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ABSTRACT

Accurate positioning systems can be realized
via ultra-wideband signals due to their high time
resolution. In this article, position estimation is
studied for UWB systems. After a brief introduc-
tion to UWB signals and their positioning appli-
cations, two-step positioning systems are
investigated from a UWB perspective. It is
observed that time-based positioning is well suit-
ed for UWB systems. Then time-based UWB
ranging is studied in detail, and the main chal-
lenges, theoretical limits, and range estimation
algorithms are presented. Performance of some
practical time-based ranging algorithms is inves-
tigated and compared against the maximum like-
lihood estimator and the theoretical limits. The
trade-off between complexity and accuracy is
observed.

INTRODUCTION

Ultra-wideband (UWB) signals differ from wide-
ly used narrowband and wideband signals by
their very large bandwidths [1-3]. A common
signaling scheme for UWB systems is known as
impulse radio (IR) UWB, which consists of short
duration pulses (on the order of a nanosecond)
with low duty cycles, and employs different time-
hopping and polarity codes [4, 5].

UWRB signals have some very important prop-
erties, which make them good candidates for
many applications. First, due to their large abso-
lute bandwidths, UWB systems can employ very
short duration waveforms, and hence, they can
achieve high time resolution and facilitate accu-
rate range and position estimation [2]. Large
bandwidths of UWB signals also enable high-
speed data transmission. In addition, since UWB
signals can cover a large portion of the frequen-
cy spectrum, including low as well as high fre-
quencies (i.e., they can have large relative
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bandwidths), they achieve high penetration capa-
bility through obstacles. Furthermore, UWB sys-
tems can be operated in baseband in a carrier-free
manner, which makes it possible to design low-
cost and low-power systems [2].

Due to their high time resolution, UWB sig-
nals can be employed in applications that require
high positioning accuracy. Especially, the capa-
bility of performing very accurate positioning
based on range estimation makes UWB signaling
well suited for short-range wireless sensor net-
works (WSNs) [6]. UWB WSNs can be employed
in many different areas. For example, they can
be used for security purposes to locate an unusu-
al activity or authorized people in high security
areas. Also, after disasters such as an earthquake
or avalanche, UWB WSNs can be used to locate
lost people. In addition, UWB positioning sys-
tems can locate military personnel, firefighters,
and police officers, and can also be used to track
medical equipment or patients in a hospital. Fur-
thermore, in daily life, UWB WSNs can be
employed to locate and control home and office
appliances [2].

In this study, an overview of positioning via
UWRB signals is presented. First, position estima-
tion is studied, and various approaches for posi-
tion estimation are evaluated from a UWB
perspective. Then time-based UWB ranging,
which is well suited for UWB positioning sys-
tems, is investigated in detail. The main chal-
lenges for time-based UWB ranging, theoretical
limits on ranging accuracy, and range estimation
algorithms are studied. Comparisons of practical
algorithms and theoretical limits are also pre-
sented.

POSITION ESTIMATION

In a wireless positioning system, the position of
a target node, such as a wireless sensor or cellu-
lar phone, is estimated based on signals traveling
between that node and a number of reference
(anchor) nodes. Depending on whether the posi-
tion is estimated at a central unit or by the node
itself, the system is called a remote positioning
(network-centric positioning) or self-positioning
system, respectively [7]. Commonly, position
estimation is performed in two steps as shown in
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Figure 1. Two-step positioning. In self-positioning systems, the target node first
estimates position related parameters based on received signals coming from
reference nodes, and then estimates its position based on those estimated
parameters. In remote positioning systems, position related parameters are
estimated based on the signals at the reference nodes. Then those position
related parameters are sent to a central unit, which estimates the position of

the target node (Fig. 2).

Central unit

Figure 2. Two-step position estimation in a remote positioning system. Refer-
ence nodes (RNs) estimate position related parameters based on signal
exchanges with the target node, and send those parameter estimates to a cen-
tral unit, which obtains the position estimate.

1 For a more accurate
model of the average
received power, the effects
of directional antennas
and the frequency depen-
dence of path loss in
UWSB systems can be con-
sidered. For example, in
UWRB channels, the fre-
quency dependence of the
path loss is commonly
modeled as being propor-
tional to £2%, where x is
called the frequency
decaying factor. A
detailed investigation of
UWB channels can be
foundin [12, Ch. 2].

Fig. 1. In the first step, position related parame-
ters, such as time of arrival (TOA) and angle of
arrival (AOA), are extracted from the signals
traveling between the target and reference
nodes. Then, in the second step, the position is
estimated based on the position related parame-
ters obtained in the first step. Although it is also
possible to estimate the position directly from
the signals traveling between the nodes, the two-
step approach is commonly preferred since it
can have significantly lower complexity than the
direct approach, and the performance of the two
approaches is usually quite close for sufficiently
high signal-to-noise ratios (SNRs) and/or signal
bandwidths [8, 9]. In fact, a two-step approach is
a natural choice for remote positioning systems
since it would be significantly more costly to
send the received signals to a central unit than
to send just the position related parameter esti-
mates (Fig. 2).

In the following, a two-step positioning sys-
tem as in Fig. 1 is considered, and various algo-
rithms that can be employed in each step of the
system are discussed.

ESTIMATION OF POSITION RELATED PARAMETERS
In the first step, certain position related parame-
ters are estimated based on signals between tar-
get and reference nodes. Those parameters are

commonly related to timing, energy, and/or
direction of the signals traveling between the
target node and a number of reference nodes
[10]. The choice of parameter type depends on
the trade-off between positioning accuracy and
system complexity/cost, which is investigated
below from a UWB perspective.

Received Signal Strength— When a signal propa-
gates from a transmitter to a receiver, the
amount of energy collected by the receiver
depends on the distance (range) between the
transmitter and the receiver. Therefore, the
received signal strength (RSS) can be considered
as a parameter that carries position related
information.

In wireless environments, the received signal
power can vary significantly over short distances,
on the order of the signal wavelength, due to
constructive and destructive addition of multiple
signal paths. Such small-scale effects are aver-
aged out in order to obtain a useful relation
between received power and distance. When
small-scale multipath effects are averaged out,
the resulting average received power on the dB
scale can be modeled as a Gaussian random
variable, which has a mean determined by the
path loss effect and a variance that is specified
by the shadowing variance [11].! In practice, the
path loss parameter (path loss exponent) and
shadowing variance vary from environment to
environment; hence, they can also be modeled as
random variables with specific distributions in
different types of environments [13].

In order to investigate the theoretical ranging
accuracy that can be achieved via the RSS
parameter, the Cramer-Rao lower bound
(CRLB) can be considered [14]. The CRLB
specifies the lower limit on the standard devia-
tion of an unbiased estimator. For the RSS
parameter, the CRLB on the standard deviation
of an unbiased range estimator is specified by
(In10) o4,d/(10n), where d is the distance (range)
between the nodes, n is the path loss exponent,
and oy, is the standard deviation of the shadow-
ing [15]. Therefore, the theoretical lower bound
on the ranging accuracy reduces as the standard
deviation of the shadowing decreases (which
reduces the random variations of the received
power), and the path loss exponent increases
(which makes the average power more sensitive
to distance changes). Also, as the range between
the nodes increases, the lower bound increases
as well [10].

Commonly, the RSS parameter does not pro-
vide very accurate range estimates due to its
strong dependence on the channel parameters,
which is also true for UWB systems. For
instance, in a non-line-of-sight (NLOS) residen-
tial environment, modeled according to the
IEEE 802.15.4a UWB channel model [16], with
n = 4.58 and o, = 3.51, the CRLB can be cal-
culated to be around 1.76 m. at d = 10 m [10].

Angle of Arrival — The AOA parameter provides
information about the direction over which a
target node resides. A common technique to
estimate the AOA parameter is to employ multi-
ple antennas in the form of an antenna array.
Then the differences in arrival times of an
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incoming signal at different antenna elements
can be used to obtain the AOA information
based on the known array geometry [17]. For
narrowband signals, those differences in arrival
times can be represented by phase shifts of the
signals. Therefore, the combinations of the
phase shifted versions of received signals at
antenna array elements can be tested for differ-
ent angles in order to estimate the AOA [18].
However, for UWB systems, time differences
cannot be represented by phase shifts; hence,
time delayed versions of received signals should
be considered for AOA estimation [10].

In order to compare the accuracy of the AOA
parameter with that of the RSS parameter, con-
sider a uniform linear array, which has its anten-
na elements located along a straight line with
equal spacing. The CRLB calculations in [19]
indicate that the lower bound on the standard
deviation of an unbiased AOA estimator is
inversely proportional to the effective bandwidth
[14] of the signal and the square-root of the
SNR. Therefore, unlike the RSS parameter, the
accuracy of the AOA parameter can be
enhanced when the signal bandwidth is
increased, which implies that UWB signals can
facilitate accurate AOA estimation [10].

Time of Arrival — Another parameter that pro-
vides information about the range between two
nodes is the TOA parameter. When the nodes
are synchronized, the TOA of the signal can be
used to obtain a range estimate. If the nodes are
not synchronized, they can exchange timing
information by certain protocols such as the mo-
way ranging protocol in order to estimate the
range [20, 21].

The theoretical limits on TOA estimation and
various TOA estimation algorithms are investi-
gated for UWB systems later. At this point, in
order to provide some intuition about why the
TOA parameter is well suited for UWB posi-
tioning systems, consider a simple scenario in
which the time-delayed version of a transmitted
signal arrives at a receiver in the presence of
zero mean additive white Gaussian noise
(AWGN). In that case, the CRLB on the stan-
dard deviation of an unbiased TOA estimator T
is given by

= 1
= e snRp M

where f is the effective bandwidth [14, 22].
Therefore, the theoretical lower bound on TOA
estimation accuracy reduces with the SNR and
effective bandwidth parameters. Hence, large
bandwidths of UWB signals can facilitate very
accurate TOA information. For instance, for the
second derivative of a Gaussian pulse [23] with a
pulse width of 1 ns, the CRLB for the standard
deviation of an unbiased range estimator
(obtained by scaling a TOA estimator by the
speed of light) is less than 1 cm at an SNR of 5
dB [10].

Time Difference of Arrival — When the reference
nodes are synchronized, the time difference of
arrival (TDOA) parameter can be used to obtain
position related information [18]. For remote

positioning, the reference nodes measure the
arrival times of the signal coming from the tar-
get node, which is not synchronized with the ref-
erence nodes. Then the TDOA parameters are
calculated by taking the difference between the
TOA estimates, which removes the timing offset
due to the asynchronism between the target
node and the reference nodes. In this case, simi-
lar to the discussion for the TOA parameter, the
accuracy of the TDOA parameter increases as
the effective bandwidth and/or SNR increase
[17].

For self-positioning, the target node measures
the signals transmitted from synchronized refer-
ence nodes and calculates the TDOA values.
One way to estimate the TDOA value in this
case is to perform cross-correlations between the
signals coming from a pair of reference nodes,
and determine the time difference value corre-
sponding to the maximum cross-correlation
value [24].

Other Types of Position Related Parameters — In addi-
tion to RSS, AOA, and T(D)OA parameters or
their combinations [2], two other types of posi-
tion related parameters are the multipath power
delay profile (PDP) and the channel impulse
response (CIR) related to a received signal
[25-28]. Although the PDP and CIR parameters
can provide significantly more positioning infor-
mation than the previously studied parameters in
some cases, position estimation based on
PDP/CIR information is usually more complex
as it commonly requires a database consisting of
previous PDP/CIR measurements at a number
of known positions [10].

POSITION ESTIMATION

In the second step of the two-step positioning
approach in Fig. 1, the position of a target node
is estimated based on the position related param-
eters obtained in the first step. Two common
techniques that can be employed in the second
step are statistical and mapping (fingerprinting)
techniques [17].

Statistical Techniques — The statistical techniques
assume certain statistical models for the parame-
ter estimates obtained in the first step, and try to
estimate the position based on those models.
Consider the following model for the parameters
obtained from the first step:

2=10) + 1, ®

where z is a vector of size N, that contains the
parameter estimates obtained in the first step, n
is the noise vector that represents the estimation
errors in the first step, I denotes the position of
the target, and f(/) contains the true values of
position related signal parameters. Depending
on the type of position related parameter, (1)
can correspond to the distances between the tar-
get node and the reference nodes (for the TOA
and RSS parameters), the arrival angles of the
target signal at the reference nodes (for the
AOA parameter), or the differences in the
arrival times of the target signal at the reference
nodes (for the TDOA parameter) [17]. The
model in Eq. 2 can be valid also in the presence

Although the PDP
and CIR parameters
can provide signifi
cantly more position-
ing information than
the previously
studied parameters
in some cases,
position estimation
based on PDP/CIR
information is usually
more complex.
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Figure 3. Various LOS and NLOS conditions. With respect to transmitter TX,

receiver RX1 is in LOS, receivers RX2 and RX3 are in NLOS. Due to different
obstacle properties, the direct path is observed at RX2 after some attenuation,
but it cannot be detected by RX3.

of NLOS and multipath propagation, which
mainly affect the probability distribution of the
noise components [2].

Depending on the amount of information
about the statistics of the noise term 7 in Eq. 2,
two classes of statistical techniques can be con-
sidered.

Nonparametric Techniques — The nonparametric
approach assumes no information about the
form of the probability density function (PDF)
of the noise, p,(-). However, there is some gener-
ic information about the noise statistics [29],
such as its variance and symmetry properties,
which can be employed for designing nonpara-
metric estimation rules, such as the least median
of squares technique in [30], the residual weight-
ing algorithm in [31], and the variance weighted
least squares technique in [32].

Parametric Techniques — In the parametric
approach, the PDF of noise 7 is known except
for a set of parameters, denoted by A. Therefore,
the unknown parameter vector in the estimation
problem based on the model in Eq. 2 can be
expressed as 6 = [I A]7, which consists of the
position of the target node I, as well as the
unknown parameters of the noise distribution.
Depending on the availability of prior informa-
tion about 6, Bayesian or maximum likelihood
(ML) estimation techniques can be employed, as
investigated in [10, 17, 33].

Mapping Techniques — A mapping (fingerprinting)
technique uses a training data set to determine
a position estimation rule (pattern matching
algorithm/regression function), and then
employs that rule to estimate the position of a
target node for a given set of position related
parameter estimates [10]. Common mapping
techniques are k nearest neighbor (k-NN), sup-
port vector regression (SVR), and neural net-
works [28, 34-38]. For efficient utilization of
mapping techniques, the training data set should
provide an accurate representation of the envi-
ronment. Therefore, it should be updated at
certain intervals, which can be costly in dynamic
environments such as outdoor positioning sce-
narios [10].

TiMe-BASED UWB RANGING

The discussions earlier indicate that the large
bandwidths of UWB signals can facilitate accu-
rate positioning based on T(D)OA or AOA esti-
mation. Since AOA estimation commonly
requires multiple antenna elements and increas-
es the complexity of a UWB receiver, timing
related parameters, especially TOA, are usually
preferred for UWB positioning systems [10]. In
the following, TOA estimation for UWB signals
is investigated in more detail.

MAIN CHALLENGES

For the ideal case in which the signals arrive at a
receiver only over a line-of-sight (LOS) path in
the absence of any interfering signals from other
sources, it is possible to perform time-based
UWB ranging with high accuracy using perfectly
synchronized clocks. However, in a practical sce-
nario there are various challenges [10, 39]. First
of all, in most cases there is no LOS path
between the transmitter and the receiver. Even if
there is an LOS path, signals arrive at the receiv-
er not only over that path but over multiple
paths. Also, since UWB signals have very high
time resolution, clock imperfections can cause
significant errors. These challenging issues,
which affect the performance of practical time-
based UWB ranging, are discussed in the follow-
ing.

Propagation Effects — Propagation effects on
range estimation can be categorized into two
groups depending on whether or not there is an
LOS path between the transmitter and the
receiver. In the presence of an LOS path, posi-
tioning errors can occur mainly due to multi-
path propagation and thermal noise. Since
signals arrive at the receiver over multiple paths,
it can be challenging to determine the exact
TOA of the received signal. Using UWB signals
can help resolve the incoming multipath compo-
nents due to the very high time resolution of
UWRB signals. In LOS scenarios, the arrival time
of the first component of the received signal
corresponds to the true time delay between the
transmitter and the receiver. Therefore, in order
to perform time-based ranging successfully, the
TOA of the first component of the received sig-
nal should be estimated accurately, which can
be achieved by using first-path detection algo-
rithms [20, 40-42].

In the absence of an LOS path between the
transmitter and the receiver (i.e., when there is
an obstacle between them), two types of chal-
lenges can be encountered in time-based ranging
(Fig. 3) [39]. First, the signal component travel-
ing over the LOS path can be attenuated or
totally blocked by the obstacle in such a way that
the first-path detection algorithms would identify
one of the multipath components as the first
path [43-45]. The second type of challenge is
encountered when the transmitted signals propa-
gate slower in the obstacle than they do in the
air. Even if the transmitted signal is not attenu-
ated significantly in the obstacle, it can be
delayed so significantly that the first incoming
signal at the receiver does not correspond to the
true LOS delay [39].
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Figure 4. lllustration of jump back and search forward (JBSF) and serial backward search (SBS) algorithms
[2]. NE) denotes the search-back window length in samples, Ny is the index of the strongest sample, ny,
is the index of the first arriving path’s sample, ng, is the index of the first sample within the search-back
window, and D is the delay between the index of the first sample within the search window and the first

arriving path’s sample [57].

NLOS situations can significantly complicate
the time-based ranging task [10]. First of all, it
becomes important to identify a link between
two nodes as an LOS or NLOS link. In some
cases, it is possible to identify an NLOS link by
using the measurement statistics obtained from
that link [46-48]. Also, the information embed-
ded in the multipath components of the received
signal can be used to detect NLOS scenarios [49,
50]. Once two nodes are identified to be in
NLOS of each other, several techniques can be
employed to mitigate NLOS induced errors. One
of the common ways of performing time-based
ranging in NLOS scenarios is to employ a map-
ping technique that utilizes training data
obtained from the environment in which posi-
tioning will be performed [28, 34-38]. Another
way of mitigating NLOS errors is to simply
ignore NLOS measurements [51]. Also, using
several scattering models for an environment,
the statistics of time-based parameters, such as
TOA, can be obtained for that environment, and
then MAP and ML estimators can be employed
to perform time-based ranging in NLOS scenar-
ios [33, 52].

Interference — There are two basic sources of
interference for UWB systems; narrowband
interference (NBI) and multiple access interfer-
ence (MAI). Since a UWB system uses a very
large portion of the frequency spectrum, there
are many other narrowband systems that operate
in the same frequency band as the UWB system.
Therefore, the NBI coming from those systems
can affect the performance of time-based UWB
ranging, as investigated in [39, 53].

The second source of interference is the
other UWB users in the same environment,
which result in MAI. MAI can be handled by
using time-division multiple access (TDMA) or
frequency-division multiple access (FDMA) for
the users in the same network. Still, these pre-
cautions may not be enough if there is another
UWB network operating in the same environ-
ment. One approach for mitigating MAI is pro-
posed in [54] in order to improve the ranging
accuracy of noncoherent receivers via nonlinear
filtering. Also, codes with good cross-correlation
properties can be used to mitigate the effects of

MAI [2, 21, 42]. For example, the IEEE
802.15.4a standard assigns two unique ternary
codes for each frequency band [2].

High Time Resolution and Clock Drift — UWB signals
have very large bandwidths and hence very high
time resolution, which facilitates accurate posi-
tioning based on time-based ranging. However,
this high resolution property of UWB signals
also presents certain challenges for time-based
ranging. First, since the time resolution is very
high, even very small timing errors can cause sig-
nificant errors in time-based ranging. The main
reason for such timing errors is the clock drift.
In both one-way and two-way ranging protocols,
the clock drift can cause significant errors in
some cases [39, 55]. However, the effects of the
clock drift can be mitigated by a symmetric dou-
ble-sided two-way ranging protocol, which relates
the drift to the difference of the processing
times at two devices [21, 56]. Another problem
with the high time resolution of UWB signals is
that due to the very large bandwidth, it is both
costly and power consuming to sample UWB sig-
nals at the Nyquist rate. Therefore, TOA estima-
tion algorithms based on low-rate samples are
desirable for UWB systems. Finally, the high
time resolution of UWB signals results in a large
number of possible delay values that need to be
searched by a correlation based receiver for time
delay estimation. Therefore, instead of an
exhaustive search on the delay space, two-step
approaches are commonly preferred for UWB
systems [2, 41].

THEORETICAL LIMITS

In this section, theoretical limits on time-based
UWB ranging are presented in terms of the
CRLB and Ziv-Zakai lower bound (ZZLB). The
following received signal model is considered
based on a single-user scenario,

N._, L
r@)="Y ¥ aqot -1, - jT)+n(t), 3)

j=01=1

where w(¢) represents a UWB pulse with dura-
tion 7Y, Tt is the frame duration (T¢ > TP)’ N;
is the number of frames in the received signal,
and n(t) is zero mean AWGN with spectral den-

UWB signals have
very large band-
widths, and hence,
very high time reso-
lution, which facili
tafes accurate
positioning based on
time based ranging.
However, this high
resolution property
of UWB signals also
presents certain chal-
lenges for time
based ranging.
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Figure 5. Root mean-squared error (RMSE) vs. SNR for various algorithms,
and the CRLB and ZZLB.

2 It is assumed that there
is no inter-pulse interfer-

ence.

sity No/2 [57]. In addition, a channel model with
L multipath components is considered, and oy
and T1; denote, the channel coefficient and the
delay of the /th multipath component for / = 1,

., L, respectively. Also, it is assumed that the
pulses in different frames do not interfere with
each other.

CRLB — For an estimation problem with multiple
unknown parameters, the CRLB is determined
by the inverse of the Fisher information matrix
(FIM). For the received signal model in Eq. 3,
there are 2L unknown parameters corresponding
to the channel coefficients and the delays of the
multipath components. For the unknown param-
eter vector 8 = [aq-+ay t1t2 ], the FIM can be
formed as in [6], and then the CRLB on the
variances of unbiased path delay estimators can
be written as?

Ny /2
N.ol(E!'—(E))/E
v \Ep = (Ep)" 1 Ey

CRLB(1)) = @

for/ =1, ..., L, where Ej, is the energy of w(¢),
E].;’, = JTP(u(t)(u (t)dt and E” = | {P| o' (t)| 2dt, with
'(t) denoting the first derlvatlve of w(¢). From
Parseval’s relation, E)' can be expressed as E}) =
42) = 2| P(f)| 2df, where P(f) represents the
Fourier transform of w(¢). In addition, £, = 0
when the UWB pulse satisfies w(0) = o (7).

Then, Eq. 4 can also be expressed as

1

CRLB(T))=—5————,
87°N,B°SNR,

®)

where f is the effective bandwidth defined as
BZA(1/E ) Zuf?| P(f)| 2df, and SNR; denotes the
SNR of the /th path, SNR;207E,/Nj. It is
observed from Eq. 5 that the CRLB depends on
the pulse shape, SNR, and number of pulses
employed in time delay estimation. Also, a com-
parison of Egs. 1 and 5 reveals that the CRLB in

Eq. 5 is in the same form as that in Eq. 1 with
the exception that the path SNR is employed
and there is a factor of N, since N, pulses are
employed in the estimation.

ZZIB — The CRLB is widely used for perfor-
mance evaluation. However, it is known that it
can result in some loose limits at low SNR val-
ues. The ZZLB, on the other hand, provides
tight bounds even at low SNR values. Since the
ZZ1.B cannot be expressed in closed form in
many cases, one approach to evaluating the
ZZL1B is to consider channel realizations that
belong to a random process with a finite ensem-
ble of realizations {s(®)(r)}}<h, where Neh denotes
the number of realizations [39]. Then the ZZLB
can be obtained as [58]

1 T,
Z7Z1LB = - S o' (Lo = )P (2)dz, (6)
a
where the time delay is assumed to be uniformly
distributed in [0, T,), and Pp,(z) is approximat-

ed by
D (2)
N, g Q( 2N, ) (7
In Eq. 7, Q(-) denotes the Q-function that is
defined as Q(x) = (1V2x) | exp(-t%/2)dt, and
DZ(z) is given by

Pmin (Z)

Di(z) = min [ (s(k)(t -1)-sV@t-1- z))2 dt
i obs (8)
with T4 denoting the observation interval [39].
Other approaches for evaluating the ZZLB in
multipath channels are discussed [39, 58].
Although the ZZLB cannot be evaluated analyti-
cally in many cases, it provides a tighter bound
than the CRLB for low-to-medium SNRs, as can
be observed in Fig. 5.

TOA ESTIMATORS

In this section various TOA estimators are stud-
ied for time-based UWB ranging. First, ML-
based estimators are presented under various
conditions. Then some practical TOA estimators
are discussed.

ML-Based Estimators — If the received waveform
structure is completely known, it is possible to
perform ML estimation by using a correlator
with a template signal that is perfectly matched
to the received waveform [6]. However, the
incoming signal to the receiver consists of multi-
path components with different time delays,
channel coefficients, and even pulse shapes in
some cases. Therefore, it is not possible to know
the exact waveform of the received signal in
practice. Hence, the ML estimator based on a
correlator with the received signal template can-
not be implemented in practical systems.

In the absence of prior information, it is nec-
essary to jointly estimate the time delays and
channel coefficients of the multipath compo-
nents even though the main parameter of inter-
est is the time delay of the first component of
the received signal. The ML estimates for the
unknown parameters T = [t; - 1] and a = [oy
- oy | are given by [59]
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T = argmax {[QT(r)r]T Rél(r)[QT (r)r]} 9)

a =RJ (®)Q(3)r, (10

where r denotes the vector of received signal
samples, and Rg(t) = Q7(1)Q(T) with Q(t) =
[(D(Dl) u)(DZ)---(D(DL)]T and @) = [0p, @ 0
Nsmp—Nm—Dl]T [2]. Note that D; is defined as the
largest integer smaller than or equal to ©)/T sy,
(with T, denoting the sampling interval),
denotes a vector of size N, that consists of the
samples of the UWB pulse, 0; is a vector of i
zeros, and Ny, represents the number of sam-
ples.

The ML estimation of time delays and chan-
nel coefficients has very high computational
complexity, especially when the number of multi-
path components is large. To reduce the com-
plexity, a simpler method called generalized
maximum likelihood (GML) is proposed in [20].
GML simply searches the time delay values
smaller than the delay of the strongest multipath
component, assuming that the strongest multi-
path component has already been identified.

Low Complexity Estimators — In this section some
practical estimators that have lower complexity
than the ML-based approaches are presented.
Let z[k] denote the samples of an energy detec-
tor output, or the absolute values of the samples
of a correlator output for k = 1, 2, ..., Np. It is
assumed that the sampling rate is below the
Nyquist rate, and the aim is to estimate the
TOA as accurately as possible based on samples
z[1], ..., z[Np]-

Possibly the simplest TOA estimator is the
one that estimates the TOA based on the index
of the largest sample [60]. In that case, the delay
of the first signal component is estimated as T 4
= Tsmp kmax + Tsmp/2, where Ty is the sam-
pling interval and k,,, is the value of k € {1, ...,
Ny} that maximizes z[k]. Since the strongest sig-
nal sample may not correspond to the first signal
component in many cases, other low-complexity
algorithms have been proposed to improve the
accuracy of TOA estimation [39, 61, 62]. For
example, in [62] the largest N correlation peaks
are considered, and the time delay correspond-
ing to the peak with the smallest time index is
selected (called the largest-N peak detection algo-
rithm). Thus, if k; represents the time index for
the ith largest correlation peak, the TOA of the
received signal is estimated as T| = Tsmpmin{ky,
kg, oo knYy + Tomp/2.

Another class of TOA estimators with low
complexity includes two-step TOA estimators,
which can perform accurate TOA estimation
based on low-rate samples. For example, the
two-step estimator proposed in [41] obtains a
coarse time delay estimate in the first step, and
then refines this estimate using a statistical
change detection algorithm in the second step.

An important class of practical estimators are
threshold-based ones, which compare the sam-
ples of the received signal against a threshold in
order to determine the first path component of
the received signal [40, 63, 64]. The jump back

and search forward (JBSF) algorithm is one of
these; it determines the strongest sample in the
received signal first and then jumps a number of
samples back from the strongest one, as shown in
Fig. 4. After that, the samples are compared
against a threshold sequentially, and the first
sample that exceeds the threshold is used to
obtain the TOA estimate [40]. The intuition
behind the JBSF algorithm is that since the first
signal path commonly resides before the strongest
signal sample, it can be helpful to jump backward
from the strongest signal sample and search in
the forward direction starting from that position.
Then a threshold test can be used to distinguish
the first signal path from the noise-only samples.
Similar to the JBSF algorithm, the serial back-
ward search (SBS) algorithm first determines the
strongest sample. However, unlike the JBSF
algorithm, it then performs a backward search
starting from the strongest sample, and selects
the first sample that satisfies the following: the
sample value exceeds the threshold, and the next
sample in the search direction does not exceed
the threshold. In this way, the SBS algorithm
aims to detect the first path before which a noise-
only sample resides (Fig. 4).

In Fig. 5, some of the time-based ranging algo-
rithms discussed in this section are compared, and
the theoretical lower bounds are presented. An
uncertainty region of 500 ns is considered for
TOA estimation, 100 realizations from the chan-
nel model 3 of the IEEE 802.15.4a channel model
are used [16], and the second derivative of the
Gaussian pulse [2] with around 1 ns pulse width is
used in the training signal (only one pulse is
employed). Also, the thresholds for the JBSF and
the SBS algorithms are set to 0.25 times the maxi-
mum correlation output (the window size in Fig.
4 is 50 ns), and N = 500 for the largest-N peak
detection algorithm. The ML estimator (MLE) is
presented as a benchmark, and the other three
algorithms are considered due to their practicali-
ty. It is observed that the MLE has the best per-
formance as expected, and it gets quite close to
the ZZLB at almost all SNR values and to the
CRLB only at high SNRs [57]. Considering the
practical estimators, the JBSF algorithm has bet-
ter performance than the largest-N peak detec-
tion algorithm, and it also performs better than
the SBS algorithm at high SNRs. In addition, the
JBSF and largest-N peak detection algorithms can
provide subnanosecond accuracy.

CONCLUSIONS

In this study, position estimation has been inves-
tigated for UWB systems. First, two-step posi-
tioning systems have been studied from a UWB
perspective, and it has been concluded that time-
based position estimation is well suited for UWB
systems due to the large bandwidths of UWB
signals. Then time-based UWB ranging has been
investigated in detail, and the main challenges,
theoretical limits, and TOA estimation algo-
rithms have been presented. Specifically, the
trade-offs between complexity and accuracy have
been observed for time-based UWB ranging
algorithms. The performance of various algo-
rithms has been compared against the theoreti-
cal limits.

An important class of
practical estimators
is the threshold
based estimators,
which compare the
samples of the
received signal
against a threshold
in order to defermine
the first path
component of the
received signal.
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Considering the
practical estimators,
the JBSF algorithm
has better
performance than
the largest-N peak
detection

algorithm, and it
also performs better
than the SBS
algorithm at high
SNRs.
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