPx
in some cases, minP ;) =P = minPy*(6;) > min P¥(6;) can be
) 01EM, D,Opt( ) D,mm 01€M, D ( ) = el D( )

satisfied; that is, the upper and lower bounds in Theorem 7 can be equal. If
PyDél (6,) < P?l (6,) for all §; € Ay, then Png, (+) becomes the optimal p.d.f. for the
max-min problem as well, since any other noise p.d.f. will have smaller detection
probability than Pbl;él (51) at #; = 67, and hence will decrease the minimum
detection probability. In addition, using a different optimal noise for each 6; will
not improve the max-min performance since P;él (6,) will be the limiting factor.
Therefore, &iﬁPYD,Opt(el) = min Pgél (01) is satisfied, and the lower and upper

01€A1
bounds become equal in such a case.

Regarding the statistical characterization of the optimal additive noise ac-
cording to the max-min criterion, it can be shown that when parameter sets Ag
and A; in (4.1) consist of a finite number of parameters, the optimal additive
noise can be represented by a discrete random variable with a finite number of

mass points as specified below.

Theorem 8: Let 6y € Ay = {001,002,...,00m} and 6, € Ay =
{011, 6012,...,018}. Assume that the additive noise components can take finite
values specified by n; € la;,b;], i =1,..., K, for any finite a; and b;. Define set
U as

U= {(ul, e 7UN+M) ‘U = an(n), o, UN = F91N<1’1),UN+1 = Ggm(n), ceey

UN+M = G00A4 (n) ) fOT a=n=x b} ) (4'46>
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where a <= n = b means that n; € [a;,b;] fori=1,..., K. IfU is a closed subset
of RVN*M " an optimal solution to (4.33) and (4.34) has the following form

N+M

pa(x) = ) Aid(x—m,), (4.47)
i=1
where Z?:{M/\i =land \; >0 fori=1,2,.... N+ M.

Proof: The proof is omitted since it is a straightforward extension of that of

Theorem 4. I

The main difference of Theorem 8 from Theorem 4 in Section 4.2.2 is that both
Ag and A; should be discrete for the optimal p.d.f. to have a discrete structure
in the max-min framework. However, for the max-sum criterion, it is enough to
have a discrete Ay in order to have a discrete p.d.f. as stated in Theorem 4. The
reason for this is that according to the max-sum criterion, the objective function
to maximize becomes En{F(n)}, where F(n) = [, ., Fp (n)df; is as defined
in (4.14). In other words, maximization of a single function is considered in the

max-sum problem under the false-alarm constraint.

4.3.3 Calculation of Optimal Solution and Convex Relax-

ation

In this section, possible approaches to solving the optimization problem in (4.33)
and (4.34) are considered. In order to express the optimization problem as opti-
mization over a single-dimensional p.d.f., consider a specific value of 6; € A, for
which Fp, (n) is one-to-one. Let this value be represented as 6,. T hen, for a given

value n of noise, f = I (n) can be used to express gg, = Gy,(n) and f, = Fp, (n)
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as gg, = Go, (Fé_ll(f)> and fg, = Fy, (Fé_ll(f)>, respectively. Therefore, the op-

timization problem in (4.33) and (4.34) can be reformulated as

maX min / fo.Pn, fg fHdf ,

pnf 91€ 1

subject to max /o ggopn,fél(f)df <a. (4.48)

First, consider the case in which the parameters can take finitely many values
speciﬁed by Qo S AO = {901,802, NP ,QQM} and 91 S A1 = {911,912, P ,‘91]\[}. In
this case, the optimal noise p.d.f. can be represented by (N + M) mass points
under the conditions in Theorem 8. Hence, (4.48) can be expressed as

N+M
min g i fo
{Az,fz N+M b1eh; “ T

N+M
subject to max Z i Gog,i < O

Oo€No

Y =1
=1

>0, i=1,...,N+M (4.49)

where f; = Fj; (n), fo,i = Fgl(Fé_ll(fi)), G00i = Ggo(Fé_ll(fi)), and n; and \; are,
respectively, the optimal mass points and their weights as specified in Theorem
8. Since the optimization problem in (4.49) may not be formulated as a convex
optimization problem in general, global optimization techniques, such as PSO

[51]-[54] can be employed to obtain the optimal solution, as studied in Section

4.5.

Due to the complexity of the optimization problem in (4.49), an approximate
and efficient formulation can obtained by the convex relaxation approach as in
Section 4.2.3. Assume that f = Fj; (n) can take known values of fi,..., fy only.

In that case, the optimization can be performed only over the weights My A i
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corresponding to those values. Hence, (4.49) becomes
max min E'QT A
5\ 01 €A1 1
subject to gg;i <a, Vel

T

—
PR

=1

Pl
Y

0 (4.50)

where

Pl
>

=

M

The optimization problem (4.50) can be expressed as a convex problem when we
define an auxiliary optimization variable ¢ as follows:
max ¢
At
subject to f'gljx >t, Vb, e\
gix<a, Ve

T

Y
P

=1

P
Y
o

(4.51)

In fact, (4.51) can be recognized as an LCLP problem if the new optimization
7 1T

variable is defined as x = [AT t] . Therefore, it can be solved efficiently in poly-

nomial time [55]. Although (4.51) is an approximation to (4.49), the solutions

get very close as more values of f = Fj (n) are included in the optimization.

When at least one of 6§y or #; can take infinitely many values, the optimal
noise may not be represented by a finite number of mass points as in Theorem
8. In such cases, the optimization problem in (4.48) can be solved over the set of

p.d.f. approximations as in Section 4.2.3. Let the optimal p.d.f. be approximated
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DPn.f5 (f) = ZM vilf = fi) (4.52)

i=1
where p; > 0, Zle w; = 1, and () is a window function that satisfies 1;(x) > 0
Vx and [1);(x)dx =1,fori=1,..., L. Then, the optimization problem in (4.48)

can be stated as

L
max  min E i fori
{pisfi,oitl, 01€M Py

L

subject to max 00 < &
J dochg Zl,uz 960, >
1=

L

Sm=t

i=1

>0, i=1,...,L (4.53)

where o; represents the parameter of the ith window function 9;(-), fo,: =
[ fo0i(f = fi)df, and Goy s = [ gayi(f — fi)df. Similar to the solution of (4.49),
the PSO approach can be employed, for example, to obtain the optimal solution
of (4.53). Also, the convex relaxation technique can be employed as in (4.50)

and (4.51) when o; = o Vi is considered as a pre-determined value.

4.4 Max-Max Criterion

In this section, the aim is to determine the optimal additive noise n in (4.2) that

solves the following optimization problem.

PY (6 4.54
s (0 (50
subject to max P%.(6p) < & (4.55)
foeNo

where PY)(0;,) and P¥(6y) are as in (4.5)-(4.8). According to the max-max cri-

terion, the detector is called improvable if there exists additive noise n that
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satisfies

max P} (0;) > max P}(#,) = max Fy, (0) £ P} (4.56)

01eA 01eA f1eN D,max

under the false-alarm constraint. Otherwise, the detector is non-improvable.

The results in the previous sections can be extended to cover the max-max
case as well. Since the derivations are quite similar, the results for this case are

stated without any proofs.

Let 07"* represent the value of #; € A; that has the maximum detection
probability in the absence of additive noise; that is, " £ arg max P¥(6;). In

01eM
addition, define

Hy, (t) = sup {F91 ) | Inax Gg,(n) =1, ne€ RK} . (4.57)
0 0

Then, the detector is improvable if Hgmax(t) is second-order continuously differ-

entiable around ¢t = « and satisfies Héinax(a) > 0, where o = max P%(6p). This
0€Mo

result can be proven as in Theorem 1. In fact, it directly follows from the obser-

vation that if the detector can be improved for 6; = 67"**, then the maximum of

PY(0;) is al 1 th P (6h).
max Py, Y(61) is always larger than max x(61)

A non-improvability condition can be obtained in a similar way to that in The-
orem 6. The detector is non-improvable if there exits #; € Ay and a nondecreasing
concave function Wy, (t) such that Wy, (t) > Jg,0,(t) ¥Vt and ¥y, (&) = PF(0;) for
all 0, € Ay, where Jp, 0, () is given by (4.41).

Regarding the structure of the optimal noise p.d.f. for the problem in (4.54)
and (4.55), consider a composite hypothesis-testing problem with 6, € Ay =
{601,002, .. .,000}. Then, it can be concluded that the optimal p.d.f. can be
represented by (M + 1) mass points under the conditions in Theorem 4. This
follows from the fact that the max-max problem in (4.54) and (4.55) can be

solved by choosing the p.d.f. that results in the maximum detection probability
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among the p.d.f.s that solve the following optimization problems:

max Py (6,) (4.58)

pn(*)

subject to max P%(6y) < & (4.59)
90€A0

for 6; € A;. In other words, the optimal noise p.d.f. can be calculated for
each 6, € A, separately, and the noise p.d.f. that yields the maximum detection
probability becomes the solution of the max-max problem. Since the structure of
each optimization problem is as in the max-sum formulation, Theorem 4 applies

to the max-max case as well.

Finally, for the solution of the max-max problem, the approaches in Section
4.2.3 for the max-sum problem can directly be applied, since the optimization

problems in (4.10)-(4.11) and (4.58)-(4.59) have the same structure.

4.5 Numerical Results

In this section, a composite version of the detection example in [12] and [24] is
studied in order to illustrate the theoretical results obtained in the previous sec-

tions. Namely, the following composite hypothesis-testing problem is considered:

Ho : z=w

Hi : x=A+4w (4.60)

where A is a known constant, and w is the noise term that has a Gaussian mixture

distribution specified as

1 1
Pw(w) = 5 v (w; —0, 02) + 57(10; 0, 02) , (4.61)

with




The p.d.f. of noise w has an unknown parameter 6, which belongs to Ay under

hypothesis Hy and to A; under H; with Ag N A; = 0.

From (4.60) and (4.61), the probability distributions of observation x under

hypotheses Hy and H; are given, respectively, by

1 1

poo() = 5 7(w5 =00, 0%) + 5 V(w; 6, 07) | (4.62)
1 1

po, (z) = 3 v(z;—0, + A, 0%) + 5 v(z;01 + A, 0°) . (4.63)

Since additive noise can improve the performance of suboptimal detectors
only [24], a suboptimal sign detector, as in [12], is considered as the decision rule

for the problem in (4.60), which is given by

é(x) = . (4.64)

Then, from (4.62)-(4.64), detection and false-alarm probabilities when constant
noise is added can be calculated as (c.f. (4.7) and (4.8))

Fh@%21%¢@mm@—xﬁ@

1 —{L‘+(91—A 1 —x—é’l—A
o) e () e

and

Galo) = [ otwon(y ) dy
:%Q(_x:%)Jr%Q(_xU_QO) : (4.66)

respectively, where Q(z) = \/%7 I e /2t is the Q-function. It is noted that

both Fy, (z) and Gy, (x) are monotone increasing functions of x for all parameter

values.

The aim is to add noise n to observation x in (4.60), and to improve the de-

tection performance of the sign detector in (4.64) under a false-alarm constraint.
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The noise-modified observation is denoted as y = x + n, and the probabilities of

detection and false-alarm are given by
oo

PY(0)) = / " By (@)pa(a)de . PU(B) = / Goo(@)pulz) dz ,  (4.67)

o0 o0

respectively, where p,(-) represents the p.d.f. of the additive noise.

4.5.1 Scenario-1: Ay and A; with finite number of ele-

ments

In the first scenario, the parameter sets under Hy and H; are specified as 6, €
Ao =1{0.1, 0.4} and 6, € Ay = {2,2.5,4}. According to Theorem 4 and Theorem
8, the optimal additive noise has a p.d.f. of the form p,(z) = S0 \; 6(z — n,),
where N, = 3 for the max-sum case, and N,, = 5 for the max-min case. For the
noise p.d.f. specified as p,(z) = 20 \; 6(x — n;), the detection and false-alarm
probabilities in (4.67) become

Nm

P%(%)ZZ% {Q(—ni+091—A) +Q(_m —g@l—A)} 7

i=1
Nm

P, (6y) = Z% [Q (_"TM“) +Q (‘”T_HO)} . (4.68)

i=1

For the first simulations, A = 1 and ¢ = 1 are used. For the max-sum
and max-min cases, the original detection probabilities (i.e., in the absence of

additive noise) can be calculated from (4.65) and (4.66) as = 1.613 and

D,sum

P.’E

D,min

= 0.5007, respectively, with max PL(6y) = a = a@ = 0.5. Then, the
0

PSOS and the convex relaxation techniques are applied as described in Sections

4.2.3 and 4.3.3, and the optimal additive noise p.d.f.s are calculated for both the

max-sum and max-min cases, which are illustrated in Figure 4.2 and Figure 4.3,

6In the PSO algorithm, 50 particles and 1000 iterations are employed. In addition, the other
parameters are set to ¢; = co = 2.05 and y = 0.72984, and the inertia weight w is changed
from 1.2 to 0.1 linearly with the iteration number. Please refer to [51] for the details of the
PSO algorithm and the definitions of the parameters.
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Figure 4.2: Probability mass functions of the optimal additive noise based on
the PSO and the convex relaxation techniques for the max-sum case when A = 1
and 0 = 1.
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Figure 4.3: Probability mass functions of the optimal additive noise based on
the PSO and the convex relaxation techniques for the max-min case when A =1
and 0 = 1.
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Figure 4.4: Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to the max-sum
criterion for various values of o.

respectively. For the convex solutions, the optimizations are performed over the

noise values that are specified as —15 4 0.25¢ for ¢ = 0,1,...,120. The resulting

Yy —
D,sum —

2.172 and P{, . = 0.711 under the constraint that max PL(6y) = 0.5. In other
0

detection probabilities when the PSO algorithm is used are calculated as P

words, improvement ratios of 2.172/1.613 = 1.347 and 0.711/0.5007 = 1.420 are
obtained according to the max-sum and max-min criteria, respectively. When
the convex relaxation approach is employed, the detection probabilities become

Py

D,sum

by the PSO technique. It is noted from Figure 4.2 and Figure 4.3 that the convex

=2.171 and P¥

D.mm = 0-711, which are almost the same as those obtained

solutions approximate the optimal PSO solutions with 3 and 5 mass points (for

the max-sum and max-min cases, respectively) with a larger number of non-zero

mass points.
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Figure 4.5: Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to the max-min
criterion for various values of o.

108



Next, A = 1 is used, and the detection probabilities are plotted for various
values of o in (4.61) in the absence and in the presence of additive noise (referred

" Figure 4.4 illustrates the

to as “original” and “SR” detectors, respectively).
resulting plot for the max-sum criterion. The normalized detection probability
is used in the figure, which is defined as Py, /3 as there are three possible 6,
values. It is observed from the figure that the improvement via additive noise
increases as o decreases. Figure 4.5 illustrates the case for the max-min criterion.
Similar to the max-sum case, the improvement is observed for small o values.
The observation that the detector becomes non-improvable for large o values is
mainly due to the fact that the improvability is commonly caused by the multi-

modal nature of the measurement noise p.d.f. in (4.61), which reduces as o

increases.

Figure 4.6 illustrates the sufficient conditions in Theorem 1 and Theorem 5
for the max-sum and max-min cases with respect to o. It is obtained that the
improvement is guaranteed in the interval o € [0.1259,2.639] for the max-sum
case and in the interval o € [0.3981,3.978] for the max-min case. Comparison
of Figure 4.6 with Figure 4.4 and Figure 4.5 reveals that whenever the second
derivative is positive, the detector is improvable as stated in the related theorems;
however, it also indicates that the conditions in Theorem 1 and Theorem 5 are
not necessary conditions, as the detector can be improved also for smaller o

values.

4.5.2 Scenario-2: Ay and A; are continuous intervals

In the second scenario, Ag = [0.1,0.4] and A; = [2,5] are used. As discussed in
Sections 4.2.3 and 4.3.3, an approximation to the optimal additive noise p.d.f.
as in (4.31) can be used to obtain an approximate solution in such a scenario.

Considering Gaussian window functions for p.d.f. approximation, the additive

"The PSO technique is employed for the SR case.
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Figure 4.6: The second-order derivatives of H(t) in (4.17) and Hyn(t) (4.36) at
t = « for various values of 0. Theorem 1 and Theorem 5 imply that the detector
is improvable whenever the second-order derivative at t = « is positive.
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noise p.d.f. can be expressed as®

L
=Y i@, o}) . (4.69)
=1

Then, the probabilities of detection and false-alarm can be calculated from (4.67),

after some manipulation, as

Z 5 [ <—rﬁ QA) +@Q <—01 %277;_0;) ) (4.70)
P, (0y) = iﬂ [ (—) +Q <M> (4.71)
= 2 Vo2 + 0} Vo?+o?
For the following simulations, L. = 8 is considered, and the parameters

{us, mi, 04}8_, are obtained via the PSO algorithm for both the max-sum and
max-min cases. First, A = 1 and 0 = 1 are used. In the absence of ad-
ditive noise, the detection probabilities in the max-sum and max-min cases
are given, respectively, by [, .\ PE(01)dor = [, _\ Fp,(0)df; = 1.5417 and
erlrélj{ll PE(01) = 0111111 Fy, (0) = 0.5 with [max PL(6o) = [nax Gg,(0) =a=a=0.5.
When the optimal additive noise p.d.f.s are calculated via the PSO algorithm,
the detection probabilities become fe Ay PY%(6,)d0; = 2.1426 for the max-sum
case, and 011116111\11 PY(61) = 0.6943 for the max-min case. In other words, improve-
ment ratios of 1.390 and 1.389 are obtained for the max-sum and max-min cases,

respectively. The optimal additive noise p.d.f.s for the max-sum and max-min

cases are shown in Figure 4.7 and Figure 4.8, respectively.

In Figure 4.9 and Figure 4.10, the detection probabilities according to the
max-sum and max-min criteria are plotted, respectively, for both the original
detector (i.e., without additive noise) and the noise-modified one when A = 1.
For the max-sum case, the detection probability is normalized as 5 f; P (61)do;.
Similar to the first scenario, more improvement can be achieved as o decreases,

and no improvement is observed for large values of o.

8Since scalar observations are considered in this example, the optimization problem can also

be solved in the original noise domain, instead of the detection probability domain as in (4.28)
or (4.48).
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Figure 4.7: The optimal additive noise p.d.f. in (4.69) for A =1 and o = 1 ac-
cording to the max-sum criterion. The optimal parameters in (4.69) obtained via
the PSO algorithm are g = [0.0969 0 0.0019 0.1401 0.1377 0.0143 0.1470 0.4621],
n = [25.4039 — 20.1423 13.7543 17.0891 29.7452 — 25.0785 17.6887 — 2.2085],
and o = [1.3358 26.2930 11.3368 0 19.5556 11.5953 17.9838 0.0001]. The mass
centers with very small variances (n; = 17.0891 and n; = —2.2085) are marked
by arrows for convenience.
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Figure 4.8: The optimal additive noise p.d.f. in (4.69) for the max-min criterion
when A = 1 and ¢ = 1. The optimal parameters in (4.69) obtained via the
PSO algorithm are p = [0.0067 0.1797 0.0411 0.2262 0.0064 0.0498 0 0.4902],
n = [20.1017 15.0319 0.1815 29.9668 17.2657 22.8092 — 0.7561 — 1.4484], and
o = [16.5204 15.1445 0.8805 10.1573 12.9094 17.4184 19.0959 0.0102]. The mass
center 17; = —1.4484 is marked by an arrow for convenience as it has a very small
variance.
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Figure 4.9: Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to the max-sum
criterion for various values of o.
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Figure 4.10: Comparison of detection probabilities (normalized) in the absence
(“original”) and presence (“SR”) of additive noise according to the max-min
criterion for various values of o.

115



1.5 T R T T T T

0.5

10 10 10 10 10

Figure 4.11: The second-order derivatives of H(t) in (4.17) and Hy,n(t) (4.36) at
t = « for various values of 0. Theorem 1 and Theorem 5 imply that the detector
is improvable whenever the second-order derivative at t = « is positive.
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Finally, the improvability conditions in Theorem 1 and Theorem 5 are in-
vestigated in Figure 4.11. It is observed from the figures that the detector is
improvable in the interval o € [0.1585,3.398] for the max-sum case and in the
interval o € [0.5012,4.996] for the max-min case, which together with Figure 4.9
and Figure 4.10 imply that the conditions in the theorems are sufficient but not

necessary.

4.6 Concluding Remarks and Extensions

In this chapter, the effects of additive independent noise have been investigated
for composite hypothesis-testing problems. The Neyman-Pearson framework has
been considered, and performance of noise-modified detectors has been analyzed
according to the max-sum, max-min and max-max criteria. Improvability and
non-improvability conditions have been derived for each case, and the statistical
characterization of optimal additive noise p.d.f.s has been provided. A detection

example has been presented in order to explain the theoretical results.

Although the additive independent noise as in Figure 4.1 is considered in this
study, the results can be extended to other noise injection approaches than the
addition operation by considering a nonlinear transformation of the observation,
as discussed in [12]. In that case, the nonlinear operator and the original detector
can be regarded together as a new detector and the results in this study can

directly be applied.
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Chapter 5

On the Restricted
Neyman-Pearson Approach for
Composite Hypothesis-Testing in
the Presence of Prior

Distribution Uncertainty

This chapter is organized as follows. In Section 5.1, the formulation of the
restricted Neyman-Pearson (NP) criterion and motivations for employing this
criterion are presented. Some characteristics of the optimal decision rule and
algorithms to obtain the optimal solution are investigated in Section 5.2. An
example is provided in Section 5.3 in order to investigate the theoretical results.
Section 5.4 presents an alternative formulation to the restricted NP approach. Fi-
nally, extensions to more generic scenarios and concluding remarks are presented

in Section 5.5.
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5.1 Problem Formulation and Motivation

Consider a family of probability densities pyg(x) indexed by parameter 6 that
takes values in a parameter set A, where x € RX represents the observation

(data). A binary composite hypothesis-testing problem can be stated as
H()IQGA(), H129€A1 (51)

where H; denotes the ith hypothesis and A; is the set of possible parameter
values under H; for i = 0,1 [40]. Parameter sets Ay and A; are disjoint, and
their union forms the parameter space, A = Ay U A;. It is assumed that the
probability distributions of parameter # under Hy and H;, denoted by wy(6) and
wy (), respectively, are known with some uncertainty (see [65] and [66, Part 111,
Chapter VII| for discussions on the concept of uncertainty). For example, these
distributions can be obtained as probability density function (p.d.f.) estimates
based on previous decisions (experience). In that case, uncertainty is related to
estimation errors, and higher amount of uncertainty is observed as the estimation

errors increase.

In the NP framework, the aim is to maximize (a function of) the detection
probability under a constraint on the false-alarm probabilities [40]. For compos-
ite hypothesis-testing problems in the NP framework, it is common to consider
the conservative approach in which the false-alarm probability should be below a
certain constraint for all possible values of parameter 0 in set Ay [68], [69]. In this
case, whether the probability distribution of the parameter under Hg, wq(6), is
known completely or with uncertainty does not change the problem formulation
(see Section 5.4 for extensions). On the other hand, the problem formulation
depends heavily on the amount of knowledge about the probability distribution
of the parameter under H;, wi(f).! In that respect, two extreme cases can be

considered. In the first case, there is no uncertainty in wy(#). Then, the average

'In accordance with these observations, the term uncertainty will be used to refer to uncer-
tainties in wj (f) unless stated otherwise.
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detection probability can be considered, and the classical NP approach can be
employed to obtain the detector that maximizes the average detection proba-
bility under the given false-alarm constraint [64], [74]-[76]. In the second case,
there is full uncertainty in wj (), meaning that the prior distribution under #;
is completely unknown. Then, maximizing the worst-case (minimum) detection
probability can be considered under the false-alarm constraint, which is called as
the max-min criterion or the “generalized” NP criterion [68], [69]. In fact, these
two extreme cases, complete knowledge and full uncertainty of the prior distri-
bution, are rarely encountered in practice. In most practical cases, there exists
some uncertainty in w;(6), and the classical NP and the max-min approaches do
not address those cases. The main motivation behind this study is to investigate
a criterion that takes various amounts of uncertainty into account, and covers
the approaches designed for the complete knowledge and the full uncertainty

scenarios as special cases [42].

In practice, the prior distribution ws () is commonly estimated based on pre-
vious observations, and there exists some uncertainty in the knowledge of wy ()
due to estimation errors. Therefore, the amount of uncertainty depends on the
amount of estimation errors. If the average detection probability is calculated
based on the estimated prior distribution and the maximization of that average
detection probability is performed based on the classical NP approach, it means
that the estimation errors (hence, the uncertainty related to the prior distribu-
tion) are ignored. In such cases, very poor detection performance can be observed
when the estimated distribution differs significantly from the correct one. On the
other hand, if the max-min approach is used and the worst-case detection prob-
ability is maximized, it means that the prior information (contained in the prior
distribution estimate) about the parameter is completely ignored, and the de-
cision rule is designed as if there existed no prior information. Therefore, this
approach does not utilize the available prior information at all and employs a

very conservative perspective. In this chapter, we focus on a criterion that aims
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to maximize the average detection probability, calculated based on the estimated
prior distribution, under the constraint that the minimum (worst-case) detection
probability stays above a certain threshold, which can be adjusted depending on
the amount of uncertainty in the prior distribution. In this way, both the prior
information in the distribution estimate is utilized and the uncertainty in this
estimate is considered. This criterion is referred to as the restricted NP criterion
in this study, since it can be considered as an application of the restricted Bayes
criterion (Hodges-Lehmann rule) to the NP framework [42]. The restricted NP
criterion generalizes the classical NP and max-min approaches and covers them

as special cases.

In order to provide a mathematical formulation of the restricted NP criterion,
we first define the detection and false-alarm probabilities of a decision rule for

given parameter values as follows:
Po(0i6) 2 [ o mixdx . for o€ (52)
r
Pr(:0) 2 [ omix)dx, tor 0 € Ay (53)
r

where I' represents the observation space, and ¢(x) denotes a generic decision
rule (detector) that maps the data vector into a real number in [0, 1], which
represents the probability of selecting #H; [40]. Then, the restricted NP problem

can be formulated as the following optimization problem:

o /A Po(o6) wi(6) db (5.4)
subject to Pp(¢;0) > 5, VO € A (5.5)

where « is false-alarm constraint, and J is the design parameter to compensate
for the uncertainty in w;(#). In other words, a restricted NP decision rule max-
imizes the average detection probability, where the average is performed based
on the prior distribution estimate w;(f), under the constraints on the worst-

case detection and false-alarm probabilities. Parameter § in (5.5) is defined as
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B2 (1—e€) for 0 < e <1, with ¢ denoting the max-min detection probability.
Namely, ¢ is the maximum worst-case detection probability that can be obtained

as follows:

¢ = g e Pp(:0)

subject to Pp(¢;0) <a, V8 €Ay . (5.7)

From the definition of 3, it is observed that g ranges from zero to (. In the
case of full uncertainty in wy (), € is set to zero (i.e., 5 = (), which reduces the
restricted NP problem in (5.4)-(5.6) to the max-min problem in (5.7). On the
other hand, in the case of complete knowledge of w; (), € can be set to 1, and
the restricted NP problem reduces to the classical NP problem, specified by (5.4)

and (5.6), which can be expressed as

max Py*(0)

subject to Pp(¢;0) < a, VO €e Ay (5.8)

where Ppe(¢) = [ r, Pp(9;0)wi(0)do is the average detection probability.
Therefore, the max-min and the classical NP approaches are two special cases of

the restricted NP approach.

5.2 Analysis of Restricted Neyman-Pearson

Approach

In this section, the aim is to investigate the optimal solution of the restricted NP

problem in (5.4)-(5.6). For this purpose, the definitions in (5.2) and (5.3) can be
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used to reformulate the problem in (5.4)-(5.6) as follows:

maxe [ 9(x) 1 (x) 5.9

subject to glel}\li /F<b(x) po(x)dx > (5.10)

max / 6(x) po(x) dx < a (5.11)

where p;(x) £ [ A po(x)wq(0) df defines the p.d.f. of the observation under Hy,

which is obtained based on the prior distribution estimate ws(#). In addition,

an alternative representation of the problem in (5.9)-(5.11) can be expressed as
max )\/ O(x)pr(x)dx + (1 —N) min /¢(X) po(x) dx (5.12)

r
subject to max /ng X) pe(x)dx < « (5.13)

where 0 < XA < 1 is a design parameter that is selected according to (.

5.2.1 Characterization of Optimal Decision Rule

Based on the formulation in (5.12) and (5.13), the following theorem provides a
method to characterize the optimal solution of the restricted NP problem under

certain conditions.

Theorem 1: Define a p.d.f. v(0) as v(0) = Xwi(0) + (1 — \) u(6), where
w(0) is any valid p.d.f. If ¢* is the NP solution for v(0) under the false-alarm

constraint and satisfies
/¢*(x)/ (x) u(0) d dx = min /¢ X) pp(x (5.14)
r A (2SN
then it is a solution of the problem in (5.12) and (5.13).
Proof: Please see Appendix 5.6.1.

Theorem 1 states that if one can find a p.d.f. p(#) that satisfies the condi-
tion in (5.14), then the NP solution corresponding to Awi(6) 4+ (1 — ) u(0) is
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a solution of the restricted NP problem in (5.12) and (5.13). Also it should be
noted that Theorem 1 is an optimality result; it does not guarantee existence or
uniqueness. However, in most cases, the optimal solution proposed by Theorem
1 exists, which can be proven as in [42] based on some assumptions on the in-
terchangeability of supremum and infimum operators, and on the existence of a
probability distribution (a decision rule) that minimizes (maximizes) the max-
imum (minimum) average detection probability (see Assumptions 1-3 in [42]).
In fact, those assumptions hold when a set of conditions specified in [47, pp.
191-205] are satisfied. From a practical perspective, the assumptions hold, for
example, when the probability distributions are discrete or absolutely continu-
ous (i.e., have cumulative distributions function that are absolutely continuous
with respect to the Lebesgue measure), the parameter space is compact, and the
problem is non-sequential [42]. More specifically, for the problem formulation
in this study, all the assumptions are satisfied when py(x), V0 € A, is discrete,
or cumulative distributions corresponding to py(x), V0 € A, are absolutely con-
tinuous (with respect to the Lebesgue measure), and the parameter space A is

compact.

Remark 1: In Theorem 1, the meaning of ¢* being the NP solution for
v(#) under the false-alarm constraint is that ¢* solves the following optimization

problem:
max/¢(x)/ po(x) v(0) dO dx
¢ Jr Ay
subject to max /gb(x) po(x)dx < « (5.15)
0o r

where v(0) = Awy(0) + (1 — X\) u(0). Based on the NP lemma [40], it can be

shown that the solution of (5.15) is in the form of a likelihood ratio test (LRT);
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that is,?

;

1, if [y, pa(x) v(0) df > npg, (x)
O"(%) = { r(x) , if [, pe(x)v(0)dd = np;,(x) (5.16)
0, if [y, po(x) v(0) df < npg,(x)

where > 0 and 0 < k(x) < 1 are such that max Pr(¢*:0) = , and 6 is defined
€Mo

as

fo = arg max Pr(¢*;0) . (5.17)

Therefore, the solution of the restricted NP problem in (5.12) and (5.13) can be
expressed by the LRT specified in (5.16) and (5.17), once a p.d.f. p(f) and the
corresponding decision rule ¢* that satisfy the constraint in (5.14) are obtained
(see Section 5.2.2). It should also be noted that having multiple solutions for 6,
does not present a problem since it can be shown that the same average detection

probability is achieved for all the solutions.

The following corollary is presented in order to show the equivalence between

the formulation in (5.12) and (5.13) and that in (5.4)-(5.6).

Corollary 1: Under the conditions in Theorem 1, ¢* solves the optimization

problem in (5.4)-(5.6) when
IIllIl Jp &% (%) po(x) dx = 3.

IS\

Proof: According to Theorem 1, ¢* achieves the maximum value of the
objective function in (5.12). That is, for any a-level decision rule ¢ (i.e., for any

¢ that satisfies (5.13)),

/¢ /Alpe( ) wy(6) dddx + (1~ X) min /¢ x) pa(x
sx/ras*(x)/m x) w;(6) dB dx + (1 — A mm/cb )p(x)dx  (5.18)

2The proof follows from the observation that (¢*(x) —¢(x)) (‘fAl po(x) v(0) df — npg, (X)) >

0, Vx, for any decision rule ¢ due to the definition of ¢* in (5.16). Then, the approach on page
24 of [40] can be used to prove that [ ¢*(x) [, pe(x)v(0)d0dx > [ ¢(x) [, pe(x)v(0)dO dx
for any decision rule ¢ that satisfies Pr(¢;60) < «a, V0 € Ao.
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is satisfied. Since (?el}\? Jro(x)po(x)dx > [ due to (5.5) and
grel}& Jp ¢*(x) po(x) dx = 3 as stated in the corollary, [.¢(x) fAl po(x) w1 (0) dO dx
should be smaller than or equal to [.¢*(x) [, pe(x)wi(0)dfdx in order
for the inequality in (5.18) to hold. Equivalently, [, Pp(¢;0)wi(0)do <
i) A, Pp(07:0) w1(0) do for any a-level decision rule ¢, which proves that ¢* solves

the optimization problem in (5.4)-(5.6). OJ

Corollary 1 states that when the decision rule ¢* specified in Theorem 1 sat-
isfies the constraint in (5.10) with equality, it also provides a solution of the
restricted NP problem specified in (5.9)-(5.11); equivalently, in (5.4)-(5.6). In
other words, the average detection probability can be maximized when the min-
imum of the detection probabilities for all possible parameter values 0 € Ay is
equal to the lower limit 8. It should also be noted that Corollary 1 establishes a
formal link between parameters A\ and 8. For any A, 8 can be calculated through

the equation in the corollary.

Another property of the optimal decision rule ¢* described in Theorem 1 is
that it can be defined as an NP solution corresponding to the least-favorable
distribution v(#) specified in Theorem 1. In other words, among a family of
p.d.f.s, v(0) is the least-favorable one since it minimizes the average detection
probability. This observation is similar, for example, to the fact that the minimax
decision rule is the Bayes rule corresponding to the least-favorable priors [40]. In
the following theorem, an approach similar to that in [42] is taken in order to

show that v(0) in Theorem 1 corresponds to a least-favorable distribution.

Theorem 2: Under the conditions in Theorem 1, v(6) = Aw1(0)+(1—\) u(6)
minimizes the average detection probability among all prior distributions in the

form of

#(0) = Awi(8) + (1 — \) fi(9) (5.19)
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for X\ > X, where 0 € Ay and [i(A) is any probability distribution. Equivalently,

/F¢*(X) /Alpe(X)U(Q) df dx < /F¢*(X) /Alpg(x)f;(ﬁ) d dx

for any ©(0) described above, where ¢* and ¢* are the a-level NP decision rules

corresponding to v(0) and (), respectively.
Proof: Please see Appendix 5.6.2.

Although Theorem 2 provides a definition of the least-favorable distribution
in a family of prior distributions in the form of #(6) = Awy(#) + (1 — \) fi(6) for
A > )\, only the case A = X is of interest in practice since \ in (5.12) is commonly
set as a design parameter depending on the amount of uncertainty in the prior
distribution. Therefore, in calculating the optimal decision rule according to the
restricted NP criterion, the special case of Theorem 2 for A = X will be employed

in the next section.

5.2.2 Calculation of Optimal Decision Rule

The analysis in Section 5.2.1 reveals that a density u(#) and a corresponding NP
rule (as specified in Remark 1) that satisfy the constraint in Theorem 1 need
to be obtained for the solution of the restricted NP problem. To this aim, the

condition in Theorem 1 can be expressed based on (5.2) as

/ w(0) Pp(¢*;0) df = min Pp(¢*;0) . (5.20)
AL b,

This condition requires that p(6) assigns non-zero probabilities only to the val-
ues of # that result in the the global minimum of Pp(¢*;0). First, assume that
Pp(¢*;0) has a unique minimizer that achieves the global minimum (the exten-
sions in the absence of this assumption will be discussed as well). Then, u(0)

can be expressed as

1(0) = 6(0 — 0y) (5.21)
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which means that 6§ = 6; with probability one under this distribution. Based on
this observation, the following algorithm can be proposed to obtain the optimal

restricted NP decision rule.

Algorithm

1. Obtain Pp(¢p,;0) for all 0, € Ay, where ¢, denotes the a-level NP decision
rule corresponding to v(0) = Awy(0)+(1—X\) §(6—6,) as described in (5.16)
and (5.17).

2. Calculate

07 = arg gnéi/r\l f(6y) (5.22)
where
F(6) 2 2 /A wi(0)Po(5,:0)d0+ (1— ) Pl 0) . (5.23)

3. It Pp(¢h;07) = gn}\n Pp(¢;-;0), output ¢p. as the solution of the restricted
1 €A 1 1

NP problem; otherwise, the solution does not exist.

It should be noted that f(6;) in (5.23) is the average detection probability
corresponding to v(6) = Aw(0) + (1 — A\)§(6 — 6,).> Since Theorem 2 (for
A= A) states that the optimal restricted NP solution corresponds to the least-
favorable prior distribution, which results in the minimum average detection
probability, the only possible solution is the NP decision rule corresponding to
07 in (5.22), ¢p:- Therefore, only that rule is considered in the last step of the
algorithm, and the optimality condition is checked. If the condition is satisfied,
the optimal restricted NP solution is obtained. Although not common in practice,
the optimal solution may not exist in some cases since Theorem 1 does not

guarantee existence. Also, it should be noted that there may be multiple solutions

3It should be noted that A is related to the design parameter 3 in (5.5) through Corollary
1. In addition, the fact that as A increases (decreases), 8 decreases (increases) can be used to
adjust the corresponding parameter value.
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of (5.22), and in that case any solution of (5.22) satisfying the third condition
in the algorithm is an optimal solution according to Theorem 1. Therefore, one

such solution can be selected for the optimal restricted NP solution.

In order to extend the algorithm to the cases in which Pp(¢*;0) has multiple

values of 6 that achieve the global minimum, express u(6) as
N
p(®) => 1 8(0 -6, (5.24)
I=1

where v; > 0, Zf\il vy = 1, and N is the number of 6 values that minimize
Pp(¢*;0). For simplicity of notation, let 9 denote the vector of unknown param-
eters of u(0); that is, ¥ = [0y ---Ox vy ---vn]. Based on (5.24), the calculations

in the algorithm should be updated as follows:
9" = arg ngn f(9) (5.25)
where
N
FO) 20 [ wn(0)Poléi0)do + (1N uPoloyit)  (5:26)
A =1
with ¢} denoting the NP solution corresponding to v(f) = Awy(0) + (1 —
A) SN 1 8(8—8;). Then, the condition Pp(¢.; %) = mﬁin Pp(¢l-;19) is checked
to verify the optimal solution as ¢}.. It is noted from (5.25) that the compu-
tational complexity can increase significantly when the detection probability is
minimized by multiple € values. In such cases, global optimization algorithms,

such as particle-swarm optimization (PSO) [51], [54], genetic algorithms and

differential evolution [82], can be used to calculate 9*.

Finally, if the global minimum of Pp(¢*;0) is achieved by infinitely many 6
values, then all possible 1(6) need to be considered, which can have prohibitive
complexity in general. In order to obtain an approximate solution in such cases,
Parzen window density estimation [81] can be employed as in [48]. Specifically,

1(0) is expressed approximately by a linear combination of a number of window
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functions as
Nw
p®) = &0 —6) (5.27)
=1

and the unknown parameters of u(#) such as 6, and & can be collected into 9
as for the discrete case above. Then, (5.25) and (5.26) can be employed in the
algorithm by replacing v, and N with & and N, respectively, and by defining ¢}
as the NP solution corresponding to v(6) = Awy (8) + (1 — X) S & (6 — 6)).

In Section 5.3, an example is provided to illustrate how to calculate the
optimal restricted NP solution based on the techniques discussed in this section.
Since the number of minimizers of Pp(¢*;#) may not be known in advance, a
practical approach can be taken as follows. First, it is assumed that there is only
one value of # that achieves the global minimum, and the algorithm is applied
based on this assumption (see (5.22) and (5.23)). If the condition in Step 3 is
satisfied, then the optimal solution is obtained. Otherwise, it is assumed that
there are two (or, more) 6 values that achieve the global minimum, and the
algorithm is run based on (5.25) and (5.26). In this way, the complexity of the

solution can be increased gradually until a solution is obtained.

Considering the computational complexity of the three-step algorithm pro-
posed in this section, the first step involves the derivation of a generic NP decision
rule as a function of ;. In this derivation, the threshold of the test is obtained
based on the likelihood ratio and the false-alarm constraint. Then, the expres-
sion for the detection probability can be obtained as a function of 8;. The exact
number of operations in this step depends on the form of the probability density
function of the observation. For example, in the simplest case, the likelihood
ratio test can be reduced to a single threshold test. Then, the false-alarm and
detection probabilities can be expressed in terms of the cumulative distribution
functions (CDF's) of the observation under Hy and H;, respectively. In the second
step of the algorithm, a minimization problem needs to be solved in order to ob-

tain the parameters of a candidate solution. The complexity of this step depends
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on the number of point masses of the optimal solution (i.e., the number of min-
imizers of the detection probability Pp(¢*;0) over § € A;). If a one point mass
solution exists, a simple one-dimensional search leads to the candidate parame-
ter for the optimal solution. However, if the solution has multiple, say N, point
masses, then a linearly constrained minimization problem over a 2N dimensional
space needs to be solved (see (5.25)). For convex cost functions, the solution can
be obtained by interior-point methods, which are polynomial time in the worst
case, and are very fast in practice. However, for nonconvex cost functions, global
optimization techniques, such as PSO, need to be employed in order to obtain a
solution. In that case, the computational complexity depends on the number of
particles and iterations of the algorithm. Finally, the third step of the algorithm
involves checking the minimum detection probability for the candidate solution
obtained in the second step. This condition can be checked either by calculating
the minimum value directly, or by first obtaining the possible minimum points
via first order necessary conditions (taking first-order derivatives) and then by

evaluating the detection probability at those points.

5.2.3 Properties of Average Detection Probability in Re-

stricted NP Solutions

In the restricted NP approach, the average detection probability is maximized
under some constraints on the worst-case detection and false-alarm probabilities
(see (5.4)-(5.6)). On the other hand, the classical NP approach in (5.8) does not
consider the constraint on the worst-case detection probability, and maximizes
the average detection probability under the constraint on the worst-case false-
alarm probability only. Therefore, the average detection probability achieved by
the classical NP approach is larger than or equal to that of the restricted NP
approach; however, its worst-case detection probability is smaller than or equal

to that of the restricted NP solution. Considering the max-min approach in (5.7),
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the aim is to maximize the worst-case detection probability under the constraint
on the worst-case false-alarm probability. Therefore, the worst-case detection
probability achieved by the max-min decision rule is larger than or equal to that
of the restricted NP decision rule, whereas the average detection probability of
the max-min approach is smaller than or equal to that of the restricted NP

solution.

In order to express the relations above in mathematical terms, let ¢?, ¢,,, and
¢ denote the solutions of the restricted NP, max-min and classical NP problems
in (5.4)-(5.6), (5.7) and (5.8), respectively. In addition, let L = (1912}&1} Pp(¢e; 0) and
U= gxel}\? Pp(¢m; 0) define the worst-case detection probabilities of the classical
NP and max-min solutions, respectively. It should be noted that, in the restricted
NP approach, the constraint 5 on the worst-case detection probability (see (5.5))
cannot be larger than U, since the max-min solution provides the maximum
value of the worst-case detection probability as discussed before. On the other
hand, when [ is selected to be smaller than L in the restricted NP formulation,
the worst-case detection probability constraint becomes ineffective; hence, the
restricted NP and the classical NP approaches become identical. Therefore, /5 in
the restricted NP formulation is defined over the interval [L, U] in practice. As a

special case, when L = U = 3, the restricted NP, the max-min and the classical

NP solutions all become equal.

For the restricted NP solution ¢, the average detection probability can be
calculated as
PRE@) = | Po(fio)wi(e)as (5.28)
A1
The discussions above imply that Pp'®(¢?) is constant and equal to the aver-
age detection probability of the classical NP solution for f < L. In order to
characterize the behavior of Pp®(¢P) for 3 € [L,U], the following theorem is

presented.
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Theorem 3: The average detection probability of the restricted NP decision

rule, Ppy®(¢?), is a strictly decreasing and concave function of 3 for 3 € [L,U].
Proof: Please see Appendix 5.6.3.

Theorem 3 implies that the average detection probability can be improved
monotonically as # decreases towards L. In other words, by considering a less
strict constraint (i.e., smaller 3) on the worst-case detection probability, it is
possible to increase the average detection probability. However, it should be
noted that § should be selected depending on the amount of uncertainty in
the prior distribution; namely, smaller g values are selected as the uncertainty
decreases. Therefore, Theorem 3 implies that the reduction in the uncertainty can
always be used to improve the average detection probability. Another important
conclusion from Theorem 3 is that there is a diminishing return in improving the
average detection probability by reducing B due to the concavity of Pp8(¢?).
In other words, a unit decrease of § results in a smaller increase in the average
detection probability for smaller values of 5. Figure 5.1 in Section 5.3 provides

an illustration of the results of Theorem 3.

5.3 Numerical Results

In this section, a binary hypothesis-testing problem is studied in order to pro-
vide practical examples of the results presented in the previous sections. The

hypotheses are defined as
Ho : X=V , Hi: X=04+V (5.29)

where X € R, © is an unknown parameter, and V' is symmetric Gaussian mixture
noise with the following p.d.f. py(v) = SV w; (v — m;), where w; > 0 for
i=1,..., Ny SV w; = 1, and ¢(z) = 1/(v27 03) exp (—22/(202)) for i =

1,..., Ny,. Due to the symmetry assumption, m; = —mpy,, —i+1, Wi = WN,,—1+1
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and 0, = on,, 41 for I = 1,...,[N,,/2], where |y]| denotes the largest integer
smaller than or equal to . Note that if N, is an odd number, my,,+1)/2 should

be zero for symmetry.

Parameter © in (5.29) is modeled as a random variable with a p.d.f. in the

form of
wi(0) =pd(@—A)+ (1 —p)d(@+ A) (5.30)

where A is exactly known, but p is known with some uncertainty. With this
model, the detection problem in (5.29) corresponds to the detection of a signal
that employs binary modulation, namely, binary phase shift keying (BPSK). It
should be noted that prior probabilities of symbols are not necessarily equal (i.e.,
p may not be equal to 0.5) in all communications systems [103]; hence, p should
be estimated based on (previous) measurements in practice. In the numerical
examples, the possible errors in the estimation of p are taken into account in the

restricted NP framework.

For the problem formulation above, the parameter sets under H, and H;
can be specified as Ag = {0} and A; = {—A, A}, respectively. In addition, the

conditional p.d.f. of X for a given value of © = 6 is expressed as

po(z) = Né “ exp (_(x - mi)Q) . (5.31)

V21 o, 20?7

In order to obtain the optimal restricted NP decision rule for this problem,
the algorithm in Section 5.2.2 is employed. First, it is assumed that p(6) can
be expressed as in (5.21); namely, p(0) = §(0 — 0y), where 6, € {—A, A}, and
the algorithm is applied based on (5.22) and (5.23). When the condition in
the third step of the algorithm is satisfied, then the optimal solution is obtained.
Otherwise, () is represented as p(0) = 55(0—A)+(1—7) §(0+ A) for 5 € [0, 1],
and the algorithm is run based on this model (consider (5.24) with N = 2,

v =1—1vy=7,and 0; = —0y = A). Note that this model includes all possible
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Figure 5.1: Average detection probability versus /3 for the classical NP, restricted
NP, and max-min decision rules for p = 0.7, p = 0.8 and p = 0.9, where A = 1,
oc=0.2,and o = 0.2.

p.d.f.s since Ay = {—A, A}. As there is only one unknown variable, ¥, in u(f),
the algorithm can be employed to find the value of 4 that minimizes the average
detection probability (see (5.25) and (5.26) with 9 = 4). Then, the condition in
the third step of the algorithm is checked in order to obtain the optimal decision

rule.

In the numerical results, symmetric Gaussian mixture noise with N,, = 4 is
considered, where the mean values of the Gaussian components in the mixture
noise are specified as [0.1 0.95 — 0.95 — 0.1] with corresponding weights of
[0.35 0.15 0.15 0.35]. In addition, for all the cases, the variances of the Gaussian
components in the mixture noise are assumed to be the same; i.e., o; = o for

i=1,...,Np.

135



In Figure 5.1, the average detection probabilities of the classical NP, restricted
NP, and max-min decision rules are plotted against 3, which specifies the lower
limit on the minimum (worst-case) detection probability. Various values of p in
(5.30) are considered, and A =1, 0 = 0.2, and o = 0.2 (see (5.6)) are used. As
discussed in Section 5.2.3, the restricted NP decision rule reduces to the classical
NP decision rule when S is smaller than or equal to the worst-case detection
probability of the classical NP decision rule.* On the other hand, the restricted
NP and the max-min decision rules become identical when S is equal to the
worst-case detection probability of the max-min decision rule. For the restricted
NP decision rule, § is equal to the minimum detection probability (see (5.63));
hence, the z-axis in Figure 5.1 can also be considered as the minimum detection
probability except for the constant parts of the lines that correspond to the clas-
sical NP. As expected, the highest average detection probabilities are achieved
by the classical NP decision rule; however, it also results in the lowest minimum
detection probabilities, which are 0.453, 0.431 and 0.389 for p = 0.7, p = 0.8 and
p = 0.9, respectively. Conversely, the max-min decision rule achieves the high-
est minimum detection probabilities, but its average detection probabilities are
the worst. On the other hand, the restricted NP decision rules provide tradeoffs
between the average and the minimum detection probabilities, and cover the clas-
sical NP and the max-min decision rules as the special cases. It is also observed
from the figure that as p decreases, the difference between the performance of
the classical NP and the max-min decision rules reduces. In fact, for p = 0.5, the
restricted NP, the max-min, and the classical NP decision rule all become equal,
since it can be shown that w;(#) in (5.30) becomes the least-favorable p.d.f. for
p = 0.5. Figure 5.1 can also be used to investigate the results of Theorem 3. It is
observed that the average detection probability is a strictly decreasing and con-

cave function of 3 for the restricted NP decision rule, as claimed in the theorem.

4Although the classical NP decision rule can be regarded as a special case of the restricted
NP decision rule for § < L, the “restricted NP decision rule” term is used only for 8 € [L, U]
in the following discussions (see Section 5.2.3).
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Table 5.1: Parameter v for least-favorable distribution v(6) = vd§(0 — 1) + (1 —
) (0 + 1) corresponding to restricted NP decision rules. “NA” means that
the given minimum detection probability cannot be achieved by a restricted NP
decision rule.

Avg. Det. Prob. for p=0.9/p=0.8/p=0.7 | Min. Det. Prob. 0l
0.7997 /0.7597 / NA 0.4398 0.765
0.7915 /0.7556 / 0.7197 0.4687 0.63
0.7635 /0.7360 / 0.7086 0.5166 0.54
0.7301/0.7115 / 0.6930 0.5629 0.522
0.7034 / 0.6920 / 0.6806 0.6007 0.513
0.6724 /0.6688 / 0.6652 0.6398 0.504

Finally, we would like to mention that Figure 5.1 can provide guidelines for the
designer to choose a [ value by observing the corresponding average detection
probability for each 3. Therefore, in practice, instead of setting a prescribed /3

directly, Figure 5.1 can be used to choose a  value for the problem.

For the scenario in Figure 5.1, the least-favorable distributions are investi-
gated for the restricted NP decision rule, and they are compared against the
least-favorable distribution for the max-min decision rule. For the max-min cri-
terion, the least-favorable distribution wy¢(#) in this example can be calculated
as wi(f#) = 0.55(0 — 1) +0.56(0 + 1). Table 5.1 shows the least-favorable dis-
tributions, expressed in the form of v(d) = v6(6 — 1) + (1 — ) (0 + 1), for
the restricted NP solution for various parameters. The corresponding average
and minimum detection probabilities are also listed. As the minimum detection
probability increases, the least-favorable distribution gets closer to that of the
max-min decision rule. It is also noted that the least-favorable distributions are

the same for all the p values in this example.

Figure 5.2 plots the average and minimum detection probabilities of the re-
stricted NP decision rules versus A in (5.12) for p = 0.7, p = 0.8 and p = 0.9,
where A = 1, 0 = 0.2 and a = 0.2 are used. It is observed that the average

and the minimum detection probabilities are the same when 0 < A\ < 0.555 for
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Figure 5.2: Average and minimum detection probabilities of the restricted NP
decision rules versus A for p = 0.7, p = 0.8 and p = 0.9, where A =1, a = 0.2
and o = 0.2.
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p=0.9, when 0 < X\ <0.625 for p = 0.8, and when 0 < A < 0.714 for p = 0.7. In
these cases, the restricted NP decision rule is equivalent to the max-min decision
rule. On the other hand, for A = 1, the restricted NP decision rule reduces to the
classical NP decision rule. These observations can easily be verified from (5.12)
and (5.13). Another observation from Figure 5.2 is that the max-min solution
equalizes the detection probabilities for # € A; = {—1,1} values. Therefore,
the average and the minimum detection probabilities are equal for the max-min
solutions. On the other hand, the classical NP solution maximizes the aver-
age detection probability at the expense of reducing the worst-case (minimum)
detection probability. For this reason, the difference between the average and
the minimum detection probabilities increases with A. Finally, Figure 5.2 shows
that the difference between the average and the minimum detection probabilities

increases as p increases.

Figure 5.3 compares the performances of the restricted NP, the max-min,
the classical NP decision rules for various standard deviation values o, where
A=1 a=02and p = 0.9 are used. The restricted NP decision rules are
calculated for A = 0.6 and A = 0.8, where the weight A is as specified in (5.12).
For each decision rule, both the average detection probability and the minimum
(worst-case) detection probability are obtained. As expected, the classical NP
decision rule achieves the highest average detection probability and the lowest
minimum detection probability for all values of . On the other hand, the max-
min decision rule achieves the highest minimum detection probability and the
lowest average detection probability. It is noted that the max-min decision rule
equalizes the detection probabilities for various parameter values, and results in
the same average and the minimum detection probabilities. Another observation
from Figure 5.3 is that the restricted NP decision rule gets closer to the classical
NP decision rule as \ increases, and to the max-min decision rule as A decreases.

The restricted NP decision rule provides various advantages over the classical NP
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Figure 5.3: Average and minimum detection probabilities of the classical NP,

max-min, and restricted NP (for A = 0.6 and A = 0.8) decision rules versus o for
A=1,a=0.2 and p=0.9.
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and the max-min decision rules when both the average and the minimum detec-
tion probabilities are considered. For example, the restricted NP decision rule
for A = 0.8 has very close average detection probabilities to those of the classical
NP decision rule; however, it achieves significantly higher minimum detection
probabilities. Therefore, even if the prior distribution is known perfectly, it can
be advantageous to use the restricted NP decision rule when both the average and
the minimum detection probabilities are considered as performance metrics.® Of
course, when there are uncertainties in the knowledge of the prior distribution,
the actual average probabilities achieved by the classical NP approach can be
significantly lower than those shown in Figure 5.3, which can get as low as the
lowest curve. In such scenarios, the restricted NP approach has a clear perfor-
mance advantage. Compared to the max-min decision rule, the advantage of
the restricted NP decision is to utilize the prior information, which can include

uncertainty, in order to achieve higher average detection probabilities.

Finally, in Figure 5.4, the average and the minimum detection probabilities
of the restricted NP (for A = 0.6 and A = 0.8), the max-min, and the classical
NP decision rules are plotted versus o for A = 1, ¢ = 0.2, and p = 0.9. As
expected, larger detection probabilities are achieved as « increases. In addition,

similar tradeoffs to those in the previous scenario are observed from the figure.

5.4 Alternative Formulation

Although the formulation in (5.4)-(5.6) takes into account uncertainties in wy ()
only, it is possible to extend the results in order to impose a similar constraint
also on wy(@). In other words, knowledge on wy(#) can also be incorporated into

the problem formulation. Therefore, in this section we provide an alternative

°In this problem, for p > 0.5, the minimum detection probability corresponds to § = —1,
which occurs with probability 1 — p. Therefore, the minimum detection probability may be
considered as an important performance metric along with the average detection probability.
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formulation that incorporates both the uncertainties in wy(6) and ws(#), and

provides an explicit model for the prior uncertainties.

Consider an e-contaminated model [104] and express the true prior distri-
bution as w*(0) = (1 — &;)w;(0) + ;h;(0) for i = 0,1, where w;(#) denotes
the estimated prior distribution and h;(6) is any unknown probability distribu-
tion. In other words, the prior distributions are known as wg(f) and wy () with
some uncertainty, and the amount of uncertainty is controlled by ¢y and ¢;. For
example, wy(f) and wi(0) can be p.d.f. estimates based on previous decisions
(experience), and gy and 1 can be determined depending on certain metrics of
the estimators, such as the variances of the parameter estimators. Let W; denote
the set of all possible prior distributions w{*(6) according to the e-contaminated
model above. Then, the following problem formulation can be considered:

mgxwtlrrél)igv\)l/PD(gb 0) wi(0) do

subject to  max /PF(QS;H) wy(0)dh < . (5.32)
wiF(0)eWn

Based on the e-contaminated model, the problem in (5.32) can also be expressed

from (5.2) and (5.3) as
max (1 - &) / / G (x)1(6) d9 dx + &1 i / / &(x)po(x)hn (0) d6 dx
subject to gﬁg){ (1-— 50)//¢(X)p9(x)w0(9) df dx
50//gb(x)pg(x)ho(¢9) dldx < « . (5.33)

Let p;i(x) = [ po(x)w;(0) db for i = 0,1. In addition, since

nun//qﬁ x)pg(x)hy1(0) df dx = mkn/qﬁ X)po(x
0e\
max//gzﬁ X)pg(x)ho(0) db dx = max/gb X)py(x

and
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(5.33) becomes

max (1—¢1) / d(x)p1(x) dx + &1 HEI}XIII / O(X)pa(x) dx (5.34)
subject to max /qb [(1—e0)po(x) + eopa(x)] dx < v . (5.35)

It is noted from (5.12)-(5.13) and (5.34)-(5.35) that the objective functions are
in the same form but the constraints are somewhat different in the optimization
problems considered in Section 5.2 and in this section. Since the proof of Theorem
1 focuses on the maximization of the objective function considering only the NP
decision rules that satisfy the false-alarm constraint (see Appendix 5.6.1), the
same proof applies to the problem in (5.34)-(5.35) as well if we consider the NP
decision rules under the constraint in (5.35) and define v(0) = (1 — e;)wy(6) +
e1p(6). Therefore, Theorem 1 is valid in this scenario when the NP solution for

v(#) under the false-alarm constraint is updated as follows (see Remark 1):

(

L, if fA1 po(x)v(0) db > [(1 — £0)po(x) + €op§0(x)]
¢"(x) = k(x), if [, po(x)v(0)d0 =n [(1 - 20)po(x) + copg, (x)]  (5:36)

0, if [y, pe(x)v(0)d8 < n [(1— £o)po(x) + £opg, (%)]

\

where 7 > 0 and 0 < k(x) < 1 are such that

max /¢ [(1 = &0)po(x) + opo(x)] dx = o,

and 0, is defined as

6y = arg max /¢ [(1 —€0)po(x) + copo(x)] dx . (5.37)

Hence, the solution of the problem in (5.34) and (5.35) can be expressed by the
LRT specified in (5.36) and (5.37), once a p.d.f. u(f) and the corresponding

decision rule ¢* that satisfy the condition in Theorem 1 are obtained.

The problem formulation in (5.32) can also be regarded as an application
of the I'-minimax approach [64] to the NP framework, or as NP testing under

interval probability [77], [78]. Although the mathematical approach in obtaining
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the optimal solution is similar to that of the restricted NP approach investi-
gated in the previous sections, there exist significant differences between these
approaches. For the approach in this section, uncertainty needs to be modeled
by a class of possible prior distributions, then the prior distribution that mini-
mizes the detection probability is considered for the alternative hypothesis®. On
the other hand, the restricted NP approach in (5.4)-(5.6) focuses on a scenario
in which one has a single prior distribution (e.g., a prior distribution estimate
from previous experience) but can only consider decision rules whose detection
probability is constrained by a lower limit. In other words, the main idea is that
“one can utilize the prior information, but in a way that will be guaranteed to
be acceptable to the frequentist who wants to limit frequentist risk” (detection
probability in this scenario) [64]. Therefore, there is no model assumption in the
restricted NP approach; hence, no efforts are required to find the best model.
The two performance metrics, the average and the minimum detection proba-
bilities, can be investigated in order to decide the best value of 8. As stated
in [105], it can be challenging to represent some uncertainty types via certain
mathematical models such as the e-contaminated class. Therefore, the restricted

NP approach can also be useful in such scenarios.

5.5 Concluding Remarks and Extensions

In this chapter, a restricted NP framework has been investigated for compos-
ite hypothesis-testing problems in the presence of prior information uncertainty.
The optimal decision rule according to the restricted NP criterion has been char-
acterized theoretically, and an algorithm has been proposed to calculate it. In
addition, it has been observed that the restricted NP decision rule can be specified

as a classical NP decision rule corresponding to the least-favorable distribution.

6Similarly, the prior distribution that maximizes the false alarm probability is considered
for the null hypothesis.
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Furthermore, the average detection probability achieved by the restricted NP
approach has been shown to be a strictly decreasing and concave function of the
constraint on the worst-case detection probability. Finally, numerical examples

have been presented in order to investigate and illustrate the theoretical results.

Similar to the extensions of the restricted Bayesian approach in [42], the
notion of a restricted NP decision rule can be extended to cover more generic
scenarios. Consider sets of distribution families Yo, T1,..., Tys such that Ty C
T,--- C Tp. Suppose we are certain that the prior distribution under the
alternative hypothesis lies in T y; that is, wy(0) € Ty;. However, we get less sure
that it lies in Y; as ¢ decreases. In this scenario, the restricted NP formulation

n (5.9)-(5.11) can be extended as follows:

¢ w1(0 ETO

max min / o(x / wi(0) df dx (5.38)

subject to I(Iel)inT /gb(x) /pg(x)wl(e) dodx > p;, i=1,...,M (5.39)
wi(0)el; Jp

max /F<z§(x)p9(x) dx < « (5.40)

where #; > --- > [ specify the constraints on the worst-case detection proba-
bilities in sets Y1, ..., Ty, respectively. For this problem, the proof of Theorem
1 can be extended in a straightforward manner in order to obtain the following

result:

Theorem 4: Suppose that there exists a density v(0) = S0 i jui(6), with
A >0, fo\io Ai = 1, and p;(0) € Ty, such that an a-level NP decision rule ¢*

for v(0) satisfies

/ ¢ (x / wi(0) df dx = f{;}gh /F ¢*(x) / po(x)w1(0) d dx = S
(5.41)

fori=1,2,..., M, and

/ ¢*(x / pol6) dfdx = min /F & (x) / po(x)wi(0)dOdx . (5.42)

Then ¢* solves the optimization problem in (5.38)-(5.40).
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5.6 Appendices

5.6.1 Proof of Theorem 1

The proof is similar to the proof of Theorem 1 in [42]. Let ¢ be any a-level

decision rule. Then,

/(b /Alpg( x)ws (0) df dx + (1 — X) min /q§ X)pe(x (5.43)

(A%t

</\/ O(X)pe(x)wy1(0) df dx + (1 — A //gzﬁ X)pg(x)(0) dx df  (5.44)
A A1

since the second term in (5.43) is smaller than or equal to that in (5.44) due to

the minimum operator. The expression in (5.44) can also be stated as

/ ¢(x)po(x) [Awi(0) + (1 = A) u(0)] db dx = / P(x)po(x)v(0) db dx
Iy A1 r Al
(5.45)

based on the definition of v(€) in the theorem. Since ¢* is the NP decision rule
for v(#) under the false-alarm constraint in (5.13), the expression in (5.45) must

be smaller than or equal to

/ A ¢*(x)pe(x ()dedx—/ A ¢ (x)po(x) [N wyi(0) + (1 — A) u(0)] df dx
(5.46)

(see Remark 1). After some manipulation, (5.46) can be expressed as

/Ald) X)po(x)uwn(6) df dx + (1 — A /A/¢> x)pe(x)p(0) dx df  (5.47)
=\ F¢*(X)/A1 (x)w(0) df dx + (1 — A mln /¢ X)po(x (5.48)

where the condition in (5.14) is employed in obtaining (5.48) from (5.47).

The arguments above indicate that the expression in (5.43) is always smaller
than or equal to that in (5.48). Therefore, ¢* maximizes the objective function
in (5.12) among all possible decision rules that satisfy the constraint in (5.13).

O
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5.6.2 Proof of Theorem 2

In order to prove that v(f) is the least-favorable distribution, we need to show
that the average detection probability corresponding to v(#) is smaller than or
equal to that corresponding to 9(6) for any ©(6) specified in the theorem. The
average detection probability corresponding to v(6) is the average detection prob-

ability achieved by decision rule ¢* in Theorem 1, which can be expressed as
60 [ v avix (5.49)

[ /p x)w (6) df dx + (1 - A //¢ x)po(X)14(6) dx df
:)\/F¢*(x)/A1 )wn (6) dO dx + (1 — A mln/(b pe(x)dx  (5.50)

0eM
where the condition (5.14) in Theorem 1 is used to obtain (5.50) from (5.49).
Since [, ¢*(x) [, po(x)w1(0)dO > min Jr " (x)po(x) dx, the following relations
1 [<9\%1

can be obtained for any A > \:

/F ¢*(x) /A 1 po(x)v(0) db dx

SS\/FW(X)/AIPH() (@) s+ (1= Npin [ o Gomedx (550

< S\/ng*(x) /Al po(x)wy(0) df dx + (1 — ) /1\1 ﬂ(@)/rgb*(x)pg(x) dx df

(5.52)
-/ [ 6" ComG0) [Mun(0) + (1= 3)0) o ax (5.53)
_ /F [ 6" 0am (o) ax (5.54)
< /F [ 670 (0) b ax (5.55)

where ¢* is the a-level NP solution corresponding to 9(6). It should be noted that
the inequality between (5.51) and (5.52) is valid for any probability distribution
f(0). In addition, (5.55) is larger than or equal to (5.54) since ¢* is the a-level
NP solution for ©(6) (see Remark 1).
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From (5.51)-(5.55), it is observed that the average detection probability cor-
responding to v(f) is smaller than or equal to that corresponding to () =

Awi(0) + (1 — X) ju(0) for any ji(f) and A > X. O

5.6.3 Proof of Theorem 3

Based on the definition of the restricted NP problem in (5.4)-(5.6), Pp®(¢?) in
(5.28) is a non-increasing function of § since larger /5 values result in a smaller
feasible set of decision rules for the optimization problem. In order to use this
observation in proving the concavity of Pp'®(¢?), define a new decision rule as a

randomization [40], [42] of two restricted NP decision rules as follows:
¢l +(1—q) o (5.56)

where 0 < 1 < B3 < U and 0 < ¢ < 1. From the definition of ¢, the following
equations can be obtained for the detection and false-alarm probabilities of ¢ for
specific parameter values:

Pp(¢:0) =< Pp(¢[";0) + (1= <) Pp(¢/%:0) , 0€ Ay (5.57)

Prp(¢;0) = < Pp(¢f";0) + (1 = <) Pp(¢/%;0) , 0 € Ao (5.58)

The relation in (5.58) can be used to show that ¢ is an a-level decision rule.

That is,
max Pp(¢;60) < ¢max Pp(¢;0) + (1 — ¢) max Pp(¢72;0) < o (5.59)
0o 6o IS

where (5.6) is used to obtain the second inequality.

Based on (5.56) and (5.57), the average detection probability of ¢ can be

calculated as

PEE(g) = / Po(6:0) wy(6) dO = < PE(6f) + (1— ) PE5(6%) . (5.60)
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Also, from (5.57), the worst-case detection probability of ¢ can be upper bounded

as follows:

: 0) > cmi B i B2 gy > _ .

min Pp(¢;0) > ¢ min Pp(¢;;0) + (1 — <) min Pp(¢;*;60) > < fr + (1 = <) B2

(5.61)

Defining f £ éﬂ}xn Pp(¢;0) and B* = ¢ 81 + (1 — <) Ba, the relations in (5.60) and
€N

(5.61) can be used to obtain the following inequalities:

PRS(¢]") = PR®(¢0) = Pp®(9) = < P®(¢") + (1 — <) Pp®(¢*)  (5.62)
where the first inequality follows from the non-increasing property of Pp®(¢?)
explained at the beginning of the proof (since § > * as shown in (5.61)), and
the second inequality is obtained from the fact that the restricted NP decision
rule ¢? maximizes the average detection probability under a given constraint 3

on the worst case detection probability (among all a-level decision rules). Thus,

the concavity of Pp®(¢?) is proven.

In order to prove the strictly decreasing property, it is first shown that for

any L < < U

min Pp(¢7;0) = 3 . (5.63)

e\

Assume that grel}xri Pp(¢P;0) > B. Then, there exists an a-level classical NP de-
cision rule ¢, and 0 < ¢ < 1 such that an a-level decision rule ¢ can be defined
as ¢ £ ¢ o + (1 — <) ¢?, which satisfies grel}xrll Pp(¢;0) = B. It should be noted
that ¢. achieves a smaller minimum detection probability and a higher average
detection probability than ¢? for any L < 8 < U by definition. Therefore, the
average detection probability of ¢ satisfies Pp®(¢) > Pp'®(¢?), which contra-
dicts with the definition of the restricted NP. Hence, glel}& Pp(¢P;0) > 8 cannot
be true, which proves the result in (5.63). Next, let L < f; < B2 < U and
suppose that Pp®(¢%) = P38(¢P2). Obviously, this implies that ¢?2 is also a
solution corresponding to (1, which contradicts with the result in (5.63). There-
fore, PR8(4P") > Pp®(¢P2) must hold. Hence, P;®(¢f) is a strictly decreasing

function of 5. [
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Chapter 6

Conclusions and Future Work

In this thesis, we have first analyzed noise enhanced detection in the restricted
Bayesian framework, which covers Bayesian and minimax frameworks as spe-
cial cases. We have also provided statistical characterization of optimal additive
noise, and derived improvability and nonimprovability conditions. Secondly, we
have investigated noise enhanced composite hypothesis-testing in the presence
of partial prior information. Two criteria for evaluating noise enhancement have
been proposed, and the structure of the optimal additive noise p.d.f. has been
derived for each criterion. Also, extensions to the cases with unknown parameter
distributions for some hypotheses have been discussed. Thirdly, noise enhanced
binary composite hypothesis-testing has been studied in the NP framework. The
previous studies on noise benefits for simple hypothesis-testing problems in the
NP framework have been extended to composite hypothesis-testing problems.
Optimal additive noise p.d.f.s have been derived, and improvability and nonim-
provability conditions have been obtained. Finally, the restricted NP approach
for composite hypothesis-testing in the presence of prior distribution uncertainty
has been investigated. The restricted NP criterion is an application of the re-
stricted Bayes approach (Hodges-Lehmann rule) to the NP framework. Algo-

rithms have been proposed for the calculation of the optimal decision rule, and

151



the characteristics of the optimal decision rule have been investigated. Also, the
properties of the average detection probability corresponding to restricted NP

decision rules have been studied.

As a future work, noise enhanced detection can be studied in the restricted
NP framework, and improvability and nonimprovability conditions can be inves-
tigated. Also, the restricted NP approach can be applied to the spectrum sensing
problem in cognitive radio systems [106]. In addition, the study of noise enhanced
detection in the restricted Bayesian framework can be extended to time varying

scenarios, and adaptive noise enhancement algorithms can be obtained.
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