Aharonov–Bohm effect induced by light in a fiber
Igor O. Kulik and Alexander S. Shumovsky

Citation: Appl. Phys. Lett. 69, 2779 (1996); doi: 10.1063/1.117673
View online: http://dx.doi.org/10.1063/1.117673
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v69/i18
Published by the American Institute of Physics.

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Aharonov–Bohm effect induced by light in a fiber

Igor O. Kulika) and Alexander S. Shumovskyb)

Department of Physics, Bilkent University, Bilkent 06533, Ankara, Turkey

(Received 1 March 1996; accepted for publication 2 August 1996)

A weakly coupled normal-metal ring surrounding an optical fiber is considered under the condition that the frequency of light in fiber is larger than the conduction bandwidth of the metal. It is shown that in the presence of static magnetic field parallel to the fiber axis, the resistance of the ring is a nonmonotone function of the optical intensity and an oscillating function of the static magnetic flux with period equal to flux quantum $\hbar c/e$. The temperature dependence of oscillations requires that inelastic mean free path of electrons is larger than the ring size, and does not relate to the energy level spacing to temperature ratio. © 1996 American Institute of Physics. [S0003-6951(96)01342-3]

It has been recognized that quantum effects in mesoscopic structures related to the vector potential of the electromagnetic field may lead to high-precision and high-sensitivity measurements at low temperatures (e.g., see Ref. 1). So far the quantum interferometry of normal metallic loops was applied to static or slowly time-varying magnetic fields. The objective of this letter is to consider the high-frequency mesoscopic effects induced by light in an optical fiber piercing the metallic loop and thereby to demonstrate the possibility of nondemolition control of light propagation through the fiber.

It is well known that the Aharonov–Bohm effect2 at dc excitation manifests itself in the appearance of a persistent current in a metallic loop periodic as a function of magnetic flux with the period of flux quantum $\hbar c/e$ and in the resistance oscillations in the loop incorporated into an external circuit5 with the same period. The first type of the experiment was carried out by Chandrasekhar et al.6 and by Mally et al.7 Resistance oscillations have been observed in Ref. 1 and references therein.

An important case of an ac field of high frequencies $\omega \gg v_F/R$ where v_F is the Fermi velocity and R is the ring radius has been considered by Aronov et al.8,9 under the assumption that the space dependent time-varying electromagnetic field produces the static electron energy minibands in the ring. The minibands have been suggested6,9 to appear due to electron motion in a time-averaged electrostatic potential periodic with coordinate along ring circumference, produced by the square of an ac electric field.10 However, in the quantum case, an electron reflection from an oscillating potential causes a time-dependent phase shifts resulting in an effective chaotization of the phase of electron wave function, except at energy multiples of $\hbar \omega$.

In this letter we consider the case of much higher (optical) frequency $\omega \gg \Delta E/\hbar$ where ΔE is the width of the electron conduction band of the metal. Under this condition, the inelastic scattering of electrons is prohibited if the separation between the conduction band and higher nonoccupied bands of a metal is larger than $\hbar \omega$. In this case, the magnetic component of an electromagnetic field represents the main source of the electron wave function phase shift. The effect of oscillating magnetic field results in the modulation of the electron transmission amplitude between the parts of the ring. Due to the quantum interference of electron waves in an oscillating potential, the dependence of the loop resistance on the ac field amplitude becomes a nonmonotone character.

An example of the high-frequency Aharonov–Bohm effect is provided by a small metallic ring surrounding an optical fiber [Fig. 1(a)]. We show here that the resistance of the ring has a nonmonotone dependence on the ac power and oscillates as a function of static magnetic field applied parallel to optical fiber axis. We assume that the ring is inhomogeneous and that the ac electric field is concentrated near the narrowings A,B,\ldots. Hopping of electrons near these points will be influenced by a phase factor emerging from the vector potential $A(r,t)$ of the ac field.

Consider for simplicity a one-dimensional loop in the tight-binding approximation with two transmittance amplitudes t_1,t_2 at points A,B, connecting two parts of the ring at $n=n_1'=n_1$ and $n=n_2'=n_2$, much smaller than the hopping amplitude t_0 between the nearest points inside upper and lower parts of the ring [Fig. 1(c)]. Here n enumerates the sites along the ring. A weakly coupled loop of equal length chains ($N=n_2-n_1$) is formed along the contour $AA'B'A$. This model can be solved exactly and we hope that the result will remain qualitatively valid at $t_{1,2} \ll t_0$. Further simplification, in the spirit of that philosophy, consists in the passage to the configuration depicted by the Fig. 1(d) with two parallel weakly coupled infinite chains ($\ldots A\ldots B\ldots$ and ($\ldots A'\ldots B'\ldots$) connected at the lower part to the thermal reservoirs R_1 and R_2, holding at different static voltages V_1 and V_2.

The system in question is described by a model Hamiltonian

$$\begin{align}
H &= -t_0 \sum_n (a_n^+ a_{n+1}^+ + b_n^+ b_{n+1}^+) + h.c. + H_{int}, \\
H_{int} &= -t_1 a_1^+ b_n e^{i\alpha_1} - t_2 a_2^+ b_n e^{i\alpha_2} + h.c.,
\end{align}
$$

where a_n, b_n are the electron annihilation operators. The phases of transmission amplitudes at the contraction points n_1, n_2 are

a)Also at B. Verkin Institute for Low Temperature Physics and Engineering, Academy of Science of Ukraine, Khar'kov, Ukraine.

b)Also at Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia. Electronic mail: shumo@fen.bilkent.edu.tr

© 1996 American Institute of Physics
while the amplitudes of high-frequency field at corresponding points. Hamiltonian (1) is Fourier-transformed into the following:

\[H_{\text{int}} = \sum_{n=-\infty}^{\infty} H_{\text{int}}^{(n)} e^{i n \omega t}, \]

where \(J_n(z) \) is the Bessel function. It is not necessary to take into account the contribution of \(H_{\text{int}}^{(n)} \) at \(n \neq 0 \) because the scattering events are forbidden under the condition \(4t_0 < \hbar \omega \). In fact, they lead to the change of energy \(\varepsilon_k = \varepsilon_k \pm n\hbar \omega \). Within the framework of the one-dimensional hopping model, there is no other electronic band except a single one with the width \(4t_0 \). The model can be applied to a real metallic system if \(\hbar \omega \) is less than the separation between the conduction band and higher non-occupied bands.

By perturbation, the forward (+) and backward (−) scattering probabilities between the plane-wave states

\[\psi_k = \sum_n e^{ik \cdot \mathbf{r}_n} \langle 0 | n \rangle, \quad \phi_k = \sum_n e^{-ik \cdot \mathbf{r}_n} \langle 0 | n \rangle \]

are \(W_{\pm k} \) where

\[W_k[A + B \cos(\alpha + 2kL)]/|v_k|, \]

\[A = 2 \sum_{j=1}^{2} [t_j J_0(A_j)]^2, \]

\[B = 2 \sum_{j=1}^{2} t_j J_0(A_j). \]

Here \(L \) is the total length of the loop \(ABB' \), the phase \(\alpha = 2\pi \Phi_d/\Phi_0, \quad v_k = e\varepsilon_k/\hbar k \) is the electron group velocity, and \(\varepsilon_k = -2t_0 \cos k \). In the steady state, the populations \(f_{\pm k} \) and \(f'_{\pm k} \) of electron states can be obtained from the kinetic equation. After that, it should be Eq. (7) which is now written as follows:

\[f_{\pm k}^t = f_{\pm k} - f_{\pm k}^0 \]

\[G = G^0(e - eV/2) \quad \text{where} \quad f_{\pm k}^0 = f_{\pm k}^0(e + eV/2) \quad \text{corresponds to the electrons emerging from} \quad R_2. \]

The current \(J \) in the lower chain is determined by the difference between the number of electrons moving to the right and to the left. Solving for \(f_{\pm k}^t \) from (7), we obtain

\[J = \frac{\pi k T}{2} \int_0^\infty \frac{W_k}{W_0 + W_k} \left[\frac{W_{-k}}{W_0 + W_{-k}} \right] f_0 \left(\frac{\varepsilon_k - eV}{2} \right) \]

\[- f_0 \left(\frac{\varepsilon_k - eV}{2} \right). \]

The contribution to conductance \(G = dJ/dV \) due to the inter-chain scattering is

\[G = \frac{e^2(t_1^2 + t_2^2)}{2hT} \int_0^\infty \frac{\pi k T}{2} \frac{W_k}{W_0 + W_k} \left[\frac{W_{-k}}{W_0 + W_{-k}} \right] \]

\[\times \frac{dk}{|v_k| \cosh^2(\varepsilon_k - \mu)/2T}. \]

We now note that Eq. (9) is equivalent to the Landauer formula for the conductance at transmission probability \(|t| \). The logarithmic divergence in the integral (a) is removed if inelastic scattering and 3d band effects are taken into account. At low temperature, the main contribution to integral comes from the vicinity of Fermi surface where these effects are insignificant.

The largest contribution to the conductance oscillations described by the above formulas corresponds to the mode TE\(_{01} \) of the fiber field (see Ref. 13). The typical magnitude of the conductance change in (10) is of the order of universal oscillations.
oscillating dependence,
the order of inelastic
temperature may be related to mismatch between the elec-
tration in Eq. ~.
~11
~m, the

conductance quantum \(2e^2/h=1/12.9\) k\(\Omega \). The size of the
loop should be of the order of a few wavelengths of light to
ensure that the total flux piercing the ring in the TE\(_{01}\) mode is
not equal to zero.

It follows from Eq. ~9 that the dependence of \(G\) on
phase \(\alpha\) and on the electromagnetic field amplitude leads to
two different effects. First, the oscillatory dependence
\(G(\Phi_{\text{ac}})\) is the standard mesoscopic interference effect
similar to that in static electron interferometer.\(^1\) Another type of
oscillating dependence, \(G(A_{\text{ac}})\), arises from the Bessel func-
tion in Eq. ~6. The dependence of conductance upon the ac
power is shown in Fig. 2. The effect is, in fact, a classical
interference between two light field amplitudes producing
oscillating electron currents of the same frequency and co-
herent phase. Such oscillation require low enough tempera-
ture at which phase-breaking length of electron scattering
\(l_p\) exceeds the circumference of the ring. Typically, \(l_p\) is of
the order of inelastic (electron-electron or electron-phonon)
scattering length. For the loop size of the order of 1 \(\mu m\), the
requirement \(l_p>L\) is valid for temperatures \(T\) below 1 K.

Another type of the amplitude damping at increasing
temperature may be related to mismatch between the elec-
tron level spacing \(\Delta \epsilon\) and \(T\).\(^3,4\) The latter effect is however
not intrinsic to all kinds of electron interference. In the
persistent-current type interference effects,\(^5\) vanishing of the
oscillation amplitude at \(T\gg\Delta \epsilon\) arises as a result of averaging
on the electron states. In the case of \(\alpha\)-dependent scattering
as in Eq. ~9, the average value of current for different states
proves to be nonzero and thus does not remove the oscillat-
ing component of conductance. This means that, in principle,
the effect of conductance oscillations can persist to tempera-
tures and loop sizes larger than those in static interference
experiments.

Another feature of quantum interference which we have
not considered here may occur if the loop has unequal
lengths of the upper and lower chains, e.g., as was shown in
Refs. 14 and 15, the quantum flux periodicity may change
from single to double one (\(\hbar c/l\) to \(\hbar c/2l\)).

We now turn to quantitative estimation of the effects
under consideration. Let us put \(L=1\) \(\mu m\). It follows from
Eq. ~10 that the magnitude of the field for which the depend-
ence of \(G\) on \(\Phi_{\text{ac}}\) becomes important is of the order of
\(H_{\text{ac}}\sim10^{-7} T\) which corresponds to the oscillating power in
the fiber \(P\sim10^{-10} W\). Estimated in a different way as a mini-
um number of optical photons transmitted through the ring
which gives a further change in the phase oscillation of the
order of \(2\pi\), the field should contain \(N_{\text{ac}}\sim1/\alpha\) photons
where \(\alpha\) is the fine structure constant \(e^2/\hbar c\). Such change
may be expected in the case of optical soliton propagating
through the fiber.\(^13\)

It should be stressed that the use of a nonuniform ring is
very important for observation of the effects. Precisely, the
above estimation of the critical value of \(H_{\text{ac}}\) crucially de-
dpends on the assumption made, that the ac power concen-
trates near some points in the ring because of its unhomoge-
neity. For a uniform ring the magnetic field corresponding to
the effect of the order of \(\Phi_{\text{ac}}/N\Phi_0\) on the phase shift of the
hopping amplitude between the nearest sites. In this case, the
critical amplitude of the magnetic field has to be much
higher (\(H_{\text{ac}}\sim10^{-4} T\)), which corresponds to the oscillating
power in the fiber of the order of \(P\sim10^{10} W\).

\(^1\) S. Washburn, in Mesoscopic Phenomena in Solids, edited by B. L. Alt-
\(^3\) I. O. Kulik, JETP Lett. ~11, 275 (1970).
\(^6\) V. Chandrasekhar, R. A. Webb, M. J. Brady, M. B. Ketchen, W. J. Gal-
\(^9\) I. E. Aronov, A. Grincwajg, M. Jonson, R. I. Shekhter, and E. N.
\(^12\) Y. Imry, in Directions in Condensed Matter Physics, edited by G.