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Abstract
We show that most of the genus-zero subgroups of the braid group B3 (which are
roughly the braid monodromy groups of the trigonal curves on the Hirzebruch sur-
faces) are irrelevant as far as the Alexander invariant is concerned: there is a very
restricted class of “primitive” genus-zero subgroups such that these subgroups and their
genus-zero intersections determine all the Alexander invariants. Then, we classify the
primitive subgroups in a special subclass. This result implies the known classification
of the dihedral covers of irreducible trigonal curves.
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1 Introduction

In this paper, all varieties are over C. Specifically, P1 denotes the Riemann sphere
C ∪ {∞}. Moreover, let Λ := Z[t, t−1], and let Γ := PSL(2,Z).

1.1 Motivation

LetC ⊂ P
2 be a curve. The fundamental group π1(P

2 \C) is an important invariant of
C . It has been subject of interest since [13], yet its structure is still not well understood
in general. As the singularities ofC grow,π1(P

2\C) gets more complicated. A precise
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B Melih Üçer
melih.ucer@bilkent.edu.tr; mucer@ybu.edu.tr

1 Bilkent University, Ankara, Turkey

2 Ankara Yıldırım Beyazıt University, Ankara, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13163-020-00381-9&domain=pdf
http://orcid.org/0000-0001-5972-655X


266 M. Üçer

statement in the direction of this principle is that under certain upper bounds on the
singularities, π1(P

2 \C) is abelian [9]. In this case, π1(P
2 \C) = H1(P

2 \C), hence
it is known due to Poincaré duality.

Another important invariant is the (conventional) Alexander invariant Ac
C defined

as follows: Let d be the degree ofC ; then there is a canonical epimorphism lk : π1(P
2\

C) � Zd which takes a loop to its linking coefficient with C . Then,

Ac
C := K/K ′, K := Ker(lk).

There is a canonical Λ-module structure on Ac
C , where t acts as conjugation by an

element in lk−1(1). Note that td = 1. Even though the Alexander invariant is simpler
than the fundamental group, its structure is not fully known in general either. However,
there are some general results which show that the Alexander invariant of a plane curve
is significantly more restricted than that of knots.

The Alexander polynomial ΔC (t) is defined as the order of the C[t, t−1]-module
Ac
C ⊗C, i.e. it is the characteristic polynomial of the t-action on the underlying vector

space of Ac
C ⊗C. In fact,ΔC (t) is the only isomorphism invariant of Ac

C ⊗C, because
td = 1 implies that all Jordan blocks of the t-action have size 1. The roots of ΔC (t)
are roots of unity with orders dividing d (also because of td = 1). In contrast, the
roots of ΔK (t) need not be roots of unity for a knot K . Moreover, if C is irreducible,
the order of a root of ΔC (t) cannot be a prime power [14]. Another general theorem
on the Alexander polynomial is the following upper bound [8]: Let {L1, L2, . . . , Ln}
be the links cut by the singularities of C . Then,

ΔC (t) |
∏

1≤i≤m

ΔLi (t).

Note that this theorem also illustrates the principle that these invariants get more
complicated as the singularities of C grow.

In addition to these general theorems, there is a number of particular curves C for
which the invariants have been computed. For example, π1(P

2 \ C) is known for all
C with d ≤ 5 [see [5]]. On the other hand, there are formulae which express ΔC (t) in
terms of the cohomology of certain linear systems, thus ΔC (t) can be computed with-
out topological methods [e.g. [10]]. The textbook [6] is a good source of information
on this subject.

1.2 Monodromy Alexander invariant

In this paper, we study the so-called monodromy Alexander invariants of trigonal
curves, based on the results of [4] on the braid monodromy of these curves.

Let Σ = Σm be a Hirzebruch surface, let E ⊂ Σ denote the exceptional section,
and letC ⊂ Σ be a curve. Note that the context of Hirzebruch surfaces is more general
than that of P2, since P2 blown up at a point isΣ1. LetC be n-gonal, i.e.C intersects a
generic fiber of the ruling at n points, and let the degree ofC refer to d := nm+[C ·E].
Then, there is a canonical linking coefficient epimorphism lk : π1(Σ \(C∪E)) � Zd
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and the conventional Alexander invariant Ac
C is defined in terms of lk as in the case of

plane curves. For a generic fiber F∞ of the ruling, there is a canonical epimorphism
lk : π1(Σ \ (C ∪ E ∪ F∞)) � Z, and Ac

C can be equivalently defined in terms of lk
instead of lk, since there is an induced isomorphism Ker(lk) = Ker(lk). Consider a
plane curve C ⊂ P

2 and let C ′ ⊂ Σ1 be its proper transform; then Ac
C = Ac

C ′ .
Consider the ruling Σ → B ∼= P

1. For the image b∞ ∈ B of F∞, the restricted
projection Σ \ (C ∪ E ∪ F∞) → B \ {b∞} is topologically a fiber bundle away from
finitely many singular fibers. Let F0 �= F∞ be another generic fiber of the ruling,
then F◦ := F0 \ (C ∪ E) is a fiber of this bundle. Clearly, F◦ is homeomorphic
to a disk with n punctures, so that π1(F◦) ∼= Fn , the free group on n generators.
Let {b1, b2, . . . , bk} ⊂ B denote the image of the singular fibers. Then, there is a
monodromy action π1(B \ {b∞, b1, b2, . . . , bk}) → Aut(π1(F◦)) ∼= Aut(Fn), whose
image MC is called the braid monodromy group of C . With some semi-standard
choices, one has MC ⊂ Bn · Inn(Fn) ⊂ Aut(Fn) (see Sect. 2.2). But since the choices
are not unique, MC is well-defined only up to conjugation by Bn . The Zariski-van
Kampen theorem states

π1(Σ \ (C ∪ E ∪ F∞)) = Fn/〈α = m(α) | α ∈ Fn, m ∈ MC 〉.

Let u : Fn � Z be such that u maps each generator to 1. Then, u is the composition
of lk with the quotient epimorphism Fn � π1(Σ \ (C ∪ E ∪ F∞)).

Consider theΛ-module An defined in terms of u in the same way that Ac
C is defined

in terms of lk:
An := Kn/K

′
n, Kn := Ker(u).

Here, MC acts on An ∼= Λn−1 via the Burau representation, namely the induced
action Bn · Inn(Fn) → Aut(An) = GL(n − 1,Λ). The Zariski-van Kampen theorem
motivates the definition of the monodromy Alexander invariant AC :

AC = Λn−1/〈u = m(u) | u ∈ Λn−1, m ∈ MC 〉.

There is a canonical epimorphism AC � Ac
C , which is often (though not always)

an isomorphism [4]. Thus, as long as “upper bounds” are concerned, it suffices to
classify the monodromy Alexander invariants. On the other hand, the latter is easier
to compute than the conventional invariant, because it depends only on the image HC

of MC → GL(n − 1,Λ), which we call the Burau monodromy group of C . Note
that HC is well-defined up to conjugacy as a subgroup of the image Bun of the Burau
representation, which we call the Burau group. In fact, for any subgroup H ⊂ Bun ,
we can define

A(H) := Λn−1/V (H), V (H) := 〈(h − 1) · u | u ∈ Λn−1, h ∈ H〉.

Consequently, AC = A(HC ). Clearly, the ambiguity in HC does not affect AC up to
isomorphism.

From now on, we consider only the trigonal curves (the case n = 3), whose Burau
monodromy groups are almost completely characterized in Theorem 1.1 below. This
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268 M. Üçer

case is a borderline: the case n ≤ 2 is quite easy, and the case n ≥ 4 appears very
difficult as of now. We ignore the very special case of isotrivial trigonal curves, which
have constant j-invariant on all fibers. There is a canonical epimorphism c : Bu3 → Γ

which is roughly defined by evaluation of a matrix at t = −1 (see Sect. 2.2). A finite-
index subgroup H ⊂ Bu3 is called genus-zero if c(H) is genus-zero as a subgroup of
the modular group Γ .

Theorem 1.1 (Degtyarev [4]) Let C ⊂ Σ be a non-isotrivial trigonal curve; then, HC

is genus-zero. For a partial converse, let H ⊂ B3 ⊂ Bu3 be a genus-zero subgroup.
Then, there is a non-isotrivial trigonal curve C such that H = HC.

In view of Theorem 1.1, the main question considered in this work can be approxi-
mately formulated as follows:

Problem 1.1 Classify the modules of the form A(H) for genus-zero H ⊂ Bu3.

Degtyarev [4] gave some partial answers to Problem 1.1. For example, he deter-
mined all possible eigenvalues of the t-action on the underlying vector space of
A(H) ⊗ Q and A(H) ⊗ Fp for any prime p. For another example, he determined
abelian groups of the form A(H)/(t + 1). This second example is the classification
of the dihedral covers of trigonal curves.

1.3 Principal results

Given H ⊂ Bu3, the module A(H) is equipped with an epimorphism Λ2 � A(H),
which is always understood but usually omitted from notation. Conversely, given any
module A with an epimorphism φ : Λ2 � A, we can define the subgroup

H(A) = H(φ) := {h ∈ Bu3 | (h − 1) · Λ2 ⊂ Ker(φ)}.

Two epimorphisms φ1, φ2 are called Burau equivalent if there exists b ∈ Bu3 such
that Ker(φ1) = b · Ker(φ2). In this case, H(φ1) and H(φ2) are conjugate in Bu3.

For a maximal ideal m ⊂ Λ, the word m-local refers to a non-trivial Λ-module
annihilated by mn for sufficiently large n. Note that any maximal ideal m is given in
the form m = 〈p, ψ(t)〉 for a prime p and a polynomial ψ(t) which is irreducible
modulo p. Also note that any local module is finite. Our Theorem 1.2 below suggests
that Problem 1.1 reduces to the classification of the genus-zero subgroups of the form
H(A) for local modules A. Then, our main Theorem 1.3 classifies these subgroups
for m-local A for a special class of maximal ideals m. Only one subgroup from each
conjugacy class is shown in the classification, since conjugate subgroups come from
Burau equivalent modules.

Theorem 1.2 Let H ⊂ Bu3 be a subgroup, and let A be a module equipped with an
epimorphism Λ2 � A.

1. We have H ⊂ H(A(H)), A(H) = A(H(A(H))), H(A) = H(A(H(A))).
2. If H(A) is finite-index, there is a finite quotient A′ of A with H(A) = H(A′).
3. If A is finite, there is a decomposition A = ⊕

Am into local modules Am.
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4. If A = ⊕
Ai for some modules Ai , then H(A) = ⋂

H(Ai ).

It appears that very few intersections of the form H(A1) ∩ H(A2) are genus-zero,
contributing to the list of Alexander invariants of trigonal curves [4].

Theorem 1.3 (Main) Let m := 〈p, t + 1〉 ⊂ Λ with p �= 2, and let A be an m-local
module equipped with an epimorphism Λ2 � A. If H(A) ⊂ Bu3 is genus-zero, then
it is in one of the conjugacy classes listed in Table 1 on page 20.

The case m = 〈p, t + 1〉 is likely to be more difficult than the case t + 1 /∈ m,
which we intend to consider in a forthcoming paper. Moreover, this case is related to
the dihedral covers of trigonal curves, i.e. cyclic covers of certain elliptic surfaces [see
[4]]. The subgroups H(A) which appear as part of the classification of the dihedral
covers in loc. cit., except for p = 2, are precisely those of depth 2 in Table 1. We
exclude the case p = 2 since it would likely involve much more computation; on the
other hand, p = 2 does not appear for irreducible trigonal curves [4].

1.4 The contents of the paper

In Sect. 2, we cite a few properties of the groups Γ , B3, and Bu3. In Sect. 3, we first
give an alternative description of H(A). Then, we prove Theorem 1.2 and establish
restrictions on H(A) for local A. Finally in Sect. 4, we prove the main Theorem 1.3.
Also, Table 1 and its explanation are given in Sect. 4.1, after necessary terminology
has been introduced.

2 Preliminaries

This section contains necessary preliminary information on the modular group Γ , the
braid group B3, and the Burau representation B3 → Bu3 ⊂ GL(2,Λ). The content
of this section is completely standard; one can consult the classical sources [1,2,11].

2.1 Themodular group 0

The modular group is often considered together with its left action on the complex
upper half plane H via the inclusion Γ ⊂ PSL(2,R) = Aut(H). Explicitly, the

action of a matrix

(
a b
c d

)
is z �→ az+b

cz+d . This Γ -action is discrete and almost free:

there are only two orbits for which the stabilizer is nontrivial, but the stabilizer is finite

for these two orbits as well. Namely, the stabilizer of ω := 1+√
3i

2 is generated by

X :=
(

0 1
−1 1

)
, i.e. z �→ 1

1−z ; and the stabilizer of i is generated by Y :=
(
0 −1
1 0

)
,

i.e. z �→ − 1
z . A very classic theorem states

Γ = 〈X ,Y | X3 = Y 2 = 1〉. (2.1)
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270 M. Üçer

Hence, the abelianization of Γ is isomorphic toZ6; we fix the abelianization ab : Γ �
Z6 such that ab(X) = 2 (note that one necessarily has ab(Y ) = 3).

2.1.1 The modular curves

Since the Γ -action on H is discrete and almost free, for any subgroup K ⊂ Γ , the
quotient space K\H naturally admits a Riemann surface structure (it also admits an
orbifold structure, but we do not use this language explicitly). In particular,Γ \H ∼= C.
We adopt Kodaira’s normalizationwhich fixes an identificationΓ \H = C bymapping
the orbits of ω ∈ H and i ∈ H to 0 ∈ C and 1 ∈ C, respectively.

Let K ⊂ Γ be of finite index. Themodular curve XK is a standard compactification
of the Riemann surface K\H. In particular, XΓ = P

1 = C∪{∞}. Any inclusion K1 ⊂
K2 of subgroups clearly induces a non-constant (holomorphic) map XK1 → XK2

between the corresponding modular curves. For any K , the map XK → XΓ = P
1 is

unramified outside the special points {0, 1,∞}. The conjugacy class of K determines
the map XK → P

1 up to isomorphism. Conversely, the map XK → P
1 determines

K up to conjugacy. The cusps of K are the points in XK which map to ∞ ∈ P
1. The

width of a cusp is the ramification index. The genus of K , denoted by g(K ), is defined
as that of XK .

There is an immediate generalization of the construction above, which we find very
useful. Let E be a finite right Γ -set. The modular curve XE is the disjoint union of
the curves XK as K varies over the stabilizers of distinct orbits in E . The Γ -set E
and the map XE → P

1 determine each other up to isomorphism. The cusps of E
are similarly defined. The notion of genus g(E) applies when E is transitive, while
that of Euler characteristic χ(E) is meaningful in general. We denote the singleton
Γ -set by {∗}, as such X{∗} = XΓ = P

1. For any Γ -equivariant surjection E1 → E2,
there is a covering XE1 → XE2 (possibly ramified). In the subsequent sections, we
frequently deal with surjections of Γ -sets. Whenever we speak of a covering, it is
possibly ramified.

Remark 2.1 Let E1, E2 be finite transitive Γ -sets with a Γ -equivariant surjection
E1 → E2. If g(E1) = 0, then g(E2) = 0 as well. This is clear because there is
a covering XE1 → XE2 . Consequently, let K1 ⊂ K2 ⊂ Γ be finite-index subgroups.
If g(K1) = 0, then g(K2) = 0 as well.

2.1.2 The standard CW-structures on the modular curves

The terminal bipartite graph •−−−◦ is canonically embedded in C ⊂ P
1 = X{∗} such

that the black vertex goes to 0, the white vertex goes to 1, and the edge goes to the
real interval [0, 1]. For any finite right Γ -set E , we denote the preimage of this graph
under the map XE → X{∗} by SE . In particular, we denote the terminal bipartite graph
itself by S{∗}. The notation SK is similarly defined for finite-index subgroups K ⊂ Γ .
Note that the restricted map XE \ SE → X{∗} \ S{∗} is unramified outside ∞, since
0, 1 ∈ S{∗}. Thus, each component of XE \ SE is a 2-cell. Hence, SE provides a CW
decomposition of XE . Clearly, each of the 2-cells contains exactly one cusp. Note that
SE is a ribbon graph in a natural way, since it is embedded in an oriented surface. By
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On the Alexander invariants of trigonal curves 271

convention, we agree that the cyclic ordering of the edges is in the counter-clockwise
direction. In fact, the ribbon graph SE coincides with Grothendieck’s dessins d’enfant
corresponding to the ramified covering XE → P

1 [see [7]]. The preimage F of S{∗}
under the mapH → Γ \H = C is a tree [e.g. [12]]. Clearly, F has a black vertex at ω
and a white vertex at i . Moreover, ω and i are joined by an edge e. The Γ -action onH
restricts to an action on F . It is interesting that this action immediately shows (2.1),
by the Serre theory [see [12]].

The set of edges of SE is a right Γ -set in a natural way, moreover it is isomorphic to
E . Consider the two loops x, y inP1\{0, 1,∞} based at 12 , formed as counterclockwise
circles of radius 1

2 centered at 0 and 1, respectively. Then, the lifts of the path x under
the covering map XE → P

1 define the action of X on the set of edges of SE , while
the lifts of the path y define the action of Y . More explicitly, X takes each edge to
the next one among the edges sharing the same black vertex and Y takes each edge
to the next one among the edges sharing the same white vertex. Here, “next” refers
to the cyclic order coming from the ribbon graph structure. These actions of X and Y
uniquely extend to a right Γ -action. Thus, the action of Y X is described by the lifts of
a certain loop formed by joining a clockwise circle around ∞ to 1

2 along a path lying
in the lower half plane, since yx is homotopic to such a loop. Hence, the cusps are in
bijection with Y X -orbits.

The right Γ -action just described applies to F as well and it can be equivalently
characterized as follows: The left Γ -action on the set of edges of F is free and tran-
sitive; hence, by identifying the edge e with 1 ∈ Γ , one identifies this set with Γ .
The right Γ -action comes from this identification. We now show the isomorphism
between the set of edges of SE and E . Clearly, one can assume that E is transitive. Let
K be the stabilizer of any element of E (well-defined up to conjugacy); then, one has
SE ∼= SK . On the other hand, SK = K\F ; thus, the set of edges of SK is identified
with K\Γ , which is isomorphic to E as right Γ -sets.

In light of the above, we introduce the following terminology for a right Γ -set E .
The black vertices in E are the X -orbits, the white vertices are the Y -orbits, the edges
are simply the elements of E , and the regions are the Y X -orbits. Then, the black and
white vertices and the edges in E are in bijection with those of SE , while the regions
in E are in bijection with the cusps of E , or equivalently, the components (2-cells)
of XE \ SE . Continuing to imitate the graph theory language, we say that a vertex in
E is monovalent if it consists of a single element. Furthermore, we often speak of an
equivariant surjection E1 → E2 of Γ -sets as a covering. A covering takes vertices to
vertices, regions to regions, etc. For vertices and regions, we speak of ramification,
whose meaning must be clear. For example, a vertex which is not monovalent is
necessarily unramified. Similarly, the meaning of the degree of a covering, or the
notion of a regular (Galois) covering must be clear as well. We now give a formula
for the Euler characteristic of a Γ -set.

Lemma 2.1 (Euler Characteristic Formula) Let E be a finite right Γ -set. For any
γ ∈ Γ , let |Eγ | denote the number of γ -orbits in E and |Eγ | denote the number of
γ -fixed elements in E. Then
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272 M. Üçer

χ(E) = |EX | + |EY | − |E | + |EY X |
= −|E |

6
+ |EY X | + 2

3
· |EX | + 1

2
· |EY |

Proof By definition, χ(E) = χ(XE ). In the canonical CW-decomposition of XE , the
number of 0-cells (the black and white vertices) is |EX | + |EY |, the number of 1-cells
(the edges) is |E | and the number of 2-cells is |EY X |; this establishes the formula in
the top line. For the bottom line, it is sufficient to observe that |EX | = |E |

3 + 2
3 · |EX |

and |EY | = |E |
2 + 1

2 · |EY |. This is because each X -orbit contains 1 or 3 elements and
each Y -orbit contains 1 or 2 elements (since X3 = Y 2 = 1). ��

2.2 The Braid groups and the Burau representation [1,2]

Consider the free group Fn as equipped with a fixed n-tuple (s1, s2, . . . , sn) of gen-
erators. The braid group Bn consists of those elements in Aut(Fn) which take each
si to a conjugate of some s j and which fix the product s1s2 · · · sn ∈ Fn . Then, Bn is
generated by σ1, σ2, . . . , σn−1 which are defined by

σi : si �→ si si+1s
−1
i , si+1 �→ si , s j �→ s j for j �= i, i + 1.

The action of Bn · Inn(Fn) ⊂ Aut(Fn) on Fn respects the epimorphism u : Fn � Z

defined by u(si ) = 1. The Burau representation Bn · Inn(Fn) → GL(n − 1,Λ) is
the induced action on An := Ker(u)/Ker(u)′ ∼= Λn−1. Here, we identify An with
Λn−1 by matching the special basis (s1s

−1
2 , s2s

−1
3 , . . . , sn−1s−1

n ) of the former with
the standard basis of the latter.

In the braid group B3, let X := σ1σ2 and let Y := σ1σ2σ1. Then, one has

B3 = 〈X,Y | X3 = Y
2〉. (2.2)

Explicitly written out,

X : s1 �→ s1s2s
−1
1 , s2 �→ s1s3s

−1
1 , s3 �→ s1,

Y : s1 �→ s1s2s3s
−1
2 s−1

1 , s2 �→ s1s2s
−1
1 , s3 �→ s1,

and X
3 = Y

2 : si �→ (s1s2s3) · si · (s1s2s3)−1. Moreover,

the Burau representation B3 → Bu3 ⊂ GL(2,Λ) is faithful. (2.3)

Hence, we identify B3 with its image and write

X =
(
0 −t
t −t

)
, Y =

(
0 −t

−t2 0

)
.
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Thus, X3 = Y
2 = t3 · 1. Clearly, Bu3 is generated by X, Y and t · 1. Then, one has

|Bu3 : B3| = 3 since
t · 1 /∈ B3. (2.4)

There is a canonical homomorphism c× dg : Bu3 → Γ × Z: the first component
c is defined by the evaluation of a matrix at t = −1 followed by projectivization, and
the second component is defined as dg(b) = deg(det(b)) for any matrix b. Then,

c(X) = X , c(Y) = Y , c(t · 1) = 1,

dg(X) = 2, dg(Y) = 3, dg(t · 1) = 2.

It is easy to see that the image of B3 under c× dg consists of those pairs (γ, n) for
which ab(γ ) ≡ n (mod 6), which proves (2.4). It is also easy to see that the only
relation between X̃ := (X , 2) and Ỹ := (Y , 3) in Γ × Z is that X̃3 = Ỹ 2, because
the only relation between X and Y in Γ is X3 = Y 2 = 1. This observation shows that
the only relation between X and Y in B3 is X3 = Y

2 (see (2.2)), it shows (2.3), and it
shows that c× dg is injective, all at once.

We define the depth d(H) of a finite-index subgroup H ⊂ Bu3 as the least integer
such that td(H) · 1 ∈ H . Equivalently, d(H) = |Ker(c) : Ker(c) ∩ H |.

3 Reduction to local modules

Let A be a Λ-module. Consider the following right Bu3-action on the set A2 of pairs
of elements:

(a1, a2) ·
(
x y
z w

)
= (x · a1 + z · a2, y · a1 + w · a2),

(
x y
z w

)
∈ Bu3. (3.1)

This Bu3-action restricts to the subset E(A) := {(a1, a2) ∈ A2 | Λ · a1 + Λ · a2 = A}
of generating pairs. This allows us to give an alternative description of H(Λ2 � A).

Lemma 3.1 Let φ : Λ2 � A be an epimorphism, and let e1 := φ

([
1
0

])
and e2 :=

φ

([
0
1

])
. Then, H(φ) ⊂ Bu3 is the stabilizer of (e1, e2) ∈ E(A).

Proof Let b :=
(
x y
z w

)
∈ H(φ). By definition,

[
x − 1
z

]
= (b − 1) ·

[
1
0

]
∈ Ker(φ)

and

[
y

w − 1

]
= (b−1) ·

[
0
1

]
∈ Ker(φ). Thus, (x−1) ·e1+z ·e2 = φ

([
x − 1
z

])
= 0

and y · e1 + (w − 1) · e2 = φ

([
y

w − 1

])
= 0. Hence, (e1, e2) · b = (e1, e2). This

proves that H(φ) is contained in the stabilizer. The reverse inclusion can be proved
with exactly the same calculations, in the backward direction. ��

We now prove item 2 of Theorem 1.2. In fact, items 1 and 4 are obvious, and item
3 is a general fact of algebra; thus we do not prove them.
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Proof (Theorem 1.2, item 2) Let d := d(H(A)). Since td · 1 ∈ H(A), we have[
td − 1

0

]
∈ Ker(Λ2 � A) and

[
0

td − 1

]
∈ Ker(Λ2 � A). Therefore, A is a quotient

of
(
Λ/(td − 1)

)2. In particular, A is finitely generated over Z. Hence, for any finite
set S ⊂ A of nonzero elements, there is a positive integer n such that S ∩ nA = ∅.
Note that the quotient module A′ := A/nA is finite.

Let (e1, e2) ∈ E(A) be as in Lemma 3.1, let O denote the Bu3-orbit of (e1, e2), and
let S be the set of all nonzero s ∈ A such that O contains a pair of the form (e1 + s, a)

or (a, e2 + s). Since H(A) is finite-index, O is finite, hence S is finite. Let A′ be a
finite quotient of A such that S ∩ Ker(A � A′) = ∅ and let O′ ⊂ E(A′) be the orbit
such that O �→ O′. Clearly O ∼= O′, hence H(A) = H(A′). ��

Let A be a local module. We denote the set of t-orbits in E(A) by C(A), i.e.
(a1, a2) ∼ (tk · a1, tk · a2). We denote the quotient map by c : E(A) → C(A). Since
t ·1 ∈ Bu3 generates the kernel of c : Bu3 → Γ (see Sect. 2.2), the Bu3-action in (3.1)
reduces to a Γ -action on C(A). This action is explicitly described as follows:

c(a1, a2) · X = c((a1, a2) · (t−1
X)) = c(a2,−a1 − a2),

c(a1, a2) · Y = c((a1, a2) · (t−1
Y)) = c(−ta2,−a1),

c(a1, a2) · Y X = c(−ta2,−a1) · X = c(−a1, ta2 + a1). (3.2)

Note that an epimorphism A1 � A2 induces a covering C(A1) → C(A2).
Let Ω ⊂ C(A) be a Γ -orbit, then c−1(Ω) ⊂ E(A) is a Bu3-orbit. We denote by

H(Ω) ⊂ Bu3 the stabilizer of an arbitrary pair in c−1(Ω), thus it is well-defined up to
conjugacy. Clearly,H(Ω) is genus-zero if and only if Ω is genus-zero. Now, suppose
that A is equipped with an epimorphism Λ2 � A, equivalently a distinguished pair
(e1, e2) ∈ E(A). Let Ω0 be the orbit of c(e1, e2) ∈ C(A). By Lemma 3.1, H(A) is
equal to H(Ω0) up to conjugacy. Hence, for a proof of Theorem 1.3, it is enough to
check m-local modules A and orbits Ω ⊂ C(A).

For a genus-zero orbitΩ ⊂ C(A), the subgroupH(Ω) is completely determined (up
to conjugacy) by the so-called type specification onΩ [see [4]]. Explicitly, let d denote
the order of the t-action on A; clearly d = d(H(Ω)). For each monovalent vertex or
region a ⊂ Ω , consider an arbitrary pair (a1, a2) ∈ c−1(a) ⊂ c−1(Ω) and letL denote
X,Y, or (YX)|a| depending on whether a is a black vertex, a white vertex, or a region,
respectively. Then, there is an integer k which satisfies (a1, a2) ·L = (tk · a1, tk · a2);
let k(a) ∈ Zd be the value of k modulo d which is unique and independent of the
choice of (a1, a2). The type specification is essentially the data which consists of d
and the collection of the values k(a).

3.1 Local modules

In the rest, whenever m ⊂ Λ refers to a particular maximal ideal, k denotes the
residue field Λ/m. Let A be an m-local module. By Nakayama’s Lemma, a subset
{a1, a2, . . . , an} ⊂ A generates A if and only if its projection generates the vector
space A ⊗ k = A/mA. Nakayama’s Lemma applies because A can be considered
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as a module over the local ring Λ/mn . Note that we only consider modules with
dim(A⊗k) ≤ 2, for C(A) is otherwise empty. In the case dim(A⊗k) = 1, the module
A can be generated by one element, hence it is cyclic. In the case dim(A ⊗ k) = 2, a
pair (a1, a2) is in E(A) if and only if a1 and a2 project to linearly independent nonzero
vectors in A⊗k. We briefly call the modules in the latter class wheels. We discuss the
modules in the former class in a separate section.

3.1.1 Modules with dim(A ⊗ k) = 1

Let A be a module in this class and let R denote the quotient (as a ring) of Λ by the
annihilator of A. Since A is cyclic, it is isomorphic to R as a Λ-module. Conversely,
the quotient of Λ by any ideal which contains some power of m is a module in this
class. Therefore, from now on, we only consider the rings R. Moreover, let the word
ring always refer to a ring of this type. Whenever we consider a ring R, we denote
by m the image of m ⊂ Λ in R, then the unique maximal ideal m ⊂ R is nilpotent.
Finally, let R∗ := R \ m denote the group of invertible elements.

We denote by P(R) the set of R∗-orbits in E(R), i.e. (r1, r2) ∼ (ur1, ur2) for
u ∈ R∗, and the quotient map by pc : E(R) → P(R). Since t ∈ R∗ and since the
R∗-action on E(R) obviously commutes with the Bu3-action in (3.1), the latter reduces
to a Γ -action on P(R). Then, the obvious quotient covering C(R) → P(R) is regular
(Galois). Let Ω ⊂ P(R) be an orbit, and let Ω̃ ⊂ C(R) be an orbit which maps to Ω .
It is clear that H(Ω̃) depends only on Ω , i.e. independent of the choice of Ω̃ . Thus,
we defineH(Ω) accordingly. Hence, for a proof of Theorem 1.3, it is enough to check
the orbits Ω ⊂ P(R) for rings R and Ω ⊂ C(W ) for wheels W .

Let a ⊂ P(R) be a vertex or a region, and let n(a) be the ramification index of
a′ �→ a for any a′ ⊂ C(R) in the preimage of a. Clearly, n(a) is independent of the
choice of a′. Then, we assign to each a the weight ofw(a) = 1

n(a)
, and always consider

P(R)with these weights. Thus, we redefine the Euler characteristic χ(Ω) for an orbit
Ω ⊂ P(R) as the sum of weights over the vertices and the regions in Ω minus |Ω|
(the number of edges). Let Ω̃ ⊂ C(R) be an orbit in the preimage ofΩ , and let d be the
degree of the covering Ω̃ → Ω . The following is a direct consequence of Lemma 2.1
and the definitions here:

χ(Ω̃) = d · χ(Ω).

Therefore, H(Ω) is genus-zero if and only if χ(Ω) > 0. By a slight abuse of termi-
nology, we say that an orbit Ω ⊂ P(R) is genus-zero if and only if χ(Ω) > 0. We
now give a formula for χ(Ω), which is straightforward. We say that a monovalent
vertex is complete if it has weight 1.

Lemma 3.2 (Euler Characteristic Formula)LetΩ ⊂ P(R) be an orbit, letΩY X denote
the set of regions inΩ , and letΩ• andΩ◦ denote the set of complete monovalent black
and white vertices in Ω , respectively. Then

χ(Ω) = −|Ω|
6

+ 2

3
· |Ω•| + 1

2
· |Ω◦| +

∑

a∈ΩY X

w(a).

123



276 M. Üçer

We now describe a standard way of choosing the pair of elements to denote an edge
inP(R), although we do not restrict ourselves to this standard notation in the rest. Any
edge is denoted by pc(r1, r2), where (r1, r2) ∈ E(R), i.e. r1, r2 ∈ R and at least one
of r1, r2 is in R∗. If r1 ∈ R∗, one has pc(r1, r2) = pc(1, r2

r1
). If r1 ∈ m, then r2 ∈ R∗

and one has pc(r1, r2) = pc( r1r2 , 1). Therefore, any edge can be denoted in the form
of either pc(1, r) for some r ∈ R or pc(m, 1) for some m ∈ m. It is clear that this
form is unique for each edge. In particular, the number of edges in P(R) is given by
|R| + |m| = (|k| + 1) · |m|.
Remark 3.1 Let m∗ denote the kernel of the group epimorphism R∗ � k

∗. Then, m∗
is a p-group, hence R∗ naturally splits as R∗ = m∗ ⊕ k

∗. One can see this as follows:
let n be such that mpn = 0, then (1 + m)p

(pn+n) = 1 for all m ∈ m.

3.1.2 Rings and wheels form = 〈p, t + 1〉

In the case m = 〈p, t + 1〉, we fix the following brief notation:

λ := −1 − t,

ω� := (−t)p
�−1 + (−t)p

�−2 + · · · =
p�−1∑

i=0

(−t)i for � ≥ 0,

δ� := (−t)p
�−1·(p−1) + (−t)p

�−1·(p−2) + · · · =
p−1∑

i=0

(−t)p
�−1·i for � ≥ 1.

Whenever we speak of a ring R, the notation above refers to elements of R; and
whenever we speak of a wheel W , they refer to elements of Λ. Then, note that λ ∈ m
and δ� ∈ m. For a ring R, we use the following additional notation:

1. For any a ∈ R, let �0(a) denote the value for which

ω� · a(a − λ) = 0 if and only if � ≥ �0(a).

This is well-defined because ω� = ω�−1δ�. Let �0 denote the common value of
�0(u) for any u ∈ R∗ = R \ m. Note that ω� = 0 if and only if � ≥ �0.

2. For any m ∈ m, let �′
0(m) denote the non-negative value for which

(−1)p
�0(m)+� · (1 + ω�0(m)+� · (λ − m)) ∈ 〈t〉 ⊂ R∗ if and only if � ≥ �′

0(m).

This is also well-defined since (1 + ω�+1(λ − m)) = (1 + ω�(λ − m))p for all
� ≥ �0(m).

3. In the case p �= 2, the definition of �′
0(m) can be simplified. Consider the decom-

position R∗ = m∗ ⊕ k
∗. Then 〈t〉 = 〈1 + λ〉 ⊕ 〈−1〉. Since (−1)p

�0(m)+� = −1
and (1 + ω�0(m)+� · (λ − m)) ∈ m∗, one has

(1 + ω�0(m)+� · (λ − m)) ∈ 〈1 + λ〉 ⊂ m∗ if and only if � ≥ �′
0(m).
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Finally, note that one simply has k = Λ/〈p, t + 1〉 = Fp.

3.2 Restrictions on C(W) andP(R)

In this section, we establish formulae about the monovalent vertices and the regions
in C(W ) or P(R) for a wheel W or a ring R. With these formulae, one can compute
the Euler characteristic of an orbit by Lemma 2.1 or Lemma 3.2.

3.2.1 Monovalent vertices

Lemma 3.3 Let W be a wheel. Then, there is no monovalent vertex in C(W ).

Proof There is an epimorphismW � k
2, hence an induced covering C(W ) → C(k2).

Thus, it is enough to show that C(k2) contains no monovalent vertex, i.e. no edge fixed
by X or Y . Just by comparing the first coordinates, we see that (a1, a2) ∈ E(k2) is not
in the same t-orbit as (a2,−a1 − a2) ∈ E(k2), hence c(a1, a2) �= c(a2,−a1 − a2) =
c(a1, a2) · X by (3.2). Similarly by comparing the first coordinates, we see that no
edge is fixed by Y . ��
Lemma 3.4 Let R be a ring.

1. A complete monovalent black vertex in P(R) consists of an edge pc(1, r) where
r ∈ 〈t〉 and r2 + r + 1 = 0.

2. A complete monovalent white vertex in P(R) consists of an edge pc(1, r) where
−r ∈ 〈t〉 and r2 = 1

t .

Consequently, the number of complete monovalent black vertices is at most 3. For
m = 〈p, t + 1〉 with p �= 3, the number is 0. The number of complete monovalent
white vertices is at most 1. For m = 〈p, t + 1〉 with p �= 2, the number is 0.

Proof The complete monovalent black vertices in P(R) are counted by the solutions
of the equations c(1, r) = c(1, r) · X = c(r ,−r − 1) and c(m, 1) = c(m, 1) · X =
c(1,−m − 1). Clearly, the second equation has no solution m ∈ m, while the first
equation is satisfied if and only if r2 + r + 1 = 0 and r ∈ 〈t〉 ⊂ R∗. The equality
r2 + r + 1 = 0 implies r3 = 1, therefore there are at most 3 such vertices (those
elements in the cyclic group 〈t〉with order dividing 3).Moreover, if p �= 3, the equality
r2 + r + 1 = 0 holds if and only if the order ord(r) = 3. Therefore, the number of
such vertices is 2 if 3 | ord(t) and 0 otherwise. But for m = 〈p, t + 1〉, one has
ord(t) | 2 · |m∗| which is not divisible by 3 for p �= 3.

Similarly, the complete monovalent white vertices in P(R) are counted by the
solutions of the equations c(1, r) = c(1, r) ·Y = c(−tr ,−1) and c(m, 1) = c(m, 1) ·
Y = c(−t,−m). As above, the second equation has no solutionm ∈ m, while the first
equation is satisfied if and only if r2 = 1

t and −r ∈ 〈t〉 ⊂ R∗. If ord(t) is even, 〈t2〉
is properly contained in 〈t〉, hence there is no such vertex. If ord(t) is odd, there is a
unique square root of 1

t in the cyclic group 〈t〉, hence there is 1 such vertex. Note that,
for m = 〈p, t + 1〉 with p �= 2, one has ord(t) even. ��
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3.2.2 Regions

The lemmas in this section concern the regions in C(W ) or P(R) in the case of
m = 〈p, t + 1〉 only. It is easier to establish corresponding results for t + 1 /∈ m, but
we prefer not to include them here as they are not relevant.

Lemma 3.5 Let W be a wheel with m = 〈p, t + 1〉. Then, the size of any region in
C(W ) is a power of p.

Proof Let c(a1, a2) ∈ C(W ). Then

c(a1, a2) · (Y X)p
� = (−1)p

� · c(a1, (1 + ω�λ) · a2 − ω� · a1).

For sufficiently large �, one has ω� · W = 0, hence c(a1, (1 + ω�λ) · a2 − ω� · a1) =
c(a1, a2). Moreover, the factor of (−1)p

�
can be ignored because of the following: for

p > 2, a certain power of t acts onW as−1; and for p = 2, one has (−1)p
� = 1. Thus,

c(a1, a2) · (Y X)p
� = c(a1, a2) for sufficiently large �, which proves the statement. ��

We now give a characterization of the orbits in the Bu3-set E(k2). There is a natural
identification E(k2) = GL(2,k) of underlying sets as follows: any element is E(k2)

is a pair of linearly independent nonzero vectors in k
2, hence it is identified with

the matrix formed by putting the two vectors side by side as column vectors. This
identification of sets allows a natural interpretation of the Bu3-action on GL(2,k); it
is essentially matrix multiplication on the right. Here, in order to multiply a matrix in
Bu3 with a matrix in GL(2,k), one first evaluates the former at t = −1 (since t acts
as −1 on k

2), then reduces it modulo p. In other words, Bu3 acts on GL(2,k) via
the composed epimorphism Bu3 � SL(2,Z) � SL(2,k). Therefore, the orbits in
E(k2) = GL(2,k) are the cosets of SL(2,k), i.e. they are characterized by the value
of the determinant.

We now define a particular surjective function r : C(k2) → C(k), which is useful in
describing the regions in C(k2): for any c(v1, v2) ∈ C(k2), let r(c(v1, v2)) := c(v1).
Here, c(v1) is meaningful when we treat v1 as a pair of elements of k. Note that r is
not Γ -equivariant, it is simply a function between the underlying sets.

Lemma 3.6 The size of any region in C(k2) is equal to p. Two edges c1, c2 ∈ C(k2)

are in the same region if and only if they are in the same orbit and r(c1) = r(c2). The
function r remains surjective when it is restricted to any orbit in C(k2).

Proof For the first statement, first observe that ω1 annihilates the wheel k2, therefore
the size of any region is at most p. Secondly, t acts on k2 as−1, hence c(a1, a2)·Y X =
c(−a1, a1 − a2) = c(a1, a2 − a1) �= c(a1, a2), therefore the size of any region is
greater than 1 (at least p). The inequality here can be shown by comparing the second
coordinates and noting that they are not in the same t-orbit.

Two edges c1, c2 in the same region are clearly in the same orbit, and the equality
r(c1) = r(c2) can be seen by noting c(a1, a2) · Y X = c(a1, a2 − a1). The other
statements are immediate consequences of simple facts of linear algebra once we have
the above characterization of the orbits in E(k2). The function r is surjective when
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restricted to any orbit, because keeping the first column of a matrix in GL(2,k) fixed,
one can arrange the second column to obtain an arbitrary value of the determinant.
Similarly, r(c1) = r(c2) implies that c1 and c2 are in the same region provided that they
are in the same orbit, becuase keeping the first column and the determinant of a matrix
in GL(2,k) fixed, one can vary the second column only by adding the multiples of
the first column. ��
Lemma 3.7 Let R be a ring with m = 〈p, t + 1〉. The sizes and the weights of the
regions in P(R) are as follows:

1. For any r ∈ R, the size of the region which contains pc(1, r) ∈ P(R) is p�0 and
the weight is 1 (the region is unramified).

2. For any m ∈ m, the size of the region which contains pc(m, 1) ∈ P(R) is p�0(m)

and the weight is p−�′
0(m).

Proof As in the proof of Lemma 3.5, one has

pc(1, r) · (Y X)p
� = (−1)p

� · pc(1, (1 + ω�λ) · r − ω�) = pc(1, r + ω�(λr − 1)).

Clearly, pc(1, r + ω�(λr − 1)) = pc(1, r) if and only if ω�(λr − 1) = 0. The latter
is equivalent to ω� = 0 since (λr − 1) ∈ R∗, which holds if and only if � ≥ �0.
Moreover, the equality c(1, r) · (Y X)p

�0 = c(1, r) similarly holds. This finishes the
proof of item 1. Similarly,

pc(m, 1) · (Y X)p
� = (−1)p

� · pc(m, 1 + ω�λ − ω�m) = pc(m, 1 + ω�(λ − m)).

Now, pc(m, 1+ ω�(λ −m)) = pc(m, 1) if and only if (1+ ω�(λ −m)) ·m = m, that
is, ω� · m(m − λ) = 0, which holds precisely for � ≥ �0(m). Then,

c(m, 1) · (Y X)p
�0(m)+� = (−1)p

�0(m)+� · c(m, 1 + ω�0(m)+� · (λ − m)).

But, (−1)p
�0(m)+� · c(m, 1+ω�0(m)+� · (λ−m)) = c(m, 1) if and only if (−1)p

�0(m)+� ·
(1 + ω�0(m)+� · (λ − m)) is in 〈t〉 ⊂ R∗, which holds precisely for � ≥ �′

0(m). This
finishes the proof of item 2. ��

4 The proof of themain theorem

In this section, we prove Theorem 1.3 by checking the orbits Ω ⊂ C(W ) for wheels
W and the orbits Ω ⊂ P(R) for wheels R, case by case. In each subcase, we write
one main statement in italics at the beginning. If the statement is of the “infinite”
kind, e.g. one which claims that there is no genus-zero orbit Ω in P(R) if R is in a
certain infinite class of rings which may be characterized by a certain condition, then
we explicitly prove the statement. However, if the statement is of the “finite” kind,
e.g. about properties of a particular orbit Ω ⊂ C(W ) for a particular wheel W , we
leave its proof to the reader. During the proof, we use all of the lemmas in the previous
sections implicitly.
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We begin with an observation: For any prime p, there is only one orbit in P(k).
Because there are only two regions in P(k), one of which has size p and the other
has size 1; then, it is only left to show that the edge in the region of size 1, namely
pc(0, 1), is not fixed by X ∈ Γ .

The case p > 7: There is no genus-zero orbit Ω . Since any ring or wheel admits an
epimorphism onto k, it is enough to show χ(P(k)) ≤ 0. There is no complete mono-
valent vertex in P(k), hence χ(P(k)) = − p+1

6 + 2 ≤ 0.

The case p = 7: There is no genus-zero orbit Ω , except in P(R) for R = k or
R = k[λ]/λ2. First, consider wheels. Since any wheel admits an epimorphism onto
k
2, it is enough to observe that all orbits in C(k2) are of positive genus, because all

regions are of size 7. Now, consider rings. Note that any ring other than the afore-
mentioned ones admits an epimorphism onto at least one of these: k[λ]/λ3, Z49[λ]/
(λ−7k) andZ49[λ]/〈7λ, λ2−7k〉 for some k = 0, 1, . . . , 6. Then, one simply checks
that there is no genus-zero orbit in P(k[λ]/λ3), P(Z49[λ]/(λ − 7k)) or P(Z49[λ]/
〈7λ, λ2 − 7k〉) for any value of k. As for the exceptional rings, there are three orbits
in P(k[λ]/λ2), each of which is genus-zero. As Ω ranges these orbits, H(Ω) ranges
H1(7, 1), H2(7, 1), and H3(7, 1). Finally, H(P(k)) = H(7, 0).

Wheels with p = 5: For a wheel W not annihilated by ω1, there is no genus-zero
orbit in C(W ). Let W be such a wheel and let Ω be an orbit in C(W ); we will
show that the number of regions in Ω is less than 1

6 · |Ω|, which lets one con-
clude g(Ω) > 0 since there is no monovalent vertex in Ω . Note that the size of
any region is 5 or at least 25. If an edge c(a1, a2) is contained in a region of size 5,
then c(a1, a2) = c(a1, a2 + ω1(λ · a2 − a1)). This implies either ω1(a1 − λ · a2) = 0
or ((1 + λ)k − 1) · a1 = 0 for some k for which (1 + λ)k − 1 does not annihilate
W . Let n be greatest such that ωnλ = (1 + λ)5

n − 1 does not annihilate W . The
equation ((1 + λ)k − 1) · a1 = 0 implies ωnλ · a1 = 0. Consider the images of the
submodules {a ∈ W | ω1 · a = 0} and {a ∈ W | ωnλ · a = 0} under an epimorphism
W � k

2. These images are subspaces of dimension at most 1 since these equations
do not identically hold in W , and W is generated by any two elements which project
to linearly independent vectors in k

2. Therefore, if an edge c(a1, a2) is contained in
a region of size 5, then a1 projects into one of these two 1-dimensional subspaces.
Overall, out of the 24 nonzero vectors in k

2, at most 8 of them (union of two dis-
tinct 1-dimensional subspaces) can be equal to the projection of a1. Let Ω ′ be the
image of Ω under the covering C(W ) → C(k2). The restriction on a1 is equivalently
expressed as follows: at most 4 out of the 12 regions in Ω ′ can be the image of the
region which contains c(a1, a2). This shows that at least two thirds of the edges in Ω

are contained in regions of size at least 25. Hence, the number of regions is bounded
by 1

5 · 1
3 · |Ω| + 1

25 · 2
3 · |Ω| < 1

6 · |Ω|.

For a wheel W annihilated by ω1 and Ω an orbit in C(W ), one hasH(Ω) = H̃(5)
if W = k

2, andH(Ω) = Ĩ (5) otherwise. First, observe that all regions in C(W ) are of
size 5, hence any orbit is of genus zero and is isomorphic to its image in C(k2). More-
over, L := (YX)5 acts as t5 on all pairs in E(W ) since L ≡ −1 ≡ t5 · 1 (mod ω1).

123



On the Alexander invariants of trigonal curves 281

Hence, H(Ω) is uniquely determined once the order of the t-action on W , i.e. the
depth d(H(Ω)), is known. Since t5 ≡ −1 (mod ω1), the order is either 2 or 10; in
fact, it is 2 if and only if W = k

2.

Rings with p = 5: For a ring R in which ω1 �= 0, there is no genus-zero orbit inP(R)

unless R = Z25[λ]/(λ − 5k) for some k = 1, 2, 3, 4. First suppose that λ /∈ Rω1. By
replacing R with R/〈5ω1, ω1λ〉 if necessary, we assume that 5ω1 = ω1λ = 0 ∈ R,
henceω2 = 0. A region inP(R)which is of size 1 andweight 1must consist of an edge
pc(m, 1)where 1+λ−m ∈ 〈1+λ〉 andm(m−λ) = 0. The first condition alone shows
that all such edges are distinct modulo ω1, because 〈1+λ〉 = {1, 1+λ, . . . , (1+λ)4}
and λ �≡ 0 (mod ω1). Now, let Ω be an orbit in P(R) and Ω ′ be its image under the
5-fold coveringP(R) → P(R/ω1). IfΩ contains regions of size 1 and weight 1, they
all project to distinct regions in Ω ′, hence there are at most d such regions where d is
the degree of the covering Ω ′ → P(k). This is because all such regions must project
to the unique region of size 1 in P(k). On the other hand, note that there are exactly d
regions of size 5 in Ω ′; namely, those which project to the unique region of size 5 in
P(k). The corresponding regions in Ω are of size 25, which implies that the covering
Ω → Ω ′ is 5-fold and that there are exactly d regions of size 25. Finally, the degree
of the covering Ω → P(k) is 5d, hence |Ω| = 30d. As a consequence of all of this,
the sum of weights over the regions in Ω is bounded above by d + 4d

5 + d <
|Ω|
6 .

Since there is no complete monovalent vertex in P(R), one concludes χ(Ω) < 0.
Now suppose that λ = ω1r for some r ∈ R. Note thatω1 = 5+λθ for θ ∈ m, hence

λ = 5r(1 − θr)−1. This requires that R = Z5n for some n ≥ 2 and λ = 5k. Then, it
is only left to check that there is only one orbit in P(R) whose Euler characteristic is
negative when n = 3 with any value of λ or when n = 2 with λ = 0. When n = 2
and λ = 5k for some k = 1, 2, 3, 4, one has χ(P(R)) = 1 andH(P(R)) = H(25; a)

where a = −5k − 1.

For a ring R in which ω1 = 0, except the cases R = k and R = k[λ]/λ2, there
is one orbit Ω0 in P(R) with H(Ω0) = I (5, 1) and one has H(Ω) = Ĩ (5) for any
other orbit Ω . First, note that λ2 �= 0, otherwise R must be one of the two excep-
tional rings. Hence, there are only two regions in P(R) with size 1 and weight 1;
namely, pc(0, 1) and pc(λ, 1). Because, these are the only values m which satisfy
1+ λ −m ∈ 〈1+ λ〉 = {1, 1+ λ, . . . , (1+ λ)4} and m(m − λ) = 0. Moreover, these
two edges are in the same orbit Ω0. Then, it is easy to deduce that I (5, 1) := H(Ω0)

is uniquely determined, by arguments very similar to those in the case of the wheels.
Any other orbit Ω consists of regions which are either of size 5 or of size 1 but weight
1
5 . Hence, in the preimage of Ω in C(R), all regions are of size 5. Then, by similar
arguments again, one deduces that H(Ω) = Ĩ (5), which was already defined. As for
the exceptional rings, there are three orbits in P(k[λ]/λ2) each of which is genus-
zero. As Ω ranges these orbits,H(Ω) ranges I (5, 1), H1(5, 1), and H2(5, 1). Finally,
H(P(k)) = H(5, 0).

Wheels with p = 3: For a wheel W not annihilated by ω1, there is no orbit of genus
zero in C(W ) unless W = Z9 · e1 ⊕ Z3 · e2 with λ · e1 = 0 and λ · e2 = 3e1. The
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proof is similar to the case of p = 5. Let Ω be an orbit in C(W ) and Ω ′ be its image
in C(k2). The size of any region in Ω is 3 or at least 9, and only 2 out of the 4 regions
in Ω ′ can be the image of a region of size 3 in Ω . This comes from considering the
images of the submodules {a ∈ W | ω1 · a = 0} and {a ∈ W | ωnλ · a = 0} in
k
2, as in the case p = 5. First suppose that at most 1 out of the 4 regions in Ω ′ is

the image of a region of size 3 in Ω . Then, the number of regions in Ω is less than
or equal to 1

3 · 1
4 · |Ω| + 1

9 · 3
4 · |Ω| = 1

6 · |Ω|, hence g(Ω) > 0. Now suppose that
exactly 2 out of the 4 regions are as such. In other words, Ω contains edges c(a1, a2)
and c(b1, b2) such that both of these edges lie in regions of size 3 and a1 and b1
project to linearly independent vectors in k

2. Then, the images of the submodules
{a ∈ W | ω1 · a = 0} and {a ∈ W | ωnλ · a = 0} must be distinct 1-dimensional
subspaces, such that a1 and b1 project into these. Thus onemust have n = 0, otherwise
the latter subspace contains the former. Now, w.l.o.g, let a1 and b1 project into the
images of {a ∈ W | ω1 · a = 0} and {a ∈ W | λ · a = 0} respectively. Thus,
ω1(a1 − λ · a2) = 0 and ((1+ λ)k − 1) · b1 = 0, ((1+ λ)k − 1) · b2 = ω1(λ · b2 − b1)
for some k coprime to 3. Note that (1+λ)k−1 = λs for s ∈ Λ\m. Then, λ·b1 = 0 and
ω1 ·b1 = (ω1 − s)λ ·b2. The last equation implies, in particular, that λ2 annihilatesW
becauseλ2 ·b2 = (ω1−s)−1·ω1λ·b1 = 0.Here, (ω1−s)−1 ismeaningful because even
though (ω1 − s) may not be invertible in Λ, its action on W is invertible. This allows
one to replace ω1 = 3+ 3λ + λ2 by 3(1+ λ) in the equations. Hence, by introducing
the brief notation a′

1 = (1 + λ) · (a1 − λ · a2) and b′
2 = (1 + λ)−1 · (ω1 − s) · b2,

we re-express the equations as follows: 3a′
1 = 0, λ · b1 = 0 and 3b1 = λ · b′

2. Since
a′
1 and b1 generate W , one can write b′

2 = φ1 · a′
1 + φ2 · b1 for some φ1, φ2 ∈ Λ;

moreover, φ1 /∈ m since b1 and b′
2 project to linearly independent vectors in k

2. Thus,
3b1 = λ · b′

2 = λφ1 · a′
1. Finally, let e1 denote b1 and e2 denote φ1 · a′

1, then e1 and
e2 generate W and the equations take the form 3e2 = 0, λ · e1 = 0, 3e1 = λ · e2;
which shows that W is the exceptional wheel introduced in the beginning. For this
exceptional wheel W , there are two orbits in C(W ). As Ω ranges these orbits, H(Ω)

ranges H̃1(9) and H̃2(9).
For a wheelW annihilated byω1 andΩ an orbit in C(W ), one hasH(Ω) = H̃(3) if

W = k
2, andH(Ω) = Ĩ (3) otherwise. This is proven in a way completely analogous

to the case p = 5.

Rings with p = 3: For a ring R in which ω2 �= 0, there is no genus-zero orbit
in P(R) unless R = Z27[λ]/(λ − 3k) for some k = 1, 2, 4, 5, 7, 8. First suppose
that ω1λ /∈ Rω2. By replacing R with R/〈3ω2, ω2λ〉 if necessary, we assume that
3ω2 = ω2λ = 0 ∈ R, hence ω3 = 0. If P(R) contains a complete monovalent
vertex, there is r ∈ 〈t〉 such that r2 + r + 1 = 0. The candidates for this equation are
{1, 1 + ω1λ, (1 + ω1λ)2}, but (1 + ω1λ)2 + (1 + ω1λ) + 1 = δ2 �= 0. Hence, one
necessarily has 3 = 1 + 1 + 1 = 0 ∈ R. In this case, ω2 = λ8, thus R = k[λ]/λ9;
then, there is no genus-zero orbit inP(R). Henceforth, we assume thatP(R) contains
no complete monovalent vertex. Let Ω be an orbit in P(R), let Ω ′ be its image in
P(R/ω2) and let d be the degree of the covering Ω ′ → P(k). As in the case p = 5,
Ω contains at most d regions of size 1 and weight 1, it contains exactly d

3 regions of
size 27 and the covering Ω → Ω ′ is 3-fold. Consequently, the sum of weights over
the regions in Ω is less than or equal to d + 2d

3 + d
3 = |Ω|

6 , hence χ(Ω) ≤ 0.
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Now suppose that ω1λ = ω2r for some r ∈ R, but λ /∈ Rω1. Note that δ2 = 3+λθ

for θ ∈ m, hence ω1λ = ω1δ2r implies ω1λ = 3ω1r(1 − θr)−1. This implies that
ω1λ = 3kω1 for some integer k. Therefore, ω2 = ω1δ2 = 3ω1(1 + kθ). We may
assume 3ω2 = 0 ∈ R, hence 9ω1 = 0 and ω3 = 0. As in the previous paragraph, there
is no complete monovalent vertex in P(R), since 3 �= 0, δ2 �= 0 and ω1 �= 0. Now,
let Ω be an orbit in P(R), let Ω ′ be its image in P(R/ω1) and let d be the degree of
the covering Ω ′ → P(k). Since λ /∈ Rω1, Ω contains at most 3d regions of size 1
and weight 1, it contains exactly d regions of size 27 and the covering Ω → Ω ′ is
9-fold. Therefore, the sum of weights over the regions in Ω is less than or equal to
3d + 6d

3 + d = |Ω|
6 , hence χ(Ω) ≤ 0. Finally, suppose that λ ∈ Rω1. As in the case

p = 5, this requires that R = Z3n for some n ≥ 3 and λ = 3k. Then, it is only left
to check that there is one orbit in P(R) whose Euler characteristic is negative when
n = 4 with any value of λ or when n = 3 with λ = 9k. When n = 3 and λ = 3k
for some k = 1, 2, 4, 5, 7, 8, one has χ(P(R)) = 2 andH(P(R)) = H(27; a) where
a = −3k − 1.

For a ring R in which ω2 = 0 but ω1λ
2 �= 0, there is no genus-zero orbit in P(R).

LetΩ be an orbit inP(R). First suppose thatΩ contains no region of size 1 andweight
1 and it contains nomonovalent vertex. Let d be the degree of the coveringΩ → P(k).
Then,Ω contains exactly d

3 regions of size 9, hence the sumofweights over the regions

inΩ is less than or equal to d
3 + d

3 = |Ω|
6 , thus χ(Ω) ≤ 0. Henceforth, we assume that

Ω contains either a region of size 1 and weight 1 or a complete monovalent vertex.
Note that ω1λ

2 /∈ R · 3ω1. Otherwise, one has ω1λ
2 = 3ω1r for some r ∈ R, then

δ2 = 3(1+ ω1λ + ω2
1r), hence ω1λ

2 = 3ω1r = δ2ω1(1+ ω1λ + ω2
1r)

−1r = 0, since
δ2ω1 = ω2 = 0. Thus, by replacing R with the appropriate quotient if necessary, we
assume that 3ω1 = ω1λ

3 = 0 ∈ R. Then, note that λ2 /∈ R · 3, hence there is an
epimorphism R � k[λ]/λ3. Now, let Ω ′ be the image of Ω in P(k[λ]/λ3). There
are three orbits in P(k[λ]/λ3) two of which contain regions of size 1 and weight 1,
but no monovalent vertex; while the other one contains complete monovalent vertices,
but no region of size 1. We cover the two cases separately. Let d be the degree of the
covering Ω → Ω ′.

For the former case, first observe that there are only two regions inP(R)with size 1
andweight 1; namely, pc(0, 1) andpc(λ, 1). Because, these are the only valuesmwhich
satisfy 1+λ−m ∈ 〈1+λ〉 = {1, 1+λ, . . . , (1+λ)8} andm(m−λ) = 0. These two
edges project into distinct orbits in P(k[λ]/λ3), hence Ω contains only one of them.
Assume that pc(0, 1) ∈ Ω; we will not treat the other case since it is completely analo-
gous. Then,Ω ′ contains twomore regions of size 1, but these are of weight 13 . It is easy
to verify that the preimage of any of these two regions under the coveringΩ → Ω ′ con-
tains a region of size greater than 1, hence d > 1.We will now show that this preimage
contains no region of size 1 andweight 13 or of size 3 andweight 1. For this, it is enough
to observe that (1 + ω1(λ − m)) /∈ 〈1 + λ〉 for any m which projects to ±λ2 ∈ k[λ]/
λ3. Indeed, for such m, one has 1 + ω1(λ − m) = 1 + ω1λ + (±ω1λ

2) /∈ 〈1 + λ〉.
Using the observations above, one can bound the sum of weights over the regions of
Ω by d+2

3 + 2d
9 + d < 2d = |Ω|

6 , hence χ(Ω) ≤ 0. In the latter case, all regions
in Ω are of size 9. Because, if m projects to −λ ∈ k[λ]/λ2, then m(m − λ) projects
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to −λ2 ∈ k[λ]/λ3, hence ω1 · m(m − λ) �= 0. In particular, one has d ≥ 3, hence
|Ω| ≥ 36. Then, since there are at most 3 complete monovalent vertices in Ω , one
deduces χ(Ω) ≤ −|Ω|

6 + |Ω|
9 + 2 ≤ 0.

For a ring R in which ω2 = 0 and ω1λ
2 = 0, but ω1 �= 0, except the cases

R = k[λ]/λ3, R = k[λ]/λ4, R = Z9[λ]/λ2, R = Z9[λ]/〈3λ, λ2〉, R = Z9[λ]/
(λ − 3k) for some k = 0, 1, 2, there are exactly two genus-zero orbits in P(R). As Ω

ranges these orbits,H(Ω) ranges I1(9, 1) and I2(9, 1) ifω1λ = 0, and it ranges I1(9, 2)
and I2(9, 2) otherwise. For the proof, first note that 3 �= 0 and λ2 �= 0; otherwise R
must be one of the exceptional rings. Moreover, δ2 = 3+3ω1λ+ω2

1λ
2 = 3(1+ω1λ),

hence 3ω1 = δ2ω1(1 + ω1λ)−1 = 0. This, in turn, implies δ2 = 3 + 3ω1λ = 3.
Therefore, there is no complete monovalent vertex in P(R) since 3 �= 0, δ2 = 3 �= 0
and ω1 �= 0. Thus, if an orbit Ω in P(R) contains no region of size 1 and weight 1,
one has χ(Ω) ≤ 0 as above. Hence, let Ω contain such a region pc(m, 1). Let Ω ′ be
the image of Ω and pc(m′, 1) be the image of pc(m, 1) in P(R/ω1λ). Since pc(m′, 1)
is also a region of size 1 and weight 1, one has 1+ λ −m′ ∈ {1, 1+ λ, (1+ λ)2}, i.e.
m′ ∈ {0, λ,−λ(1 + λ)}. However, if m′ = −λ(1 + λ), then m(m − λ) �= 0 because
λ2 �= 0, henceΩ ′ contains pc(0, 1) or pc(λ, 1). Now, observe that λ /∈ R ·3+ R ·ω1λ,
hence there is an epimorphism R/ω1λ � k[λ]/λ2. (Suppose for the contrary that
λ = 3r1 + ω1λr2. Then, λ = 3r1(1 − ω1r2)−1, which implies λ = 3k for an integer
k. Then, ω1 = 3(1+ 3k + 3k2), hence 9 = 0 because 3ω1 = 0. Thus, R is one of the
exceptional rings.) Now, consider the induced covering P(R/ω1λ) → P(k[λ]/λ2).
The edges pc(0, 1) ∈ P(R/ω1λ) and pc(λ, 1) ∈ P(R/ω1λ) project into distinct orbits
in P(k[λ]/λ2), thus Ω ′ contains only one of them. Then, one can verify as before that
H(Ω ′) is uniquely determined in either of the two cases; so it ranges I1(9, 1) and
I2(9, 1). Clearly, if ω1λ = 0 ∈ R, then Ω = Ω ′, hence this case is complete.
Otherwise, the covering P(R) → P(R/ω1λ) is of degree 3. Then, one simply checks
that all three edges in the preimage of pc(0, 1) ∈ P(R/ω1λ) or pc(λ, 1) ∈ P(R/ω1λ)

are in the same orbit. As before, one can deduce thatH(Ω) is uniquely determined in
both cases; so it ranges I1(9, 2) and I2(9, 2).

If R is one of the exceptional rings of the previous paragraph, all orbits in P(R)

are genus-zero. There are three orbits inP(k[λ]/λ3). AsΩ ranges these orbits,H(Ω)

ranges I1(9, 1), I2(9, 1) and H ′(9, 1). There are five orbits in P(k[λ]/λ4). As Ω

ranges these orbits,H(Ω) ranges I1(9, 2), I2(9, 2), H ′
1(9, 2), H

′
2(9, 2), and H ′

3(9, 2).
There is one orbit in P(Z9[λ]/(λ − 3k)). Then, H(P(Z9[λ]/(λ − 3k))) is equal to
H(9, 0) if k = 0 and H(9; a) with a = −3k − 1 otherwise. There are three orbits
in P(Z9[λ]/〈3λ, λ2〉). As Ω ranges these orbits, H(Ω) ranges I1(9, 1), I2(9, 1) and
H(9, 1). There are five orbits inP(Z9[λ]/λ2). AsΩ ranges these orbits,H(Ω) ranges
I1(9, 2), I2(9, 2), H1(9, 2), H2(9, 2), and H3(9, 2).

For a ring in which ω1 = 0, except the cases R = k and R = k[λ]/λ2, there is one
orbit Ω0 in P(R) with H(Ω0) = I1(3, 1), one orbit Ω1 with H(Ω1) = I2(3, 1), and
one has H(Ω) = Ĩ (3) for any other orbit Ω . The proof is very similar to the case of
p = 5. In summary, the only regions of size 1 and weight 1 are pc(0, 1) and pc(λ, 1)
and these edges are in distinct orbits. Then, let Ω0 denote the orbit of pc(0, 1), andΩ1
denote the orbit of pc(λ, 1). One can easily verify as before that H(Ω0) and H(Ω1)

are uniquely determined; so they are as given. In any other orbit Ω , the regions are
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Table 1 Genus-zero H := H(A) for m-local A where m = 〈p, t + 1〉 with p �= 2

H ⊂ Bu3 A(H) c(H) ⊂ Γ d(H)

H1(7, 1)
F7[t]/(t + 1)2

Γ1(7)

14
H2(7, 1) 14
H3(7, 1) 14
H(7, 0) Z7 where t = −1 2

H1(5, 1)
F5[t]/(t + 1)2

Γ1(5)

10
H2(5, 1) 10
I(5, 1) Λ/(t4 − t3 + t2 − t + 1) 10
H(5, 0) Z5 where t = −1 2
Ĩ(5) Λ2/(t4 − t3 + t2 − t + 1)

Γ (5)
10

H̃(5) Z5 ⊕ Z5 where t = −1 2
H(25; a)∗ Z25 where t = a Γ0(25) ∩ Γ1(5) 10

H(3, 1) F3[t]/(t + 1)2

Γ1(3)

6
I1(3, 1) Λ/(t2 − t + 1)

6
I2(3, 1) 6
H(3, 0) Z3 where t = −1 2
Ĩ(3) Λ2/(t2 − t + 1)

Γ (3)
6

H̃(3) Z3 ⊕ Z3 where t = −1 2
H(9; a)∗ Z9 where t = a Γ0(9) 6
H1(9, 2)

Z9[t]/(t + 1)2

Γ1(9)

18
H2(9, 2) 18
H3(9, 2) 18
I1(9, 2) Λ/〈3(t2 − t + 1), (t2 − t + 1)2〉 18
I2(9, 2) 18
H(9, 1) Z9[t]/〈3(t + 1), (t + 1)2〉 6
I1(9, 1) Λ/〈3(t2 − t + 1), (t3 + 1)〉 6
I2(9, 1) 6
H(9, 0) Z9 where t = −1 2
H′

1(9, 2)
F3[t]/(t + 1)4

9J0

18
H′

2(9, 2) 18
H′

3(9, 2) 18
H′(9, 1) F3[t]/(t + 1)3 6
H̃1(9)

Z9 ⊕ Z3 where t = −
(

1 3
0 1

)
9H0 6

H̃2(9) 6
H(27; a)∗ Z27 where t = a 27A0 18

either of size 3 or of size 1 and weight 1
3 . Then, it is also easy to verifyH(Ω) = Ĩ (3)

as in the case of wheels. As for the exceptional rings, there are three orbits in P(k[λ]/
λ2). As Ω ranges these orbits, H(Ω) ranges I1(3, 1), I2(3, 1), and H(3, 1). Finally,
H(P(k)) = H(3, 0).
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4.1 The table in themain theorem

The first column of Table 1 shows the names of the subgroups H = H(A). Each
subgroup must be understood to represent its conjugacy class. The subgroups which
are marked with a (∗) involve an additional parameter a ∈ Zpk such that a ≡ −1
(mod p) and a �≡ −1 (mod p2) (note that pk = 25, 9, 27). The second column
shows A(H), which is well-defined up to Burau equivalence when considered together
with the distinguished epimorphism Λ2 � A(H), since H is well-defined up to
conjugacy. Note that several distinct subgroups correspond to (abstractly) isomorphic
modules, but these are not Burau equivalent. In fact, for any H in the table, one has
H = H(A(H)) by Theorem 1.2, item 1.2. The third column shows the subgroups
c(H) ⊂ Γ . In all of the cases in the table, c(H) is a congruence subgroup. However,
this cannot be true in general: we know examples with other maximal ideals m where
c(H) is not a congruence subgroup. When there is no common notation for c(H), we
use the notation of [3]. Finally, the fourth column shows the depth d(H) (see Sect. 2.2).
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