
This article was downloaded by: [139.179.72.233] On: 14 February 2022, At: 03:55
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Branch-and-Bound Algorithm for Team Formation on
Social Networks
Nihal Berktaş , Hande Yaman

To cite this article:
Nihal Berktaş , Hande Yaman (2021) A Branch-and-Bound Algorithm for Team Formation on Social Networks. INFORMS Journal
on Computing 33(3):1162-1176. https://doi.org/10.1287/ijoc.2020.1000

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2020, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.2020.1000
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

INFORMS JOURNAL ON COMPUTING

http://pubsonline.informs.org/journal/ijoc ISSN 1091-9856 (print), ISSN 1526-5528 (online)

A Branch-and-Bound Algorithm for Team Formation on
Social Networks
Nihal Berktaş,a Hande Yamanb

aDepartment of Industrial Engineering, Bilkent University, 06800 Çankaya/Ankara, Turkey; bResearch Centre for Operations
Research and Statistics (ORSTAT), Faculty of Economics and Business, Katholieke Universiteit Leuven, Leuven 3000, Belgium
Contact: nihal.berktas@bilkent.edu.tr, https://orcid.org/0000-0002-3510-0808 (NB); hande.yaman@kuleuven.be,

https://orcid.org/0000-0002-3392-1127 (HY)

Received: March 13, 2019
Revised: October 15, 2019; March 7, 2020;
June 19, 2020
Accepted: June 25, 2020
Published Online in Articles in Advance:
December 14, 2020

https://doi.org/10.1287/ijoc.2020.1000

Copyright: © 2020 INFORMS

Abstract. The team formation problem (TFP) aims to construct a capable team that can
communicate and collaborate effectively. The cost of communication is quantified using the
proximity of the potentialmembers in a social network.We study a TFPwith twomeasures for
communication effectiveness; namely, we minimize the sum of communication costs, and we
impose an upper bound on the largest communication cost. This problem can be formulated
as a constrained quadratic set covering problem. Our experiments show that a general-
purpose solver is capable of solving small and medium-sized instances to optimality. We
propose a branch-and-bound algorithm to solve larger sizes: we reformulate the problem and
relax it in such a way that it decomposes into a series of linear set covering problems, and we
impose the relaxed constraints through branching. Our computational experiments show that
the algorithm is capable of solving large-size instances, which are intractable for the solver.
Summary of Contribution: This paper presents an exact algorithm for the Team Formation
Problem (TFP), in which the aim is, given a project and its required skills, to construct a
capable team that can communicate and collaborate effectively. This combinatorial opti-
mization problem is modeled as a quadratic set covering problem. The study provides a
novel branch-and-bound algorithmwhere a reformulation of the problem is relaxed so that it
decomposes into a series of linear set covering problems and the relaxed constraints are
imposed through branching. The algorithm is able to solve instances that are intractable for
commercial solvers. The study illustrates an efficient usage of algorithmic methods and
modelling techniques for an operations research problem. It contributes to the field of
computational optimization by proposing a new application as well as a new algorithm to
solve a quadratic version of a classical combinatorial optimization problem.

History: Accepted by Andrea Lodi, Area Editor for Design and Analysis of Algorithms—Discrete.

Keywords: team formation problem • quadratic set covering • branch and bound • reformulation

1. Introduction
The complexity of products and services in today’s
world requires various skills, knowledge, and experience
from different fields, whereas the pace of consumption
demands agility in the production and development
phases. To be able to meet these requirements, people are
working in teams both physically and virtually in various
organizations such as governments, nongovernmental
organizations, universities, hospitals, and business firms.
The quality of the work done depends on the technical
capabilities of the team members and the effectiveness of
communication among them. In the studies investigating
the factors affecting the success of teams, communication
has been considered to be one of the key factors, if not the
most important one (Hoegl and Gemuenden 2001),
especially in virtual teams (Jones 2005).

In addition to regular organizations that build
physical and virtual teams for projects, there is a new
concept of outsourcing called team as a service. The

companies that use this model build a team according
to the needs of a given project and providemanagerial
service throughout. The concept is claimed to pro-
vide the agility that companies need in today’s fast-
moving market because it reduces the burden on the
core permanent employees by offering a self-sufficient
team (Centric Digital 2016).
Motivated by this new concept of team as a service, we

are interested in the team formation problem (TFP),
which is theproblemof selecting agroupof people froma
candidate set so that they work together on a given task
that requires some technical skills. Our aim is to build a
teamwhosemembers can collaborate effectively, andwe
do this by minimizing their communication cost.
In the operations research literature, the TFP has been

studied in different contexts. The studies of Zakarian
and Kusiak (1999) on product design, Boon and
Sierksma (2003) on sports teams, and Agustı́n-Blas
et al. (2011) on teaching groups are some examples in

1162

Vol. 33, No. 3, Summer 2021, pp. 1162–1176

http://pubsonline.informs.org/journal/ijoc
mailto:nihal.berktas@bilkent.edu.tr
https://orcid.org/0000-0002-3510-0808
https://orcid.org/0000-0002-3510-0808
mailto:hande.yaman@kuleuven.be
https://orcid.org/0000-0002-3392-1127
https://orcid.org/0000-0002-3392-1127
https://doi.org/10.1287/ijoc.2020.1000

which the objective is to maximize the technical ca-
pability or the knowledge of the team. In the studies of
Chen and Lin (2004), Fitzpatrick and Askin (2005),
andZhang andZhang (2013), communication is taken
into consideration using the personal characteristics
of the team members. Well-known personality tests
such as Myers-Briggs and Kolbe Conative are used
to measure the effectiveness of communication.
Baykasoglu et al. (2007) incorporate communication
by specifying people who do not prefer to be in the
same project. Gutiérrez et al. (2016) model interper-
sonal relations via the sociometric matrix, which
consists of −1, 0, and 1 representing the negative,
neutral, and positive relations, respectively. Another
method to incorporate communication into the problem,
the one chosen in this study, is via a social network of
individuals. To the best of our knowledge, in the op-
erations research literature, the study byWi et al. (2009)
is thefirst one touse social networks for teamformation.
The authors form a network using fuzzy familiarity
scores among candidates via collaboration data and
formulate a nonlinear program whose objective is a
weighted sum of performance, familiarity, and size of
the team. More recently, Farasat and Nikolaev (2016)
use edge, two-star, three-star, and triangle network
structures tomeasure the collaborative strength of the
team. The objective is to maximize the weighted sum
of structures in multiple teams, and the skills of
people are not considered. The solution techniques
suggested in these studies are either not designed for
real-sized data or are heuristic approaches.

The TFPs where a social network is considered are
mainly studied in the knowledge discovery and data-
miningfield, initiated by thework of Lappas et al. (2009)
and followed by many others. This line of work is
motivated by the existence of numerous online social
networks and the advances in social network analysis.
It uses a social network in which the edge weights
are considered measures of the effort required for
candidates to communicate as teammembers. Clearly, a
lower weight for edge {i, j} implies that candidates i
and j can collaborate more effectively. Lappas et al.
(2009) study two variants of the problem with different
communication cost functions. The first is the diameter
of the team, which is the largest distance between any
pair of team members, where the distance between two
people is taken as the shortest path weight in the net-
work. The second function is the cost of aminimum-cost
Steiner tree that spans the teammembers. Following this
study, other functions are defined and used for the
problem. The studies of Kargar and An (2011), Kargar
et al. (2012), and Bhowmik et al. (2014) are among the
ones that define the communication cost of the team as
the sum of distances, which is the sum of the shortest
path lengths between all pairs of teammembers. Kargar
and An (2011) define leader distance as the sum of

shortest path lengths between the leader and the person
chosen for each required skill. Given a team, the bot-
tleneck cost is defined by Majumder et al. (2012) as the
maximum edge weight in a tree that minimizes this and
that spans the teammembers. Dorn and Dustdar (2010)
and Gajewar and Sarma (2012), by contrast, use
communication cost functions that are related to the
density of the team’s subgraph.
We adopt the problem definition of Lappas et al.

(2009) and use a social network to quantify and mini-
mize the communication cost. The technical capability
of the team is ensuredusing abinary skillmatrix built by
considering minimum expertise levels. We propose to
minimize the sum of distances and to impose an upper
bound on the diameter. We derive a mixed-integer pro-
gramming formulation for this new problem and test it
using a large set of instances. We observe that small and
medium-sized instances can be solved using a general-
purpose solver, but memory problems occur for large
instances. We present a novel branch-and-bound algo-
rithm that is very effective in solving these instances.
The remaining part of the paper is organized as

follows: In the next section, we formally define the
TFP and provide quadratic and linear mathematical
models.We present our branch-and-bound algorithm
in Section 3. In Section 4, we first introduce our data
sets and explain our instance-generation method.
Then we present the results of an extensive compu-
tational study. We conclude in Section 5.

2. Problem Definition and
Mathematical Models

In this section, we formally define the TFP, explain
how the communication costs are computed, and
provide mathematical models. Let K be the set of
required skills for a given task, and let N be the set of
candidates. We assume that the skills of the candi-
dates are known. We need to select team members
such that for each skill there is at least one person on
the team who has that skill. Such teams are called
capable teams. An undirected collaboration network of
the candidates G � (N,E) is given. In a collaboration
network, two people (nodes) are connected by an
edge if they have collaborated before. Edge {i, j} has
weight cij. These weights are commonly calculated in
the followingway: let i and j be two people and Pi and
Pj be the sets of projects they have taken part in, re-
spectively. Then |Pi ∩ Pj| is the number of their col-
laborations, and the weight of edge {i, j} is taken as
1 − (|Pi ∩ Pj|/|Pi ∪ Pj|), which is the Jaccard metric, a
well-known dissimilarity measure introduced by
Jaccard (1912). The Jaccard distance between any two
people with no collaboration equals one. Instead of
taking the distance between all such unconnected
pairs as one, Lappas et al. (2009) and others use the

1163
Berktas¸ and Yaman: Team Formation on Social Networks
INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

shortest path distances among these pairs. This method
differentiates the unconnected pairs who have neigh-
bors that collaborated often from the ones who have
distant connections. We follow the same approach and
define the costof communicationbetween i and j, denoted
by pij, to be equal to cij if Pi ∩ Pj �� ∅, to be equal to the
weight of the shortest path between i and j if Pi ∩ Pj � ∅,
and to be equal to a sufficiently large number if there
is no path between them. By construction, all com-
munication costs are nonnegative.

Before moving on to the problem definition, we dem-
onstrate the cost-calculation procedure on a small ex-
ample. In Figure 1, on the left, we have a collaboration
network where the nodes represent people, and the
shapes indicate the skill they have. The number next
to each node is the total number of projects on which
the person has worked. The number on each edge
shows the number of collaborations of the people
corresponding to the end nodes of the edge. The
numbers on edges of the network on the right are the
Jaccard distances calculated from the collaboration
data. Then, calculating the shortest paths, we get the
distance (communication cost) matrix in Table 1.

Under the setting given previously, the TFP is defined
as finding a capable team with minimum communication
cost. With communication costs computed as described,
minimizing the sum of the distances amounts to maxi-
mizing the average familiarity of the team. There are
empirical studies in the literature indicating positive effects
of teamfamiliarityon theperformanceof teams.The results
of the study by Huckman et al. (2009) on a software
service company indicate a positive and significant rela-
tion between team familiarity and operational perfor-
mance. Analyzing software development teams of a
telecommunicationsfirm,Espinosa et al. (2007) find that
team familiarity is more beneficial when coordination is
more challenging because of team size or dispersion. The
study by Avgerinos and Gokpinar (2016) on pro-
ductivity of surgical teams also shows that the benefit of
familiarity increases as the task gets more complex.
Moreover, the performance analysis in the study sug-
gests that the bottleneck pair, that is, the pair with the
lowest familiarity, significantly reduces team produc-
tivity. In terms of the communication cost measures, the
least familiar pair on a teamamounts to the nodeswhose
distance equals the diameter of the team.
Motivated by the results of these studies, we choose to

study the problem where we minimize the sum of dis-
tances and bound the diameter.We call this problem the
diameter-constrained TFP with sum-of-distances objective
(DC-TFP-SD).
In the remaining part of this section, we provide

mathematical models for the DC-TFP-SD. For each
person i ∈ N, we define a binary variable yi to be one if
this person is on the team and zero otherwise. We
define parameter aik to be one if person i ∈ N possesses
skill k ∈ K and to be zero otherwise. We let set C be the

Figure 1. Collaboration Network and Corresponding Jaccard Distances

Table 1. Communication Cost Matrix for the People in the
Collaboration Network

N 1 2 3 4 5 6

1 0 0.778 1.349 1.657 0.875 0.857
2 — 0 0.571 1.171 1.653 0.875
3 — — 0 0.6 1.433 1.4
4 — — — 0 0.833 0.8
5 — — — — 0 0.833
6 — — — — — 0

1164
Berktas¸ and Yaman: Team Formation on Social Networks

INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

set of pairs of people in conflict, that is, the set of pairs
whose communication cost exceeds the allowed di-
ameter, and we eliminate teams that include such
pairs. The DC-TFP-SD can be modeled as follows:

min
∑
i∈N

∑
j∈N:i<j

pijyiyj, (1)

subject to (s.t.)∑
i∈N

aikyi ≥ 1, ∀k ∈ K, (2)
yi + yj ≤ 1, ∀ i, j

{ } ∈ C, (3)
yi ∈ 0, 1{ }, ∀i ∈ N. (4)

The covering Constraints (2) ensure that each required
skill is covered; that is, there is at least one person on the
team who has that skill. The family of packing (conflict)
Constraints (3) forbids conflicting pairs on the team.
The objective function is the sum of communication
costs of team members.

We can use variables zij � yiyj for all i, j ∈ Nwith i < j
to linearize the objective function:

min
∑
i∈N

∑
j∈N:i<j

pijzij, (5)

s.t. (2)–(4),

zij ≥ yi + yj − 1, ∀i, j ∈ N : i < j, (6)
zij ≤ yi, ∀i, j ∈ N : i < j, (7)
zij ≤ yj, ∀i, j ∈ N : i < j, (8)
zij ≥ 0, ∀i, j ∈ N : i < j. (9)

Constraints (6)–(9) are to linearize zij � yiyj and force
zij to be onewhen both yi and yj are equal to one and to
be zero otherwise (Fortet 1960). Because the objective
function coefficients are nonnegative, Constraints (7)
and (8) can be dropped without changing the optimal
value. One can use constraints zij � 0 for all {i, j} ∈ C
instead of Constraints (3), which give similar results
in terms of computation time. Using both constraints
together proved to be less effective.

If C � ∅, then we obtain the team formation problem
with sum-of-distances objective (TFP-SD). The optimal
solution of the TFP-SD on the network in Figure 1,
with pij taken as in Table 1, is the team {2,3,4} with cost
2.342. The optimal solution of the DC-TFP-SD with a
diameter limit of 0.9 is the team {4,5,6} with cost 2.466.

3. Branch-and-Bound Algorithms
The DC-TFP-SD is a quadratic set covering problem
with side constraints (packing Constraints (3)). One
of the earliest studies on the quadratic set covering
problem is by Bazaraa and Goode (1975), where the
authors propose a cutting-plane algorithm. Besides
this study, the literature on quadratic set covering is
limited to a study of polynomial approximations by
Escoffier and Hammer (2007); a linearization tech-
nique by Saxena and Arora (1997), which does not

guarantee optimality, as shown by Pandey and Punnen
(2017); and a study by Punnen et al. (2019) on com-
paring different representations of the problem.
As listed in the surveys of Loiola et al. (2007) on the

quadratic assignment problemandPisinger et al. (2007)
on the quadratic knapsack problem, the formulations
of 0–1 quadratic problems can be based on mixed-
integer, convex quadratic, or semidefinite program-
ming, andmostly they are too large to be solved in their
current forms. Therefore, they are relaxed and embed-
ded into an algorithm such as a branch-and-bound,
cutting-plane, or dual-ascent algorithm or a combina-
tion thereof. Most recent studies with semidefinite re-
laxations include the works of Povh and Rendl (2009),
Mittelmann and Peng (2010), and de Klerk et al. (2015)
on the quadratic assignment problem and the work of
Guimarães et al. (2020) on thequadraticminimumspan-
ning tree. Among the studies based on mixed-integer
programming, see, for instance, a constraint-generation
algorithmfor thequadratic knapsackbyRodrigues et al.
(2012), a branch-and-cut algorithm for the capacitated
vehicle routing problem with quadratic objective by
Martinelli and Contardo (2015), and a branch-and-
price algorithm for the quadratic multiple knapsack
by Bergman (2019).
As can be seen from this brief review, the quadratic

set covering problem has attracted very little atten-
tion as opposed to other quadratic 0–1 problems. In
this section, we first present a branch-and-bound
algorithm for the TFP-SD, which is a quadratic set
covering problem, and then extend it to the DC-TFP-
SD, which is a quadratic set covering problem with
side constraints.

3.1. Reformulation, Relaxation, and Decomposition
For ease of decomposition, we define variable zij for
all i, j ∈ N such that i �� j instead of i < j. We apply the
idea of the well-known reformulation-linearization
technique (RLT) of Adams and Sherali (1986) to derive
the following inequalities from the original covering
constraints by multiplying each one by variable yj:∑

i∈N\ j{ }
aikzij ≥ 1 − ajk

()
yj, ∀k ∈ K, j ∈ N.

The right-hand side of this constraint is equal to one
when person j is on the team but does not have skill k.
Hence, the constraint implies that in this case, at least
one person having skill kmust be on the team.We can
rewrite these constraints as follows:∑

i∈N\ j{ }
aikzij ≥ yj, ∀k ∈ K, j ∈ N : ajk � 0. (10)

We call these new constraints RLT constraints. By
adding these into our previous model and making

1165
Berktas¸ and Yaman: Team Formation on Social Networks
INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

slight changes, we obtain the following reformulation
of the TFP-SD:

min
1
2

∑
i∈N

∑
j∈N\ i{ }

pijzij

s.t. (2), (4), (10),

zij ≤ yj, ∀i, j ∈ N : i �� j, (11)
zij � zji, ∀i, j ∈ N : i < j, (12)
zij ≥ yi+yj−1, ∀i, j∈N : i< j, (13)
zij ∈ 0, 1{ }, ∀i, j ∈ N : i �� j. (14)

In the reformulation, we use constraints zij ∈ {0, 1}
rather than zij ≥ 0 for all i, j ∈ Nwith i �� j even though
the latter constraints are also sufficient to have a
correct formulation. However, in what follows,
we will relax some constraints, and the integrality of
z-variables will not be implied in the relaxed problem.

There are many studies on using RLT to solve qua-
dratic problems. In theworks ofAdams et al. (2007) and
Hahn et al. (2012), different levels of RLT are used for
the quadratic assignment problem. In these studies,
Lagrangian relaxation is applied to the reformula-
tions and embedded into a branch-and-bound algo-
rithm. The technique is also used for the quadratic
knapsack problem by Billionnet and Calmels (1996),
Caprara et al. (1999), Pisinger et al. (2007), and Fomeni
et al. (2014). The main distinction between these
reformulations and ours is that constraints of type (13)
are redundant in these reformulations because of
problem and cost structure, whereas in our case they
are necessary.

We are interested in the relaxation of the reformu-
lation obtained by removing Constraints (12) and (13).
Let (y∗, z∗) be an optimal solution of the relaxation.
Because Constraints (12) are relaxed, z∗ij may not be
equal to z∗ji. Furthermore, we might get a solution
where z∗ij �� y∗i y∗j or z∗ji �� y∗i y∗j or both because we re-
laxed Constraints (13). To remove such infeasibilities,
we branch by creating two nodes: at one node, we
allow atmost one of i and j to be on the team, and at the
other node, we force both to be on the team. Suppose
now thatwe are at node � of the branch-and-bound tree,
and thus far, while branching, we have added the con-
straints that atmost one of i and j can be on the team for
all {i, j} ∈ C1

� (by adding the constraints yi + yj ≤ 1, zin +
zjn ≤ yn for all n ∈ N \ {i, j} and zij � zji � 0) and that i
and j are both on the team for all {i, j} ∈ C2

� (by adding
the constraints yi � yj � 1, zin � zjn � yn for all n ∈ N \
{i, j} and zij � zji � 1). Then the relaxation at node �,
called R�, is as follows:

min
1
2

∑
i∈N

∑
j∈N\ i{ }

pijzij

s.t. (2), (4), (10), (11), (14),
yi + yj ≤ 1, ∀ i, j

{ } ∈ C1
� , (15)

yi � yj � 1, ∀ i, j
{ } ∈ C2

� , (16)
zin + zjn ≤ yn, ∀ i, j

{ } ∈ C1
� , n ∈ N \ i, j

{ }
, (17)

zin � zjn � yn, ∀ i, j
{ } ∈ C2

� ,n ∈ N \ i, j
{ }

, (18)
zij � zji � 0, ∀ i, j

{ } ∈ C1
� , (19)

zij � zji � 1, ∀ i, j
{ } ∈ C2

� . (20)
Next we show that R� can be solved by solving |N| + 1
linear set covering problems with side constraints
(see, e.g., Caprara et al. 1999 for a similar result for the
quadratic knapsack problem).

Proposition 1. The relaxation R� can be solved by solving
|N| + 1 linear set covering problems with side constraints as
follows. For each n ∈ N, we solve the linear set covering
problem (Prn), which will be referred to as subproblem n:

vn � min
∑

i∈N\ n{ }
pinζni (21)

s.t.
∑

i∈N\ n{ }
aikζni ≥ 1, ∀k ∈ K : ank � 0,

ζni + ζnj ≤ 1, ∀ i, j
{ } ∈ C1

� : i, j �� n, (22)
ζni � ζnj � 1, ∀ i, j

{ } ∈ C2
� : i, j �� n, (23)

ζni � 0, ∀ i,n{ } ∈ C1
� , (24)

ζni � 1, ∀ i,n{ } ∈ C2
� , (25)

ζni ∈ 0, 1{ }, ∀i ∈ N \ n{ } (26)
with optimal solution ζ̄n and optimal value vn. Then the
optimal value of R� can be computed by solving the fol-
lowing master problem:

ν � min
1
2

∑
j∈N

vjyj

s.t.
∑
j∈N

ajkyj ≥ 1, ∀k ∈ K,

yi + yj ≤ 1, ∀ i, j
{ } ∈ C1

� ,

yi � yj � 1, ∀ i, j
{ } ∈ C2

� ,

yj ∈ 0, 1{ }, ∀j ∈ N.

Moreover the solution (y∗, z∗), where y∗ is an optimal so-
lutionof themaster problemandz∗ij � y∗j ζ̄ji for all i, j ∈ N : i �� j,
is an optimal solution for R�.

Proof. It is sufficient to observe that in R�, for a given
vector y, the problem of computing the best z de-
composes into subproblems, one for each n ∈ N with
yn � 1. When yn � 1, the best values of zin are zin � ζ̄ni
for all i ∈ N \ {n}. Then the best y can be computed by
solving the preceding master problem. □

We note that we can also multiply Constraints (2)
with (1 − yj) for j ∈ N and obtain valid inequalities∑

i∈N\{j} aik(yi − zij) ≥ 1 − yj for k ∈ K after substituting
zij � yiyj for i ∈ N \ {j} and yj(1 − yj) � 0. However, if

1166
Berktas¸ and Yaman: Team Formation on Social Networks

INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

we add these constraints to our reformulation, then
the relaxed problem does not decompose any more.

In our branch-and-bound algorithm, we propose to
work with a weaker relaxation R′

�, which is obtained
by dropping Constraints (17) and (18) in R�. The re-
laxation R′

� can be solved by solving for each n ∈ N the
relaxed subproblem Pr′n, which is obtained from sub-
problem Prn by dropping Constraints (22) and (23),
with optimal solution ζ̄′n and optimal value v′n, and
then by solving the relaxed master problem, whose
optimal value is ν′ and in which vj is replaced by v′j in
the objective function.

At the root node � � 0, R′
0 is the same as R0 and is

solved by solving |N| + 1 linear set covering problems.
We need less computation at the other nodes, as we
explain next in Proposition 2.

Proposition 2. At node � of the branch-and-bound tree
where � is not the root node, the relaxation R′

� can be solved
by solving at most three linear set covering problems with
side constraints if the optimal solutions and optimal values of
the subproblems at the parent node are available.

Proof. Let �′ be the parent node of node �. Suppose that
the we obtained the current node by adding {i′, j′} to
C1
� , that is, C

1
� � C1

�′ ∪ {i′, j′} and C2
� � C2

�′ . Then we add
the constraint yi′ + yj′ ≤ 1 to the master problem ζ

j′
i′ � 0

to the relaxed subproblem Pr′j′ , ζi
′
j′ � 0 to the relaxed

subproblem Pr′i′ , and the other subproblems remain
unchanged. If the optimal solution of Pr′i′ (respectively,
Pr′j′) at node �′ satisfies ζi

′
j′ � 0 (respectively, ζj

′
i′ � 0),

then it is also optimal for subproblem Pr′i′ (respectively,
Pr′j′) at node �. Otherwise, we solve these subproblems
and then we solve the master problem with the addi-
tional constraint yi′ + yj′ ≤ 1. If the current node is ob-
tained by adding {i′, j′} toC2

� , then againwemay need to
solve the relaxed subproblems Pr′i′ and Pr′j′ with the
additional constraints ζi

′
j′ � 1 and ζ

j′
i′ � 1, respectively,

and then themaster problemwith yi′ � 1 and yj′ � 1. □

As in R�, the solution (y∗, z∗), where y∗ is an optimal
solution of the relaxed master problem and z∗ij � y∗j ζ̄′ji
for all i, j ∈ N : i �� j, where ζ̄′j is an optimal solution of
the relaxed subproblem Pr′j′ , is an optimal solution
for R′

�.
The lower boundwe get fromR′

� may not be as good
as the lower bound of R�, and consequently, the
branch-and-bound tree may be larger. However, our
preliminary analysis has shown that this approach is
faster because the time spent at each node is signifi-
cantly smaller.

3.2. Branching Strategy
We should be able to eliminate a solution of the re-
laxation if it is not feasible for the original problem.
We do this by branching. In Observation 1, we present
different cases of infeasibility.

Observation 1. If the optimal solution (y∗, z∗) to the
relaxation R′

� at node � is not feasible for the original
problem at node �, then there exists at least one pair
{i, j} satisfying one of the following conditions:
• y∗i � y∗j � 1 and z∗ij � z∗ji � 0 (type 1 pair), or
• y∗i � y∗j � 1, z∗ij � 1, and z∗ji � 0 (type 2 pair), or
• y∗i � 1, y∗j � 0, z∗ij � 0, and z∗ji � 1.

We only branch on type 1 or type 2 pairs by pri-
oritizing the former. If the current solution is not
feasible, we branch on the first type 1 pair we find. If
none exists, we branch on the first type 2 pair (see
Algorithm 1). Next, in Proposition 3, we show that
branching on only type 1 and type 2 pairs is sufficient.

Proposition 3. If the optimal solution (y∗, z∗) to the re-
laxation R′

� at node � is not feasible for the original problem at
node �, then there exists either a type 1 pair or a type 2 pair or
(y∗, z̄) where z̄ij � y∗i y∗j for all i, j ∈ N such that i �� j is an
alternate optimal solution to the relaxation R′

�.

Proof. Suppose that there is no type 1 or type 2 pair in
(y∗, z∗) and the solution (y∗, z̄) is not an alternate op-
timal solution to the relaxationR′

�. Then, byObservation 1,
there exists at least one pair {i, j} such that y∗i � 1, y∗j � 0,
z∗ij � 0, and z∗ji � 1. Because (y∗, z̄) is not an alternate
optimal solution, for one of such pairs, setting zji to zero
violates a constraint. Then there exists a skill k that is
covered uniquely by j in the relaxed subproblem Pr′i
because otherwise setting zji to zero would be feasible.
Because y∗j � 0, skill k is covered by another candidate,
for example, candidate t, in the relaxed master problem.
Therefore, y∗t � 1. However, ζ̄′it and consequently z∗ti
must be zero because k is covered uniquely by j in
subproblem Pr′i . Then {i, t} is a pair with y∗i � y∗t � 1 and
z∗ti � 0 and is either a type 1 or type 2 pair. This con-
tradicts our assumption. □

Algorithm 1 (BranchPair(y*; z*))
1: for i ∈ N : y∗i � 1, do
2: for j ∈ N : j > i, y∗j � 1, do
3: if z∗ij � z∗ji � 0, then
4: pair ← {i, j};
5: break
6: if pair = null, then
7: for i ∈ N : y∗i � 1, do
8: for j ∈ N : j > i, y∗j � 1, do
9: if z∗ij �� z∗ji, then

10: pair ← {i, j};
11: break
12: Return pair

3.3. Upper Bounds
There are two ways to update the upper bound in our al-
gorithm: via the subproblems and via the master problem.

Proposition 4. Let Nj � {i ∈ N : ζ̄′ji � 1} ∪ { j}, where ζ̄′j
is an optimal solution to the relaxed subproblem Pr′j for j ∈ N,

1167
Berktas¸ and Yaman: Team Formation on Social Networks
INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

and N′ � {i ∈ N : y∗i � 1}, where y∗ is an optimal solution
of the relaxedmaster problem solved at any node of the branch-
and-bound tree. Then uj � 1/2

∑
i′∈Nj

∑
j′∈Nj\{i′} pi′j′ for j ∈ N

and u0 � 1/2
∑

i′∈N′
∑

j′∈N′\{i′} pi′j′ are upper bounds for the
optimal value.

Proof. For each j ∈ N, because of Constraints (10) in the
relaxed subproblem, Nj is a capable team. Similarly,
because of Constraints (2) in the master problem, N′ is
also a capable team. Their sum of distance values give
upper bounds. □

At each node, after solving the relaxed subprob-
lems and the master problem, we update the upper
bound and the incumbent solution if we find a
better solution.

3.4. The Algorithm
The branch-and bound-algorithm is presented in
Algorithm 2. The current lower and upper bounds are
denotedasLB andUB. Ateachnode�, wekeep theoptimal
solution of the subproblem �.ζ̄′n of Pr′n, its optimal value
�.v′n for all n ∈ N, the optimal value of the relaxed
master problem �.ν′, and its optimal solution (�.y∗, �.z∗).

The initial step is to create the root node, 0, at which
we solve the relaxed subproblems Pr′n for all n ∈ N,
and then the relaxed master problem, whose opti-
mal value becomes the first lower bound. Because
we preprocess our instances, we do not need to
check for feasibility at the root node. As explained in
Proposition 4, each time a relaxed subproblem or a
relaxed master problem is solved, we check whether
we can update the upper bound and the incumbent
solution, team T. If LB < UB, then we initialize the
queue Q by adding the root node.

The algorithm runs until the lower bound is equal
to the upper bound. We follow the best-first search
rule for choosing the next node to process, breaking
ties arbitrarily. Let � be a node in Q with the lowest
lower bound. We remove � from the queue and find its
branch pair, say {i, j}. We create child nodes �1 and �2
and solve relaxations R′

�1
and R′

�2
, as explained in

Proposition 2. Node �1 (respectively, �2) is added to
the queue only if �2.ν′ (respectively, �1.ν′) is less than
the current upper bound.

Throughout the algorithm, when a relaxed sub-
problem or a relaxed master problem is infeasible, its
objective value is set to infinity. Therefore, if R′

� is
infeasible, then �.ν′ � ∞. In this case, we discard node
� because it does not satisfy �.ν′ < UB. This amounts to
pruning by infeasibility. Furthermore, if the solution
(y∗, z∗) of relaxation R′

� is feasible for the original
problem or is not feasible but (y∗, z̄) where z̄ij � y∗i y∗j
for all i, j ∈ N such that i �� j is an alternate optimal
solution to R′

�, then �.ν′ ≥ UB because these solutions
are used to update the upper bound. This corresponds
to pruning by optimality. If the node is not pruned

by infeasibility or optimality and �.ν′ ≥ UB, then the
node is pruned by bound. Hence, if a node is added to
the queue, then it satisfies �.ν′ < UB and has at least
one type 1 or type 2 branch pair.

Algorithm 2 (Branch and Bound)
1: UB :� ∞, T � ∅.
2: Create root node 0 with 0.ν′ :� ∞,C1

0 :� ∅,C2
0 :� ∅.

3: for n ∈ N, do
4: Solve Pr′n.
5: 0.ζ̄′n :� ζ̄′n and 0.v′n :� v′n 8 update UB and T

if possible.
6: Solve the relaxed master problem.
7: 0.y∗ :� y∗, 0.z∗ :� z∗, 0.ν′ :� ν′, LB :� ν′ 8 update

UB and T if possible
8: if LB < UB, then Q :� {0}
9: while LB < UB, do

10: � � argmin�′∈Q{�′.ν′}, Q :� Q \ {�}
11: {i, j} :� BranchPair(�.y∗, �.z∗).
12: Create node �1: �1.v′n � �.v′n, �1.ζ̄′n � �.ζ̄′n, ∀n∈N,

�1.ν′ :� ∞,C1
�1
:� C1

� ∪ {i, j}, C2
�1
:� C2

� .
13: if �.ζ̄′ij � 1, then
14: Solve Pr′i .
15: if feasible, then �1.v′i :� v′i , �1.ζ̄′i :� ζ̄′i, else

�1.v′i :� ∞ 8 update UB and T if possible.
16: if �.ζ̄′ji � 1, then
17: Solve Pr′j .
18: if feasible, then �1.v′j :� v′j , �1.ζ̄′j :� ζ̄′j, else

�1.v′j :� ∞ 8 update UB and T if possible
19: Solve relaxed master problem
20: if feasible, then �1.y∗ :� y∗, �1z∗ :� z∗,

�1.ν′ � ν′ 8 update UB and T if possible.
21: if �1.ν′ < UB, then Q :� Q ∪ {�1}.
22: Create node l2: �2.v′n � �.v′n.

�2.ζ̄′n � �.ζ̄′n, ∀n ∈ N,
�2.ν′ � ∞,C1

�2
:� C1

� C
2
�2
:� C2

� ∪ {i, j}.
23: if �.ζ̄′ij � 0, then
24: Solve Pr′i .
25: if feasible, then �2.v′i :� v′i , �2.ζ̄′i :� ζ̄′i, else

�2.v′i :� ∞ 8 update UB and T if possible
26: if �.ζ̄′ji � 0, then
27: Solve Pr′j .
28: if feasible, then �2.v′j :� v′i , �2.ζ̄′j :� ζ̄′j, else

�2.v′j :� ∞ 8 update UB and T if possible.
29: Solve relaxed master problem.
30: if feasible, then �2.y∗ :� y∗, �2.z∗ :� z∗,

�2.ν′ :� ν′ 8 update UB and T if possible.
31: if �2.ν′ < UB, then Q :� Q ∪ {�2}.
32: LB :� min�′∈Q{�′.ν′}.
33: Return UB and T.

3.5. Example
We illustrate the branch-and-bound algorithm on a
small example. We would like to solve the TFP-SD on
the social network given in Figure 2. There are five

1168
Berktas¸ and Yaman: Team Formation on Social Networks

INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

candidates, and the shortest path lengths are as
shown on the edges. The project requires three skills,
and the skills of people are indicated by the shape
of nodes.

At the root node of the branch-and-bound tree, we
solve relaxation R0 � R′

0, which requires solving five
subproblems and then a master problem. In Figure 2,
we summarize the information we get from these
problems in the table next to the network. For ex-
ample, the first row shows that the optimal solution of
subproblem 1 is ζ̄12 � ζ̄13 � 1. The team consisting of
persons 1, 2, and 3 has a cost 3.1. This is the upper
bound we get from this subproblem, and actually,
it is the best bound among all subproblems, so the
corresponding solution becomes the incumbent. The
solution of the master problem is y∗1 � y∗2 � y∗4 � 1 and
y∗3 � y∗5 � 0 with objective value of 2.55. This becomes
the lower bound. We check whether we can use the
solution of the master problem to update the upper
bound. The team {1,2,4} costs 3.2, which is greater
than the upper bound we get from subproblem 1, so
the incumbent stays as {1,2,3}.

The entire branch-and-bound tree is illustrated in Fig-
ure 3. Next to each node, we summarize the solution and
bound information ina table, similar to theone inFigure 2.

The solution at the root node is optimal unless we
find a branch pair. Among i and jwith y∗i � y∗j � 1, we
first look for a pair with z∗ij � z∗ji � 0. Then {1,4} be-
comes our first branch pair. At the odd-numbered
nodes, we ensure that the people in the branch pair
are not teammates, and at the even-numbered nodes,
they are forced to be on the team together. Therefore,
at node 1, the problem R′

1 has the sets C1
1 � {{1, 4}}

and C2
1 � ∅. At node 2, problem R′

2 has C1
2 � ∅ and

C2
2 � {{1, 4}}.
At node 1, we only solve the relaxedmaster problem

because the solution of the relaxed subproblem 1

(respectively, 4) already satisfies ζ̄′14 � 0 (respectively,
ζ̄′41 � 0). The optimal solution of the relaxed master
problem is team {1,2,3}, and the lower boundwe get at
this node is 2.75. We do not update the upper bound
because no better solution has been found. At node 2,
we solve both relaxed subproblems, update v′1 and v′4,
and solve the relaxed master problem. Because the
lower bound we get at this node is greater than
the current incumbent,weprune the nodebybound. The
algorithm continues with node 1, and the next branch
pair becomes {1,3}, which is a type 2 pair. We create
node 3 and problem R′

3 with C1
3 � {{1, 4}, {1, 3}} and

C2
3 � ∅. We solve the relaxed subproblem 1 at this

node, update v′1, and solve the relaxed master prob-
lem. The lower bound at this node becomes 2.85. At
node 4, we create problem R′

4 with C1
4 � {{1, 4}. and

C2
4 � {{1, 3}}. We solve the relaxed subproblem 3,

update v′3, and then solve the relaxedmaster problem,
which gives the same lower bound as node 3. We can
continue with either of them, so we choose node 3,
and the branch pair is {2,5}. At node 5, we create
problem R′

5 with C1
5 � {{1, 4}, {1, 3}, {2, 5}} and C2

5 � ∅.
We solve relaxed subproblem 5 and update v′5, but the
relaxed master problem becomes infeasible, and we
prune the node. Continuing in this manner, the algo-
rithm terminates atnode 8,proving that theupperbound
3.1 found at the root node is actually the optimal value.

3.6. Branch-and-Bound Algorithm
for the DC-TFP-SD

We can use a similar branch-and-bound algorithm to
solve the DC-TFP-SD by making two adjustments.
The first adjustment is in the relaxation that we solve
to compute a lower bound, and the second adjustment
is in the way we update upper bounds.
Recall that C is the set of pairs in conflict, and we

forbid them by Constraints (3) in the formulation of

Figure 2. Example Network, Optimal Solutions of the Subproblems and the Master and the Bounds at the Root Node

1169
Berktas¸ and Yaman: Team Formation on Social Networks
INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

the DC-TFP-SD. Also recall that R′
� is the weaker

relaxation of the reformulation of the TFP-SD at node
� of the branch-and-bound tree.

For the DC-TFP-SD, we can treat the conflict Con-
straints (3) like the constraints we use in branching
and add them to the master and related subproblems.
However, our preliminary analysis has shown that
it is better to work with a further relaxation. We
define R′′

� to be the relaxation obtained by adding
Constraints (19) for all {i, j} ∈ C to R′

�. In other words,
we add the conflict constraint for pair {i, j} ∈ C to
the subproblems i and j and not to the other sub-
problems nor the master. As a result, we have weaker
lower bounds, but we work with a smaller mas-
ter problem.

The second adjustment is in the upper bounding
procedure. In Proposition 4, we define the set Nj for
j ∈ N and N′ by the solutions of subproblem j and the
master problem, respectively. For the TFP-SD, the
teams defined by these sets were capable teams, so
their cost values uj for j ∈ N and u0 gave upper bounds.
In the DC-TFP-SD, these are still capable teams, but
they might have a pair in conflict. Thus, the second
adjustment in the algorithm is to check the feasibility
of these teams. If these teams have no pairs in conflict,
their cost values are upper bounds for the optimal
value of the DC-TFP-SD.

Using the relaxation R′′
� and this upper bounding

procedure, we obtain valid lower and upper bounds.
Next, we prove that if the optimal solution (y∗, z∗)
that we obtain by solving R′′

� does not satisfy the
conflict Constraints (3), then there exists a type 1 pair
on which we can branch.

Proposition 5. Let (y∗, z∗) be the optimal solution of R′′
� . If

there exists a pair {i, j} ∈ C for which (y∗, z∗) violates the
conflict Constraint (3), that is, y∗i � y∗j � 1, then {i, j} is a
type 1 branch pair.

Proof. Suppose that (y∗, z∗) violates the conflict Con-
straint (3) for pair {i, j} ∈ C. Then y∗i � y∗j � 1. Because
the subproblems for i and j contain Constraints (19), we
have z∗ij � z∗ji � 0. Then {i, j} is a type 1 pair. □

4. Experiments
In this section, we first introduce the social networks
used in our computational study and explain howwe
generate our instances. Then we present the perfor-
mance results of our branch-and-bound algorithm
and its comparison with the mathematical models.

4.1. Data Sets and Instance Generation
Wi et al. (2009) use collaborative data from a research
and development institute and form a social network

Figure 3. Branch-and-Bound Tree

1170
Berktas¸ and Yaman: Team Formation on Social Networks

INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

of 45 researchers to test their genetic algorithm.
Farasat and Nikolaev (2016) use existing social net-
work data sets to test their heuristics, and the number
of nodes in these networks varies from 15 to 500. By
contrast, larger social networks are preferred in the
knowledge discovery and data-mining literature. We
follow the latter course and use the Internet Movie
Database (IMDb) and Digital Bibliography & Library
Project (DBLP) data sets in our computations.

IMDb is used by Anagnostopoulos et al. (2012) and
Kargar and An (2011). We create our instances using
the same part of the database used in the comparative
study by Wang et al. (2015). The collaboration and
skill information are provided by one of the authors
on his website.1 The nodes of the network are the
actors who appeared in the movies from 2000 to 2002.
There are 1,021 actors; that is, |N| = 1,021. The skills
are the genres of the movies, and there are 27 skills.
The social network contains an edge between actors i
and j if they have worked together on a movie, and
the weight of the edge equals the Jaccard distance,
as explained in Section 2.

DBLP is the most common database used to gen-
erate instances for the TFP. It provides bibliographic
information on papers published in major computer
science journals and proceedings. We generate a so-
cial network from this database searching the papers
published between 2010 and 2016. We narrow the
search space by specifying journals and conferences.
Because there is no keyword information for the
papers in the database, we search the titles of the
papers for some keywords and treat these keywords
as the skills of the authors. There is an edge between
two authors if they have at least two common papers
in whole history. With this setting, we end up with 58
skills and a collaboration network, which has 12,855
nodes and 53,890 edges whose weights equal to the
Jaccard distances. In both networks, we compute the
shortest path lengths between all pairs, and if there is
no path between i and j, we make the communication

cost between i and j, pij, equal to a sufficiently large
number. In Figure 4, to give an idea about the mag-
nitudes and distribution of the communication costs,
we plot the percentage of pairs whose distance is at
most d for each network.
For both social networks, we created instances in

the following way: The number of required skills m
comes from the set {4, 6, 8, 10, 12, 14, 16, 18, 20}, and
100 random instances are generated for each m. The
data sets and the instances used in the computational
experiments are available in our Github repository.2

4.2. Computational Results
The mathematical models and the branch-and-bound
algorithms are implemented in Java using CPLEX
12.7 and run on a personal computer with an Intel
Core i7-6700HQ 2.6 GHz and 16 GB of random-access
memory. All computational times reported in the
tables are wall-clock times in seconds.
For each instance, it is sufficient to consider people

who have one of the required skills. Therefore, we
preprocess the input data and shrink the social net-
work by removing people who do not possess any of
the required skills. We call the remaining nodes in
the network the qualified ones, and their number is
denoted by qno in what follows. For the diameter-
constrained version of the problem, we are able to
reduce the network further by eliminating a person if
he or she cannot cover all the skills together with the
people who are at the most allowed diameter away
from him or her. We do this elimination iteratively
until there is no one to remove from the network.
After this preprocessing, the network only involves
people who are capable of forming a feasible team
respecting the bound on the diameter. The number of
candidates after preprocessing is denoted by fno.
In addition to the quadratic formulation (1), (2), (4)

(denoted by QP); the mixed-integer formulation (2),
(4)–(9) (denoted by MIP); and the branch-and-bound
algorithm, we implemented a branch-and-cut algorithm

Figure 4. Percentage of Pairs Whose Shortest Distance Is at Most d in the IMDb (Left) and DBLP (Right) Networks

1171
Berktas¸ and Yaman: Team Formation on Social Networks
INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

for the TFP-SD to overcome the memory problems for
larger instances. In the mixed-integer formulation, the
Constraints (6), (7), and (8) growquadratically in the size
of the problem. Because the objective coefficients are
nonnegative in our instances, it is sufficient to use only
Constraints (6), but even in this case, we have memory
run-outs in the model-generation phase for large in-
stances. When we use the original mixed-integer
formulation without Constraints (7) and (8) and add
Constraints (6) using the lazy cut pool (the constraints
in this pool are only checked when an integer feasible
solution is found and violated constraints are added
to the formulation), a large number of lazy constraints
are added, and consequently, this approach takes
more time than solving the mixed-integer formulation
directly. However, when we add the RLT Constraints
(10), only a small number of lazy constraints are
generated, and this improves the solution times. The
cuts can also be applied at the fractional solutions by
putting Constraints (6) to the user cut pool besides the
lazy cut pool, but the computation times are longer in
this case. Therefore, in our branch-and-cut imple-
mentation, we solve the mixed-integer programming
formulation (2), (4), (5), (9), (10) by putting Con-
straints (6) to the lazy cut pool.

We report the average solution times of all solution
procedures for the TFP-SD on the IMDb instances in
Table 2. The averages are taken over 100 instances for
each m. We present more detailed results for our
branch-and-bound algorithm: nodes is the number
of nodes evaluated, lb − gap � 100(opt − lb)/opt and
ub − gap � 100(ub − opt)/opt, where lb and ub are the
lower and upper bounds at the root node, respectively,
and opt is the optimal value. To see the strength of the
linear programming relaxation of the mixed-integer
formulation (2), (4)–(9), we also report LP − gap �
100(opt − LP)/opt, where LP is the optimal value of the
linear programming relaxation. As can be seen in
Table 2, the continuous relaxation is very weak.

The performances of the quadratic and mixed-integer
formulations for the TFP-SD turn out to be very sim-
ilar for the IMDb instances. On average, the optimal

solution is reported within a minute or two by the
solver with both mathematical models. When we
compare thesewith the branch-and-bound algorithm,
we clearly see the efficiency of the algorithm because
it reaches the optimal solution six times faster than the
models, on average. The instance with the longest
solution time requires more than 1,300 seconds for
both formulations, and it is solved in 19 seconds by
the branch-and-bound algorithm. The longest time
the branch-and-bound algorithm spends for an IMDb
instance is actually 48.19 seconds. With the branch-
and-cut algorithm, we are able to solve 98.6% of the
instances within a minute, whereas this percentage is
78% for both the quadratic and mixed-integer for-
mulations. When the number of required skills m is
low, this method is as efficient as the branch-and-
bound algorithm, but as m grows, the branch-and-
bound algorithm outperforms the branch-and-cut
algorithm as well. Analyzing the detailed results,
we observe that for all instances with m � 4, the first
incumbent found by the branch-and-bound algo-
rithm is optimal. Although the quality degrades as the
instances get larger, the initial upper bound is at most
1% away from the optimal in 93.55% of the instances.
In Table 3, we present the results for the TFP-SD on

the DBLP instances. Because the DBLP network is a
larger one, we could not obtain a solution from
the mathematical models for most of the instances.
Therefore, we only include the results for m � 4, 6,
and 8 in this table to compare the performances. In
general, we observe memory problems when the
number of qualified people qno exceeds 2,100 andm is
greater than 4. The column “solved” indicates the
number of instances that can be solved to optimality
out of 10. The average solution times are given for the
instances solved. We see that with the mixed-integer
and quadratic formulations we can only solve four
instances with m � 6 and two instances with m � 8,
whereas strengthening the model with RLT con-
straints and putting Constraints (6) to the lazy cut
pool in the branch-and-cut framework enables us
to solve more instances within less time. However,

Table 2. Results for the TFP-SD on the IMDb Instances

m qno

QP MIP B&C B&B

time time LP − gap time time nodes lb − gap ub − gap

4 422.51 6.66 7.14 63.60 0.81 1.13 2.08 2.12 0.00
6 541.81 22.63 23.21 77.75 1.74 2.66 14.11 4.12 0.05
8 653.41 28.5 29.54 77.07 3.16 4.19 24.6 5.95 0.06
10 731.82 30.41 31.12 75.47 5.63 5.92 41.97 10.27 0.30
12 791.51 32.6 33.47 75.90 7.59 7.28 52.36 12.31 0.22
14 838.48 43.13 44.7 74.00 10.62 9.83 111.34 13.31 0.50
16 879.02 51.81 53.04 72.76 15.57 12.27 157.72 13.58 0.18
18 917.68 83.76 81.04 71.92 18.77 14.31 164.98 15.13 0.77
20 947.69 77.98 78.54 71.23 24.93 13.93 167.69 16.24 0.70

1172
Berktas¸ and Yaman: Team Formation on Social Networks

INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

eventually, this method also fails with memory
problems as the size of instances increases. Further-
more, the performances of the mixed-integer and qua-
dratic formulations which were very similar on the
IMDb instances, start to differ as the problem size gets
larger. The instances solved without memory prob-
lems are the same for both formulations, but the so-
lution times of quadratic formulation are lower than
those of mixed-integer. Having average solution times
under a minute, the efficiency of the branch-and-
bound algorithm is clearly seen in this table. Its lon-
gest solution time among these instances is actually
62.2 seconds.

We present detailed results of the branch-and-
bound algorithm on the DBLP instances in Table 4.
We also consider larger m values here. The column
titled “solved” indicates the number of instances solved
to optimality within a two-hour time limit over 100 in-
stances for each m. The computational details pre-
sented in the table are for the instances that are solved
within the time limit. We present the minimum, av-
erage, and maximum solution times for each m and
also the standard deviation of these times under the
columns titled “min”, “avg”, “max”, and “std”, re-
spectively. The algorithm is able to solve all DBLP
instances with m � 4, 6, 8, 10 within the limit, and
actually, the highest solution time among these in-
stances is around threeminutes.Whenm � 12, there is
only one instance that cannot be solved within two
hours, and asm increases, we have few more. Among
all, the algorithm is able to solve 43% of the instances
in a minute and 97.8% of them in an hour. Similar to

the results with the IMDb instances, the upper bound
at the root node is very close to the optimal solution.
In approximately 69% of the instances, this upper
bound is at most 1% away from the optimal value.
In the IMDb and DBLP instances we use, because of

the way skills are defined and assigned, it might be
possible that closer nodes in the networkhavemore skills
in common. To investigate whether the performance of
the algorithm is affected by such a possible correlation
between distances and skills, we generated purely ran-
dom skill matrices that do not have any connection with
the distances. As before, we generate 100 instances for
each m value. In Table 5, we present the results on
these instances for the TFP-SD, where the new sets are
denoted by IMDbr and DBLPr.
Each one of these instances is solvedwithin the two-

hour time limit by the branch-and-bound algorithm.
The solution times of the random IMDbr instances are
higher than those of the original ones presented in
Table 2 whenwe compare the corresponding rows for
each m. However, we must observe that the average
number of qualified people qno for each m is also
higher in the new set of instances.
In the rest of this section, we present the results

of the computational experiments for the diameter-
constrained version of the problem, DC-TFP-SD. In
what follows, QP represents the quadratic formula-
tion (1)–(4), MIP represents the mixed-integer for-
mulation (2)–(9), and B&B represents the branch-and-
bound algorithm developed for the DC-TFP-SD. For
the IMDb instances, we first found the optimal di-
ameters. In Table 6, we present the solution times for

Table 3. Results for the TFP-SD on the DBLP Instances

m qno

QP MIP B&C B&B

solved time solved time solved time solved time

4 1,650.5 10 343.04 10 359.75 10 53.95 10 9.84
6 2,239.80 4 336.79 4 352.96 10 142.59 10 20.65
8 2,896.50 2 386.29 2 2,508.42 8 279.39 10 36.56

Table 4. Detailed Results of the Branch-and-Bound Algorithm for the TFP-SD on the
DBLP Instances

m qno solved

time

nodes lb − gap ub − gapmin avg max std

4 1,540.22 100 0.48 8.59 42.43 9.02 20.08 4.97 0.05
6 2,255.9 100 1.53 20.68 67.55 13.59 30.54 6.47 0.27
8 2,963.26 100 1.88 37.69 107.27 21.57 110.52 8.16 0.48
10 3,604.4 100 6.75 59.86 191.79 17.10 239.10 7.99 0.69
12 4,189.49 99 20.65 89.41 275.92 49.05 480.52 8.56 0.89
14 4,789.13 99 35.60 249.25 4,921.88 633.18 3,374.63 8.79 0.89
16 5,298.52 99 47.47 274.76 3,571.15 482.30 3,099.22 8.62 0.66
18 5,857.6 97 66.48 482.83 4,743.17 707.73 5,637.57 9.25 0.76
20 6,412.48 91 114.81 680.89 4,998.51 1,030.91 6,439.47 9.32 0.82

1173
Berktas¸ and Yaman: Team Formation on Social Networks
INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

the DC-TFP-SD, where we use the optimal diameter
values as the diameter bounds. Because of pre-
processing, the network is reduced significantly (we
remind readers that fno is the number of candidates
after preprocessing), and therefore, the solutions
times of all methods are very small. For example,
when m � 20, the network consists of more than
900 qualified people, on average, but the number
of candidates reduces to approximately 200 people
when we exclude the people who cannot build a team
respecting the bound on the diameter. Therefore,
the solution times are only one or two seconds for
all methods.

We continued the experiments of the DC-TFP-SD
with the IMDb instances with varying bounds on the
diameter. In Table 7, we present the results withD = 2
and 3. Under the column “feas,” the number of feasible
instances is given over 100 instances for eachm. In the
IMDb instances, the optimal diameter is usually less
than two, and therefore, the number of candidates that
remain after preprocessing is greater withD � 2, 3 than
with D taken as the optimal diameter. Thus, as the
bound on the diameter increases, so does the size of
the network, andwe start to observe differences in the

performances of the solutionmethods.When the bound
on diameter is taken as its optimal value, all solution
procedures are able tofind optimal solutionswithin one
or two seconds. When we take the bound as two and
three, the solution times of MIP and QP become 15
seconds, on average, whereas it is still a couple of
seconds for the branch-and-bound algorithm. To be
more specific, the maximum solution times of MIP, QP,
and the branch-and-bound algorithm with D � 2 are
60, 43, and 12 seconds, and with D � 3, they are 197,
189, and 23 seconds, respectively.
For the DBLP instances, we usedD = 1, 2, 3, and 4 as

the bounds on the diameter. To be able to compare the
solution procedures, we first present the results of the
first 10 instances withm � 4, 6, 8, and 10 forD � 2 and
D � 3 in Table 8. For these instances, average solution
time ofMIP is a fewminutes and usually less than that
of QP. Nevertheless, QP is able to solve all these in-
stances, whereas we encounter memory errors with
MIP when D � 3 and m exceeds six. The branch-and-
bound algorithm, by contrast, is able to solve each of
these instances in under 30 seconds.
In Table 9, we present the results for all DBLP in-

stances using the branch-and-bound algorithm for
the DC-TFP-SD with D � 1, 2, 3, 4. The averages of
solution times are taken over the instances that are

Table 5. Results of Branch-and-Bound Algorithm for the TFP-SD on IMDbr and DBLPr:
The IMDb and DBLP Instances with Randomly Generated Skill Matrices

m

IMDbr DBLPr

qno min avg max std qno min avg max std

4 531.91 0.50 1.95 3.23 0.59 1,602.76 1.30 11.14 26.41 5.32
6 693.47 1.43 3.96 10.89 1.13 2,247.75 5.25 21.67 41.12 7.23
8 794.86 2.79 5.44 15.22 1.30 2,878.79 9.23 34.54 74.43 10.18
10 863.80 4.44 6.91 9.75 0.85 3,485.32 16.41 55.12 152.94 19.98
12 912.65 6.55 9.40 26.72 3.08 4,065.39 30.42 80.16 161.53 25.24
14 949.29 8.99 12.86 62.74 6.10 4,587.13 55.27 142.26 866.07 95.97
16 971.96 11.87 18.30 88.25 9.19 5,112.02 71.10 248.54 1,239.47 214.24
18 986.62 15.23 30.20 215.19 28.92 5,591.90 89.30 396.69 1,735.91 362.95
20 997.61 20.20 48.58 421.12 62.72 6,018.28 115.99 580.47 3,718.81 704.72

Table 6. Results for the DC-TFP-SD on the IMDb
Instances Where the Bound on the Diameter Is Taken as the
Optimal Diameter

m qno fno

QP MIP B&B

time time time nodes lb − gap ub − gap

4 422.51 8.69 0.01 0.01 0.02 0.67 0.45 0.00
6 541.81 20.00 0.02 0.02 0.09 4.57 0.64 0.05
8 653.41 41.52 0.06 0.09 0.30 6.54 1.36 0.00
10 731.82 69.77 0.13 0.18 0.28 13.77 2.01 0.01
12 791.51 91.99 0.24 0.31 0.44 22.31 2.61 0.12
14 838.48 119.16 0.49 0.56 0.65 22.04 2.70 0.04
16 879.02 152.62 0.89 0.98 1.10 45.02 3.67 0.06
18 917.68 178.94 1.18 1.35 1.49 69.81 3.93 0.08
20 947.69 216.11 1.80 2.07 2.20 104.34 4.71 0.09

Table 7. Results for the DC-TFP-SD on the IMDb Instances

m

D = 2 D = 3

feas fno MIP QP B&B feas fno MIP QP B&B

4 94 250.01 8.26 5.38 0.47 97 317.16 15.24 7.86 0.72
6 88 266.10 10.94 7.80 0.76 92 375.60 25.60 16.67 1.47
8 79 265.19 11.75 8.48 0.95 87 402.48 28.89 19.74 1.89
10 66 279.82 13.10 9.47 1.28 79 427.18 36.49 20.97 2.43
12 60 255.93 13.11 8.97 1.31 74 424.51 34.69 20.47 2.71
14 48 208.94 11.65 7.59 1.28 68 389.79 30.79 17.85 2.85
16 36 208.03 10.97 7.84 1.30 60 382.97 29.96 17.21 2.76
18 24 165.79 10.72 6.73 1.49 54 353.80 23.37 15.22 3.22
20 14 192.79 16.30 8.42 1.47 45 349.62 21.74 16.03 3.81

1174
Berktas¸ and Yaman: Team Formation on Social Networks

INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

solved within two hours of time limit, and there
are only 16 unsolved instances among 1,791 feasible
ones. The algorithm is able to solve 79% and 96%
of the feasible instances within 1 and 10 minutes,
respectively.

5. Conclusion
In this study, we formulated the TFP as a quadratic
set covering problem with packing constraints and
developed a novel branch-and-bound algorithm to
solve it. The algorithm uses a relaxation that can be
solved by solving a series of linear set covering
problems and a different branching rule compared
with existing branch-and-bound methods for qua-
dratic 0–1 optimization problems. Our computational
experiments on TFP instances show that the algo-
rithm is capable of solving large sizes that are in-
tractable for the solver. The same approach can be
used to solve other binary quadratic problems, but
success depends, among other things, on how quickly
the relaxation (the corresponding 0–1 linear prob-
lems) can be solved.

In terms of application, this work can be extended
in several ways. First, the communication cost may
be quantified with respect to tasks, in which case
the problem also requires assigning people to tasks.
Second, the uncertainty in the communication costs
can be incorporated into the decision-making process

using robust optimization and stochastic program-
ming. This can be done in a single-stage setting where
the worst case or expected communication cost can be
minimized, or it can be done in a multistage setting
where decisions can be updated over time to improve
the performance of the team.

Acknowledgments
Part of the research of H. Yaman was carried out in the
Department of Industrial Engineering at Bilkent University.

Endnotes
1 See http://home.cse.ust.hk/faculty/wilfred/wangxinyu/.
2 See https://github.com/nihalberktas/TFP-data.

References
AdamsWP, Sherali HD (1986) A tight linearization and an algorithm

for zero-one quadratic programming problems.Management Sci.
32(10):1274–1290.

Adams WP, Guignard M, Hahn PM, Hightower WL (2007) A level-2
reformulation–linearization technique bound for the quadratic
assignment problem. Eur. J. Oper. Res. 180(3):983–996.

Agust́ın-Blas LE, Salcedo-Sanz S, Ortiz-Garcı́a EG, Portilla-Figueras A,
Pérez-Bellido ÁM, Jiménez-Fernández S (2011) Team formation
based on group technology: A hybrid grouping genetic algorithm
approach. Comput. Oper. Res. 38(2):484–495.

Anagnostopoulos A, Becchetti L, Castillo C, Gionis A, Leonardi S
(2012) Online team formation in social networks. Mille A, ed. Proc.
21st Internat. Conf. World Wide Web (ACM, New York), 839–848.

Table 8. Results for the DC-TFP-SD on the DBLP Instances

m feas

D = 2 D = 3

MIP QP B&B

feas

MIP QP B&B

solved time solved time solved time solved time solved time solved time

4 9 9 64.48 9 98.61 9 1.47 10 10 303.60 10 340.22 10 5.15
6 5 5 37.95 5 48.09 5 1.43 10 10 318.63 10 285.92 10 6.87
8 3 3 81.08 3 113.66 3 3.36 10 9 328.54 10 535.28 10 10.04
10 1 1 244.01 1 415.34 1 22.41 8 7 161.45 8 661.48 8 9.78

Table 9. Results of the Branch-and-Bound Algorithm for the DC-TFP-SD on the
DBLP Instances

D = 1 D = 2 D = 3 D = 4

m feas solved time feas solved time feas solved time feas solved time

4 35 35 0.08 83 83 1.87 99 99 4.06 100 100 6.60
6 7 7 0.02 64 64 1.48 97 97 7.51 100 100 15.11
8 1 1 0.03 36 36 6.60 92 92 12.26 100 100 27.02
10 0 0 0 21 21 15.24 82 82 22.42 98 98 35.14
12 0 0 0 14 14 10.64 78 78 124.95 96 96 51.77
14 0 0 0 9 9 9.76 68 67 56.31 94 94 131.83
16 0 0 0 2 2 5.51 56 54 139.12 93 91 176.08
18 0 0 0 2 2 3.57 49 48 267.20 90 87 297.41
20 0 0 0 0 0 0.00 38 35 187.83 87 83 366.99

1175
Berktas¸ and Yaman: Team Formation on Social Networks
INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

http://home.cse.ust.hk/faculty/wilfred/wangxinyu/
https://github.com/nihalberktas/TFP-data

Avgerinos E, Gokpinar B (2016) Team familiarity and productivity in
cardiac surgery operations: The effect of dispersion, bottlenecks,
and task complexity. Manufacturing Service Oper. Management
19(1):19–35.

Baykasoglu A, Dereli T, Das S (2007) Project team selection using fuzzy
optimization approach. Cybern. Systems Internat. J. 38(2):155–185.

Bazaraa MS, Goode JJ (1975) A cutting-plane algorithm for the
quadratic set-covering problem. Oper. Res. 23(1):150–158.

Bergman D (2019) An exact algorithm for the quadratic multi-
knapsack problem with an application to event seating.
INFORMS J. Comput. 31(3):477–492.

Bhowmik A, Borkar VS, Garg D, Pallan M (2014) Submodularity
in team formation problem. Zaki M, Kamath C, Banerjee A,
Parthasarathy A, Tan PN, Obradovic Z, eds. Proc. 2014 SIAM
Internat. Conf. Data Mining (SIAM, Philadelphia), 893–901.

Billionnet A, Calmels F (1996) Linear programming for the 0–1
quadratic knapsack problem. Eur. J. Oper. Res. 92(2):310–325.

Boon BH, Sierksma G (2003) Team formation: Matching quality
supply and quality demand. Eur. J. Oper. Res. 148(2):277–292.

Caprara A, Pisinger D, Toth P (1999) Exact solution of the quadratic
knapsack problem. INFORMS J. Comput. 11(2):125–137.

Centric Digital (2016) What is TAAS (team as a service) and why
is it becoming so popular? Retrieved April 6, 2017, https://
centricdigital.com/blog/digital-trends/what-is-team-as-a-service/.

Chen SJ, Lin L (2004) Modeling team member characteristics for the
formation of a multifunctional team in concurrent engineering.
IEEE Trans. Engrg. Management 51(2):111–124.

de Klerk E, Sotirov R, Truetsch U (2015) A new semidefinite pro-
gramming relaxation for the quadratic assignment problem
and its computational perspectives. INFORMS J. Comput. 27(2):
378–391.

Dorn C, Dustdar S (2010) Composing near-optimal expert teams: a
trade-off between skills and connectivity. Meersman R, Dillon T,
Herrero P, eds. OTM Confederated Internat. Conf. Move Meaningful
Internet Systems (Springer, New York), 472–489.

Escoffier B, Hammer PL (2007) Approximation of the quadratic set
covering problem. Discrete Optim. 4(3–4):378–386.

Espinosa JA, Slaughter SA, Kraut RE, Herbsleb JD (2007) Familiarity,
complexity, and team performance in geographically distributed
software development. Organ. Sci. 18(4):613–630.

Farasat A, Nikolaev AG (2016) Social structure optimization in team
formation. Comput. Oper. Res. 74:127–142.

Fitzpatrick EL, Askin RG (2005) Forming effective worker teams with
multi-functional skill requirements. Comput. Industrial Engrg.
48(3):593–608.

Fomeni FD, Kaparis K, Letchford AN (2014) A cut-and-branch al-
gorithm for the quadratic knapsack problem. Technical report,
Lancaster University Management School, Lancaster, UK.

Fortet R (1960) Applications de l’algebre de boole en recherche
opérationelle. Rev. Française Recherche Opérationelle 4(14):17–26.

Gajewar A, Sarma AD (2012) Multi-skill collaborative teams based
on densest subgraphs. Ghosh J, Liu H, Davidson I, Domeniconi
C, Kamath C, eds. Proc. 2012 SIAM Internat. Conf. Data Mining
(SIAM, Philadelphia).

Guimarães DA, da Cunha AS, Pereira DL (2020) Semidefinite pro-
gramming lower bounds and branch-and-bound algorithms for
the quadratic minimum spanning tree problem. Eur. J. Oper. Res.
280(1):46–58.

Gutiérrez JH, Astudillo CA, Ballesteros-Pérez P, Mora-Melià D,
Candia-Véjar A (2016) The multiple team formation problem
using sociometry. Comput. Oper. Res. 75:150–162.

Hahn PM, Zhu YR, GuignardM, HightowerWL, SaltzmanMJ (2012)
A level-3 reformulation-linearization technique-based bound for
the quadratic assignment problem. INFORMS J. Comput. 24(2):
202–209.

Hoegl M, Gemuenden HG (2001) Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evi-
dence. Organ. Sci. 12(4):435–449.

Huckman RS, Staats BR, Upton DM (2009) Team familiarity, role
experience, and performance: Evidence from Indian software
services. Management Sci. 55(1):85–100.

Jaccard P (1912) The distribution of the flora in the alpine zone. 1.New
Phytology 11(2):37–50.

Jones R (2005) Working Virtually: Challenges of Virtual Teams. Jones
R, Oyung R, Pace L, eds. Challenges of Virtual Teams (IGI Global,
Hershey, PA).

Kargar M, An A (2011) Discovering top-k teams of experts with/
without a leader in social networks. Berendt B, de Vries AP, Fan
W,Macdonald C, Ruthven IG, eds. Proc. 20th ACM Internat. Conf.
Inform. Knowledge Management (ACM, New York), 985–994.

Kargar M, An A, Zihayat M (2012) Efficient bi-objective team formation
in social networks. Flach PA, De Bie T, Cristiani N, eds. Joint Eur.
Conf. Machine Learn. Knowledge Discovery Databases (Springer, New
York), 483–498.

Lappas T, Liu K, Terzi E (2009) Finding a team of experts in social
networks. Elder J, Fogelman FS, Flach PA, Zaki MJ, eds. Proc.
15th ACM SIGKDD Internat. Conf. Knowledge Discovery Data
Mining (ACM, New York), 467–476.

Loiola EM, de Abreu NMM, Boaventura-Netto PO, Hahn P, Querido T
(2007) A survey for the quadratic assignment problem. Eur. J. Oper.
Res. 176(2):657–690.

Majumder A, Datta S, Naidu K (2012) Capacitated team formation
problem on social networks. YangQ, Agarwal D, Pei, J, eds. Proc.
18th ACM SIGKDD Internat. Conf. Knowledge Discovery Data
Mining (ACM, New York), 1005–1013.

Martinelli R, Contardo C (2015) Exact and heuristic algorithms for
capacitated vehicle routing problems with quadratic costs struc-
ture. INFORMS J. Comput. 27(4):658–676.

Mittelmann H, Peng J (2010) Estimating bounds for quadratic assign-
ment problems associated with hamming and manhattan distance
matrices based on semidefinite programming. SIAM J. Optim. 20(6):
3408–3426.

Pandey P, Punnen AP (2017) On a linearization technique for solving
the quadratic set covering problem and variations. Optim. Lett.
11(7):1357–1370.

Pisinger WD, Rasmussen AB, Sandvik R (2007) Solution of large
quadratic knapsack problems through aggressive reduction.
INFORMS J. Comput. 19(2):280–290.

Povh J, Rendl F (2009) Copositive and semidefinite relaxations of the
quadratic assignment problem. Discrete Optim. 6(3):231–241.

Punnen AP, Pandey P, Friesen M (2019) Representations of quadratic
combinatorial optimization problems: A case study using qua-
dratic set covering and quadratic knapsack problems. Comput.
Oper. Res. 112:104769.

Rodrigues C, Quadri D, Michelon P, Gueye S (2012) 0-1 quadratic
knapsack problems: an exact approach based on a t-linearization.
SIAM J. Optim. 22(4):1449–1468.

Saxena R, Arora S (1997) A linearization technique for solving the
quadratic set covering problem. Optim. 39(1):33–42.

Wang X, Zhao Z, Ng W (2015) A comparative study of team for-
mation in social networks. Renz M, Shahabi C, Zhou X, Cheema
MA, eds. Internat. Conf. Database Systems Advanced Applications
(Springer, New York), 389–404.

Wi H, Oh S, Mun J, Jung M (2009) A team formation model based
on knowledge and collaboration. Expert Systems Appl. 36(5):
9121–9134.

Zakarian A, Kusiak A (1999) Forming teams an analytical approach.
IIE Trans. 31(1):85–97.

Zhang L, Zhang X (2013) Multi-objective team formation optimiza-
tion for new product development. Comput. Industrial Engrg.
64(3):804–811.

1176
Berktas¸ and Yaman: Team Formation on Social Networks

INFORMS Journal on Computing, 2021, vol. 33, no. 3, pp. 1162–1176, © 2020 INFORMS

https://centricdigital.com/blog/digital-trends/what-is-team-as-a-service/
https://centricdigital.com/blog/digital-trends/what-is-team-as-a-service/

	1_ijoc_33_3_combine.pdf
	3-D Dynamic UAV Base Station Location Problem
	Introduction
	Literature Review
	System Model
	Discrete Formulation
	Continuum Approximation
	Computational Results
	Conclusions and Future Work

	02_ijoc20200986.pdf
	Robust Models for the Kidney Exchange Problem
	Introduction
	Kidney Exchange Programs: An Overview
	Robust Optimization Models for Kidney Exchange Programs
	Solving the Robust Exchange Problem
	Refinement of the Robust Solution
	Computational Results
	Conclusions

	03_ijoc20201007.pdf
	Tagging Items Automatically Based on Both Content Information and Browsing Behaviors
	Introduction
	Related Work
	Problem Formulation
	Browsing- and Content-Based Tagging Model
	Empirical Evaluation
	Conclusions

	04_ijoc20200997.pdf
	Multicomponent Maintenance Optimization: A Stochastic Programming Approach
	Introduction
	Literature Review
	Model Development
	Optimization Algorithms
	Computational Study
	Conclusion and Future Research

	05_ijoc20200971.pdf
	Rapid Discrete Optimization via Simulation with Gaussian Markov Random Fields
	Introduction
	Gaussian Processes in DOvS
	Optimization Using GMRFs
	Gaussian Markov Improvement Algorithm
	Overview of rGMIA
	Properties of rGMIA
	Empirical Evaluation
	Conclusions

	06_ijoc20200972.pdf
	The Risk-Averse Static Stochastic Knapsack Problem
	Introduction
	Literature Review
	Scenario-Based Problem Definition and Formulations
	Normally Distributed Resource Requirements
	Numerical Study
	Conclusion

	07_ijoc20200983.pdf
	The Quadratic Multiknapsack Problem with Conflicts and Balance Constraints
	Introduction
	Description of the Problem
	Related Work
	CP Model
	IP Model A
	IP Model B
	Experimental Results
	Conclusion

	08_ijoc20201014.pdf
	Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem
	Introduction
	Problem Description and Mathematical Formulation
	Overall Solution Algorithm
	Preprocessing
	Lower Bounds
	Valid Inequalities
	Infeasible Subsets of Items and Combinatorial Cuts
	Computational Results
	Conclusion

	09_ijoc20201003.pdf
	The Rank-One Quadratic Assignment Problem
	Introduction
	Basic Properties and Some Solvable Cases
	Integer-Programming Formulations
	Experimental Analysis of the MILP Formulations
	Heuristic Algorithms
	Conclusion

	10_ijoc20200985.pdf
	Time-Dependent Shortest Path Problems with Penalties and Limits on Waiting
	Introduction
	Problem Description and Preliminaries
	Further Cases Equivalent to MATP, MDP, or MTTP
	NP-Hard Cases
	Cases of TDSPP-PW Solvable in Polynomial Time via a TEN
	Cases of TDSPP-LW Solvable in Polynomial Time
	Summary
	Final Remarks

	11_ijoc20200982.pdf
	A Framework for Solving Chance-Constrained Linear Matrix Inequality Programs
	Introduction
	Basic Approximation Approaches for CCLMI
	PSAA Formulations of CCLMI
	Solution Methods
	Numerical Results
	Conclusion

	12_ijoc20200995.pdf
	Extreme Ray Feasibility Cuts for Unit Commitment with Uncertainty
	Introduction
	Unit Commitment
	Extreme Ray Feasibility Cuts
	Case Study
	Computational Tests
	Conclusions

	13_ijoc20201001.pdf
	An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems
	Introduction
	Augmented Lagrangian Decomposition Formulation and Subproblems
	An Augmented Lagrangian Decomposition Method
	Numerical Results
	Conclusions

	14_ijoc20200984.pdf
	A Branch-and-Price Framework for Decomposing Graphs into Relaxed Cliques
	Introduction
	Relaxed Cliques
	Problem Definition and Formulation
	Pricing Algorithms
	Branching Schemes
	Computational Results
	Conclusions

	15_ijoc20200988.pdf
	An Improved Branch-and-Bound Algorithm for the One-Machine Scheduling Problem with Delayed Precedence Constraints
	Introduction
	Balas’ Branch-and-Bound Algorithm
	The Heuristic
	Search Strategy
	Computational Results
	Conclusion and Future Work

	16_ijoc20200993.pdf
	Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded
	Introduction
	Background
	Optimization Problem
	Mixed-Integer Convex Formulation
	Branch-and-Bound Algorithm
	Case Studies: Principal Component Analysis for Penalizing Solutions far from Training Data
	Numerical Results
	Discussion
	Conclusion

	17_ijoc20201002.pdf
	Data-Driven Optimization of Reward-Risk Ratio Measures
	Introduction
	Specification of Ambiguity Set
	Reformulation Framework
	Risk-Adjusted Return Financial Performance Measures
	Bisection Algorithmic Methods
	Computational Tests
	Conclusion

	18_ijoc20200959.pdf
	Linearized Robust Counterparts of Two-Stage Robust Optimization Problems with Applications in Operations Management
	Introduction
	The Linearized Robust Counterpart Model
	Improving LRC and AARC Using Valid Inequalities
	LRC for General Uncertainty Sets
	Numerical Study with the Robust Location-Transportation Problem
	Numerical Study with the Multi-Item Newsvendor Problem
	Connections to Recent Copositive Programming Reformulations
	Conclusions

	19_ijoc20201000.pdf
	A Branch-and-Bound Algorithm for Team Formation on Social Networks
	Introduction
	Problem Definition and Mathematical Models
	Branch-and-Bound Algorithms
	Experiments
	Conclusion

	20_ijoc20201005.pdf
	Knowledge Learning of Insurance Risks Using Dependence Models
	Introduction
	Data and Customer Learning Problem
	Modeling Semicontinuous Hierarchical Risk
	Computation and Estimation
	Empirical Results
	Applications and Managerial Implications
	Conclusion

	21_ijoc20201006.pdf
	A New Combinatorial Algorithm for Separable Convex Resource Allocation with Nested Bound Constraints
	Introduction
	Literature Review
	An Infeasibility-Guided Divide-and-Conquer Algorithm
	Proof of Theorem 2
	Time Complexity of Algorithm 1
	Numerical Experiments
	Conclusions and Future Work

	22_ijoc20200999.pdf
	An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives
	Introduction
	Exact Approach
	Heuristic Approaches
	Computational Results
	Conclusion

	23_ijoc20200996.pdf
	Multiproduct Newsvendor Problem with Customer-Driven Demand Substitution: A Stochastic Integer Program Perspective
	Introduction
	Model Formulation
	Deterministic Demand
	Stochastic Demand: Model Properties and MILP Reformulations
	Stochastic Demand: Approximation Algorithms
	Numerical Investigation
	Concluding Remarks

	24_ijoc20201013.pdf
	Modeling and Solving the Intersection Inspection Rural Postman Problem
	Introduction
	Problem Formulations on a Mixed Graph
	Computational Experiments
	Conclusions and Future Directions

