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Diffraction from a wavelet point of view
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The system impulse response representing the Fresnel diffraction is shown to form a wavelet family of functions.
The scale parameter of the wavelet family represents the depth (distance). This observation relates the
diffraction-holography-related studies and the wavelet theory. The results may be used in various optical
applications such as designing robust volume optical elements for optical signal processing and finding new
formulations for optical inverse problems. The results also extend the wavelet concept to the nonbandpass family
of functions with the implication of new applications in signal processing. The presented wavelet structure, for

example, is a tool for space—depth analysis.

The wavelet concept and its applications have been
shown to be useful in various signal-processing
problems (see, for example, Refs. 1 and 2). Recently
there have been various studies that implement
wavelet analysis by using optical processing tech-
niques (see, for example, Ref. 3 and 4). However, it
appears that the fundamental relationship between
the essentials of optics and the wavelet concept
has gone undetected: the propagation of waves
itself carries the wavelet characteristics, inherently.
Although this observation is trivial, its implications
may pave the road for various novel applications in
optics as well as in signal processing.

The wavelet theory has been well developed over
the past decade, so various results can be immedi-
ately transferred to optics and optical applications.
For example, holography can be revisited with a new
interpretation and applications; there could be dis-
tributed optical elements to achieve desired processes
in larger volumes compared with rather thin lenses
and masks, and new tools for inverse problems to find
the sources from distant observations may be rather
easily developed. One can use the presented wavelet
analysis to determine the location of particles in
three-dimensional (3-D) space from their holograms.
The search of the unknown depth of a particle at
a specific location of the two-dimensional (2-D) ob-
servation window is analogous to the search for the
unknown dominant frequency at a specific location of
a 2-D signal by using conventional wavelet analysis.
Forming frames! by discretizing the depth or even
finding an orthonormal complete basis (for example,
to be used in discrete depth volume holography) can
be immediately achieved by carrying the results of
existing wavelet analysis.

The wavelet family discussed here also extends
the wavelet concept and its applications in signal
processing. Conventionally, the wavelets are used
for time (space)—frequency analysis of signals. This
requirement is consistent with the admissibility
condition as derived in Ref 1, which prohibits
wavelets that are not bandpass functions. However,
the presented family of wavelets is not band limited,
and for that reason it is not suitable for time
(space)—frequency analysis. A new admissibility
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condition that extends the one given in Ref. 1 is
already proved, so that wavelets as presented in
this Letter can also be used for forward and inverse
wavelet transform. This wavelet family is used for
space—depth analysis, where the scale parameter no
longer represents a shift in the covered band but
rather is a distance (depth) parameter.

The principles of diffraction can be found in classi-
cal references such as Born and Wolf.> In 3-D space,
the field at a distance z from a planar distribution
Y(x,y) is given by the Huygens—Fresnel approxima-
tion as®

e, y)=3~i—zexp(127"’z) [ [ wen

x explJ i = £ + (5 = n)l}dgdn, (1

where A is the wavelength. This relationship may be
represented as a linear shift-invariant system with
an impulse response,’
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which yields
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where x % represents the 2-D convolution.

A similar representation may also be given for
waves propagating in 2-D space, where both the
object distribution and the diffraction pattern are one
dimensional. This case is omitted here.

With these observations, it is easy to see that
the convolution kernel of Eq. (3) forms a continuous
wavelet family for 2-D function space. Classically,
the wavelets are a family of functions, obtained from
one single function, indexed by two labels as!

wed = |a|‘”2w<x ; b)» 4)

where w is a function that satisfies

C, = f oW (@)do < . 5)
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W(w) is the Fourier transform of w(x). The inner
product of a function ¢ with one of the wavelet
functions gives a coefficient corresponding to the pa-
rameters ¢ and b. The set of such inner products
for all a’s and b’s constitutes a representation for the
function ¢ as

$=0C,"! f[ (W, pyw(a, b)%db, (6)

where the inner product is defined as

(f, )= [ Fagwas. @

The extension to higher dimensions is straightfor-
ward. In our case, the extension to the 2-D space
is achieved as follows. The family of functions is
obtained from a single function by use of three
parameters:

w@be) = Kaw(x - b, Z;_c_) (8)
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It is easy to see from Egs. (2) and (8) that the
diffraction kernel indeed has the shift and the scaling
properties associated with the wavelet family. This
is shown by defining the generic wavelet as

h(x, y) = exp[ j(x® + y*)] 9)

and obtaining the family of wavelets from this
function:

@b = Kah(x - b, y—;—c) (10)

Here a =+/Az/7, b = £, and ¢ = 7, and the amplitude
constant is given by
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Again, the amplitude scaling and the integrability
conditions are not like the conditions given by
relations (4) and (5), but similar conditions for these
wavelet functions exist.

As is shown by Eq. (8), the diffraction can be writ-
ten as a convolution. Furthermore, it can be also
be shown that the translated kernels with the same
scale variable a form a complete orthogonal set. This
implies that if the projections of a function ¢(x, y)
onto functions A@>® for all & and ¢ but for a constant
(nonzero) a are known, then the function can be
uniquely recovered from these projections. This is,
of course, a well-known result in diffraction: One
may start from a field distribution ¢(x, y) and get
the diffracted field over a plane at a distance z by
using Eq. (1). If desired, the original distribution
can be obtained from the diffracted field by using
backpropagation as
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!ﬁ(x, y) = W (, y) % % hz*(xy y),
W, ) = _;Azexp(-j?;z) [ [ wen
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Since hz(x’ y) ® % hz*(xa y) = 6(x: y)’ lﬁ(x, y) * %
h(x, )  « h.*(x, y) = ¢(x, y).” Note that h,* =
h_,, as expected: one represents the propagation of
the wave in the positive direction, while the other one
represents the propagation in the negative direction.

Now let us consider the 3-D field generated by a 2-D
diffracting obstacle. Since Eq. (1) is valid for any z
that satisfies the Fresnel approximation, we may find
the 3-D field as (x, ¥, 2) = ¥.(x, ¥). Since the 2-D
original ¢(x, y) can be reconstructed from ¢.,(x, y) for
a fixed arbitrary z, it can also be reconstructed from
¥ (x, y, 2), where 2z has a variation. In this case the
reconstruction is

Ulx, y) = %f _hzexp<— '%iz)fffndf(f, 7, 2)

x expl~jl(e = €7 + (y = i} dedndz, (13)

where the integration with respect to z is over a
finite domain that does not include the zone that
violates the Fresnel approximation. The value of C
depends on the limits of integration with respect to
z. Therefore the diffraction process, i.e., the 3-D
field from a 2-D obstacle, can be seen as the wavelet
transform. The reconstruction as given by Eq. (13)
is the inverse wavelet transform. This is a new look
from the framework of wavelets to a well-known
result.

The volume diffraction pattern is, of course, re-
dundant. The possible use of this redundancy is
for distributed filtering: the function of the filter
will be quite insensitive to errors associated with
the design or the implementation as a consequence
of the redundancy. The filter, in this case, is the
operation corresponding to (i) taking the wavelet
transform, (ii) multiplying the wavelet coefficients by
filter parameters, and (iii) taking the inverse wavelet
transform. All these operations can be translated to
the diffraction case as (i) obtaining a volume diffrac-
tion pattern by illuminating a diffracting pattern,
(ii) building a volume mask (which, of course, does
not block out the light significantly) and placing it
into the volume of diffracted beam, and (iii) inverting
the diffraction (maybe by a lens) as in conventional
optical filtering. Here the volume mask should not
be too obstructive. That is, the mask should consist
of dustlike opaque elements with low concentration,
and/or it should consist of refractive-index variations.

Similar interpretation may be carried to holog-
raphy as well. In-line holography is conceptually
similar to diffraction; the characterizing difference is
the magnitude operating at the imaging plane:

Iz(x7 y) = ll//(x’ y) k% hz(x’ y)|2’ (14)
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where I, is the in-line hologram. Usually an object
distribution s(x, ¥) is introduced such that the field
emerging from the diffracting (object) plane when it is
illuminated by a reference plane wave is 1 — s(x, y) =
(x, ¥).57 Itisrequired that ||s]] << 1. In that case,
the hologram can be written as

Iz(xay)=l(1"S)**hz)lzzl—S**hz "‘S***}Lz*.
(15)

If the object distribution takes only real values, it
is possible to write the in-line hologram approxi-
mately as’

L(x, y) = 1 - s(x, ¥) « = 2 Re{h (x, y)}. (16)

Defining 2 Re{x.} = g,(x, y), one can write the holo-
gram as

Lx,y)=1—-5x%xg,. amn

Note that
_2 7o e
8.(x, y) = /\zsm[ Az(x +y)]. (18)

The family of functions can be obtained from a single
generic function, g{x, y) = sin(x? + y?), as

(a,b,c) —_ X~ b, y—cy,
g°*9(x, 9) Kag( 2,22 ) 19)
Here a = \/Az/m, as in diffraction. This ¢ is the
depth (scale) parameter. Again, as before, b and
¢ are the shift parameters. The amplitude scale
constant K, is defined in this case as

K,=—=— (20)

An interesting observation is that the set of func-
tions for a constant depth parameter a does not
constitute a complete basis in this case, because
GE0O(y, v) = F{g@09} = 2 cos[a?/4(u® + v?)], and
therefore the inverse transformation does not exist
since G@%9(y, v) has zeros.”

However, it is interesting to note that, as a con-
sequence of the wavelet inversion, the original object
field can be recovered by using a volume hologram, as
expected. Thus a well-known result in holography
is again shown by using the wavelet analysis. How-
ever, from the wavelet theory it is known that the
basis obtained by continuously changing the param-
eter a is highly redundant. This redundancy can be
reduced (even eliminated) by discretizing the depth
parameter a properly.

It is shown that fundamental optical phenomena

such as diffraction and holography can be looked
at from a wavelet framework. Essentially, one can
put any form of wave propagation into a wavelet
framework by following similar steps. As a conse-
quence, there is a vast possibility of applications
that readily follow various results of wavelet the-
ory. The wavelet theory results in eliminating the
redundancy by introducing discrete parameter spaces
as in forming frames, and orthonormal basis may
be utilized to convert many optical volume processes
to multiplanar operations. One possibility is multi-
plane holography. The same idea may be useful also
in various wave-propagation-related areas such as
antenna design and imaging using intruding waves.
On the other hand, the same theory may be used in
the other direction to use the inherent redundancy
for improving the noise immunity of the desired op-
eration. Distributed filtering over a volume may
be appealing, for example, in the design of optical
processors distributed over an optical fiber.
. The analysis of a hologram by using digital tech-
niques to extract object related information may find
a useful theoretical framework as a consequence of
the presented wavelet diffraction relation.®

Another possibility is to provide a new framework
to study different wave-propagation media. For ex-
ample, wave propagation in graded-index media with
special radial refractive-index distribution® can be
put into a wavelet framework, yielding new ideas
both in analysis and synthesis.

The diffraction and related ideas and their wavelet
nature are also interesting for the sake of signal
processing itself. New signal representations and
analysis tools may emerge based on the diffraction
principles.
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