Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer

Nazek El-Atab, Ayman Rizk, Ali K. Okyay, and Ammar Nayfeh

Citation: AIP Advances 3, 112116 (2013); doi: 10.1063/1.4832237
View online: http://dx.doi.org/10.1063/1.4832237
View Table of Contents: http://scitation.aip.org/content/aip/journal/adva/3/11?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Enhanced memory effect via quantum confinement in 16nm InN nanoparticles embedded in ZnO charge trapping layer

Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission

Diode behavior in ultra-thin low temperature ALD grown zinc-oxide on silicon
AIP Advances 3, 102119 (2013); 10.1063/1.4826583

Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell
AIP Advances 3, 102114 (2013); 10.1063/1.4825230

Long-term stabilization of sprayed zinc oxide thin film transistors by hexafluoropropylene oxide self assembled monolayers
Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer

Nazek El-Atab,1 Ayman Rizk,1 Ali K. Okyay,2,3 and Ammar Nayfeh1

1Institute Center for Microsystems – iMicro, Department of Electrical Engineering and Computer Science (EECS), Masdar Institute of Science and Technology Abu Dhabi, United Arab Emirates
2Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
3UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey

(Received 11 October 2013; accepted 6 November 2013; published online 13 November 2013)

A functional zinc-oxide based SONOS memory cell with ultra-thin chromium oxide trapping layer was fabricated. A 5 nm CrO2 layer is deposited between Atomic Layer Deposition (ALD) steps. A threshold voltage (Vt) shift of 2.6V was achieved with a 10V programming voltage. Also for a 2V Vt shift, the memory with CrO2 layer has a low programming voltage of 7.2V. Moreover, the deep trapping levels in CrO2 layer allows for additional scaling of the tunnel oxide due to an increase in the retention time. In addition, the structure was simulated using Physics Based TCAD. The results of the simulation fit very well with the experimental results providing an understanding of the charge trapping and tunneling physics.

Nanotechnology has emerged as a vital enabler to allow memory devices to support future super hand-held computing devices.1–4 In recent years, ZnO has been considered as a promising candidate to be used in flexible and/or transparent nano-devices due to its wide bandgap, good transparency, and low light sensitivity.4–7 Earlier we validated a functional ZnO charge trapping memory grown by single step atomic layer deposition.4 In this work, a ZnO based charge trapping memory cell is fabricated with a CrO2 nanolayer sandwiched between the ALD deposited Al2O3 tunnel and blocking oxides. In addition, the structure is simulated using TCAD which allowed the exploration of the CrO2 charge trapping and tunneling models.

The bottom-gate memory devices are fabricated as follows: first a 15-nm-thick Al2O3 blocking oxide layer is first ALD deposited followed by a sputtering of a 5-nm-thick CrO2 as the charge trapping layer, then a 4-nm-thick ALD deposited Al2O3 tunneling oxide and finally an 11-nm-thick ALD deposited ZnO channel. A solution of 2:98 H2SO4:H2O is used for 2 sec to etch the channel. A highly doped (10-18 milliohm-cm) p-type (111) silicon substrate is used as a back-gate electrode. The source and drain contacts were created by depositing 100 nm Al by thermal evaporation followed by lift off. Using Plasma Enhanced Chemical Vapor Deposition (PECVD), a 360-nm-thick SiO2 layer is deposited for device isolation. Finally, Rapid Thermal Annealing (RTA) in forming gas (H2:N2 5:95) for 10 min at 400 °C was performed on the samples. Fig. 1 shows a cross section of the final device structure with the CrO2 nanolayer. Fig. 2 shows the atomic force microcopy (AFM) image of the CrO2 layer grown on top of the Al2O3 layer. The RMS is 1-nm which highlights the continuity of the nanolayer.

In order to study the effect of the CrO2 nanolayer, the threshold voltage is quantified before and after programing. The memory cell is programmed (writing a ‘1’) by applying a constant voltage (+8V) for 15 sec on the gate while grounding the drain and source. In order to erase the memory cell by removing the charge trapped in the CrO2 layer, (writing a ‘0’), −8V is applied for 15 sec.
Fig. 3 shows the I_d-V_g curve for both programming and erase states, and the structure with the CrO$_2$ layer shows a V_t shift of 2.143V. Fig. 4 plots the threshold voltage shift vs. programming voltage. Compared to the ZnO charge trapping memory, where we used a ZnO charge trapping layer; for a 2V V_t shift the CrO$_2$ nanolayer layer provides a \sim2.5V reduction in programming voltage. Fig. 5 plots V_t shift as a function of time. The figure shows a long retention time with the addition of the CrO$_2$ layer. This is due to the extra states available and the larger barrier achieved between the charge trapping layer and the tunneling oxide. As a result, the tunnel oxide thickness can be scaled without sacrificing on retention.

Physics Based TCAD simulations using Synopsys TCAD tools are also studied. Because the experimental results showed a good charge trapping effect of the CrO$_2$ ultrathin layer with long retention time, and because there is no quantum well created by the CrO$_2$ layer due to its lower
FIG. 3. I_d–V_g showing the V_t shift obtained with the memory cell with CrO$_2$ nanolayer using a drain voltage $V_d = 20V$.

FIG. 4. Measured V_t shift vs. programming voltage.

electron affinity than the adjacent oxides electron affinities, which means that the electrons must be trapped within the trapping states available in ZnO only; thus we modeled the CrO$_2$ nanolayer such that the charge trapping levels are deep with high densities. To the best of our knowledge, there are still no published studies on the CrO$_2$ charge trapping and tunneling properties, but using TCAD simulations we were able to get an approximate model of the CrO$_2$ trapping and tunneling characteristics such as trapping levels, trapping densities, and electron and hole effective masses. In fact, a wide combination of different trapping levels with different trapping densities, and electron and hole CrO$_2$ effective tunnel masses were tested using TCAD simulations. The final structure that gave similar results to the experimental ones has the following parameters: a donor level in CrO$_2$ at
1.1 eV from the conduction band with a density of 10^{21} cm$^{-3}$, an acceptor level in CrO$_2$ at 0.2 eV from the valence band with a density of 10^{21} cm$^{-3}$, and electron and hole effective masses of 0.29m$_0$. The energy band diagram of the simulated structure at zero applied voltage is depicted in Fig. 6. The tunneling models that were used in TCAD are: Fowler-Nordheim, trap assisted tunneling (TAT), and direct tunneling. These models are included to allow charges to tunnel across the tunnel oxide and charge or discharge the charge trapping ZnO layer when programming or erasing the memory cell.
TABLE I. Material properties for ZnO, Al₂O₃, and CrO₂.

<table>
<thead>
<tr>
<th>Material</th>
<th>Al₂O₃</th>
<th>ZnO</th>
<th>CrO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy bandgap</td>
<td>6.65 eV</td>
<td>3.37 eV</td>
<td>1.7 eV</td>
</tr>
<tr>
<td>Relative permittivity</td>
<td>9.5</td>
<td>8.75</td>
<td>5</td>
</tr>
<tr>
<td>Electron affinity</td>
<td>2.58 eV</td>
<td>4.5 eV</td>
<td>2.41 eV</td>
</tr>
<tr>
<td>Electron tunnel mass</td>
<td>0.43m₀</td>
<td>0.24m₀</td>
<td>0.29m₀</td>
</tr>
<tr>
<td>Hole tunnel mass</td>
<td>0.5m₀</td>
<td>0.59m₀</td>
<td>0.29m₀</td>
</tr>
</tbody>
</table>

FIG. 7. Computed Iₘₜₑᵃᵣₑ–V₉₉₉₉ for both program and erase states with P/E voltage of 8V/-8V.

Also, to ensure that the ZnO substrate is n-type due to crystallographic defects such as interstitial zinc and oxygen vacancies; energy states were included in the ZnO layer of the TCAD simulated model. The material properties of ZnO, Al₂O₃, and CrO₂ that were included in the simulations are listed in Table I. The Iₘₜₑᵃᵣₑ – V₉₉₉₉ curves of the memory cell with an applied program/erase (P/E) voltage of 8V/-8V are shown in Fig. 7. The obtained V₁ shift of 2.1V is consistent with the V₁ shift obtained experimentally proving the accuracy of the proposed CrO₂ trapping and tunneling properties: electron and hole effective masses, charge trapping levels and their densities.

In summary, a ZnO charge trapping memory cell is fabricated with a CrO₂ charge trapping layer. Experimental results combined with TCAD simulations provide an understanding of the charge trapping mechanisms. The memory achieved a 2.6V V₁ shift, a reduced programming voltage, and a long retention time. The results show that use of ultra-thin nanolayers can reduce the required programming voltage for future nanomemory devices which is promising for future low cost electronic devices.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support for this work provided by the Masdar Institute of Science and Technology and the Advanced Technology Investment Company (ATIC).

