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Interphase regions that form in heterogeneous materials through various underlying
mechanisms such as poor mechanical or chemical adherence, roughness, and coating,
play a crucial role in the response of the medium. A well-established strategy to capture
a finite thickness interphase behavior is to replace it with a zero-thickness interface
model characterized by its own displacement and/or traction jumps, resulting in different
interface models. The contributions to date dealing with interfaces commonly assume
that the interface is located in the middle of its corresponding interphase. This paper
revisits this assumption and introduces an extended general interface model, wherein a
unifying approach to the homogenization of heterogeneous materials embedding interfa-
ces between their constituents is developed within the framework of linear elasticity.
Through utilizing a weighted average operator, we demonstrate that the assumption of
enforcing the interface to coincide with the midlayer is not required and thereby develop
a new class of interfaces where the interface is allowed to take any arbitrary position
between its bulk neighbors. The proposed novel interface model can recover any of the
classical interface models. Next, via incorporating this extended general interface model
into homogenization, we develop bounds and estimates for the overall moduli of fiber-
reinforced and particle-reinforced composites as functions of the interface position and
properties. Finally, we carry out a comprehensive numerical study to highlight the influ-
ence of interface position, stiffness ratio, and interface parameters on the overall proper-
ties of composites. The developed interface-enhanced homogenization framework also
successfully captures size effects, which are immediately relevant to emerging applica-
tions of nanocomposites due to their pronounced interface effects at small scales.
[DOI: 10.1115/1.4051481]
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1 Introduction

Over the last few decades, composites have been playing a
promising role in many engineering applications due to their
superb physical and mechanical properties. The overall behavior
of a composite mainly depends on its underlying microstructure
or more specifically, on orientation, distribution, volume fraction,
and the shape of its constituents. The complexity of the micro-
structure escalates by incorporating interface effects, the interac-
tion of the constituents, and debonding or damage between the
constituents. Predicting the overall response of composites is a
challenging task. Many micromechanical methods have been
developed to determine the overall behavior of composites among
which, homogenization has been particularly well-established. A
major shortcoming of classical homogenization is that it fails to
account for size-dependent material behavior, often referred to as
size effects. Size effects in composites are essentially attributed to
surface and interface effects due to the pronounced area-to-
volume ratio at small scales, for example, in nanocomposites. In
addition, to conduct more realistic analyses, various interface
models have been developed to incorporate imperfect bonding
between the constituents of heterogeneous material. Therefore, it
is important to extend the homogenization method to account for

interface effects between the constituents of heterogeneous mate-
rials, thereby capturing size-dependent effective properties.

Although a plethora of contributions are available in the litera-
ture investigating interfaces and the role they play in the overall
response of heterogeneous materials, a comprehensive review on
this subject is yet missing. This section provides an exhaustive lit-
erature review on this subject. The first part provides a brief
review of homogenization. This is then followed by a comprehen-
sive review of the contributions incorporating interphases into
homogenization. Next, commonly accepted interface models to
capture interphases are reviewed. Afterward, the significance of
interface position is highlighted giving rise to an extended general
interface model elaborated in the remainder of the paper. Any
attempt to provide a comprehensive review of this caliber on the
subject is a challenging task. We believe that the current structure
forms a continuous and rigorous composition.

1.1 State of the Art Review of Homogenization. Homogeni-
zation has proven to be a powerful technique in determining the
overall behavior of heterogeneous materials. The main objective
of homogenization is to estimate the macroscopic behavior of het-
erogeneous material from the response of its underlying micro-
structure, thereby allowing to substitute the heterogeneous
material with an equivalent homogeneous medium. There exist
extensive contributions to both analytical and computational
homogenization. Hence, only selected representative papers are
included here to establish an appropriate context. Table 1 gathers
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the major analytical and computational contributions on homoge-
nization for mechanical problems.

1.1.1 Analytical Homogenization. Pioneering works on ana-
lytical homogenization were carried out by Voigt [1] and Reuss
[2] where they assumed a uniform strain and stress field within the
heterogeneous medium resulting in upper and lower bounds on
the strain energy [3], respectively. The nonlinear equivalents to
Voigt’s and Reuss’ assumptions are usually referred to as Taylor’s
[10] and Sachs’ [11] bounds, respectively, which were later
derived for polycrystals [12]. Although being general and simple,
these bounds are very rough estimates and have been improved in
the past decades. Using extremum and variational principles,
Hashin and Shtrikman [13–15,17], Hill [4–6], Beran and Moly-
neux [20] and Walpole [21,22] determined more restrictive
bounds compared to Voigt and Reuss bounds for the overall bulk
and shear modulus of composites. See Fan et al. [24] for bounds
on Young’s modulus and Zimmerman [25] for bounds on the
Poisson ratio.

Two specific branches of analytical homogenization based on
variational methods are the composite cylinder assemblage (CCA)
[26] and composite sphere assemblage (CSA) [18] suitable to ana-
lyze fiber-reinforced and particle-reinforced composites, respec-
tively. While no restriction is considered for the shapes of the
heterogeneities in the original variational approach, CCA and
CSA require morphological and geometrical information about
the microstructure. Using perturbations, Milton and Phan-Thein
[28] introduced more geometrical features of the microstructure
and improved the accuracy of the Hashin–Shtrikman bounds and
Walpole bounds from second-order error to fourth-order error
resulting in tighter bounds. Further generalizations of variational
principles include accounting for anisotropy [29], periodic micro-
structures [30,31], random microstructures [32], magnetic perme-
ability [16], piezo-electricity [33–36,39] and thermal expansion
[27,40].

A more sophisticated method, compared to variational princi-
ples, to examine heterogeneous media was developed by Eshelby
[41] where he derived a solution for the stress and strain fields
within ellipsoidal inhomogeneities in an infinite matrix subjected

to uniform remote tractions. Eshelby assumed that the inhomoge-
neities are so dilutely distributed that their interactions could be
neglected. Investigation of Eshelby’s formulation for other inclu-
sion shapes is discussed in Refs. [42–45]. The assumption of
neglecting the interactions of inhomogeneities makes Eshelby’s
model unrealistic for heterogeneous media with a random distri-
bution of inhomogeneities [46]. To overcome this drawback, other
methods such as the self-consistent method (SCM)
[7,8,23,47–50,76], the generalized self-consistent method
(GSCM) [51–57], and the differential method [58–60] have been
established. Besides offering implicit formulations that make
SCM and GSCM convenient to use, these two methods treat the
matrix and the inclusions similarly, and therefore, they can be
used for cases with very high concentrations of inclusions. How-
ever, the morphology of the inclusions is limited to spheres and
short fibers. Parallel to these studies, the Mori–Tanaka method
[61] was developed based on the mean-field approximation [62].
This model yields a better and more explicit solution for compos-
ite properties where limited information about strain or stress con-
centrations in the constituents are available [63–65]. Weng [66]
studied the connections between the Mori–Tanaka method [61]
and the variational theory proposed by Hashin and Shtrikman [15]
and Walpole [21,22] and found that Mori–Tanaka equivalent
polarization stress and strain in Eshelby’s equivalent inclusion
equation [41] are essentially those that Hashin and Shtrikman [15]
and Walpole [21,22] used to construct their bounds. Also, he
reported that the average stress and strain in the matrix in the
Mori–Tanaka method are exactly the image stress and strain
imposed by Walpole, see also Ref. [67]. Tandon and Weng [68]
combined Eshelby’s theory and Mori–Tanaka’s method to obtain
a closed form solution for finite concentrations of ellipsoidal
inclusions with a wide range of inclusion aspect ratios. Hori and
Nemat-Nasser [37,38], via generalizing the self-consistent scheme
and the Mori–Tanaka method, proposed a double-inclusion model
in which the interaction between the constituents is taken into
account more appropriately. They showed that the self-consistent
scheme and the Mori–Tanaka method are special cases of their
framework. Further contributions on the double inclusion model
include [69,70]. Riccardi and Montheillet [71] compared the

Table 1 Major analytical and computational contributions on homogenization

Analytical Voigt [1], Reuss [2], Hill [3–9], Taylor [10], Sachs [11], Bishop and Hill [12], Hashin and shtrikman [13–16], Hashin
[17–19], Beran and Molyneux [20], Walpole [21–23], Fan [24], Zimmerman [25], Hashin and Rosen [26,27], Milton,
[28], Bornert et al. [29], Nemat-Nasser et al. [30], Aboudi [31], Torquato [32], Milton and Kohn [33], Bisegna and
Luciano [34,35], Hori and Nemat-Nasser [36–38], Li and Dunn [39], Gibiansky and Torquato [40], Eshelby [41], Rodin
[42], Markenscoff [43], Mura [44], Lubarda and Markenscoff [45], Zohdi and Wriggers [46], Hershey [47], Kroner
[48], Budiansky [49], Laws [50], Kerner [51], Christensen and Lo [52], Huang et al. [53], Huang and Hu [54], Benve-
niste and Berdichevsky [55], Benveniste and Milton [56], Chatzigeorgiou et al. [57], Boucher [58], McLaughlin [59],
Norris [60], Mori and Tanaka [61], Pierard et al. [62], Benveniste [63], Luo and Weng [64,65], Weng [66], Qiu and
Weng [67], Tandon and Weng [68], Hu and Weng [69], Aboutajeddine and Neale [70], Riccardi and Montheillet [71],
Ogden [72], Talbot and Willis [73–75], Willis [76–78], Ponte Casta~neda et al. [79], Ponte Casta~neda and Willis [80],
Suquet [81], De-Botton and Ponte Casta~neda [82], Olson [83], Ponte Casta~neda [84–89], Ponte Casta~neda and Suquet
[90], Leroy and Ponte Casta~neda [91], Lopez-Pamies and Ponte Casta~neda [92], Mura [93], Charalambakis [94],
Firooz et al. [95], Mandel [96]

Computational Tvergaard [97], Smit et al. [98], Bao et al. [99], van der Sluis et al. [100,101], Nemat-Nasser and Hori [102], Miehe
[103], Kaczmarczyk et al. [104], Terada et al. [105], Drago and Pindera [106], Irving and Kirkwood [107], Mercer et al.
[108], Fritzen and B€ohlke [109], Yuan and Tomita [110], Jiang and Cheung [111], Inglis et al. [112], Larsson et al.
[113], Gl€uge [114], Saroukhani et al. [115], Nguyen et al. [116], Drugan and Willis [117], Kanit et al. [118], Gitman
et al. [119], Khisaeva and Ostoja-Starzewski [120], Temizer and Zohdi [121], Thomas et al. [122], Temizer et al. [123],
Dirrenberger et al. [124], Dai et al. [125], Ostoja-Starzewski [126], Ghosh et al. [127], Ghosh and Moorthy [128,129],
Moulinec and Suquet [130], Michel et al. [131], Vinogradov and Milton [132], Lee et al. [133], Monchiet and Bonnet
[134], Moulinec and Silva [135], Kabel et al. [136], Kami�nski [137], Okada et al. [138], Proch�azka [139], Renard and
Marmonier [140], Takano et al. [141], Feyel and Chaboche [142], Terada and Kikuchi [143], Miehe and Koch [144],
Segurado and Llorca [145,146], Miehe and Schr€oder [147], Feyel [148], Terada et al. [149], Klinge and Hackl [150],
Mo€es [151], Spieler et al. [152], Savvas et al. [153], Patil et al. [154], Lee and Mear [155], Wang and Weng [156],
Monette et al. [157], B€ohm et al. [158], Ghosh et al. [159], Brockenbrough et al. [160], Kouznetsova et al. [161],
Chawla et al. [162], Kanoute et al. [163], Geers et al. [164], Nguyen et al. [165], Saeb et al. [166], Firooz et al. [95],
Matou�s et al. [167]
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Mori–Tanaka method and the generalized self-consistent scheme
and showed that the generalized self-consistent method predicts a
stronger dependence on the inclusion aspect ratio.

Extensions of the application of analytical homogenization to
nonlinear composites and finite deformation elasticity were stud-
ied in the pioneering works of Hill [9] and Ogden [72]. A signifi-
cant advancement is due to the derivation of nonlinear variational
principles by Talbot and Willis [73] based on the original work of
Willis [77]. Later, Ponte Casta~neda [89] proposed an alternative
variational approach in which the properties of a nonlinear com-
posite can be found via the properties of its linear counterpart
with the same microstructure. Using the two methods in [73] and
[89], improved bounds and estimates were obtained for nonlinear
dielectric composites [74,79], two-phase random composites
made of nonlinearly viscous phases [80], power-law composites
[81], plastic and elastoplastic nonlinear composites [82,83,88] and
general classes of nonlinear composites [75,78,84,90]. Ponte Cas-
ta~neda [85] used second-order Taylor expansion for phase poten-
tials in a nonlinear composite and developed second-order
estimates for mechanical properties of such media. Comparing
their results with “exact” numerical results, they found that their
new method provided more accurate estimates for the effective
behavior of nonlinear composites than the presented approaches
by Talbot and Willis [73] and Ponte Casta~neda [89]. Later, Leroy
and Ponte Casta~neda [91] demonstrated that such a methodology
may violate Hashin–Shtrikman bounds in some special cases.
This issue was addressed by Ponte Casta~neda [86,87] via propos-
ing an improved form of the second-order method, see also [92].
For further studies on analytical homogenization see the reviews
[19,93,94] and the references therein.

1.1.2 Computational Homogenization. Computational homog-
enization proves to be a compelling alternative to analytical
homogenization, especially for complex microstructures and non-
linear material behavior. In computational homogenization, one of
the widely adopted approaches in modeling heterogeneous materi-
als is the unit-cell method. In this method, it is assumed that the
constitutive material behavior at the microscale is known, and via
solving the boundary value problem and proper averaging
throughout the sample, the macroscopic material properties are
determined [97–100]. An energy equivalence between the micro-
and macro-scales must be imposed, commonly referred to as the
Hill–Mandel condition [9,96], to bridge between the scales.

Among many boundary conditions satisfying the Hill–Mandel
condition, the canonical ones are (i) linear displacement boundary
condition (DBC), (ii) constant traction boundary condition (TBC)
and (iii) periodic displacement and antiperiodic traction boundary
condition (PBC). It is commonly known that in mechanical prob-
lems, the overall material behavior obtained using PBC is
bounded by DBC from above and TBC from below [101–104].
Nonetheless, Terada et al. [105] argued that this statement should
not imply that the results obtained by PBC are always closest to
the exact solution. Also, Drago and Pindera [106] demonstrated
that the effective transverse Poisson’s ratio obtained by PBC is
not necessarily bounded between the Poisson ratios obtained by
TBC and DBC. Inspired by the classical Irving–Kirkwood method
[107], Mercer et al. [108] developed a broader set of admissible
boundary conditions. These boundary conditions filled the gap
between the canonical boundary conditions and predict the overall
material response more precisely. Aspects of the numerical solu-
tion and computational cost associated with various types of
boundary conditions are investigated by Fritzen and B€ohlke [109].
Further details on the formulation, implementation, and applica-
tion of appropriate boundary conditions in the context of computa-
tional homogenization can be found in Refs. [110–116].

Another important and yet delicate task in the computational
homogenization framework is the definition of the representative
volume element (RVE). It is widely accepted that the response of
the material must be independent of the choice of boundary condi-
tions imposed on the RVE. A proper RVE must be selected such

that it contains enough details to sufficiently represent the micro-
structure and it has to be small enough to fulfill the assumption of
scale separation [117–125]. According to Hill [4], an RVE is well
defined when it contains enough inclusions and the responses
under DBC and TBC coincide. This definition forms the basis of
the work of Ostoja-Starzewski [126] to determine the RVE size
where he demonstrates that the RVE size greatly depends on the
problem type and in particular, the inclusion to matrix stiffness
ratio. A similar study has been carried out by Temizer and Zohdi
[121] where they report that depending on the mesh resolution of
the finite element discretization of the microstructure, different
RVE sizes may be obtained.

To perform computational analyses over the RVE, various
schemes have been developed such as Voronoi cell finite element
scheme [127–129], fast Fourier transform [130–136], boundary
element method (BEM) [137–139], finite element method (FEM)
[140–145,147–150] and extended finite element method
[151–154]. Using these schemes, numerous contributions have
investigated the effects of the inclusion shape, distribution, vol-
ume fraction, and stiffness on the overall behavior of composites,
see for instance, [155–159]. Brockenbrough et al. [160] analyzed
the effect of volume fraction, shape, and distribution of particles
in a metal-matrix composite and showed that the distribution pat-
tern of the particles has a stronger effect on the overall response
compared to their shapes. Kouznetsova et al. [161] examined the
influence of the randomness of the microstructure on the macro-
scopic behavior for a constant volume fraction of voids. They
demonstrated that for elastic materials, a microstructure with a
random distribution of voids renders more compliant behavior
compared to a microstructure with a periodic distribution of voids.
Segurado and Llorca [146] investigated the influence of particle
clustering in a cubic RVE embedding stiff spherical particles and
found that the spatial distribution of particles has an insignificant
effect on the effective properties of a composite in the elastic and
plastic regimes. On the other hand, Chawla et al. [162] studied the
influence of different particle shapes (spherical, ellipsoidal, and
angular) on the elastic-plastic behavior of particle-reinforced com-
posites and reported that the shape of the particles may have a
considerable impact on the behavior of the composite even for
very small strains. For further studies on computational homoge-
nization see the reviews [163–167] and the references therein.

1.2 State of the Art Review of Interphase Models. In heter-
ogeneous materials, it is often assumed that the constituents are
perfectly bonded together. The assumption of a perfect bonding
between the constituents of a heterogeneous medium is, however,
inadequate to describe the mechanical behavior and physical
nature of the material. In real heterogeneous materials, processing
and other factors such as poor mechanical or chemical adherence,
roughness, coating, damage or fracture can lead to imperfect
bonding between the constituents [168–177]. The degree of bond-
ing between the constituents and the bond conditions have been
examined via experimental methods such as scanning electron
microscopy, polarized light microscopy, dynamic mechanical
analysis, Rayleigh surface wave measurement, and photo-
elasticity [178–181]. Imperfections give rise to the formation of a
distinct interphase region [182–184] that can significantly influ-
ence the behavior of materials [185–193]. Table 2 gathers major
analytical and computational contributions on interphases in com-
posite materials.

Since the properties of interphases depend on the manufactur-
ing process, they cannot be directly determined from the bulk
material. An efficient way to determine the elastic properties of
interphases is to utilize micromechanical models and compare the
results with the elastic properties of an equivalent homogeneous
medium. Papanicolaou et al. [327,328] introduced the concept of
interphase in composites and investigated the thermomechanical
properties and volume fraction of an interphase layer for a large
group of composites via comparing the experimental data against
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the results obtained from the rule of mixture. Chu and Rokhlin
[329] presented a method for inverse determination of elastic
moduli of carbon interphase in a ceramic-SiC composite. They
obtained an analytical expression for the effective transverse shear
modulus using the generalized self-consistent method and com-
pared the results against experimentally measured elastic moduli
and calculated the properties of the interphase. Their work was
extended by Huang and Rokhlin [330] to incorporate graded and
multilayered interphases. Rohklin and Huang [331] measured the
wave velocity in a SiC fiber composite using low frequency ultra-
sound to calculate the effective elastic moduli of the material.
Using the generalized self-consistent method, they determined the
effective elastic moduli, and via an inverse determination method,
they calculated the elastic properties of the interphase. A similar
study has been carried out by Hashin and Monteiro [332] and
Ramesh et al. [333] to obtain the elastic properties of an interfa-
cial transition zone between cement and aggregates in concrete.
Meurs et al. [334], via measuring the displacement field around
interphase with the aid of scanning electron microscopy and using
finite element analysis, presented a mixed numerical-experimental
method to characterize the interphase properties in a composite
using an iterative estimation procedure. Matzenmiller and Gerlach
[335], using the generalized method of cells [336] together with a
gradient-based optimization scheme, developed a numerical algo-
rithm for the inverse identification of elastic parameters of inter-
phases in fiber composites, see also [337]. Other examples of
experimental methods suitable to identify the properties of inter-
phases include the fiber pull-out method, the fiber fragmentation
method, and the fiber microcompression method [338–345].

1.2.1 Analytical Studies. Besides experimental methods, sev-
eral analytical schemes have been developed to study the effects
of interphases on the overall behavior of composites. Considering
the interphase as a homogeneous independent phase between the
constituents has been the primary idea of accounting for inter-
phase effects in analytical studies and has been widely adopted in
the literature.

The first analytical study on homogeneous interphases was car-
ried out by Walpole [194] where he presented a mathematical
model to analyze the effects of interphases on local fields in a
composite medium with coated inclusions. Assuming that the
stresses and strains in the inclusion are similar to those in the
absence of the interphase, Walpole has shown that thin interphase

around an inclusion considerably influences the elastic fields in
the surrounding medium. Theocaris and Papanicolaou [195]
developed a methodology based on the work of Rosen [196] to
investigate the role of the interphase on the thermomechanical
load transfer across the fiber-matrix interphase in a Glass-Resin
composite with short fibers. Lou and Weng [64,65] proposed a
modified Mori–Tanaka method to determine the elastic fields
within the constituents of composites with coated particles and
fibers. Applying appropriate strain fields, they obtained the elastic
moduli of such composites and observed that all moduli lie within
the Hashin–Shtrikman bounds. Similar studies on local fields in
composites with interphases were carried out by Benveniste et al.
[197] where they employed the Mori–Tanaka method based on
the work in Ref. [63] to evaluate both the effective moduli and the
local stresses in the constituents of a composite with coated fibers.
Their work was later extended in Refs. [198] and [199] to incorpo-
rate phase anisotropy. Carman et al. [200] investigated the effect
of coatings applied to the fibers in a composite on the stress distri-
bution throughout the medium subjected to transverse loading.
They developed an optimization procedure to determine an opti-
mal interphase property that minimizes the composite transverse
stress, hence the increase in the material transverse failure resist-
ance. Further studies on stress field analysis have been conducted
by Mikata, Taya, and Hatta [201–203] and Pagano and Tandon
[204,205] for composites with coated fibers under mechanical,
thermal, and thermomechanical loadings. Duan et al. [206] inves-
tigated the problem of an arbitrarily oriented spheroidal inclusion
surrounded by interphase embedded in an infinite medium and
developed a methodology to determine the displacement and
stress fields inside and around the inhomogeneity. Besides the
analysis of local fields, the determination of the overall moduli of
composites has been another interesting subject in analytical stud-
ies on homogeneous interphases. Sullivan and Hashin [207]
exploited the composite cylinder assemblage and the generalized
self-consistent scheme to determine the elastic properties of a
fiber composite with an interphase layer surrounding the fibers,
see Ref. [208] for a similar study on thermal and electrical prob-
lems. Later, Qiu and Weng [209] extended Hashin’s methodology
in Refs. [18] and [26] and obtained bounds and estimates on the
effective properties of coated fibrous- and particulate-composites.
They compared their results against the bounds reported by
Hashin and Shtrikman [18], Hill [4], and Walpole [23] and
observed that all their estimates lie within these bounds.

Table 2 Major analytical and computational contributions on interphases in composite materials

Analytical Adams [173], Wang and Jasiuk [184], Walpole [194], Theocaris and Papanicolaou [195], Rosen [196], Lou and Weng
[64,65], Benveniste et al. [197,198], Chen et al. [199], Carman et al. [200], Mikata, Taya and Hatta [201–203], Pagano
and Tandon [204,205], Duan et al. [206], Sullivan and Hashin [207], Maurer [208], Qiu and Weng [209], Cherkaoui
et al. [210,211], Barhdadi et al. [212], El-Mouden et al. [213], Sarvestani [214], Nazarenko et al. [215–217], Seidel and
Lagoudas [218], Xu et al. [219–222], Wu et al. [223], Nie and Basaran [224], Lu et al. [225], Shi et al. [226], Marcadon
et al. [227], Liu and Sun [228], Deng and Van Vliet [229], Gardner et al. [230–232], Ord�on�ez-Miranda et al. [233],
Pham and Torquato [234], Tong and Jasiuk [235], Chouchaoui and Benzeggagh [236], Guinovart-D�ıaz [237], Lurie
et al. [238], Lebon and Rizzoni [239,240], Papanicolaou et al. [241], Ostaja-Starzewski et al. [242], Sottos et al. [243],
Jayaraman et al. [244–246], Mikata [247], Ru [248], Theocaris et al. [249,250], Sideridis [251], Theocaris [252,253],
Dasgupta and Bhandarkar [254], Shabana [255], Herv�e and Zaoui [256,257], Berbenni, M. Cherkaoui [258], Bonfoh
et al. [259], Jasiuk and Kouider [260], Wang and Jasiuk [184], Wu et al. [261], Zhong et al. [262], Xu et al. [263], Lutz
and Zimmerman [264–267], Low et al. [268,269], Li [270], Shen et al. [271–273], Sevostianov and Kachanov [274],
Jiang et al. [275], Li et al. [276], Hern�andez-P�erez and Avil�es [277], Mahiou and B�eakou [278], Kiritsi and Anifantis
[279], You et al. [280], Yao et al. [281], Sabiston et al. [282], Sburlati and Cianci [283,284], Rao and Dai [285],
Yang et al. [286]

Computational Broutman and Agarwal [287,288], Tsai et al. [289], Nassehi et al. [290,291], Wu and Dong [292], Tsui et al. [293],
Al-Ostaz and Jasiuk [294], Kari et al. [295], Pathan et al. [296], Ria~no et al. [297], Chang et al. [298], Gosz et al. [299],
Gulrajani et al. [300], Liu et al. [301], Chen and Liu [302], Yao et al. [303], Mogilevskaya and Crouch [304], Wacker
et al. [191], Ozmusul and Picu [305], Wang et al. [306], Lagache et al. [307], Pan et al. [308], Hayes et al. [309], Lane
et al. [310], Fisher and Brinson [311], Wang et al. [306], Wang et al. [312], Han et al. [313,314], Xu et al. [315] Lee
et al. [316], Jiang et al. [317], Sabiston et al. [318], Sokolowski and Kami�nski [319–321], Kami�nski and Ostrowski
[322], Tac and G€urses [323], Cheng et al. [324], Huang et al. [325], Le [326]
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Cherkaoui et al. [210,211] claimed that the assumption made by
Walpole [194] about the elastic fields in the inclusion could lead
to a nonrealistic analysis. Via considering the interaction between
the inclusions, they developed a new micromechanical model
based on Green’s function technique and interfacial operators, and
then using the self-consistent scheme, they determined the effec-
tive properties of composites embedding coated inclusions, see
also [212]. Their work was extended to the case of composites
with the periodic distribution of coated inclusions by El-Mouden
et al. [213].

Analyses of composites containing multiple coated inclusions
were carried out by Sarvestani [214] where he determines the
effective elastic moduli of particulate-composites based on the
extended Eshelby’s equivalent inclusion method [346]. Thermo-
elastic properties of random composites containing anisotropic
interphases have been obtained by Nazarenko et al. [216,217]. For
further analytical contributions on homogeneous interphases, the
reader is referred to the following references studying the general-
ized self-consistent method [218,219], the Mori–Tanaka method
[220,223], the composite sphere assemblage [224], the double/
multiple-inclusion model [222,225,226], the equivalent inclusion
method [215,227–229], the method of cells [230–232], the differ-
ential effective medium approximation [221,233], the strong-
contrast expansions [234], the successive iteration method [235]
and the asymptotic analysis [236–240].

A more general model to analyze interphases is to consider that
the interphase has nonuniform spatial properties. That is, the inter-
phase properties may vary in the domain. Examples of such inter-
phases include graded interphases, multilayered interphases, or
nonhomogeneous interphases. A pioneering work on these types
of interphases was carried out by Papanicolaou et al. [241]. They
extended the works further in Refs. [327] and [328] and investi-
gated the adhesion efficiency between the fiber and matrix in a
fiber-reinforced polymer composite via considering inhomogene-
ous interphase between the components. In view of the heteroge-
neity of the interphase, the inhomogeneous continuum model
should also account for local anisotropy and randomness of the
constitutive laws which has been investigated by Ostaja-
Starzewski et al. [242] for functionally graded interphases. Sottos
et al. [243] studied thermal stresses in the proximity of fiber in a
unidirectional fiber composite with a hexagonal arrangement of
fibers. In their analysis, the interphase elastic modulus and thermal
expansion coefficient were assumed to vary linearly in the radial
direction. A few years later, Jayaraman et al. [244–246] extended
the work by Benveniste et al. [197] to account for inhomogeneous
interphases and investigated the local thermal and mechanical
stress fields near the fiber in a unidirectional fiber composite.
Mikata [247] used a model based on four concentric circular cyl-
inders for thermomechanical analysis of stress fields in compo-
sites with variable interphase properties. Ru [248] considered a
circular inclusion embedded in an infinite matrix with multilay-
ered graded interphase and proposed a new method to determine
the exact stress fields within the inclusion and the matrix under
thermomechanical loadings.

So far, the authors in the aforementioned papers [243–248]
have been concerned with the local fields throughout the compos-
ite medium. Investigation of the effective properties of composites
with inhomogeneous interphases was carried out in the seminal
works of Theocaris et al. [249,250]. They proposed a multicylin-
der model based on the work of Hashin and Rosen [26] to deter-
mine the overall properties of fiber composites with variable
interphase properties, see Refs. [251] and [253] for similar works
by the same authors. The contributions of Theocaris and his
coworkers in this area were summarized in a book by Theocaris
[252]. Dasgupta and Bhandarkar [254] employed the
Mori–Tanaka method and the generalized self-consistent method
to determine the overall thermomechanical properties of unidirec-
tional composites with multiply coated cylindrical fibers, see Ref.
[255] for ellipsoidal fibers. Herv�e and Zaoui [256,257] derived the
elastic strain and stress fields in an infinite medium comprised of

a multilayered isotropic inclusion embedded in a matrix subjected
to uniform stress or strain conditions at infinity. Via considering
some of the inclusion layers as multilayer interphase, this model
is suited to analyze graded interphases, see Refs. [258] and [259].
Jasiuk and Kouider [260] employed the generalized self-
consistent method and composite cylinder assemblage to predict
the overall elastic moduli of fiber composites embedding inhomo-
geneous interphases with variable elastic constants changing in
the radial direction. Their work was later extended for particulate-
composites by Wang and Jasiuk [184]. They showed that, com-
pared to a uniform interphase, the effect of lacking interphase
homogeneity on the overall properties is more significant when
the particles are stiffer than the matrix, and the effect is negligible
when the matrix is stiffer than the particles, see also [261–263].
Lutz and Zimmerman [264,266,267] obtained closed-form solu-
tions for the effective bulk modulus, shear modulus, conductivity,
and diffusivity of particulate-composites with inhomogeneous
interphases. In their work they allowed the interphase elastic prop-
erties to vary smoothly from the particle to the matrix with a
power-law. This methodology was also employed by the same
authors to estimate the local elastic properties of concretes consid-
ering interfacial transition zones [265].

Composites with rectangular fibers with variable interphase
properties have been examined by Low et al. [268,269] where
they establish a micromechanical model based on the method of
cells to analyze the stress fields and the effective transverse shear
properties of such media. The thermoelastic behavior of compo-
sites with multiple inclusions with functionally graded interphases
was examined by Li [270] and closed-form expressions for effec-
tive thermoelastic moduli of such composites were obtained. Shen
et al. [271–273] proposed a new energy balance equation and
derived a generalized noninteracting solution for the effective
properties of particulate-composites. They used a method in
which the inclusion/interphase system was replaced by an equiva-
lent inclusion and then extended the solution to account for a ran-
dom distribution of inclusions. Via testing a broad range of
parameters such as inclusion to matrix stiffness ratios or inter-
phase thicknesses, Sevostianov and Kachanov [274] improved
Shen’s methodology [271–273]. Analysis of composites with the
periodic distribution of particles surrounded by inhomogeneous
interphases was carried out by Jiang et al. [275] where they
exploited the Mori–Tanaka method and developed a microme-
chanic model to examine the overall properties of such media. Li
et al. [276] conducted a comprehensive study to investigate the
influence of size, interphase thickness, and inclusion shape on the
enhancement mechanism of composites, see [277] for carbon
nanotube composites. Further analytical studies on inhomogene-
ous interphases include [278–286].

1.2.2 Computational Studies. Computational analysis of inter-
phase effects on the overall behavior of heterogeneous materials
has been growing rapidly during the last decades. The two main
techniques that have been widely adopted to carry out computa-
tional studies in this context are the finite element method and the
boundary element method.

Broutman and Agarwal [287,288] elaborated on homogeneous
interphases embedded in a fiber composite via proposing a three-
dimensional finite element solution. They evaluated the stress
fields within the constituents, stress concentrations at the inter-
phase, and the overall mechanical properties of the medium and
showed that for a composite medium with aligned fibers, inter-
phase can improve the overall medium’s toughness. Motivated by
the work of Mandell et al. [347], Tsai et al. [289] conducted a
comprehensive study on the effects of homogeneous interphase
properties on stress and fracture toughness of composites. Devel-
oping an axisymmetric finite element method, they determined the
shear strength of the composite medium and the relationship
between the thickness and shear modulus of the interphase. They
concluded that some factors like fiber diameter, fiber Young’s
modulus, interphase shear strength, and interphase thickness
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greatly contribute to the toughness of the composite. For further
studies on failure analysis of composites with interphases see
[348–355]. Finite element analysis on polymer composites with
coated fibers was carried out by Nassehi et al. [290,291] where the
effects of the interphase on stress distribution around the fibers
were examined. Similar analyses have been carried out by Wu
and Dong [292] and Tsui et al. [293] for coated particles. The
study of interphases in composites with multiple inclusions was
initially conducted by Al-Ostaz and Jasiuk [294] where they stud-
ied the local stress fields in a composite with coated disk-like
inclusions with both random and periodic distribution throughout
the medium. They observed that random distribution of the inclu-
sions yields higher stress concentrations than the periodic distribu-
tion owing to stress localizations. Later, Kari et al. [295] studied
the influence of homogeneous interphase parameters such as stiff-
ness and volume fraction on overall properties of (transversely)
randomly distributed unidirectional fiber composites and ran-
domly distributed spherical particle composites. Using finite ele-
ment analysis, they reported that the overall properties are
significantly affected if the interphase is not stiff enough to trans-
mit the load between the constituents. Further computational stud-
ies on composites with randomly distributed inclusions with
interphases include [296–298].

Gosz et al. [299] are the pioneers of developing the boundary
element method to analyze heterogeneous media with interphases.
They utilized a variationally coupled finite element and boundary
element method to determine the mechanical response of a cell
containing fibers and concluded that the transverse strength of
composites may be enhanced in the manufacturing process by
avoiding the occurrence of isolated fibers or isolated group of
fibers in the matrix. Gulrajani et al. [300] employed a direct differ-
entiation approach and the boundary element method to obtain
optimal values of interphase parameters that minimize the possi-
bility of failure in a composite. Later, Liu et al. [301] employed
the boundary element method to model a unit cell embedding a
single fiber surrounded by an interphase layer representing a com-
posite material. They examined the effects of stiffness and thick-
ness of the interphases on the micromechanical behavior of the
composites. Later, Chen and Liu [302] extended the work to
include multiple cells. Yao et al. [303] incorporated the fast multi-
pole method in a substructuring boundary element method to

model fiber composites with homogeneous interphases. Mogilev-
skaya and Crouch [304] also presented a boundary element
method to solve the problem of an infinite, isotropic elastic plane
embedding a large number of randomly dispersed circular elastic
inclusions surrounded by uniform interphase layers. Via extending
the work of Mogilevskaya and Crouch [304], Wang et al. [306]
employed a boundary element method to examine radially graded
interphases. Computational analysis of inhomogeneous inter-
phases was first carried out by Wacker et al. [191] where they
investigated the effects of Young’s modulus and the thickness of
an interphase layer on the effective properties of fiber composites
using the finite element method, see also [305]. For further contri-
butions to computational analyses of composites with interphases,
the reader is referred to Refs. [306–315] and [326] for homogene-
ous and to Refs. [316–321] and [323–325] for inhomogeneous
interphases.

1.3 State of the Art Review of Interface Models. A well-
established strategy to capture a finite thickness interphase, pro-
posed by Sanchez-Palencia and Pham-Huy [356,357], is to replace
the interphase with a zero-thickness interface model characterized
by certain field jumps. In elasticity problems, the interfacial field
jumps are displacement jump and traction jump. The seminal
works of Hashin [358–360] and Benveniste and Miloh [361] have
meticulously investigated the correlation between the interphase
properties and the field jumps that occur across the interfaces, see
Ref. [362] for a related work. As the characteristic length of a
medium decreases, the significance of the surface and interface
effects become more pronounced, since the area-to-volume ratio
is proportional to the inverse of the dimension. Accounting for
interfaces results in a size-dependent material response
[363–365]. Lack of a physical length-scale and therefore inability
to capture size effects has been regarded as one of the major short-
comings of classical homogenization.

This section introduces the most common interface models
within the framework of elasticity and elaborates on how these
interface models have been taken into account for the analysis of
heterogeneous media. Figure 1 categorizes all the classical inter-
face models together with the extended general interface model
developed in this paper based on the continuity of the

Fig. 1 Classification of the classical interface models together with the extended general interface model
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displacement field across the interface, the continuity of traction
field across the interface, and the interface position.

1.3.1 Perfect Interface Model. A trivial assumption to analyze
the overall behavior of composites is the “perfect condition” at
the interface between the constituents such that the displacement
and the traction fields across the interface remain continuous, as
depicted in Fig. 1. This assumption defines the perfect interface
model. Hence, other interface models with admissible displacement
or the traction discontinuities across the interface, are commonly
referred to as imperfect interfaces. Analysis of composite materials
with perfect interfaces is, in principle, identical to classical homog-
enization discussed in detail in Sec. 1.1. By contrast, imperfect
interface models, gathered in Table 3, shall be discussed next.

1.3.2 Cohesive Interface Model. The second option is to
assume that the traction field is continuous whereas the displace-
ment field experiences a jump across the interface, coaxial to the
interface traction, see Fig. 1. This interface model is commonly
referred to as the cohesive (spring-type) interface model. The
cohesive interface model allows one to represent intermediate
states between perfect bonding and complete debonding. Pioneer-
ing works on cohesive interfaces can be traced back to the 1960s
in the works of Barenblatt [366,367] studying finite strength of

brittle materials, Dugdale [368] investigating the yield phenom-
enon at a crack tip and size of the plastic zone, and Jones and
Whittier [369] examining elastic wave propagation between two
dissimilar planes connected with an elastic bond. The cohesive
interface model has experienced a prolific growth and has been
extensively employed in studying fracture [641–648], adhesive
joints [649–656], delamination [657–662], crack growth
[663–668], bond failure [669,670], screw dislocations [671], grain
boundaries [672–674], and peeling [675]. There is a myriad of other
contributions in the literature investigating these phenomena that
are not mentioned to avoid digression. Here, we focus our attention
on contributions studying the overall behavior of composites
embedding cohesive interfaces within the framework of homogeni-
zation from both analytical and computational perspectives.

1.3.2.1 Analytical studies. Mal and Bose [370] conducted the
first study on the overall behavior of composites embedding ran-
domly distributed inclusions that were imperfectly bonded to the
matrix. They determined the velocity and attenuation of the aver-
age harmonic elastic waves propagating through such a medium.
Four years later, Theocaris et al. [371] investigated the overall
elastic behavior of composites with cohesive interfaces. Analyz-
ing a three-dimensional model including an ellipsoidal inclusion
embedded in an infinitely extended matrix, they reported that the

Table 3 Major analytical and computational contributions on interface models

Cohesive interface Analytical Barenblatt [366,367], Dugdale [368], Jones and Whittier [369], Mal and Bose [370], Theocaris et al. [371], Benve-
niste [372], Benveniste and Miloh [373], Aboudi [374,375], Takahashi and Shan and Chou [376,377], Karihaloo
and Viswanathan [378,379], Hashin [358–360,380], Lipton and Vernescu [364], Levy [381,382], Qu [383], Gao
[384], Lee and Pyo [385], Ju and Chen [386], Esteva and Spanos [387], Othmani et al. [388], Xu et al. [389], Yanase
and Ju [390], Hosseini Kordkheili and Toozandehjani [391], Lee et al. [392,393], Qu [394], Tan et al. [395–397],
Zhao and Weng [398], Liu et al. [399], Shao et al. [400], Brassart et al. [401], Teng [402], Koyama et al. [403],
NafarDastgerdi et al. [404], Duan et al. [405–407], Shen et al. [408,409], Ru and Schiavone [410], Sudak et al.
[411], Ru [412,413], Pagano and Tandon [414,415], Teng [416], Sudak and Mioduchowski [417], Sangani and Mo
[418], Bigoni et al. [419], Sabina et al. [420], Artioli et al. [421], Sevostianov et al. [422], Ghahremani [423], Mura,
Jasuik and Tsuchida [424,425], Mura and Furuhashi [426], Zhong and Meguid [427], Furuhashi et al. [428], Huang
et al. [429], Lee et al. [430], Kouris and Mura [431], Benveniste and Aboudi [432], Shibata et al. [433], Devries
[434,435], Jasiuk et al. [436,437], Lubarda and Markenscoff [438,439], K€onigsberger et. al. [440,441], Fritsch et.
al. [442], He and Jiang [443], Funn and Dutta [444], Qu et. al. [445], He and Liu [446], Shahidi et. al. [447–450],
Eberhardsteiner et. al. [451], Chaboche et. al. [452], Nair et. al. [453], Chen and Li [454]

Computational Owen and Lyness [455], Lene and Leguillon [456], Needleman [457], Steif and Hayson [458], Xu and Needleman
[459], Bisegna and Luciano [460], Wriggers et al. [461], W€urkner et al. [462,463], Zheng et al. [464], Caporale
et al. [465], Achenbach and Zhu [466,467], Zhu et al. [468], Fritzen and Leuschner [469,470], Koutsawa [471],
Nairn [472], Yeh [473], Camacho and Ortiz [474], de-Andr�es et al. [475], Ortiz and Pandolfi [476], Alfano and Cris-
field [477], Mi et al. [478], Gasser and Holzapfel [479], Mergheim and Steinmann [480], Hansbo and Hansbo
[481,482], van den Bosch et al. [483–485], Vossen et al. [486], Ottosen et al. [487,488], Heitbreder et al. [489,490],
Hillerborg et al. [491], Ghosh et al. [492], Wells and Sluys [493], Guo et al. [494], Segurado and Llorca [495], Agh-
dam and Falahatgar [496], Raghavan and Ghosh [497], Fagerstr€om and Larsson [498], Charlotte et al. [499], Ghosh
et al. [500], Aymerich et al. [501], Paggi and Wriggers [502,503], Bouhala et al. [504], Wang et al. [505], Tu and
Pindera [506], Pike and Oskay [507], Wu et al. [508], Rezaei et al. [509,510], Bayat et al. [511]

Elastic interface Analytical Cammarata [512–515], Shuttlewoth [516], Chen et al. [517], Povstenko [518], Gurtin and Murdoch [519–521],
Cahn and L€arch�e [522], Nix and Gao [523], Gao et al. [524,525], Caillerie [526], Lemrabet and Lions [527], Benve-
niste and Miloh [361], Rubin and Benveniste [528], Rizzoni et al. [529], Fried and Todres [530], Fried and Gurtin
[531], Dingreville and Qu [532,533], Dingreville et al. [534,535], Dumont et al. [536], Sharma et al. [537,538],
Yang [539], Sun et al. [540], Duan et al. [406,407,541–543], Huang and Wang [544], Monteiro et al. [545], Huang
and Sun [546], He [547], Lim et al. [548], Chen et al. [549,550], Mi and Kouris [551,552], Mi [553], Le-Quang and
He [554–556], Mogilevskaya et al. [557–560], Jammes et al. [561], Kushch et al. [562–564], Muskhelishvili [565],
Kushch and Sevostianov [566], Benveniste and Miloh [567], Gao et al. [525], Dormieux and Kondo [568,569],
Monchiet and Bonnet [134], Brach et al. [570], Kushch [571] Sharma and Wheeler [572], Yang [573], Chen and
Dvorak [574], Chen [575], Chen et al. [576], Fischer and Svoboda [577], Brisard et al. [578], Li et al. [579], Dong
[580], Javili [581], Javili et al. [582] Nazarenko et al. [583], Chatzigeorgiou et al. [584–586], Dai et al [587] Steig-
mann and Ogden [588,589], Chhapadia et al. [590], Zemlyanova and Mogilevskaya [591,592], Han et al. [593],
Ban and Mi [594], Le [595,596]

Computational Tian and Rajapakse [597,598], Yvonnet et al. [599], Dong and Pan [600], Dai et al. [601], Javili et al. [602–604]
Koutsawa et al. [605], Chen et al. [606–608], Dong and Pan [600], Dong and Lo [609], Dong and Zhang [610],
Zhao et al. [611], Gao et al. [612], Farsad et al. [613], Parvanova et al. [614], Liu et al. [615]

General interface Analytical Hashin [616], Benveniste [617–619], B€ovik [620], Monchiet and Bonnet [621], Gu and He [622], Gu et al.
[623,624], Serpilli et al. [625], Wang and Ye [626], Xu et al. [627], Firooz et al. [628,629], Chatzigeorgiou et al.
[630]

Computational Gu et al. [631], Javili et al. [632,633], Kaessmair et al. [634], Javili [635], Saeb et al. [636–638], Firooz and Javili
[639], Firooz [640]
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particle shape does not influence the effective moduli. This state-
ment was later contradicted by Hashin [380]. Benveniste [372]
established the fundamental concepts in the theory of composite
materials with interfacial displacement discontinuities, see also
[432]. Formulating a general theory, Benveniste defined the repre-
sentative volume averages of the stress and strain fields based on
surface integrals via exploiting average stress and strain theorems
developed by Hashin [676]. Applying the methodology to com-
posite sphere assemblage, he derived the effective shear modulus
of particulate-composites. Similar studies for thermal problems
have been done by Benveniste and Miloh [373]. A continuum
theory to determine the average behavior of unidirectional fiber
composites with admissible interfacial debonding between the
constituents was proposed by Aboudi [374]. Following Ref. [375],
he defined two parameters representing the interfacial resistance
against debonding in normal and tangential directions and devel-
oped closed-form expressions for the effective transversely iso-
tropic properties of such composites. A mathematical model to
predict the transverse elastic moduli of unidirectional fiber com-
posites with cohesive interfaces was presented by Takahashi,
Shan, and Chou [376,377]. To analyze complete debonding, they
adopted the cavity formation model [677] and replaced the fiber
and surrounding cavities with an imaginary anisotropic inclusion
that could only sustain compression. See Refs. [378,379], and
[381] for analysis of stress and displacement fields of debonded
inclusions in an infinite elastic medium.

At the beginning of the 1990s, Hashin carried out a series of
studies on the overall behavior of composites embedding cohesive
interfaces [358–360,380] and demonstrated that the cohesive
interface model is suitable to represent very thin and compliant
interphases. In Refs. [358] and [360], Hashin employed the gener-
alized self-consistent scheme to obtain the thermal and elastic
properties of fiber-reinforced and particle reinforced composites
embedding cohesive interfaces. He then showed that for fiber
composites, the cohesive interface influence on the thermal expan-
sion coefficient, transverse shear modulus, and Young’s modulus
is significant, whereas its influence on the axial thermal expansion
coefficient and axial Young’s modulus is negligible. In Refs.
[358] and [359], Hashin derived the relations between the cohe-
sive interface parameters and interphase elastic properties and
thickness for particulate-composites. In Ref. [380], Hashin gener-
alized the classical extremum principles of elasticity theory to
account for cohesive interfaces in composites and obtain bounds
on the overall elastic moduli of such media. He concluded that
unlike the bounds for a medium with the perfect interface, which
depend only on volume fractions, the bounds for a medium with a
cohesive interface are substantially influenced by the interface
shape. After the works of Hashin, investigation of the behavior of
composites with interfacial debonding gained considerable atten-
tion, and various extensions have been proposed ever since. A
nonlinear cohesive interface model for the dilatational response of
fiber composites was presented by Levy [382]. Qu [383] devel-
oped a modified Eshelby tensor to incorporate cohesive interfaces
and presented an integral form to predict the strain field within an
ellipsoidal inclusion. The advantage of his proposed methodology
was that it was generic and not restricted to certain geometries or
approximations. A similar study has been conducted by Gao [384]
for circular inclusions using Airy stress functions. Lee and Pyo
[385] proposed a multilevel elastic damage model for particulate-
composites based on a combination of a micromechanical model
and a multilevel damage model. Using the micromechanical
model of Ju and Chen [386], Lee and Pyo adopted Eshelby’s ten-
sor for an ellipsoidal inclusion with cohesive interfaces and pre-
dicted the effective elastic behavior of composites embedding
cohesive interfaces. Further studies on Eshelby’s formulation
incorporating cohesive interface models include [387–393].

Qu [394] modified the Mori–Tanaka method to account for
cohesive interfaces and determined the effective moduli of com-
posites with spherical and ellipsoidal inclusions. Tan et al. [395]
used the Mori–Tanaka method to examine the effect of interface

debonding on the overall behavior of particulate-composites with
large volume fractions. They demonstrated that particle size plays
an important role in the behavior of the material with small par-
ticles stiffening the material and large ones leading to lower over-
all stiffness, see also Ref. [396]. A two-dimensional study using
the Mori–Tanaka method was carried out by Zhao and Weng
[398]. To model the debonding, they replaced the isotropic
debonded inclusion with a fictitious transversely isotropic one
whose tensile and shear stresses associated with vertical direction
were zero. Further studies on the Mori–Tanaka method in the con-
text of cohesive interfaces can be found in Refs. [397], and
[399–404] among others.

The interfacial bonding conditions have been thoroughly inves-
tigated by Duan et al. [405]. They derived the local and average
stress concentration tensors for inhomogeneities using four differ-
ent interface models of which two had admissible displacement
jumps across the interface. A few years later, Duan et al.
[406,407] proposed a framework based on a replacement proce-
dure and the generalized self-consistent method. Via replacing the
inhomogeneity/interface system with an equivalent inclusion, they
obtained the elastic properties of fiber and particulate-composites.
Analysis of the stress fields throughout the constituents of a com-
posite medium comprising a cohesive interface was carried out by
Shen et al. [408] where they proposed a semi-analytic solution
using the complex variable technique for the problem of an ellip-
tic inclusion with homogeneously imperfect interface in antiplane
shear. They showed that the effect of the cohesive interface
parameter on the average stress inside the inclusion increases in
correlation with the aspect ratio of the ellipse, see also [409]. Ru
and Schiavone [410] and Sudak et al. [411] developed rigorous
solutions for the problem of a circular inclusion in an infinite
matrix with a circumferentially inhomogeneous interface in
between. They showed that, in contrast to the results reported by
Hashin [359] and Gao [384], for antiplane deformation, under a
remote uniform antiplane stress field, the state of stress inside a
circular inclusion remains uniform, see Ref. [413] for similar stud-
ies. Later, Ru [412] utilized the cohesive interface model to pro-
pose a framework for designing composites with neutral
inclusions. In such media, the inclusions do not disturb the pre-
scribed uniform stress field in the surrounding elastic body. Ther-
moelastic properties of fiber composites with interfacial
debonding and slippage have been investigated by Pagano and
Tandon [414,415]. They demonstrated that interfacial debonding
has negligible effects on the longitudinal Young’s modulus and
thermal expansion coefficient. In addition, they showed that
imperfect interface conditions yield a mathematical and physical
mismatch between the strain field calculated using the volume
average theory versus surface measurements and reported that this
mismatch renders the effective stiffness tensor to be unsymmetric,
see also Refs. [416] and [417].

Failure of brittle composites has been investigated by
K€onigsberger et al. [440,441] where they extended the continuum
micromechanics framework to analyze cracking in the interfacial
transition zone in concrete. They proposed a multiscale model
that relates the macroscopic stress to the average of the stresses in
the aggregates as well as the tractions acting on the aggregates
surfaces, thereby predicting the location of the potential micro-
cracks due to macroscopic loading. Further studies on brittle fail-
ure of interfaces include [442].

Most of the aforementioned studies considered single inclusions
in their analyses. The works considering multiple inclusions
include Sangani and Mo [418] in which they considered the prob-
lem of multiple spherical inclusions interacting with each other in
a matrix and developed a method to calculate the effective proper-
ties of such medium. Bigoni et al. [419] applied the problem of
circular inclusions with imperfect bonding to crack propagation
and homogenization of dilute, periodic composites. Sabina et al.
[420] utilized the asymptotic homogenization method to deter-
mine the complete set of effective elastic moduli for two-phase
fibrous periodic composites with imperfect contact conditions of

040802-8 / Vol. 73, JULY 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/73/4/040802/6735866/am

r_073_04_040802.pdf by Bilkent U
niversitesi user on 05 M

arch 2022



linear spring type, see also [421]. Sevostianov et al. [422] con-
ducted a comprehensive comparative study on different
approaches to model imperfect interfaces for fiber reinforced com-
posites with a periodic distribution of fibers. They demonstrated
that the differential approach, the three-phase model with conse-
quent homogenization, and the spring interface model yield
almost the same solutions for the effective elastic moduli when
the inclusion to matrix stiffness ratio is between 0.01 and 100.

A simplification that can be applied to the cohesive interface
model is to assume that the displacement jump only occurs in the
interface tangential direction and not in its normal direction. Such
problems are commonly referred to as sliding inclusions. Ghahre-
mani [423] investigated the sliding phenomenon in composites for
the first time and obtained the solution for a sliding spherical inho-
mogeneity embedded in an isotropic elastic medium subjected to
uniform tension at infinity. Further studies on spherical sliding
inclusions were carried out by Mura, Jasuik, and Tsuchida
[424,425] where they analyzed the elastic fields in a composite
under pure shear and uniaxial tension loading at infinity. They
reported that, unlike the perfect bonding condition, the stress field
is not uniform in a sliding inclusion and this effect is more pro-
nounced when the inclusions is stiffer than the matrix. Mura and
Furuhashi [426] extended the work by Ghahremani [423] to ellip-
soidal inclusions using the Somigliana dislocation theory [678].
They concluded that under uniform shear eigenstrains, a sphere
always deforms to an ellipsoid whereas an ellipsoid restores its
shape and orientation by rotation after the material deformation.
For further studies on modeling interfacial debonding in compo-
sites using Somigliana dislocation theory see Refs. [427] and
[679]. Furuhashi et al. [428] compared the elastic fields within the
spherical and ellipsoidal inclusions subject to various loadings.
Huang et al. [429] extended the work [426] via introducing fric-
tion at the interface of inclusion and matrix, and presented exact
analytical solutions for the stress fields in constituents via modify-
ing Eshelby’s problem to incorporate sliding inclusions. Lee et al.
[430] presented an exact elasticity solution for a circular sliding
inclusion embedded in a half plane matrix and determined the
stress and displacement fields in the constituents. They observed
that the sliding yields higher stress concentrations whose magni-
tude depends on the size and location of the inclusion. A similar
study was carried out by Kouris and Mura [431]. A continuum
theory for a fiber composite with admissible tangential debonding
between the constituents was developed by Benveniste and
Aboudi [432]. They applied their theory to investigate debonding
effects on wave propagation in boron/epoxy composites with rec-
tangular fibers. Prediction of the overall properties of composites
containing sliding inclusions has been originally addressed by
Shibata et al. [433] where they determined the overall shear mod-
ulus and the Poisson ratio of a composite embedding sliding
spherical inclusions. They first analyzed the problem with a single
inclusion to determine the tangential traction due to sliding and
then incorporated the effects of other inclusions using a successive
iteration method. Later, Devries [434,435] presented closed-form
constitutive relations for the overall behavior of periodic fiber
composites. Considering only tangential slipping between the
fibers and the matrix, Devries obtained bounds and estimates for
the effective moduli of such media. Jasiuk et al. [436,437] deter-
mined the overall elastic moduli of composites with sliding inclu-
sions using four micromechanical techniques; the generalized
self-consistent method, the self-consistent method, the
Mori–Tanaka method, and the differential scheme. For further
studies on sliding inclusions in heterogeneous materials see
Lubarda and Markenscoff [438,439].

The cohesive interface model can also be extended to account
for viscosity effects, commonly referred to as the viscous interface
models. In the viscous interface model, the interface is regarded
as a viscous membrane type medium where the interface traction
is related to the displacement jump across the interface including
interface viscosity [443,447]. The viscous interface model can be
employed to understand the behavior of materials with organic-

inorganic phases or materials rendering damping behavior, but
such interface models can also allow for sliding inclusions as well
as fluid interfaces. It has been shown [444,445,448,449] that the
viscosity at the interface can play an important role in the struc-
tural integrity and creep behavior of composites. For instance, He
and Liu [446] studied the mechanical damping of fiber reinforced
composites with viscous interfaces. Using the composite cylinder
assemblage approach, they obtained explicit expressions for spe-
cific damping capability composites embedding viscous interfa-
ces. Shahidi et. al. [447] adopted a micromechanics continuum
theory to formulate viscous interfaces into creep laws at the con-
tinuum scale for materials embedding a non-creeping solid matrix
with confined fluid-filled interfaces. Further studies on viscous
interfaces can be found in Refs. [450–454].

1.3.2.2 Computational studies. Computational studies on the
cohesive interface model in composites can be traced back to the
work of Owen and Lyness [455] where they examined debonding
of a single fiber embedded in a matrix using the finite element
method. Lene and Leguillon [456] employed the homogenization
method in conjunction with finite element analysis to find the
effects of imperfect bonding on the effective moduli of fiber com-
posites. They found that there exists a specific spring constant for
the interface beyond which the overall material stiffness decreases
drastically. Employing a cohesive interface model, Needleman
[457] developed a unified framework to describe the process of
void nucleation in periodic particulate-composites starting from
initial debonding until complete separation. In his constitutive
equations, increasing the interfacial separation requires the trac-
tion across the interface to increase until it reaches a maximum.
Further separation results in a decrease in traction until it vanishes
which signifies complete decohesion. Steif and Hayson [458]
showed that the longitudinal modulus of fiber composites embed-
ding dilute concentration of fibers with the interfacial debonding
condition can be written in terms of the perturbations that a single
fiber induces in the displacement field in a homogeneous medium
subject to a far field uni-axial tension. Formulating the proper
boundary value problem, they calculated the perturbed displace-
ment field and determined the medium overall longitudinal modu-
lus in terms of the potential energy using the finite element
method. Bisegna and Luciano [460] formulated the homogeniza-
tion problem of periodic composites with nonlinear hyperelastic
constituents embedding debonded frictionless interfaces. Using
the finite element method, they obtained bounds on the homoge-
nized free-energy density functional of the medium. Wriggers
et al. [461], conducted a computational investigation on the
effects of interface strength and debonding on the macroscopic
response of fiber-reinforced composites with a random distribu-
tion of aligned fibers. They showed that the degree of debonding
directly correlates with the loss of macroscopic stiffness of the
material. Periodic fiber composites embedding cohesive interfaces
were studied by W€urkner et al. [462,463] using the finite element
method where they determined the overall moduli of such
medium and compared them with the results obtained with com-
posite cylinder assemblage. Inspired by the works [680,681],
Zheng et al. [464] proposed a dual effective-medium and finite
element study to examine the interfacial partial debonding effects
on the elastic stiffness of composites with aligned elliptic fibers,
see also Caporale et al. [465].

Besides the finite element method, various techniques have
been developed to model interfacial debonding in composites.
The pioneering works on cohesive interfaces using the boundary
element method were carried out by Achenbach and Zhu
[466,467] where they studied transverse loading of a composite
with the rectangular distribution of fibers. Substituting the inter-
phase with a cohesive interface model, they determined the over-
all moduli of the medium and found that the interface parameters
significantly influence the stress fields in the constituents. Zhu
et al. [468] developed an efficient three-dimensional extended
finite element method to model curved cohesive interfaces and
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then predicted the effective elastic moduli of composites embed-
ding such interfaces. Fritzen and Leuschner [469,470] developed
a reduced-order model to predict the nonlinear response of hetero-
geneous materials embedding nonlinear cohesive interfaces. They
examined a unidirectional fiber composite consisting of a visco-
plastic matrix and a viscoelastic interface and demonstrated that
the reduced-order model can be exploited to analyze rate-
dependent effective moduli and interface-induced size effects.
Koutsawa [471] extended the mechanics of structure genome to
piezoelasticity and investigated the effective electro-elastic prop-
erties of composites embedding the spring-type interface model.

While the majority of the contributions on the topic, from a
computational perspective are dealing with FEM and BEM, other
approaches such as the material point method [472] have also
been utilized to formulate the cohesive interface model. In the
context of computational analysis on fracture and failure of com-
posites, numerous contributions are available in the literature.
Yeh [473], developed a finite element method to investigate fail-
ure mechanisms and the ultimate strength of fiber-reinforced com-
posites with admissible interfacial debonding between the fiber
and the matrix. Xu and Needleman [459] conducted a numerical
analysis on size dependent dynamic crack growth in a continuum
composed of a set of cohesive surfaces. Their constitutive relation
for the cohesive surfaces allowed for the formation of new surfa-
ces and their dimensional analysis was capable of capturing size
effects. Camacho and Ortiz [474] developed a Lagrangian finite
element method for fracture and fragmentation in brittle materials
using a cohesive-law fracture model. Later, via generalizing the
cohesive element of de-Andr�es et al. [475], Ortiz and Pandolfi
[476] extended the work in [474] to the three-dimensional setting
and developed a cohesive element with a class of irreversible cohe-
sive laws suitable to accurately track dynamic growth of cracks.
Alfano and Crisfield [477], carried out a finite element analysis of
the delamination in laminated composites using an interface dam-
age model [478]. For further computational studies on applications
of cohesive interfaces in fracture and failure in composites see
Refs. [479,491–495], and [497–511], among others.

1.3.3 Elastic Interface Model. The third option is to assume
that the displacement field is continuous across the interface while
the traction field across the interface is allowed to experience a
jump due to (tangential) interfacial stresses [512,516] in accord-
ance with the generalized Young–Laplace equation
[517,518,682]. This interface model is commonly referred to as
the elastic (stress-type) interface model since it is an immediate
consequence of the surface elasticity theory [519].

1.3.3.1 Analytical studies. The pioneering works of Gurtin
and Murdoch [519,521] laid the mathematical foundation of
incorporating surface stresses into classical continuum mechanics
leading to the elastic interface model [520], see also Ref. [683]. In
Gurtin–Murdoch surface elasticity theory, a surface can be
regarded as a thin layer perfectly attached to the bulk with no slip-
ping nor delamination. The material parameters of a surface/inter-
face are assumed to be independent of the bulk material. Various
theoretical studies have been carried out to generalize the
Gurtin–Murdoch model [522–525,588,589]. For further studies
investigating surface and interface effects in solids see Refs.
[513–515,530,532–535,590], and [684–695] and the review by
Javili et al. [602]. Applications of the Gurtin–Murdoch theory
have emerged in a wide spectrum of studies among which, investi-
gation of interface effects in heterogeneous materials has been a
subject of increasing interest. Caillerie [526] showed that the elas-
tic interface model is suitable to represent stiff interphases and
depending on the degree of the interphase stiffness with respect to
the matrix and inclusions, four different regimes of elastic interfa-
ces could be identified, see also [527].

After almost two decades, Benveniste and Miloh [361] carried
out a more generic study and demonstrated that depending on the
degree of stiffness of interphases with respect to their neighboring

materials, there exist seven distinct regimes of interface options
which essentially boil down to perfect bonding and the two elastic
and cohesive interface models with various interface parameters.
Concentrating on the elastic interfaces, they derived the interface
conditions and parameters based on a formal asymptotic expan-
sion for the displacement and stress fields in the interphase, see
Refs. [528,529], and [536] for similar studies. After the seminal
work of Benveniste and Miloh [361], a significant body of litera-
ture has been dedicated to finding the elastic states in the constitu-
ents and overall properties of heterogeneous materials. Sharma
et al. [537,538], combined the surface elasticity theory with Eshel-
by’s formalism to analyze inhomogeneities of circular and spheri-
cal shapes bonded to their surrounding medium with an elastic
interface. They derived closed-form expressions for the elastic
state of inhomogeneities in a variational manner and concluded
that the inclusions with a constant curvature admit a uniform elas-
tic state. Yang [539] examined the influence of the surface energy
on the effective modulus of an elastic composite material contain-
ing spherical nanovoids and reported that the effective moduli of
such composites are not only size dependent but also strain
dependent. Sun et al. [540], derived a new expression for the bulk
modulus for a particle-reinforced composite at large deformations
and questioned the results reported by Yang [539] by demonstrat-
ing that constant surface stress independent of the elastic strain
should have no influence on the effective shear modulus. Later,
Duan et al. [541] derived the interior and exterior field solutions
for a spherical inclusion embedded in a matrix with interface
stress effects subjected to a uniform eigenstrain in the inclusion
and remote uniform stress.

Exploiting the composite sphere assemblage method, the
Mori–Tanaka method, and the generalized self-consistent method,
Duan et al. [542] established a generalized micromechanical
framework to account for interface stress effects on the effective
moduli of composites containing nano-inhomogeneities. Theoreti-
cal frameworks to study elasticity problems for multiphase materi-
als embedding elastic interfaces at finite deformations were
proposed by Huang and Wang [544] and Monteiro et al. [545].
Afterward, Huang and Sun [546] examined the change of the elas-
tic fields induced by the interface energy and interface stresses in
a finite deformation setting. They concluded that during the defor-
mation, the shape, size, and curvature tensor of the interface will
change, which is in contradiction to the works of Sharma and
Ganti [538] and Duan et al. [541]. He [547] studied surface
stresses in elastic isotropic solids with nanovoids and showed that
when the voids are spherical with identical sizes, certain hydro-
static loads applied on the outer boundary result in uniform stress
and strain fields within the medium. Afterward, Lim et al. [548]
considered a solid with nano-inclusion under a non-hydrostatic
load and demonstrated that the interface stress renders the elastic
field in the inclusion to depend on both inclusion size and nonuni-
formity. Using a variational approach, Chen et al. [549] derived
the energy potential incorporating surface effects for fiber compo-
sites. A similar study has been carried out for particulate-
composites in Chen et al. [550]. Through a displacement potential
formulation, Mi and Kouris [551] demonstrated that the interface
effects on the stress distribution in the matrix are more pro-
nounced when the particles are soft whereas an opposite effect
holds within the particles themselves. See Refs. [551–553] for the
solutions of similar problems with a single circular or spherical
inhomogeneity embedded in an infinite half-space. Le-Quang and
He [554,556] extended the generalized self-consistent method to
account for elastic interfaces to determine thermoelastic properties
of fiber- and particle-reinforced composites, see Ref. [555] for the
associated bounds on effective elastic moduli. Duan et al.
[406,407] employed the generalized self-consistent method and
the Eshelby equivalent inclusion method to predict the effective
moduli of multiphase composites embedding spherical particles or
cylindrical fibers with elastic interfaces.

The solution of the nano-inhomogeneity in an infinite matrix is
an important fundamental problem and its utility becomes more
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apparent when its extensions are considered. These extensions
include considering noncircular or nonspherical inhomogeneities
or having multiple inclusions interacting with each other through-
out the medium. A remarkable contribution on this topic by Mogi-
levskaya et al. [557] compares the original Gurtin–Murdoch
interface model with a thin membrane-type interphase layer and
demonstrates the validity of the approach in solving multi-
inclusion problems, see also Ref. [561]. They also highlight the
differences between the original theory of Gurtin and Murdoch
and the simplified models in Refs. [206,537,538,541], and
[696–698] and clarify the shortcomings that each simplification
entail. Following their work [699], Mogilevskaya et al. [558]
established a framework where periodic and random composites
with inclusions interacting with each other were replaced by an
equivalent inhomogeneity in an infinite plane. Their work was fol-
lowed by a systematic study on nanocomposite systems in Ref.
[559]. Similar studies using a vectorial spherical harmonics
approach for multiple interacting inclusions have been carried out
by Kushch et al. [562–564]. Tian and Rajapakse [597,598] studied
the elastic field of a nanoscale elliptical inhomogeneity embedded
in an infinite matrix with an elastic interface in between. Via
employing the complex variable technique of Muskhelishvili
[565], they showed that the elastic field of an elliptic inhomogene-
ity under uniform eigenstrain is no longer uniform when interfa-
cial stress effects are taken into account, see also Ref. [566].
Benveniste and Miloh [567] investigated the possibility of modi-
fying the contact mechanism between the inhomogeneity and the
matrix in a composite medium using the elastic interface model so
as to achieve inhomogeneity neutrality that would maintain the
stress field within the matrix undisturbed. Moreover, the strength
properties of ductile nanoporous materials with interface stress
effects have been studied in Refs. [568–570] in a nonlinear
homogenization framework.

One of the major shortcomings of the Gurtin–Murdoch theory
was that the interface was modeled as a zero thickness layer with-
out resistance against bending. This issue was addressed by Steig-
mann and Ogden [588,589] where they generalized the
Gurtin–Murdoch model via incorporating the flexural resistance
into the interface model. Via connecting the Steigmann–Ogden
theory to atomistic simulation, Chhapadia et al. [590] investigated
the effective elastic modulus of a nanostructured beam using
curvature-dependent surface energy. Zemlyanova and Mogilev-
skaya [591,592] proposed a solution for the problem of single
spherical and circular inhomogeneity embedded in a matrix with
Steigmann–Ogden interface. Han et al. [593] extended their stud-
ies to account for multiple interacting inclusions. Gao et al. [525]
studied the curvature-dependence of the interfacial energy and
formulated interfacial energy together with an interface stress
model resulting in a micromechanical framework to determine the
overall elastic properties, see also Ref. [594]. Further analytical
studies on the subject of the overall behavior of heterogeneous
materials embedding elastic interfaces can be found in Refs.
[571–587,595,596,603], and [604].

1.3.3.2 Computational studies. Besides the analytical approaches,
substantial progress has been made in computational studies of
interface elasticity. Tian and Rajapakse [700] presented a two-
dimensional finite element formulation for analysis of multiple
arbitrary shaped anisotropic inclusions in an anisotropic matrix
having elastic interfaces in between. Yvonnet et al. [599] devel-
oped a computational technique combining the level set method
and the extended finite element method to analyze interface
effects described by the elastic interface model and to determine
the size-dependent effective elastic moduli of nanocomposites.
Dong and Pan [600] proposed a boundary element method to ana-
lyze the stress field in nano-inhomogeneities with elastic interface
effects. Considering the inhomogeneities’ interactions, they stud-
ied the effects of different inhomogeneities’ shapes and interface
material parameters on the overall material response. Javili et al.
[602] presented a couple-field finite element method to study the

thermomechanical behavior of materials embedding Kapitza inter-
faces. Later, Javili et al. [603] developed a computational homog-
enization framework for micro- to macrotransitions of porous
media that accounts for size effects due to surface elasticity at the
microscale. See Ref. [604] for a curvilinear-coordinate-based
finite element methodology for the computational implementation
of the surface elasticity theory.

Dai et al. [601] developed a new methodology to analyze com-
posites with periodic distributions of inclusions connected to the
matrix with elastic interfaces imposing periodic boundary condi-
tions. Using FEM, they showed that when the shear modulus of
the inclusions exceeds twice the shear modulus of the matrix,
inclusion and matrix can be treated as being perfectly bonded.
Moreover, they demonstrated that when the volume fraction of the
inclusions is less than 9%, the interfacial stress can be approxi-
mated using a single inclusion with the same volume fraction
embedded in an infinite plane. Koutsawa et al. [605] proposed the
mechanics of the structure genome model to analyze nanocompo-
sites embedding elastic interfaces. They exploited the full field
micromechanics approach to predict the overall properties of com-
posites containing nano-inhomogeneities. Chen et al. [606,607]
incorporated interface elasticity into a finite volume-based
homogenization theory to analyze materials embedding nanosized
cylindrical voids with circular and ellipsoidal cross section. See
Chen et al. [608] for a critical comparison between the perform-
ance of the finite element and finite volume method in determin-
ing the response of nanoporous materials embedding energetic
surfaces and interfaces. Dong and Pan [600] examined the stress
field in nano-inhomogeneities with different shapes. They pro-
posed a boundary element method formulation in conjunction
with the Gurtin–Murdoch interface model and investigates the
elastic behavior of composites embedding inclusions with arbi-
trary shapes. Dong and Lo [609] employed BEM to analyze the
stress state in an elastic half-plane containing nano-
inhomogeneities with surface and interface effects. Their method
was extended to three-dimensional (3D) in Ref. [610]. Zhao et al.
[611] developed a hybrid smoothed extended finite element/level
set method to model nano-inhomogeneities with interfacial energy
effects. In their methodology, the finite element mesh can be com-
pletely independent of the interface geometry. They showed that
considering interfacial effects, the energetically favorable shape
for the inhomogeneities depends on the inhomogeneity size, misfit
strain as well as elastic properties of the surrounding bulk mate-
rial. Further computational studies on the surface and interface
elasticity include [612–615].

1.3.4 General Interface Model. The fourth option assumes
that both displacement and traction jumps across the interface are
admissible as illustrated in Fig. 1. This interface model is a more
inclusive model compared to the previously introduced interface
models and is referred to as the general interface model. Note, for
the general interface model, the interface always coincides with
the midlayer. From the perspective of deriving the previous inter-
face models as asymptotic limits of thin interphases, the cohesive
interface model is derived as the limit case of soft interphases and
the elastic interface model is obtained as the limit case of stiff
interphases, see Wang et al. [362] while the general interface
model covers the whole spectrum in between.

1.3.4.1 Analytical studies. The general interface model was
originally proposed by Hashin [616] where he derived “imperfect”
interface conditions representing the effect of thin interphases
with no restriction on the magnitude of the interphase stiffness.
Hashin also derived the effective elastic moduli of a unidirectional
coated fiber composite embedding general imperfect interfaces
and showed that the general interface model is valid for the whole
range of interphase stiffness, from very small to very large. The
analysis carried out by Hashin was restricted to isotropic inter-
phases. Benveniste [617] generalized the approach adopted by
B€ovik [620] and developed a general interface model to capture
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the effects of anisotropic interphase between two anisotropic
media. Based on the works of B€ovik [620] and Benveniste [617],
Monchiet and Bonnet [621] extended the concept of a general
imperfect interface to viscoplastic materials via a Taylor expan-
sion approach. Later, Benveniste [618] formulated approximate
models of thin interphases in plane-strain elasticity in which inter-
phase properties were variables. Benveniste replaced the inter-
phase with the general interface model and calculated the
interfacial displacement and traction jump conditions, see Benve-
niste [619] for a similar study on thermal problems. Gu and He
[622] introduced two orthogonal projection operators determining
interfacial continuity and discontinuity of the field variables and
obtained coordinate-free interfacial relations involving the surface
decomposition of linear constitutive laws. Using their relations,
Gu and He derived a general imperfect interface model for
coupled multifield phenomena by applying a Taylor expansion to
a three-dimensional curved thin interphase embedded between its
two neighboring materials, see a similar study carried out by Gu
et al. [623] in the context of thermal conduction. Serpilli et al.
[625] derived the governing equations for general imperfect inter-
faces in a linear multiphysics framework for composite material.
They adopted the asymptotic expansions technique via defining a
general multiphysics interface law and derived zero and higher-
order interface models for soft, hard, and rigid interphases. Gu
et al. [624] derived estimates for the effective bulk and shear mod-
uli of isotropic particulate-composites with general interfaces by
using the generalized self-consistent scheme. They compared their
results against a three-phase model comprising interphase
between the constituents and observed excellent agreements, see
also Ref. [626]. A similar study was conducted by Xu et al. [627]
for fiber reinforced composites.

Firooz et al. [628,629] developed a unifying framework to
determine the overall behavior of fiber- and particle-reinforced
composites embedding general interfaces. In their study, they
extended the composite cylinder assemblage, the composite
sphere assemblage, and the generalized self-consistent scheme to
account for general interfaces and obtained size-dependent effec-
tive elastic properties of composites. Furthermore, via incorporat-
ing the general interface model into the Mori–Tanaka method,
they proposed a methodology to determine the average strain and
stress fields within the constituents of a composite. They com-
pared their analytical solutions against computational results
obtained by the finite element method and observed a remarkable
agreement, see also Chatzigeorgiou et al. [630].

1.3.4.2 Computational studies. Computational studies on gen-
eral interfaces are fairly limited since this class of interfaces is
comparatively new. Gu et al. [631] provided the preliminary steps
for a numerical implementation of the work presented in [622] via
establishing the weak form for the boundary value problem of
composites embedding general imperfect interfaces in the context
of transport phenomena, elasticity, and piezoelectricity. Javili
et al. [632] established the computational framework for the gen-
eral interface model at finite deformations. They presented a ther-
modynamically consistent formulation and governing equations of
general imperfect interfaces and provided a detailed finite element
implementation to study the behavior of heterogeneous materials
embedding general interfaces; a similar study was conducted for
thermal problems in Ref. [633]. Kaessmair et al. [634] developed
a thermodynamically consistent theory for general interfaces in
view of their thermomechanical behavior. They established a uni-
fied computational framework to model all classes of such interfa-
ces using the finite element method. The variational formulation
of generalized interfaces within the finite deformation continuum
mechanics setting was presented by Javili [635] where he showed
that elastic and cohesive interface models naturally represent two
limit cases of the general interface model. A parametric study on
the role of generalized interfaces in the overall material response
has been carried out by Saeb et al. [636] for fiber composites and
Firooz and Javili [639] for particulate-composites. Saeb et al.

[637] presented a systematic study to obtain size-dependent
bounds on the response of composites embedding general interfa-
ces within a computational homogenization framework. Conduct-
ing computational analyses on periodic microstructures, they
found that their response approaches asymptotically to an upper
bound. Saeb et al. [638] investigated the influence of a degrading
general interface on the failure of composites. They observed that
in the presence of general interfaces with damage, DBC and TBC
may not necessarily provide bounds for random microstructures,
in contrast to classical computational homogenization.

1.4 Significance of the Interface Position. Although numer-
ous contributions in the literature have studied the aforementioned
interface models, only very few have investigated the importance
of the interface position. For the elastic interface model, due to
the vanishing displacement jump, the interface always coincides
with the two interphase sides, and thus, the interface position
becomes irrelevant. For the cohesive interface model, the topic of
the interface position is commonly dismissed since the traction-
separation law relates the traction to the displacement jump across
the interface. Clearly, the interface position plays no role in evalu-
ating the displacement jump and thus, it does not contribute to the
governing equations associated with the interfacial behavior.
When developing cohesive zone laws, special care must be taken
to sufficiently satisfy the angular momentum balance at large
deformations. In a continuum body, the symmetry of the Cauchy
stress a priori ensures the angular momentum balance. This cannot
be enforced for the cohesive zone models since the stress tensor
does not exist by definition. The only equilibrium requirement is
the continuity of traction which does not guarantee the moment
balance at large deformations.

A commonly accepted methodology to overcome this difficulty
is to postulate that the traction vector is coaxial to the displace-
ment jump across the interface. Ortiz and Pandolfi [476] devel-
oped a three-dimensional cohesive element for finite deformation
analysis together with a class of irreversible cohesive laws that
were compatible with the conventional finite element discretiza-
tion of the bulk material. While considering different weights for
the sliding and normal opening displacements at the interface, the
interface in their model was intuitively assumed to be in the mid-
dle of the two dissimilar opening materials. Gasser and Holzapfel
[479] developed three different finite element formulations with
embedded strong discontinuities based on the enhanced assumed
strain method. They proposed an explicit expression for a trans-
versely isotropic traction law in the form of a displacement-
energy function assuming that softening phenomena in the cohe-
sive zone is modeled by a damage law. To model the cohesive
zone, they introduced a fictitious discontinuity surface in the
deformed configuration which, conventionally, was located in the
middle of its adjacent surfaces. Mergheim and Steinmann [480]
introduced a discontinuous finite element method for computa-
tional modeling of strong and weak discontinuities in a geometri-
cally nonlinear elasticity setting. They applied Nitsche’s method
[701] in their variational formulation for weak discontinuities
which yielded a weighted average term for the Piola stress in their
interfacial cohesive energy where they assumed the interface to be
at the midplane of its adjacent constituents. Hansbo and Hansbo
[481] also adopted a weighting factor for averaging the parameters
across the interface and proposed a computational approach for
the finite element solution of elliptic interface problems, using
Nitsche’s method, see also Ref. [482]. van den Bosch et al. [483]
showed that most of the cohesive zone models are suited for small
deformations only and proposed a large displacement formulation
to overcome the issues of the classical approaches. They also
introduced a 3D cohesive zone element and elaborated its numeri-
cal implementation in which the formulations were derived with
respect to a midline between the two opening parts of the cohesive
zone, see also van den Bosch et al. [484,485]. Vossen et al. [486]
and Ottosen et al. [487] demonstrated that the commonly adopted
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traction-separation laws do not necessarily satisfy the balance of
angular momentum at the cohesive element level resulting in an
error which becomes significant at large deformations concluding
that the traction vector must be collinear with the displacement
jump, see also Refs. [488] and [489].

Figure 2 schematically illustrates finite thickness interphase and
its equivalent zero-thickness interface model. For uniform inter-
phase (left), the interface is situated at the center of its associated
interphase. For graded interphase (right), the interface is off-
center and its position must be shifted toward the stiffer side of its
corresponding interphase. The correct interface position can be
obtained via comparing the interface model with direct numerical
simulations of its associated interphase. While many contributions
consider the interphase as an isotropic and homogeneous phase, a
realistic analysis should take into account the effects of interphase
anisotropy and heterogeneity. It can be shown that if the interface
is assumed to coincide with the midplane, in general, it cannot
capture the overall behavior of graded interphases. For the general
interface model, since both interface elasticity and opening are
admissible, the position of the interface plays a crucial role at
large as well as small deformations. Nonetheless, the interface
position has been commonly disregarded in the development of
the general interface model by assuming that the interface is
located at the midlayer between its bulk neighbors. This simplifi-
cation sufficiently satisfies the interface rotational equilibrium and
can lead to the conclusion that the only admissible position for the
interface is the midplane [702]. We argue that not only this simpli-
fication is not necessary, but also it defeats the utility of the gen-
eral interface model to replace nonuniform interphases, as
demonstrated in Ref. [703]. Therefore, it is imperative to intro-
duce an extended general interface model that allows for arbi-
trary interface positions.

1.5 Objectives and Key Features. In this contribution, we
revisit the controversial issue of the interface position in general
interfaces via introducing a weighted average operator and dem-
onstrate that the interface does not need to be necessarily
restricted to the midlayer. Therefore, we rigorously establish an
extended general interface model that can assume any arbitrary
position between its neighbors and still fulfill the rotational equi-
librium condition. Our proposed interface model is capable of
recovering all the aforementioned interface models in Sec. 1.3,
see Fig. 1. In addition to the detailed review on the subject, the
key features and contributions of this paper are:

� to develop an extended general interface model as depicted
in Fig. 1, with arbitrary interface positions via introducing
the weighted average operator;

� to show that the commonly accepted general interface model
is a subclass of the extended general interface model and can
be recovered if the weighted average operator is replaced by
the classical average operator;

� to incorporate the extended interface model into homogeni-
zation and to develop bounds and estimates on the size-
dependent effective properties of fiber-reinforced and
particle-reinforced composites;

� to provide a comprehensive comparison between the
extended general interface model and the already existing
interface models;

� to carry out an exhaustive numerical study to compare the
analytical and computational results.

Remark on accounting for softening at the interface. The pro-
posed extended general interface model encloses the general inter-
face model, see Fig. 1. The general interface model itself recovers
both the cohesive interface model and the elastic interface model.
Hence, the extended general interface model recovers anything
that a cohesive interface model or an elastic interface model can
capture, but it also covers more complex interfacial behavior. The
extended general interface model here can, in principle, account
for softening too. However, we have limited the discussion here to
linear elasticity for the sake of simplicity only. More precisely,
the interface orthogonal (out-of-plane) response, commonly
referred to as traction-separation law, can be nonlinear and it may
as well include damage and softening. Accounting for softening in
the traction-separation description of a cohesive zone model trans-
lates in the current context to accounting for interface damage in
the constitutive law. In the current model, since the interface has
both out-of-plane response (similar to the cohesive interface
model) and in-plane response (similar to the elastic interface
model), accounting for interface damage requires further elabora-
tion to distinguish between orthogonal damage and tangential
damage on the interface, similar to taking damage into account for
the general interface model investigated in Ref. [638]. The frame-
work here is focused on the kinematics and kinetics of the prob-
lem at hand. More complex traction-separation laws can be
introduced through a different constitutive model at the interface.
Leaving out “softening” in the discussion here is not a shortcom-
ing of the model but it is rather an assumption to have less compli-
cated analytical expressions. Similar to softening, the interface
model itself is generic enough to allow for debonding and damage
too. Nonetheless, we have excluded this aspect for the sake of
brevity. See, for instance, Refs. [704] and [705] for debonding
and damage at the interface. Apart from softening at the interface,
softening of the bulk material itself is important too, but it is also
omitted from the discussion here. In particular, according to Ref.
[706], it may not be possible to define an RVE in the presence of
softening. For the current zero-thickness interface model, how-
ever, it is possible to retain the notion of RVE if softening and
damage occur only at the interface enclosed within the domain.

1.6 Notations and Definitions. Throughout this paper, vector
quantities are denoted by lowercase bold letters, tensorial quanti-
ties are denoted by uppercase bold letters, third-order tensors are
denoted by lowercase blackboard letters, and fourth-order tensors
are denoted by uppercase blackboard letters. For instance, a is a
scalar, a is a vector, A is a second-order tensor, a is a third-order
tensor and A is a fourth-order tensor. The dot product of two vec-
tors a and b is a scalar a ¼ a � b with a ¼ ½a�i½b�i. The cross prod-
uct of two vectors a and b is a vector c ¼ a� b with
½c�k ¼ ½a�i½b�j½e�ijk where ½e�ijk is the third-order Levi–Civita per-
mutation tensor with symbol e. The dyadic product of two vectors

Fig. 2 Schematic illustration of finite thickness interphase and its equivalent zero-thickness interface model. For uniform
interphase (left), the interface is situated at the center of its associated interphase. For graded interphase (right), the interface
is off-center and its position must be shifted toward the stiffer side of its corresponding interphase.
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a and b is a second-order tensor C ¼ a� b with ½C�ij ¼ ½a�i½b�j.
The composition of two second-order tensors A and B is a second-
order tensor C ¼ A � B with components ½C�ij ¼ ½A�ik½B�kj. The
(double) contraction of two second-order tensors A and B is a sca-
lar a ¼ A : B with a ¼ ½A�ij½B�ij. The action of a second-order ten-
sor A on a vector b results in a vector c ¼ A � b with
½c�i ¼ ½A�ij½b�j. The standard dyadic product of two second-order
tensors A and B is a fourth-order tensor C ¼ A� B with
½C�ijkl ¼ ½A�ij½B�kl. Two nonstandard dyadic products of two
second-order tensors A and B are fourth-order tensors D ¼ A�B
and E ¼ A�B with ½D�ijkl ¼ ½A�ik½B�jl and ½E�ijkl ¼ ½A�il½B�jk,
respectively.

Interface quantities are distinguished from bulk quantities by a
bar placed on top of them. That is, f•g denotes an interface quan-
tity with its bulk counterpart f•g. Moreover, the classical average
and the jump operators across the interface are defined by

•f gf gf g :¼ 1
2
½f•gþ þ f•g� �

nn�
and ½½f•g�� ¼ f•gþ � f•g�,

respectively. The quantities at the macroscale are distinguished
from their counterparts at the microscale by a left superscript
“M.” For instance, Mf•g is a macroscopic quantity counterpart to
f•g at the microscale. The notation and abbreviations of the paper
are listed in Nomenclature.

1.7 Organization of the Manuscript. The remainder of this
contribution is organized as follows. Section 2 presents the gov-
erning equations for continua embedding the proposed extended
general interface model. This is then followed by establishing ana-
lytical solutions in Secs. 3 and 4 for the overall properties of fiber-
reinforced and particle-reinforced composites embedding
extended general interfaces between their constituents, respec-
tively. Through a series of numerical examples, a comprehensive
study to examine the effects of the interface position on the over-
all material response is carried out. Section 5 summarizes this
work and provides further outlooks.

2 Governing Equations

This section elaborates on the governing equations of a contin-
uum body accounting for the extended general interface model in
the context of linear elasticity. The formulation presented here
demonstrates that the interface is allowed to have any arbitrary
position between its bulk neighbors. The differences and similar-
ities between our novel formulation and the classical interface
models are highlighted.

2.1 Kinematics. Figure 3 depicts a continuum body, corre-
sponding to a heterogeneous medium, occupying the configuration
MB at the macroscale with its underlying RVE at the microscale
denoted as B. The boundary of the domains at the macro- and
microscale is denoted as @MB and @B, respectively. At the micro-
scale, it is assumed that the constitutive behavior of the constitu-
ents is known. Via solving the associated boundary value problem
and proper averaging over the RVE, the overall macroscopic
response of the material is obtained, see Refs. [163,164,166,167],
and [707–709], among others. Within the framework of homoge-
nization, a proper RVE must be chosen (i) large enough to include
enough information about the microstructure and at the same time
(ii) small enough to guarantee the separation of length scales
[119–121]. To capture isotropic behavior, the RVE is assumed cir-
cular in the two-dimensional setting and spherical in the 3D set-
ting representing fiber-reinforced and particle-reinforced
composites, respectively. As shown in Fig. 3, the finite thickness
interphase region is replaced by a zero-thickness interface model
characterized by displacement and traction jumps. The interface I
divides the microstructure into two disjoint subdomains Bþ and
B� corresponding to bulk domains on the plus and minus sides of
the interface, respectively. The intersection of the interface I with
Bþ is denoted as Iþ and the intersection of the interface with B�

is denoted as I�. The unit normal to the RVE boundary @B is

Fig. 3 Problem definition for homogenization including the extended general interface model. The macrostruc-
ture is shown with its underlying RVE. At the microscale, the constitutive laws are assumed to be known and
the macroscopic behavior is obtained via solving the boundary value problem at the microscale. A finite thick-
ness interphase is replaced with a zero-thickness interface model.
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denoted as n and the unit normal to the interface I , pointing from
the interface minus to the plus side, is denoted as n. The outward
unit vector ~n is defined such that it is normal to the boundary of
the interface but it is tangential to the interface itself. Let u and u
define the displacement fields in the bulk and on the interface,
respectively. Since interface opening is admissible for the
extended general interface model, the two sides Bþ and B� are
allowed to depart from each other resulting in a displacement
jump across the interface as

½½u�� :¼ uþ � u� (1)

where uþ and u� denote the displacements on the plus and minus
sides of the interface, respectively. In the (classical) general inter-
face model the interface displacement is commonly
[616,617,631,632] defined as the average of the displacements
between its two sides as

u :¼ uf gf g :¼ 1

2
uþ þ u�½ �

��
(2)

The extended general interface model allows the interface to
occupy any arbitrary position between its two sides. In doing so,
we first define the weighted average and the complimentary
weighted average operators

fff•ggga ¼ a f•gþ þ ½1� a� f•g�

fff•ggg½1�a � ¼ ½1� a� f•gþ þ a f•g�
(3)

respectively, where a is the weighting coefficient determining the
interface position. These average operators are indeed the
weighted forms of the classical average operator (2). As shown in
Fig. 4, we have 0 � a61. That is, a < 0:5 implies that the inter-
face is closer to the minus side (inclusion) while a > 0:5 indicates
that the interface is closer to the plus side (matrix). Clearly, a ¼
0:5 recovers the classical definition where the interface coincides
with the midlayer and thus the extended general interface model
coincides with the general interface model. We define the

extended general interface displacement as the weighted average
of the displacements uþ and u�. That is

u :¼ ffugga ¼ a uþ þ ½1� a� u� (4)

Having the displacement fields, the strains in the bulk and on the
interface can be expressed as

e ¼ 1

2
I � Grad uþ Grad u½ �T � I
h i

in B

e ¼ 1

2
I � Grad u þ Grad u½ �T � I
h i

on I

(5)

where I is the second-order identity tensor. The operator Grad f•g
is the interface gradient operator defined by Grad f•g :¼
Grad f•g � I in which I is the interface identity tensor
I :¼ I � n � n. Thus, the interface strain e is not only a superfi-
cial tensor possessing the property e � n ¼ 0, but it is also tangen-
tial since n � e ¼ 0.

2.2 Balance Equations. Equipped with the kinematics
description of the problem, we derive the balance equations and
allow the interface to coincide with any arbitrary surface between
its bulk neighbors. Evidently, the choice of the interface position
a does not alter the governing equations for the bulk. To pinpoint
the novelty of our proposed methodology, we first elaborate the
interface balance equations for the general interface model theory
and after highlighting its shortcomings and limitations, we intro-
duce our new formalism. Since we limit our discussion to the
microscale problem, the body forces are omitted henceforth.

Let r denote the stress in the bulk B and t the traction acting on
the boundary @B. According to Cauchy’s postulate, on the bound-
ary we have t ¼ r � n. In the absence of body forces, the force bal-
ance over the bulk reads

ð
@B

t dA ¼
ð
@B

r � n dA ¼
ð

B

Divr dV ¼ 0 (6)

Fig. 4 Illustration of the interface position. The parameter a determines the position of the interface. When
a < 0:5 the interface is closer to the inclusion and when a > 0:5 the interface is closer to the matrix.
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which can be explicitly stated as

Divr ¼ 0 8x 2 B (7)

For rotational equilibrium, we write the moments acting on the
body with respect to an arbitrary point. That isð

@B

x� t dA ¼
ð
@B

x� ½r � n� dA ¼
ð

B

Div½x� r� dV

¼
ð

B

x� Divr dV þ
ð

B

e : rT dV ¼ 0 (8)

where e is the Levi–Civita permutation tensor. The first term in
(8) vanishes due to balance of forces (7), thus the moment balance
can explicitly be written as

e : rT ¼ 0 ) r ¼ rT 8x 2 B (9)

Next, we proceed with the interface balance equations. Let r
denote the stress on the interface. The interface traction t is
defined by

t ¼ rf gf g � n ¼ 1

2
rþ � n þ 1

2
r� � n

��
(10)

The balance of forces on a portion of the body containing the
interface reads2

ð
@Bþ Iþ

t dAþ
ð
@B� I�

t dAþ
ð
@I

r � ~n dL ¼ 0 (11)

where @Bþ and @B� are the boundaries of cutouts of Bþ and B�,
respectively, as shown in Fig. 5. In the limit of vanishing bulk, the
normal vector to @Bþ Iþ is identical to interface unit normal n
and the unit normal to @B� I� points in the opposite direction to
n, see Fig. 5. The interface here denoted as I is essentially a two-
sided surface with its two sides distinguished as I� and Iþ. Prior
to deformation, the two sides coincide with the interface itself
and, therefore, I�; Iþ and I collapse altogether. Therefore,
Eq. (11) can be rewritten asð

Iþ
rþ � n dA�

ð
I�

r� � n dAþ
ð
@I

r � ~n dL

¼
ð

I

½½r�� � n dAþ
ð
@I

r � ~n dL

¼
ð

I

½½r�� � n dAþ
ð

I

Div r dAþ
ð

I

C r � n dA ¼ 0 (12)

where C ¼ �Divn is the interface curvature. The interface diver-
gence operator is defined by Divf•g :¼ Gradf•g : I . The last term
integral in Eq. (12) vanishes due to the superficiality of the inter-
face stress r. The force balance on the interface therefore reads

Div r þ ½½r�� � n ¼ 0 (13)

Similar to the bulk, for the interface rotational equilibrium, we
write the moments acting on the interface with respect to an arbi-
trary origin asð

Iþ
x� t dAþ

ð
I�

x� t dAþ
ð
@I

x�r � ~n dL

¼
ð

Iþ
xþ�rþ �n dA�

ð
I�

x��r� �n dAþ
ð
@I

x�r � ~n dL

¼
ð

I

½½x�r�� �n dAþ
ð

I

Div ½x�r�dAþ
ð

I

C x� r �n|ffl{zffl}
0

dA

¼
ð

I

½½x�r�� �n dAþ
ð

I

e : rT dAþ
ð

I

x�Div r dA

¼
ð

I

½½x�r�� �n dAþ
ð

I

e : rT dA�
ð

I

x�½½r�� �n dA¼ 0

(14)

which can be expressed as

½½x� r�� � n þ e : rT � x � ½½r�� � n ¼ 0 (15)

To simplify the first term in relation (15), we utilize the follow-
ing property that holds for the classical average and jump
operators

½½f•g � f	g�� ¼ fff•ggg � ½½f	g�� þ ½½f•g�� � fff	ggg (16)

which yields

½½x� r�� � n ¼ ffxgg � ½½r�� � n þ ½½x�� � ffrgg � n (17)

Resulting in the classical form of the interface moment balance

½½x�� � ffrgg � n|fflfflfflfflfflffl{zfflfflfflfflfflffl}
t

þe : rT þ ½ffxgg � x� � ½½r�� � n ¼ 0 (18)

Three sufficient (yet not necessary) conditions to fulfill the rota-
tional equilibrium (18) are

• ½½x�� jj t ) ½½x�� � t ¼ 0

• rT ¼ r ) e : r ¼ 0

• ffxgg ¼ x ) ½ffxgg � x� � ½½r�� � n ¼ 0

(19)

The first two conditions can be achieved via a proper definition of
interface constitutive laws. The last condition, however, is
achieved by constraining the interface to the midlayer. Such a
restriction limits the applicability of the general interface model
since it is only suitable to capture uniform isotropic interphases.
For example, for graded interphases, the effective position of the
interface may not necessarily coincide with the midlayer.

Remark on how the canonical interface models satisfy the rota-
tional equilibrium (19). In view of the rotational equilibrium con-
ditions (19), it can be readily shown that the canonical interface
models fulfill these conditions differently, as follows.

� Perfect interface model: Both the displacement jump and
traction jump at the interface are zero. That is, ½½x�� ¼ 0 and
½½r�� � n ¼ 0 and therefore the first and third conditions are
trivially fulfilled. Also, the perfect interface model does not
possess elasticity along with the interface and thus, r ¼ 0
satisfying the second condition.

Fig. 5 Illustration of the unit normals to the body and the inter-
face in the limit of vanishing bulk

2Usually, cutout volumes and their boundaries are denoted by different letters, to
avoid confusion. Nonetheless, we use the same letter for a domain and a cutout
thereof to avoid clutter.
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� Cohesive interface model: The interface stress and traction
jump are zero but the displacement jump is not necessarily
vanishing. That is, r ¼ 0 and ½½r�� � n ¼ 0 and, therefore, the
second and third conditions are fulfilled. Since ½½x�� 6¼ 0, to
satisfy the first condition, the displacement jump must be co-
axial to the interface traction. This requirement can be
imposed via the interface traction-separation law.

� Elastic interface model: The displacement is continuous
across the interface and therefore ½½x�� ¼ 0 that immediately
satisfies the first condition. Consequently, ffxgg ¼ x and
therefore, the third condition is a priori fulfilled. The rota-
tional equilibrium reduces to the second condition which
must be imposed via a consistent constitutive law for the
interface elasticity.

� General interface model: Both the displacement jump and
traction jump at the interface are admissible. To satisfy the
first condition, the displacement jump must be co-axial to the
interface traction that is enforced via the interface traction-
separation law. The second condition is fulfilled via introduc-
ing an interface constitutive law that renders symmetric
interface stresses r. The third condition is fulfilled via con-
straining the interface to coincide with the midlayer by
imposing ffxgg ¼ x.

Here, we propose an extended general interface model where
the interface is no longer enforced to coincide with the midlayer.
In doing so, we incorporate the weighted average and the compli-
mentary weighted average operators introduced in Eq. (3) into the
identity (16) resulting in

½½f•g � f	g�� ¼ fff•ggg a � ½½f	g�� þ ½½f•g�� � fff	ggg½1�a �

(20)

Accordingly, Eq. (17) reads

½½x� r�� � n ¼ ffxgg a � ½½r�� � n þ ½½x�� � ffrgg½1�a � � n (21)

which yields

½½x���ffrgg½1�a � �nþe : rþffxgg a�½½r�� �n�x�½½r�� �n¼ 0

(22)

Motivated by the structure of Eq. (22), we define the interface
position x :¼ ffxgg a and the interface traction t ¼ ffrgg½1�a � �
n as

x :¼ ffxgg a ¼ axþ þ ½1� a�x�

t ¼ ffrgg½1�a� � n ¼ ½1� a�rþ � n þ a r� � n (23)

Note that while the interface kinematics is enforced by the
weighted average operator, it is the complementary weighted
average operator that defines the interface kinetics. For example,
when the interface coincides with its minus side, a ¼ 0, the inter-
face displacement solely depends on the displacement of the
minus side whereas the interface traction consists of only the con-
tribution from the plus side. On the other hand, when the interface
coincides with its plus side, a ¼ 1, the interface displacement
solely depends on the displacement of the plus side whereas the
interface traction consists of only the contribution from the minus
side. Based on the definition (23)1, the third and fourth terms in
Eq. (22) cancel each other and the interface momentum balance
reads

½½x�� � t þ e : r ¼ 0 (24)

which is sufficiently fulfilled if

• ½½x�� jj t ) ½½x�� � t ¼ 0

• rT ¼ r ) e : r ¼ 0
(25)

The new form of interface rotational equilibrium (24) is fulfilled
via a suitable choice of the interface material behavior without
constraining the interface position. Table 4 gathers the fundamen-
tal equations governing the bulk and the extended general inter-
face model.

Remark on interface curvature and Young–Laplace equation.
The governing Eq. (13) is local and does not explicitly take
advantage of the geometry of the problem. That is, the interface
may or may not be curved, or a self-closed geometry for that mat-
ter. Equation (13) guarantees the tangential equilibrium at the
interface. For example, if the interface is flat and if r is constant,
then the equilibrium on the interface reduces to ½½r�� � n ¼ 0, indi-
cating that the traction jump across the interface is zero, as
expected. On the other hand, in the case of a uniform surface-
tension-like interface stress r ¼ cI , with c being the surface ten-
sion, any traction jump across the interface involves the curvature
of the interface according to

Div r þ ½½r�� � n ¼ 0 with r ¼ cI

) Divð cI Þ þ ½½r�� � n ¼ 0 ) C n ¼ �½½r�� � n
(26)

that is indeed the generalized Young–Laplace equation. In the
case of inviscid fluids, the bulk stress reads r ¼ p I and Eq. (26)
reduces to its classical format C ¼ ½½p�� with C being twice the
mean curvature, or simply the curvature, and ½½p�� being the pres-
sure jump across the interface. Note that the interface curvature C
is captured via the interface divergence operator and
DivðI Þ ¼ C n. It shall be emphasized that the interface model
here, similar to all other canonical interface models to date, is a
zero-thickness model and therefore, the interface does not possess
a “flexural resistance” against bending. More precisely, the in-
plane elastic response of the interface follows the
Gurtin–Murdoch interface elasticity theory [519] and mimics a
membrane behavior rather than a shell theory. In principle, it is
possible to introduce flexural stiffness to the interface model simi-
lar to the Steigmann–Ogden extension [589] of the
Gurtin–Murdoch theory.

2.3 Strain Energy Density-Based Elastic Modeling. In the
context of elasticity, the constitutive material behavior of a body
embedding an extended general interface can be obtained in a var-
iationally consistent manner based on the existence of a free
energy density. The free energy density of the medium is com-
posed of the bulk free energy density w and the interface free
energy density w. The bulk free energy density is only a function
of the strain field in the bulk as w ¼ wðeÞ. The interface free
energy density, however, is a function of both interface strain and
interface displacement jump as w ¼ wðe; ½½u��Þ. More complicated
choices for energy densities can be obtained via introducing
implicit constitutive theories [710], however, they are not consid-
ered here to avoid digression. That bulk and interface free energy
densities read

w ¼ 1

2
e : C : e in B

w ¼ 1

2
e : Ck : e þ u½ �½ � � C? � u½ �½ �
h i

on I

(27)

with C being the fourth-order constitutive tensor in the bulk. The
fourth-order constitutive tensor of the interface is Ck, and C? is a

Table 4 Summary of fundamental governing equations for the
bulk and the extended general interface model

Linear momentum balance Divr ¼ 0 in B Div r þ ½½r�� � n ¼ 0 on I
Angular momentum balance e : r ¼ 0 in B ½½x�� � t þ e : r ¼ 0 on I
Traction t ¼ r � n on @B t ¼ ffrgg½1�a � � n on I
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second-order tensor characterizing the interface cohesive behav-
ior.3 The resulting linear stresses and traction relate to the energy
densities (27) via the constitutive laws

r ¼ @w
@e
¼ C : e in B

r ¼ @w
@e
¼ Ck : e along I

t ¼ @w
@ u½ �½ � ¼ C? � u½ �½ � across I

(28)
3The tangential interface stress r accounts only for the elastic interface response

assuming a stress-free interface in the absence of strains. In other words, for the sake
of brevity, we preclude surface tension from the discussion here. Accounting for a
stress-tension-like behavior is fairly straightforward and can be achieved by adding a
term cI to r, where c is the isotropic surface tension.

Fig. 6 Illustration of recovering all the previously introduced interface models by the current
proposed interface model. The classical general interface model can be recovered by setting
a 5 0:5. The cohesive interface model is recovered when k 5 l 5 0 and a 5 0:5. The conditions
k 6¼ 0; l 6¼ 0 and k fi‘ and a 5 0:5 recover the elastic interface model. Finally, the perfect inter-
face model is recovered when k 5 l 5 0 and k fi‘ and a 5 0:5.
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The bulk material response is assumed to be standard and (linear)
isotropic elastic taking the form

C ¼ l I� I þ I� I
� �

þ k I � I ) r ¼ 2 l eþ k e : I½ � I;

l½ � ¼ k½ � ¼ r½ � ¼
N

m2

(29)

with k and l being the bulk Lam�e parameters. For the interface,
the material response reads

Ck ¼ l I � I þ I � I
� �

þ k I � I ) r ¼ 2 l e þ k e : I½ � I ;

l½ � ¼ k½ � ¼ r½ � ¼ N

m

C? ¼ k I ) t ¼ k u½ �½ �; k½ � ¼ t½ �
m
¼ N

m3

(30)

Corresponding to its tangential and normal directions, respec-
tively. The parameters k and l are the interface Lam�e-like param-
eters representing the interface tangential elasticity relating to the
resistance against the stretches along with the interface. The inter-
face normal resistance is denoted k representing the stiffness
against its opening. It shall be emphasized that depending on the
choice of the interface parameters, the extended general interface
model can recover any of the classical interface models, schemati-
cally illustrated in Fig. 6. The general interface model can be
recovered by setting a ¼ 0:5. The cohesive interface model is
recovered when k ¼ l ¼ 0 and a ¼ 0:5. The conditions k 6¼ 0;
l 6¼ 0 and k !1 and a ¼ 0:5 recover the elastic interface
model. Finally, the perfect interface model is recovered when k ¼
l ¼ 0 and k !1 and a ¼ 0:5. It can be shown that in a two-
dimensional setting, associated with fiber-reinforced composites,
the resistance along the interface can be sufficiently captured with
only one interface Lam�e parameter hence the assumption k ¼ 0 in
two-dimensional. Similar to the bulk material, the form of the
energy of the interface as well as its parameters can be obtained
from fundamental reasoning or atomistic modeling as it has been
established for the surface elasticity theory [365,532–534,695].
For instance, Yvonnet et al. [711] extracted the surface elastic
parameters from ab initio calculations. Moreover, interface energy
can be constructed using the surface/interface Cauchy–Born
hypothesis [712,713]. In general, mechanical constants can be
obtained using inverse parameter identification.

2.4 Micro- to Macrotransition. The final step to complete
our homogenization framework is to elaborate on the micro- to
macrotransition. Following classical homogenization, macro-
scopic quantities are related to their microscopic counterparts
through volume averaging over the RVE. Accordingly, it is possi-
ble to define the macroscopic strain and stress fields Me and Mr,
respectively, as surface integrals of microscopic quantities over
the RVE’s boundary as

Me ¼ 1

V

ð
S

1

2
u� nþ n� u½ � dA ;

Mr ¼ 1

V

ð
S

t � x dA

(31)

Using the extended divergence theorem [632], both relations can
be written as a summation of integrals in the bulk and on the inter-
face. That is

Me ¼ 1

V

ð
B

e dV þ 1

V

ð
I

1

2
u½ �½ � � n þ n � u½ �½ �½ � dA

Mr ¼ 1

V

ð
B

r dV þ 1

V

ð
I

r dA

(32)

The incremental energy at the macroscale reads

dMw¼Mr : dMe (33)

At the microscale, the incremental energy densities read

dw ¼ r : de in B

dw ¼ r : de þ t � d½½u�� on I
(34)

Central to homogenization is the Hill–Mandel condition which
imposes an incremental energy equivalence between the scales.
The Hill–Mandel condition extended to account for interfaces
reads

dMw ¼! 1

V
Ð

Bdw dV þ 1
V

Ð
I dw dA

(35)

with ¼! indicating that equality is a condition. Inserting the incre-
mental energies (34) and (33) at both scales into the Hill–Mandel
condition (35) yields

1

V

ð
B

r : de dV þ 1

V

ð
I

r : de þ t � d u½ �½ �
� �

dA�Mr : dMe ¼! 0 (36)

Finally, importing the macrostrain and macrostress relations from
Eq. (32) into Eq. (36) furnishes the extended Hill–Mandel condi-
tion in terms of the boundary integralð

S

½du� dMe � x� � ½t�Mr � n� dA ¼! 0 (37)

Among all boundary conditions satisfying the condition (37), the
linear DBC and constant TBC are of particular interest here. This
choice of boundary conditions is suitable to make meaningful
comparisons between the computational and analytical solutions.
See Firooz et al. [95] for a comprehensive study on the boundary
conditions and the RVE types within the framework of
homogenization.

3 Fiber-Reinforced Composites

The objective of this section is to derive the bounds and esti-
mates of the overall bulk and shear moduli of fiber-reinforced
composites embedding extended general interfaces between the
fibers and the matrix. In doing so, the CCA approach and the
GSCM are extended to account for extended general interfaces
where the interface position is not restricted to the midlayer.
Firstly, the preliminaries of the RVE problem for fiber-reinforced
composites are introduced. Afterward, CCA and GSCM are
enhanced with interfaces. Our methodology is commonly
accepted for transversely isotropic problems, see Ref. [57] among
others. Throughout this section, the fiber and matrix quantities are
distinguished by superscripts (1) and (2), respectively.

3.1 Preliminaries. Figure 7 depicts a fiber-reinforced com-
posite with its underlying simplified RVE together with a cylindri-
cal coordinate system appropriate to analyze such a medium. The
RVE consists of a fiber located at the center of the matrix. The
volume fraction of the fiber is f ¼ r2

1=r2
2 . Figure 8 illustrates a

schematic definition of the size and how it is related to the volume
fraction and the radii of the constituents. The term size here refers
to the physical “size” of the RVE. Given a length scale ‘ and the
volume fraction f, the radii of the fiber and the matrix can be cal-
culated. Note, ‘ refers to the side length of a unit square. The unit
circle is chosen such that it satisfies the area equivalence ‘2 ¼ pr2

2

hence ‘ / r2. The constitutive material behavior for an isotropic
material, in Voigt notation, reads
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rrr

rhh

rzz

rrh

rrz

rhz

2
666666666664

3
777777777775
¼

kþ 2l k k 0 0 0

k kþ 2l k 0 0 0

k k kþ 2l 0 0 0

0 0 0 l 0 0

0 0 0 0 l 0

0 0 0 0 0 l

2
666666666664

3
777777777775

err

ehh

ezz

2erh

2erz

2ehz

2
666666666664

3
777777777775
(38)

Under the assumption that the transverse shear modulus is equal
to the axial shear modulus. Note that in plane-strain linear elastic-
ity, the bulk modulus j relates to the Lam�e parameters via
j ¼ kþ l. In a cylindrical coordinate system, the strains in the
bulk read

err ¼
@ur

@r
; ehh ¼

1

r

@uh

@h
þ ur

r
; ezz ¼

@uz

@z

2erh ¼
@uh

@r
þ 1

r

@ur

@h
� uh

r

2ehz ¼
1

r

@uz

@h
þ @uh

@z

2erz ¼
@uz

@r
þ @ur

@z

(39)

and the balance equations associated with the bulk (7) expand as

@rrr

@r
þ 1

r

@rrh

@h
þ @rrz

@z
þ rrr � rhh

r
¼ 0

@rrh

@r
þ 1

r

@rhh

@h
þ @rhz

@z
þ 2

r
rrh ¼ 0

@rrz

@r
þ 1

r

@rhz

@h
þ @rzz

@z
þ 1

r
rrz ¼ 0

(40)

For the interface, the constitutive tangential behavior reads

rhh

rzz

rhz

2
664

3
775 ¼

k þ 2l k 0

k k þ 2l 0

0 0 l

2
664

3
775

ehh

ezz

2ehz

2
664

3
775 (41)

Under the assumption that the interface transverse shear modulus is
equal to the interface axial shear modulus. For fiber-reinforced
composites, the resistance along the interface can be sufficiently
captured with only one interface Lam�e parameter, thus we assume
k ¼ 0. According to Eq. (30), the interface cohesive response reads

tr

th

tz

2
664

3
775 ¼

k ½½ur��
k ½½uh��
k ½½uz��

2
664

3
775 (42)

assuming isotropic cohesive behavior. The strains on the interface
read

ehh ¼
1

r1

@uh

@h
þ ur

r1

ezz ¼
@uz

@z

2ehz ¼
1

r1

@uz

@h
þ @uh

@z

(43)

and the interface balance equations (13) can be written as

rhh

r1

� rrr½ �½ � ¼ 0

1

r1

@rhh

@h
þ @rhz

@z
þ rrh½ �½ � ¼ 0

1

r1

@rhz

@h
þ @rzz

@z
þ rrz½ �½ � ¼ 0

(44)

Fig. 7 Simplified RVE (right) and a cylindrical coordinate sys-
tem (left) to examine such a medium

Fig. 8 Definition of the size for fiber-reinforced composites. Given the size ‘ and the volume
fraction f, the radii of the fiber and the matrix can be calculated.
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The three normal basis vectors in cylindrical coordinates are

nr ¼
cos h
sin h

0

2
4

3
5; nh ¼

�sin h
cos h

0

2
4

3
5; nz ¼

0

0

1

2
4
3
5 (45)

and the displacements and stresses can accordingly be expressed
as

u ¼ ur nr þ uh nh þ uz nz

r ¼ rrr nr � nr þ rhh nh � nh þ rzz nz � nz

þ rrh½nr � nh þ nh � nr� þ rrz½nr � nz þ nz � nr�
þ rhz½nh � nz þ nz � nh�

r ¼ rhh nh � nh þ rzz nz � nz þ rhz½nh � nz þ nz � nh� (46)

The mechanical energy stored in the RVE reads

U RVEð Þ ¼ 1

2

ð
B

r : e dV þ 1

2

ð
I

r : e dAþ 1

2

ð
I

t � u½ �½ � dA

¼ 1

2

ð
@B

r � n½ � � u dA ¼ 1

2

ð
@B

t � u dA (47)

Under prescribed boundary conditions associated with expansion
and in-plane shear, the average mechanical energy density stored
in the RVE reads

U RVEð Þ ¼ 1

4pr2
2L

ðL

�L

ð2p

0

r 2ð Þ
rr u 2ð Þ

r þ r 2ð Þ
rh u 2ð Þ

h �r¼r2
r2 dh dz

h
(48)

where L is half of the height of the RVE in the z-direction shown
in the middle of Fig. 7. Accordingly, the mechanical energy stored
in an equivalent homogeneous medium reads

U eqð Þ ¼ 1

2

ð
B

r eqð Þ : e eqð Þ dV ¼ 1

2

ð
@B

r eqð Þ � n½ � � u eqð Þ dA

¼ 1

2

ð
@B

t eqð Þ � u eqð Þ dA (49)

Under prescribed boundary conditions associated with expansion
and in-plane shear, the average mechanical energy density stored
in the equivalent homogeneous medium reads

U eqð Þ ¼ 1

4pr2
2L

ðL

�L

ð2p

0

r
eqð Þ

rr u
eqð Þ

r þ r
eqð Þ

rh u
eqð Þ

h �r¼r2
r2 dh dz

h
(50)

Equating the energies (48) and (50) renders the overall macro-
scopic properties. Note that the generic form of the average
mechanical energy density in principle includes other components
of stress and displacement but they vanish for expansion and in-
plane shear boundary conditions that are imposed here.

In CCA [26], the RVE resembles the right microstructure in
Fig. 7. Applying expansion and simple shear under both displace-
ment and traction boundary conditions renders bounds on the
overall bulk and shear moduli. While the bounds on the shear
modulus are distinct, they coincide with the bulk modulus and
therefore, they are collectively referred to as the effective bulk
modulus. To obtain an estimate for the effective shear modulus,
Christensen and Lo [52] developed GSCM via introducing an infi-
nite effective medium surrounding the matrix whose properties
are the unknowns of the problem. Here, we extend CCA and
GSCM to account for extended general interfaces with arbitrary
interface positions and obtain bounds and estimates for the effec-
tive bulk and shear moduli of fiber composites.

3.2 Effective Bulk Modulus. To calculate the effective bulk
modulus Mj, the RVE is subject to a uniform radial expansion
characterized by

u0
ðr;h;zÞ ¼

br
0

0

2
4

3
5 (51)

where the superscript 0 denotes the prescribed deformation mode.
As demonstrated by Hashin and Rosen [26], the developed dis-
placement fields within each constituent read

u 1ð Þ
r ¼ br X1 þ X2

1

r=r1½ �2

" #

u 1ð Þ
h ¼ u 1ð Þ

z ¼ 0

u 2ð Þ
r ¼ br X3 þ X4

1

r=r1½ �2

" #

u 2ð Þ
h ¼ u 2ð Þ

z ¼ 0

(52)

Resulting in the four unknowns X1 to X4 that can be determined
via imposing the boundary and interface conditions

� finite displacement at r¼ 0

uð1Þr ðr ¼ 0Þ!1 ) X2 ¼ 0 (53)

� radial equilibrium at r¼ r1

tr ¼ k ½½ur�� ) ½1� a�rð2Þrr ðr1Þ þ arð1Þrr ðr1Þ
¼ k½uð2Þr ðr1Þ � uð1Þr ðr1Þ� (54)

� tangential equilibrium at r¼ r1

div r½ �r þ tr½ �½ � ¼ 0 ) � rhh

r1

þ r 2ð Þ
rr r1ð Þ � r 1ð Þ

rr r1ð Þ ¼ 0 (55)

� prescribed displacement at r¼ r2

uð2Þr ðr2Þ ¼ br2 (56)

The conditions (53)–(56) lead to the system of equations

2aj 1ð Þ þkr1

k

2 1�a½ �j 2ð Þ � kr1

k

�2 1�a½ �l 2ð Þ � kr1

k

�2j 1ð Þr1�2 1�a½ �l
r1

2j 2ð Þr1�2al
r1

�2l 2ð Þr1�2al
r1

0 1 f

2
66666664

3
77777775

X1

X3

X4

2
6664

3
7775¼

0

0

1

2
6664
3
7775

(57)

Applying the same displacement (51) to the equivalent homogene-
ous medium leads to the displacement field u

ðeqÞ
r ¼ br and

u
ðeqÞ
h ¼ uðeqÞ

z ¼ 0. Using Eqs. (48) and (50), the overall energy
densities in the RVE and the equivalent homogeneous medium
read

UðRVEÞ ¼ 2b2½X3j
ð2Þ � X4flð2Þ�

UðeqÞ ¼ 2b2 Mj:
(58)

Imposing UðRVEÞ ¼ UðeqÞ results in a closed-form explicit expres-
sion for the overall bulk modulus Mj as
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Mj ¼
j 2ð Þ þ f l 2ð Þ
� �

klr1 þ 2a2j 1ð Þl þ kj 1ð Þr2
1

h i
þ 2j 2ð Þl 2ð Þ 1� f½ � l 1� að Þ2 þ j 1ð Þr1 þ kr2

1=2

h i
l 2ð Þ þ f j 2ð Þ
� �

2l 1� að Þ2 þ 2j 1ð Þr1 þ kr2
1

h i
þ 1� f½ � klr1 þ 2a2j 1ð Þl þ kj 1ð Þr2

1

� � (59)

with a determining the interface position. Figure 9 shows the
overall bulk modulus Mj versus a for the extended general inter-
face model against the classical interface models. Three different
inclusion to matrix stiffness ratios is considered. The ratio
incl:=matr: ¼ 0:1 represents an inclusion being 10 softer than the
matrix whereas incl:=matr: ¼ 10 implies a 10 times stiffer inclu-
sion than the matrix. Obviously, incl:=matr: ¼ 1 corresponds to
identical inclusion and matrix properties. The position of the inter-
face does not influence the effective material response for perfect,
elastic, cohesive, and general interface models. For the extended
general interface model, it is observed that for small a the material
renders a closer behavior to the cohesive interface model. Increas-
ing a yields a stiffer response where the solution due to the
extended general interface model approaches that of the elastic
interface model.

Remark on the choice of interface parameters. The material
parameters are chosen to clearly illustrate the significance of inter-
faces on the effective material parameters and to demonstrate the
analytical expressions. To avoid clutter, the units are omitted
throughout but obviously, they must be consistent. For example,
assuming that size is expressed in mm, the bulk material proper-
ties k and l will be in N=mm2 while the interface parameters k
and l will be in N=mm. The interface orthogonal resistance k is
then measured in N=mm3. In other words, we treat the material
parameters as numerical values to perform parametric studies
without limiting our attention to any particular material.

3.3 Upper Bound on Shear Modulus. To obtain the upper
bound on the overall in-plane shear modulus, the simple shear
boundary condition

u0
ðr;h;zÞ ¼

br sinð2hÞ
br cosð2hÞ

0

2
4

3
5 (60)

is applied to the RVE boundary at r¼ r2. For this boundary condi-
tion, following Christensen and Lo [52], the displacement fields
developed in the constituents read

u 1ð Þ
r ¼ br sin 2hð Þ j 1ð Þ � l 1ð Þ

2j 1ð Þ þ l 1ð Þ
� � r=r1½ �2X1 þ X2 �

X3

r=r1½ �4

"

þ j 1ð Þ þ l 1ð Þ

l 1ð Þ
X4

r=r1½ �2

#

u 1ð Þ
h ¼ br cos 2hð Þ r=r1½ �2X1 þ X2 þ

X3

r=r1½ �4
þ X4

r=r1½ �2

" #

u 1ð Þ
z ¼ 0

u 2ð Þ
r ¼ br sin 2hð Þ j 2ð Þ � l 2ð Þ

2j 2ð Þ þ l 2ð Þ
� � r=r1½ �2X5 þ X6 �

X7

r=r1½ �4

"

þ j 2ð Þ þ l 2ð Þ

l 2ð Þ
X8

r=r1½ �2

#

u 2ð Þ
h ¼ br cos 2hð Þ r=r1½ �2X5 þ X6 þ

X7

r=r1½ �4
þ X8

r=r1½ �2

" #

u 2ð Þ
z ¼ 0

(61)

with the eight unknowns X1–X8 which can be determined via
applying the boundary and interface conditions

� finite displacement at r¼ 0

uð1Þr ðr ¼ 0Þ!1 and u
ð1Þ
h ðr ¼ 0Þ!1 ) X3 ¼ 0 and X4 ¼ 0

(62)

� radial equilibrium at r¼ r1

tr ¼ k ½½ur�� ) ½1�a�rð2Þrr ðr1Þþarð1Þrr ðr1Þ¼ k½uð2Þr ðr1Þ�uð1Þr ðr1Þ�
(63)

� circumferential equilibrium at r¼ r1

th¼ k ½½uh�� ) ½1�a�rð2Þrh ðr1Þþarð1Þrh ðr1Þ¼ k½uð2Þh ðr1Þ�u
ð1Þ
h ðr1Þ�

(64)

� tangential equilibrium in r direction at r¼ r1

Fig. 9 Effective bulk modulus Mj versus interface position a for fiber-reinforced composites. Different interface models are
compared against each other.
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div r½ �r þ tr½ �½ � ¼ 0 ) � rhh

r1

þ r 2ð Þ
rr r1ð Þ � r 1ð Þ

rr r1ð Þ ¼ 0 (65)

� tangential equilibrium in h direction at r¼ r1

div r½ �h þ th½ �½ � ¼ 0 ) 1

r1

@rhh

@h
þ r 2ð Þ

rh r1ð Þ � r 1ð Þ
rh r1ð Þ ¼ 0 (66)

� prescribed displacements at r¼ r2

uð2Þr ðr2Þ ¼ br2 sinð2hÞ and u
ð2Þ
h ðr2Þ ¼ br2 cosð2hÞ (67)

The conditions (62)–(67) lead to the system of equations

D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66

2
6666664

3
7777775

X1

X2

X5

X6

X7

X8

2
6666664

3
7777775 ¼

0

0

0

0

1

1

2
6666664

3
7777775 (68)

with the components of D detailed in Eq. (A1). For an equivalent
homogeneous medium subject to the same boundary conditions,
the displacement field reads

uðeqÞ
r ¼ br sinð2hÞ ; u

ðeqÞ
h ¼ br cosð2hÞ ; uðeqÞ

z ¼ 0 (69)

Subsequently, using Eqs. (48) and (50), the average mechanical
energy densities in the RVE and the equivalent homogeneous
medium read

U RVEð Þ ¼ b2

2

6l 2ð Þj 2ð Þr2
2

2j 2ð Þ þ l 2ð Þ X5 þ 4l 2ð ÞX6 �
2j 2ð Þ

r2
2

X8

" #

U eqð Þ ¼ 2b2 Ml

(70)

Imposing UðRVEÞ ¼ UðeqÞ renders the upper bound on the effective
in-plane shear modulus

Mlupper ¼
1

4

6l 2ð Þj 2ð Þr2
2

2j 2ð Þ þ l 2ð Þ X5 þ 4l 2ð ÞX6 �
2j 2ð Þ

r2
2

X8

" #
(71)

where X5, X6, and X8 can be calculated via solving the system of
Eqs. (68). Figure 10 illustrates the effective shear modulus and its
bounds with respect to the interface position a for various inter-
face models. The top row corresponds to the upper bound on the
shear modulus Mlupper. The middle row corresponds to the lower
bound on the shear modulus Mllower which will be discussed in the
next section. The last row corresponds to the effective shear mod-
ulus Ml which will be discussed in Sec. 3.5. Similar to the bulk
modulus, it is observed that for small a the material associated
with the extended general interface model renders a closer behav-
ior to the cohesive interface model. However, increasing a results
in a stiffer response but not as stiff as the elastic interface.

3.4 Lower Bound on Shear Modulus. To obtain the lower
bound on the overall in-plane shear modulus, a traction field is
applied to the RVE boundary as

t0
ðr;h;zÞ ¼

b sin 2h

b cos 2h

0

2
64

3
75 (72)

Fig. 10 Effective shear modulus Ml and its bounds versus interface position a for fiber-reinforced composites. Different inter-
face models are compared against each other.
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The displacement fields developed in the constituents due to the
prescribed traction (72) mimic Eq. (61) with eight unknowns. The
boundary and interface conditions are similar to Eqs. (62)–(66)
and instead of condition (67), we have

� prescribed stresses at r¼ r2

rð2Þrr ðr2Þ ¼ b sinð2hÞ and rð2Þrh ðr2Þ ¼ b cosð2hÞ (73)

leading to the system of equations

E11 E12 E13 E14 E15 E16

E21 E22 E23 E24 E25 E26

E31 E32 E33 E34 E35 E36

E41 E42 E43 E44 E45 E46

E51 E52 E53 E54 E55 E56

E61 E62 E63 E64 E65 E66

2
6666664

3
7777775

X1

X2

X5

X6

X7

X8

2
6666664

3
7777775 ¼

0

0

0

0

1

1

2
6666664

3
7777775 (74)

The components of E are given in Eq. (A2). For an equivalent
homogeneous medium subject to the same boundary condition,
the displacement field reads

u
eqð Þ

r ¼ b

2Ml
r sin 2hð Þ ; u

eqð Þ
h ¼ b

2Ml
r cos 2hð Þ ; u

eqð Þ
z ¼ 0 (75)

Using Eqs. (48) and (50), the average mechanical energies stored
in the RVE and the equivalent homogeneous medium are

U RVEð Þ ¼ b2

2

3j 2ð Þr2
2

2j 2ð Þ þ l 2ð Þ X5 þ 2X6 þ
j 2ð Þ þ 2l 2ð Þ

l 2ð Þr2
2

X8

" #

U eqð Þ ¼ b2

2Ml

(76)

Imposing UðRVEÞ ¼ UðeqÞ renders the lower bound on the macro-
scopic in-plane shear modulus

Mllower ¼
1

3j 2ð Þr2
2

2j 2ð Þ þ l 2ð Þ X5 þ 2X6 þ
j 2ð Þ þ 2l 2ð Þ

l 2ð Þr2
2

X8

(77)

where X5, X6, and X8 are the solution of the system (74). See
Fig. 10 for the illustration of the lower bound on the shear modu-
lus Mllower versus the interface position a. Similar to the upper
bound, it is observed that small a associated with the extended
general interface model renders a closer behavior to the cohesive
interface. However, increasing a results in a stiffer response but
not as stiff as the elastic interface.

3.5 Effective Shear Modulus. To obtain the effective shear
modulus Ml, we employ GSCM developed by Christensen and Lo
[52] where an infinite effective medium is bonded to the matrix
and the properties of the effective medium are the unknowns of
the problem. To obtain an estimate for the effective shear modu-
lus, let the medium be subject to the displacement

u0
ðr;h;zÞ ¼

br sinð2hÞ
br cosð2hÞ

0

2
664

3
775 (78)

The displacement (78) is applied on the boundary of the effective
medium. The displacement fields generated in the fiber and the
matrix due to the boundary condition (78) are similar to Eq. (61),
hence the eight unknowns X1 to X8. In addition, the displacement
field in the effective medium reads

uðeffÞ
r ¼ br sin 2hð Þ 1� X9

r4
þ

MjþMl
Ml

X10

r2

" #

u
ðeffÞ
h ¼ br cos 2hð Þ 1þ X9

r4
þ X10

r2

� �
uðeffÞ

z ¼ 0

(79)

with X9 and X10 being the ninth and the tenth unknowns. Note, the
displacement field in the effective medium indeed mimics the
ones in Eq. (61), and the first and second unknowns are deter-
mined considering the conditions at r !1. Before considering
the boundary and the interface conditions, the additional energetic
criterion

ð2p

0

½rðeffÞ
rr uðeqÞ

r þ rðeffÞ
rh u

ðeqÞ
h � rðeqÞ

rr uðeffÞ
r � rðeqÞ

rh u
ðeffÞ
h �r¼r2

dh ¼ 0

(80)

Deduced from the Eshelby’s energy principle [52] must be
imposed and yields X10 ¼ 0. The remaining nine unknowns can
be determined via imposing the boundary and interface conditions
which are similar to Eqs. (62)–(66) and instead of condition (67),
we have

� displacement continuity at r¼ r2

uð2Þr ðr2Þ ¼ uðeffÞ
r ðr2Þ and u

ð2Þ
h ðr2Þ ¼ u

ðeffÞ
h ðr2Þ (81)

leading to the system of equations

F11 F12 F13 F14 F15 F16

F21 F22 F23 F24 F25 F26

F31 F32 F33 F34 F35 F36

F41 F42 F43 F44 F45 F46

F51 F52 F53 F54 F55 F56

F61 F62 F63 F64 F65 F66

2
6666666666666664

3
7777777777777775

X1

X2

X5

X6

X7

X8

2
6666666666666664

3
7777777777777775

¼

0

0

0

0

1

1

2
6666666666666664

3
7777777777777775

þ

0

0

0

�f 2

f 2

2
666666666664

3
777777777775

X9

(82)

with F ¼ D thus, see Eq. (A1). The remaining six unknowns can
be written as a function of X9 as

X1

X2

X5

X6

X7

X8

2
666666664

3
777777775

|fflffl{zfflffl}
X

¼ F�1

0

0

0

0

1

1

2
666666664

3
777777775

|fflfflfflfflffl{zfflfflfflfflffl}
a

þF�1

0

0

0

0

�f 2

f 2

2
666666664

3
777777775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
b

X9 ¼

a1

a2

a5

a6

a7

a8

2
666666666666664

3
777777777777775
þ

b1

b2

b5

b6

b7

b8

2
666666666666664

3
777777777777775

X9 (83)

Note, the components of the arrays a and b are numbered accord-
ing to the indices in X to facilitate the understanding of the proce-
dure. Imposing the stress continuity between the matrix and the
effective medium yields

rð2Þrr ðr2Þ ¼ rðeffÞ
rr ðr2Þ ) g1 þ h1X9¼Mlþ 3f 2X9

Ml

rð2Þrh ðr2Þ ¼ rðeffÞ
rh ðr2Þ ) g2 þ h2X9¼Ml� 3f 2X9

Ml
(84)
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with

g1 ¼ a6l
2ð Þ þ 3f 2l 2ð Þa7 � 2f j 2ð Þa8

h1 ¼ b6l
2ð Þ þ 3f 2l 2ð Þb7 � 2f j 2ð Þb8

g2 ¼
3j 2ð Þl 2ð Þ

f 2j 2ð Þ þ l 2ð Þ
� � a5 þ l 2ð Þa6 � 3f 2l 2ð Þa7 þ f j 2ð Þa8

h2 ¼
3j 2ð Þl 2ð Þ

f 2j 2ð Þ þ l 2ð Þ
� � b5 þ l 2ð Þb6 � 3f 2l 2ð Þb7 þ f j 2ð Þb8

(85)

Adding up Eqs. ð84Þ1 and ð84Þ2 renders

X9 ¼
2Ml� g1 þ g2½ �

h1 þ h2

(86)

and via replacing X9 from Eq. (86) into Eq. ð84Þ1 we obtain

6f 2Ml2 þ ½h2 � h1 � 3f 2½g1 þ g2��Mlþ ½h1g2 � h2g1� ¼ 0 (87)

From the two possible solutions of the quadratic Eq. (87), the pos-
itive value is the effective shear modulus Ml. See Fig. 10 for the
illustration of the effective shear modulus Ml versus the interface
position a. Similar to the bounds, it is observed that small a asso-
ciated with the extended general interface model renders a closer
behavior to the cohesive interface. However, increasing a results
in a stiffer response but not as stiff as the elastic interface.

3.6 Recovering General, Elastic, Cohesive, and Interface
Models. This section briefly provides the previously obtained sol-
utions for the bounds and estimates on the elastic moduli for the
general, cohesive, elastic, and perfect interface models. As men-
tioned before, the general interface model can be recovered by
setting a ¼ 0:5. The cohesive interface model is recovered when
k ¼ l ¼ 0 and a ¼ 0:5. The elastic interface model is recovered
when k 6¼ 0; l 6¼ 0 and k !1 and a ¼ 0:5. Finally, the perfect
interface model is recovered when k ¼ l ¼ 0 and k !1 and
a ¼ 0:5. Tables 5–8 show the formulations for the effective bulk
and shear moduli and the bounds on the shear modulus for fiber-

Table 5 Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites
embedding general interfaces

General interface model

Mj ¼
½jð2Þ þ f lð2Þ�½klr1 þ 1

2
jð1Þl þ kjð1Þr2

1 � þ 2jð2Þlð2Þ½1� f �½1
4
l þ jð1Þr1 þ kr2

1=2�
½lð2Þ þ fjð2Þ�½1

2
l þ 2jð1Þr1 þ kr2

1 � þ ½1� f �½klr1 þ 1
2
jð1Þl þ kjð1Þr2

1 �

Mlupper ¼
1

4

6lð2Þjð2Þr2
2

2jð2Þ þ lð2Þ
X5 þ 4lð2ÞX6 �

2jð2Þ

r2
2

X8

" #
See Appendix (B1)

Mllower ¼
1

3jð2Þr2
2

2jð2Þ þ lð2Þ
X5 þ 2X6 þ

jð2Þ þ 2lð2Þ

lð2Þr2
2

X8

see Appendix (B2)

6f 2Ml2 þ ½h2 � h1 � 3f 2½g1 þ g2��Mlþ ½h1g2 � h2g1� ¼ 0 see Appendix (B1)

Table 6 Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites
embedding elastic interfaces

Elastic interface model

Mj ¼ ½j
ð2Þ þ f lð2Þ�½lr1 þ jð1Þr2

1 � þ jð2Þlð2Þ½1� f �r2
1

½lð2Þ þ fjð2Þ�r2
1 þ ½1� f �½lr1 þ jð1Þr2

1 �

Mlupper ¼
1

4

6lð2Þjð2Þr2
2

2jð2Þ þ lð2Þ
X5 þ 4lð2ÞX6 �

2jð2Þ

r2
2

X8

" #
see Appendix (C1)

Mllower ¼
1

3jð2Þr2
2

2jð2Þ þ lð2Þ
X5 þ 2X6 þ

jð2Þ þ 2lð2Þ

lð2Þr2
2

X8

see Appendix (C2)

6f 2Ml2 þ ½h2 � h1 � 3f 2½g1 þ g2��Mlþ ½h1g2 � h2g1� ¼ 0 see Appendix (C1)

Table 7 Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites
embedding cohesive interfaces

Cohesive interface model

Mj ¼ ½j
ð2Þ þ f lð2Þ�½kjð1Þr2

1 � þ 2jð2Þlð2Þ½1� f �½jð1Þr1 þ kr2
1=2�

½lð2Þ þ fjð2Þ�½2jð1Þr1 þ kr2
1 � þ ½1� f �½kjð1Þr2

1 �

Mlupper ¼
1

4

6lð2Þjð2Þr2
2

2jð2Þ þ lð2Þ
X5 þ 4lð2ÞX6 �

2jð2Þ

r2
2

X8

" #
see Appendix (D1)

Mllower ¼
1

3jð2Þr2
2

2jð2Þ þ lð2Þ
X5 þ 2X6 þ

jð2Þ þ 2lð2Þ

lð2Þr2
2

X8

see Appendix (D2)

6f 2Ml2 þ ½h2 � h1 � 3f 2½g1 þ g2��Mlþ ½h1g2 � h2g1� ¼ 0 see Appendix (D1)
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reinforced composites embedding the general, elastic, cohesive
and perfect interfaces, respectively.

4 Particle-Reinforced Composites

This section aims to examine particle-reinforced composites
accounting for extended general interfaces between the constitu-
ents where the interface is allowed to occupy any arbitrary

position between the particle and the matrix. Bounds and esti-
mates for the overall bulk and shear moduli of such composites
are obtained via extending the CSA approach and the GSCM to
account for the extended general interface model. First, the pre-
liminaries of the RVE problem for these composites are intro-
duced. Second, the interface enhanced CSA and GSCM
approaches are elaborated resulting in bounds and estimates on
the overall moduli of composites. Throughout this section, the
particle-related properties are denoted by a superscript (1)
whereas the matrix-related properties are denoted by a superscript
(2). We intentionally develop this section in a manner that reflects
the similarities between the particle-reinforced composites here
and the fiber-reinforced composites elaborated in Sec. 3.

4.1 Preliminaries. Figure 11 shows a particle-reinforced
composite with its underlying simplified RVE together with a
spherical coordinate system suitable to analyze such a medium.
The RVE consists of a particle located at the center of the matrix.
The particle volume fraction is f ¼ r3

1=r3
2. Figure 12 illustrates a

schematic definition of the size and how it is related to the volume
fraction and the radii of the constituents. Clearly, having the size ‘
and the volume fraction f, one can determine the radii of the parti-
cle and the matrix. Note, ‘ refers to the side length of an equiva-
lent unit cube and is introduced for simplicity. The unit sphere is
chosen such that it satisfies the volume equivalence ‘3 ¼ 4=3pr3

2

hence ‘ / r2. The constitutive material behavior for the bulk, in
Voigt notation, reads

Table 8 Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites
embedding perfect interfaces

Perfect interface model

Mj ¼ ½j
ð2Þ þ f lð2Þ�jð1Þ þ jð2Þlð2Þ½1� f �
½lð2Þ þ fjð2Þ� þ ½1� f �jð1Þ

Mlupper ¼
1

4

6lð2Þjð2Þr2
2

2jð2Þ þ lð2Þ
X5 þ 4lð2ÞX6 �

2jð2Þ

r2
2

X8

" #
see Appendix (E1)

Mllower ¼
1

3jð2Þr2
2

2jð2Þ þ lð2Þ
X5 þ 2X6 þ

jð2Þ þ 2lð2Þ

lð2Þr2
2

X8

see Appendix (E2)

6f 2Ml2 þ ½h2 � h1 � 3f 2½g1 þ g2��Mlþ ½h1g2 � h2g1� ¼ 0 see Appendix (E1)

Fig. 11 Simplified RVE (right) and a spherical coordinate sys-
tem (left) to examine such a medium

Fig. 12 Definition of the size for particle-reinforced composites. Given the size ‘ and the vol-
ume fraction f, the radii of the fiber and the matrix can be calculated.
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rrr

rhh

r//

rrh

rr/

rh/

2
666666666664

3
777777777775
¼

kþ 2l k k 0 0 0

k kþ 2l k 0 0 0

k k kþ 2l 0 0 0

0 0 0 l 0 0

0 0 0 0 l 0

0 0 0 0 0 l

2
666666666664

3
777777777775

err

ehh

e//

2erh

2er/

2eh/

2
666666666664

3
777777777775
(88)

For this case, the bulk modulus j relates to the Lam�e parameters
via j ¼ kþ 2l=3. In a spherical coordinate system, the strain
field in the bulk reads

err ¼
@ur

@r
; ehh ¼

1

r

@uh

@h
þ ur

r

e// ¼
1

r sin h
@u/

@/
þ ur

r
þ uh cos h

r sin h

2er/ ¼
@u/

@r
þ 1

r sin h
@ur

@/
� u/

r

2eh/ ¼
1

r

@u/

@h
þ 1

r sin h
@uh

@/
� u/ cos h

r sin h

2erh ¼
@uh

@r
þ 1

r

@ur

@h
� uh

r

(89)

and the balance equations for the bulk expand to

@rrr

@r
þ 1

r

@rrh

@h
þ rrh cos h

r sin h
þ 2rrr � rhh � r//

r
þ 1

r sin h
@rr/

@/
¼ 0

@rrh

@r
þ 1

r

@rhh

@h
þ 3rrh

r
þ

rhh � r//½ �cos h

r sin h
þ 1

r sin h
@rh/

@/
¼ 0

@rr/

@r
þ 1

r

@rh/

@h
þ 3rr/

r
þ 2rh/ cos h

r sin h
þ 1

r sin h
@r//

@/
¼ 0

(90)

The interface tangential behavior follows from the constitutive
relation:

rhh

r//

rh/

2
664

3
775 ¼

k þ 2l k 0

k k þ 2l 0

0 0 l

2
664

3
775

ehh

e//

2eh/

2
664

3
775 (91)

The interface cohesive behavior is characterized by

tr

th

t/

2
664

3
775 ¼

k ½½ur��
k ½½uh��
k ½½u/��

2
664

3
775 (92)

Under the assumption of identical cohesive stiffness in all three
directions. The (tangential) strain field on the interface reads

ehh ¼
1

r1

@uh

@h
þ ur

r1

e// ¼
1

r1 sin h
@u/

@/
þ ur

r1

þ uh cos h
r1 sin h

2eh/ ¼
1

r1

@u/

@h
þ 1

r1 sin h
@uh

@/
� u/ cos h

r1 sin h

(93)

and the interface balance equations can be expanded to

rhh þ r//

r1

� rrr½ �½ � ¼ 0

1

r1

@rhh

@h
þ 1

r1 sin h
@rh/

@/
þ rhh � r//½ �cos h

r1 sin h
þ rrh½ �½ � ¼ 0

1

r1

@rh/

@h
þ 1

r1 sin h
@r//

@/
þ 2rh/ cos h

r1 sin h
þ rr/½ �½ � ¼ 0

(94)

The normal basis vectors in spherical coordinates are

nr ¼
sinhcos/
sinhsin/

cosh

2
4

3
5 ; nh¼

coshcos/
coshsin/
�sinh

2
4

3
5 ; n/¼

�sin/
cos/

0

2
4

3
5
(95)

and the displacements and stresses can be accordingly expressed
as

u ¼ ur nr þ uh nh þ u/ n/

r ¼ rrr nr � nr þ rhh nh � nh þ r// n/ � n/

þ rrh½nr � nh þ nh � nr� þ rr/½nr � n/ þ n/ � nr�
r ¼ rhh nh � nh þ r// n/ � n/ þ rh/½nh � nz þ nz � nh� (96)

The mechanical energy stored in the RVE reads

U RVEð Þ ¼ 1

2

ð
B

r : e dV þ 1

2

ð
I

r : e dAþ 1

2

ð
I

t � u½ �½ � dA

¼ 1

2

ð
@B

r � n½ � � u dA ¼ 1

2

ð
@B

t � u dA (97)

Under prescribed boundary conditions associated with expansion
and in-plane shear, the average mechanical energy density stored
in the RVE reads

UðRVEÞ ¼ 3

8pr3
2

ð2p

0

ðp

0

r 2ð Þ
rr u 2ð Þ

r þ r 2ð Þ
rh u 2ð Þ

h þ r 2ð Þ
r/ u 2ð Þ

/ �r¼r2
sin h dh d/

�
(98)

Accordingly, the mechanical energy stored in an equivalent
homogeneous medium reads

U eqð Þ ¼ 1

2

ð
B

r eqð Þ : e eqð Þ dV ¼ 1

2

ð
@B

r eqð Þ � n½ � � u eqð Þ dA

¼ 1

2

ð
@B

t eqð Þ � u eqð Þ dA (99)

Under prescribed boundary conditions associated with expansion
and in-plane shear, the average mechanical energy density stored
in the equivalent homogeneous medium reads

U eqð Þ¼
3

8pr3
2

ð2p

0

ðp

0

r
eqð Þ

rr u
eqð Þ

r þr
eqð Þ

rh u
eqð Þ

h þr
eqð Þ

r/ u
eqð Þ

/ �r¼r2
sinhdhd/

h
(100)

Equating the energies (98) and (100) renders the overall macro-
scopic properties. Note that the generic form of the average
mechanical energy density in principle includes other components
of stress and displacement but they vanish for expansion and in-
plane shear boundary conditions that are imposed here.

In CSA [14], the RVE resembles the right microstructure in
Fig. 11. Applying expansion and simple shear under both dis-
placement and traction boundary conditions renders bounds on the
overall bulk and shear moduli. While the bounds for the shear
modulus are distinct, for the bulk modulus the bounds coincide
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and therefore, they are collectively referred to as the effective
bulk modulus. To obtain an estimate for the effective shear modu-
lus, Christensen and Lo [52] developed GSCM via introducing an
infinite effective medium surrounding the matrix whose proper-
ties are the unknowns of the problem. Here, we extend CSA and
GSCM to account for extended general interfaces with arbitrary
interface positions and obtain bounds and estimates for the effec-
tive bulk and shear moduli of particulate-composites.

4.2 Effective Bulk Modulus. To obtain the effective bulk
modulus Mj, consider the RVE subject to a uniform radial expan-
sion via

u0
ðr;h;/Þ ¼

br
0

0

2
4

3
5 (101)

where the superscript 0 denotes the prescribed deformation mode.
As demonstrated by Hashin [14], the generated displacement
fields in the constituents due to the boundary condition (101) are

u 1ð Þ
r ¼ br X1 þ

1

r=r1½ �3
X2

" #

u 1ð Þ
h ¼ u 1ð Þ

/ ¼ 0

u 2ð Þ
r ¼ br X3 þ

1

r=r1½ �3
X4

" #

u 2ð Þ
h ¼ u 2ð Þ

/ ¼ 0

(102)

with the four unknowns X1–X4 that can be determined via impos-
ing the boundary and interface conditions

� finite displacement at r¼ 0

uð1Þr ðr ¼ 0Þ!1 ) X2 ¼ 0 (103)

� radial equilibrium at r¼ r1

tr ¼ k ½½ur�� ) ½1�a�rð2Þrr ðr1Þþarð1Þrr ðr1Þ¼ k½uð2Þr ðr1Þ�uð1Þr ðr1Þ�
(104)

� tangential equilibrium at r¼ r1

div r½ �r þ tr½ �½ � ¼ 0 ) �rhh þ r//

r1

þ r 2ð Þ
rr r1ð Þ � r 1ð Þ

rr r1ð Þ ¼ 0 (105)

� prescribed displacement at r¼ r2

uð2Þr ðr2Þ ¼ br (106)

The conditions (103)–(106) lead to the system of equations

3aj 1ð Þ þ kr1

k

3 1� a½ �j 2ð Þ � kr1

k

�4 1� a½ �l 2ð Þ � kr1

k

�4 1� a½ � k þ l
� �

� 3j 1ð Þr1

r1

�4a k þ l
� �

þ 3j 2ð Þr1

r1

�4a k þ l
� �

� 4l 2ð Þr1

r1

0 1 f

2
66666664

3
77777775

X1

X3

X4

2
6664

3
7775 ¼

0

0

1

2
6664
3
7775 (107)

Applying the same boundary condition (101) to the equivalent homogeneous medium leads to the displacement field u
ðeqÞ
r ¼ br and

u
ðeqÞ
h ¼ u

ðeqÞ
/ ¼ 0. Employing Eqs. (98) and (100), the average mechanical energy densities in the RVE and the equivalent homogeneous

medium read

U RVEð Þ ¼ 3b2 3j 2ð ÞX3 � 4f l 2ð ÞX4

� �
2r2

2

UðeqÞ ¼ 9b2Mj
2r2

2

(108)

where X3 and X4 are the solutions of the system (107). Imposing UðRVEÞ ¼ UðeqÞ renders the overall bulk modulus

Mj ¼ 3j 2ð ÞS1 þ 4f l 2ð ÞS2

3S3

with

S1 ¼ 4k k þ l
� �

r1 þ kr2
1 3j 1ð Þ þ 4l 2ð Þ
h i

þ 4 k þ l
� �

3a2j 1ð Þ þ 4 1� a½ �2l 2ð Þ
h i

þ 12j 1ð Þl 2ð Þr1

S2 ¼ 4k k þ l
� �

r1 þ 3kr2
1 j 1ð Þ � j 2ð Þ
� �

þ 12 k þ l
� �

a2j 1ð Þ � 1� a½ �2j 2ð Þ
h i

� 9j 1ð Þj 2ð Þr1

S3 ¼ 4k k þ l
� �

r1 1� f½ � þ kr2
1 3j 1ð Þ 1� f½ � þ 3fj 2ð Þ þ 4l 2ð Þ
h i

þ 4 k þ l
� �

4l 2ð Þ þ 3f j 2ð Þ
h i

1� a½ �2 þ 3a2j 1ð Þ 1� f½ �
h i

þ 3j 1ð Þr1 4l 2ð Þ þ 3fj 2ð Þ
h i

(109)
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where a determines the interface position. Figure 13 shows the overall bulk modulus Mj versus a for various interface models. Clearly,
the position of the interface does not influence the material response for the classical interface models. Similar to the two-dimensional
case, for the extended general interface model, it is observed that for small a the material renders a closer behavior to the cohesive inter-
face. Increasing a yields a stiffer response where the solution due to the extended general interface model approaches that of the elastic
interface model. The extended general interface model coincides with the general interface model if a ¼ 0:5.

4.3 Upper Bound on Shear Modulus. To obtain the upper bound on the overall shear modulus, the simple shear deformation

u0
ðr;h;/Þ ¼

br sin2h cos 2/
br sin h cos h cos 2/
�br sin h sin 2/

2
4

3
5 (110)

is applied to the RVE boundary at r¼ r2. For this boundary condition, following Christensen and Lo [52], the displacement fields devel-
oped in the constituents read

u 1ð Þ
r ¼ br sin 2 hð Þcos 2/ð Þ X1 þ 2� 3

j 1ð Þ

l 1ð Þ

" #
r=r1½ �2X2 þ

3X3

r=r1½ �5
þ 3þ 3

j 1ð Þ

l 1ð Þ

" #
X4

r=r1½ �3

" #

u 1ð Þ
h ¼ br sin hð Þcos hð Þcos 2/ð Þ X1 �

11

3
þ 5

j 1ð Þ

l 1ð Þ

" #
r=r1½ �2X2 �

2X3

r=r1½ �5
þ 2X4

r=r1½ �3

" #

u 1ð Þ
/ ¼ �br sin hð Þsin 2/ð Þ X1 �

11

3
þ 5

j 1ð Þ

l 1ð Þ

" #
r=r1½ �2X2 �

2X3

r=r1½ �5
þ 2X4

r=r1½ �3

" #

u 2ð Þ
r ¼ br sin 2 hð Þcos 2/ð Þ X5 þ 2� 3

j 2ð Þ

l 2ð Þ

" #
r=r1½ �2X6 þ

3X7

r=r1½ �5
þ 3þ 3

j 2ð Þ

l 2ð Þ

" #
X8

r=r1½ �3

" #

u 2ð Þ
h ¼ br sin hð Þcos hð Þcos 2/ð Þ X5 �

11

3
þ 5

j 2ð Þ

l 2ð Þ

" #
r=r1½ �2X6 �

2X7

r=r1½ �5
þ 2X8

r=r1½ �3

" #

u 2ð Þ
/ ¼ �br sin hð Þsin 2/ð Þ X5 �

11

3
þ 5

j 2ð Þ

l 2ð Þ

" #
r=r1½ �2X6 �

2X7

r=r1½ �5
þ 2X8

r=r1½ �3

" #

(111)

with the eight unknowns X1–X8 which can be determined via imposing the boundary and interface conditions

� finite displacement at r¼ 0

uð1Þr ðr ¼ 0Þ!1 and u
ð1Þ
h ðr ¼ 0Þ!1 ) X3 ¼ 0 and X4 ¼ 0 (112)

� radial equilibrium in r direction at r¼ r1

tr ¼ k ½½ur�� ) ½1� a�rð2Þrr ðr1Þ þ arð1Þrr ðr1Þ ¼ k½uð2Þr ðr1Þ � uð1Þr ðr1Þ� (113)

� circumferential equilibrium in h direction at r¼ r1

th ¼ k ½½uh�� ) ½1� a�rð2Þrh ðr1Þ þ arð1Þrh ðr1Þ ¼ k½uð2Þh ðr1Þ � u
ð1Þ
h ðr1Þ� (114)

� tangential equilibrium in r direction at r¼ r1

div r½ �r þ tr½ �½ � ¼ 0 ) �rhh þ r//

r1

þ r 2ð Þ
rr r1ð Þ � r 1ð Þ

rr r1ð Þ ¼ 0 (115)

� tangential equilibrium in h direction at r¼ r1

div r½ �h þ th½ �½ � ¼ 0 ) 1

r1

@rhh

@h
þ 1

r1 sin h
@rh/

@/
þ

rhh � r//½ �cos h

r1 sin h
þ r 2ð Þ

rh r1ð Þ � r 1ð Þ
rh r1ð Þ ¼ 0 (116)

� prescribed displacements at r¼ r2

uð2Þr ðr2Þ¼br2 sin2hcos2/ and u
ð2Þ
h ðr2Þ¼ br2 sinhcoshcos2/ (117)
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The conditions (112)–(117) lead to the system of equations

P11 P12 P13 P14 P15 P16

P21 P22 P23 P24 P25 P26

P31 P32 P33 P34 P35 P36

P41 P42 P43 P44 P45 P46

P51 P52 P53 P54 P55 P56

P61 P62 P63 P64 P65 P66

2
6666664

3
7777775

X1

X2

X5

X6

X7

X8

2
6666664

3
7777775 ¼

0

0

0

0

1

1

2
6666664

3
7777775 (118)

where the components of P are detailed in Eq. (A3). Applying the
same boundary condition to the equivalent homogeneous medium
results in the displacement field

uðeqÞ
r ¼ br sin 2h cos 2/

u
ðeqÞ
h ¼ br sin h cos h cos 2/

u
ðeqÞ
/ ¼ �br sin h sin 2/

(119)

Equipped with the displacement and stress fields in both constitu-
ents, the overall mechanical energy densities in both RVE and the
equivalent homogeneous medium according to Eqs. (98) and
(100) read

UðRVEÞ ¼ b2

5r2
2

10l 2ð ÞX5 � 14 3j 2ð Þ þ l 2ð Þ
h i

f�2=3X6

h
� 2 9j 2ð Þ þ 8l 2ð Þ
h i

fX8�

UðeqÞ ¼ 2b2Ml
r2

2

(120)

From UðRVEÞ ¼ UðeqÞ the upper bound on the macroscopic shear
modulus is obtained as

Mlupper ¼
1

10
10l 2ð ÞX5 � 14 3j 2ð Þ þ l 2ð Þ

h i
f�2=3X6

h
�2 9j 2ð Þ þ 8l 2ð Þ
h i

fX8

�
(121)

where X5, X6, and X8 can be calculated via solving the system of
Eq. (118). Figure 14 illustrates the effective shear modulus and its
bounds with respect to the interface position a for various inter-
face models. The top row corresponds to the upper bound on the
shear modulus Mlupper. The middle row corresponds to the lower
bound on the shear modulus Mllower which will be discussed in the
next section. The last row corresponds to the effective shear mod-
ulus Ml that we derive in Sec. 4.5. Similar to the bulk modulus, it
is observed that for small a the composite embedding the

extended general interface model renders a closer behavior to the
cohesive interface model. Unlike the fiber-reinforced composites,
here, increasing a yields a stiffer response where the solution due
to the extended general interface model approaches that of the
elastic interface model.

4.4 Lower Bound on Shear Modulus. To obtain the lower
bound on the overall shear modulus, a traction field is applied to
the boundary of the RVE as

t0
ðr;h;/Þ ¼

b sin2h cos 2/
b sin h cos h cos 2/
�b sin h sin 2/

2
4

3
5 (122)

The displacement fields developed in the constituents due to the
applied traction are analogous to Eq. (111) with the eight
unknowns X1–X8. The boundary and interface conditions are simi-
lar to Eqs. (112)–(116) and instead of condition (117), we have

� prescribed stresses at r¼ r2

rð2Þrr ðr2Þ ¼ b sin2hcos2/ and rð2Þrh ðr2Þ ¼ b sinhcoshcos2/

(123)

which leads to the system of equations

Q11 Q12 Q13 Q14 Q15 Q16

Q21 Q22 Q23 Q24 Q25 Q26

Q31 Q32 Q33 Q34 Q35 Q36

Q41 Q42 Q43 Q44 Q45 Q46

Q51 Q52 Q53 Q54 Q55 Q56

Q61 Q62 Q63 Q64 Q65 Q66

2
6666664

3
7777775

X1

X2

X5

X6

X7

X8

2
6666664

3
7777775 ¼

0

0

0

0

1

1

2
6666664

3
7777775 (124)

Further details regarding the components of Q are available in Eq.
(A4). Applying the same boundary conditions to the equivalent
homogeneous medium leads to the displacement field

ueq
r ¼

b

2Ml
r sin 2h cos 2/

ueq
h ¼

b

2Ml
r sin h cos h cos 2/

ueq
/ ¼ �

b

2Ml
r sin h sin 2/

(125)

Equipped with the displacement and stress fields in both constitu-
ents, the overall mechanical energy in both RVE and the equiva-
lent homogeneous medium according to Eqs. (98) and (100) read

Fig. 13 Effective bulk modulus Mj versus interface position a for particle-reinforced composites. Different interface models
are compared against each other.
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UðRVEÞ ¼ b2

5r2
2

5X 2ð Þ
5 � 7 1þ 3

j 2ð Þ

l 2ð Þ

" #
f�2=3X6 þ 6 2þ j 2ð Þ

l 2ð Þ

" #
fX8

" #

UðeqÞ ¼ b2

2Mlr2
2

(126)

Imposing UðRVEÞ ¼ UðeqÞ furnishes the lower bound on the macro-
scopic shear modulus

Mllower ¼
5

2 5X5 � 7 1þ 3 j 2ð Þ

l 2ð Þ

h i
f�2=3X6 þ 6 2þ j 2ð Þ

l 2ð Þ

h i
fX8

h i (127)

where in X5, X6, and X8 can be calculated via solving the system
(124). See Fig. 14 for the illustration of the lower bound on the
shear modulus Mllower versus the interface position a. Similar to
the upper bound, it is observed that smaller a renders a closer
behavior to the cohesive interface. Increasing a yields a stiffer
response but unlike the fiber-reinforced composites, the solution
due to the general interface model approaches that of the elastic
interface model.

4.5 Effective Shear Modulus. To obtain the effective shear
modulus Ml, GSCM [52] is employed. No traction or displace-
ment jump between the matrix and the effective medium is
allowed. To obtain the effective shear modulus, let the medium be
subject to the displacement boundary condition

u0
ðr;h;/Þ ¼

br sin2h cos 2/
br sin h cos h cos 2/
�br sin h sin 2/

2
4

3
5 (128)

The resultant displacement fields in the fiber and the matrix due to
the boundary condition (128) are similar to Eq. (111), hence the
eight unknowns X1–X8. Furthermore, the displacement field in the
effective medium reads

u effð Þ
r ¼ br sin 2h cos 2/ 1þ 3X9

r=r1½ �5
þ 3þ 3

Mj
Ml

" #
X10

r=r1½ �3

" #

u effð Þ
h ¼ br sin h cos h cos 2/ 1� 2X9

r=r1½ �5
þ 2X10

r=r1½ �3

" #

u effð Þ
/ ¼ �br sin h sin 2/ 1� 2X9

r=r1½ �5
þ 2X10

r=r1½ �3

" #
(129)

with X9 and X10 being the ninth and the tenth unknowns. Before
considering the boundary and interface conditions, the energetic
criterion (130) deduced from the Eshelby’s energy principle [52]
is imposedð2p

0

ðp

0

½rðeffÞ
rr uðeqÞ

r þ rðeffÞ
rh u

ðeqÞ
h þ rðeffÞ

r/ u
ðeqÞ
/ � rðeqÞ

rr uðeffÞ
r � rðeqÞ

rh u
ðeffÞ
h

� rðeqÞ
r/ u

ðeffÞ
/ �r¼r2

sin h dh d/ ¼ 0

(130)

Fig. 14 Effective shear modulus Ml and its bounds versus interface position a for particle-reinforced composites. Different
interface models are compared against each other.

Applied Mechanics Reviews JULY 2021, Vol. 73 / 040802-31

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/73/4/040802/6735866/am

r_073_04_040802.pdf by Bilkent U
niversitesi user on 05 M

arch 2022



that yields X10 ¼ 0. The remaining unknowns can be determined
via imposing the boundary and interface conditions which are
similar to Eqs. (112)–(116) and instead of condition (117), we
have

� displacement continuity at r¼ r2

uð2Þr ðr2Þ ¼ uðeffÞ
r ðr2Þ and u

ð2Þ
h ðr2Þ ¼ u

ðeffÞ
h ðr2Þ (131)

that lead to the system of equations

R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66

2
6666664

3
7777775

X1

X2

X5

X6

X7

X8

2
6666664

3
7777775

¼

0

0

0

0

1

1

2
6666664

3
7777775þ

0

0

0

0
3f 5=3

�2f 5=3

2
6666664

3
7777775X9 (132)

with R ¼ P thus, see Eq. (A3). The remaining six unknowns can
be obtained as a function of X9. That is

X1

X2

X5

X6

X7

X8

2
6666664

3
7777775

|fflffl{zfflffl}
X

¼ R�1

0

0

0

0

1

1

2
6666664

3
7777775

|fflfflfflfflffl{zfflfflfflfflffl}
a

þR�1

0

0

0

0

3f 5=3

�2f 5=3

2
6666664

3
7777775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
b

X9 ¼

a1

a2

a5

a6

a7

a8

2
666666666664

3
777777777775
þ

b1

b2

b5

b6

b7

b8

2
666666666664

3
777777777775

X9

(133)

Note, the components of the arrays a and b are numbered accord-
ing to the indices in X. Imposing the stress continuity between the
matrix and the effective medium yields

r 2ð Þ
rr r2ð Þ ¼ r effð Þ

rr r2ð Þ ) g1 þ h1X9 ¼ 2Ml� 24X9
Mlr5

1

r5
2

r 2ð Þ
rh r2ð Þ ¼ r effð Þ

rh r2ð Þ ) g2 þ h2X9 ¼ 3Mlþ 24X9
Mlr5

1

r5
2

(134)

with

g1 ¼ 2lð2Þa5 þ ½3jð2Þ � 2lð2Þ�f�2=3a6 � 24lð2Þf 5=3a7

� ½18jð2Þ þ 8lð2Þ�fa8

h1 ¼ 2lð2Þb5 þ ½3jð2Þ � 2lð2Þ�f�2=3b6 � 24lð2Þf 5=3b7

� ½18jð2Þ þ 8lð2Þ�fb8

g2 ¼ 3lð2Þa5 � ½24jð2Þ þ 5lð2Þ�f�2=3a6 þ 24lð2Þf 5=3a7 þ 9jð2Þfa8

h2 ¼ 3lð2Þb5 � ½24jð2Þ þ 5lð2Þ�f�2=3b6 þ 24lð2Þf 5=3b7 þ 9jð2Þfb8

(135)

Equation ð134Þ furnishes

X9 ¼
5Ml� g1 � g2

h1 þ h2

; (136)

and via replacing X9 from Eq. (136) into Eq. (134) we obtain

120f 5=3Ml2þ½3h1�2h2�24½g1þg2�f 5=3�Mlþ½g1h2�g2h1� ¼ 0

(137)

From the two possible solutions of the quadratic Eq. (137), the
positive one is the effective shear modulus. See Fig. 14 for the
illustration of the effective shear modulus Ml versus the interface
position a. Again, smaller a renders a closer behavior to the cohe-
sive interface model and increasing a yields a stiffer response
closer to that of the elastic interface model.

4.6 Recovering General, Elastic, Cohesive, and Interface
Models. This section briefly provides the previously obtained sol-
utions for the bounds and estimates on the elastic moduli for the
general, cohesive, elastic, and perfect interface models. As men-
tioned before, the general interface model can be recovered by
setting a ¼ 0:5. The cohesive interface model is recovered when
k ¼ l ¼ 0 and a ¼ 0:5. The cohesive interface model is recov-
ered when k 6¼ 0; l 6¼ 0 and k !1 and a ¼ 0:5. Finally, the
perfect interface model is recovered when k ¼ l ¼ 0 and k !1
and a ¼ 0:5. Tables 9–12 show the formulations for the effective
bulk and shear moduli and the bounds on the shear modulus for
particle-reinforced composites embedding the general, elastic,
cohesive, and perfect interfaces, respectively.

Remark on computational implementation using FEM. Limiting
the analysis here to monodisperse particles/fibers is an underlying
assumption to derive meaningful analytical estimates. While ana-
lytical homogenization proves useful in understanding the

Table 9 Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding
general interfaces

General interface model

Mj ¼ 3jð2ÞS1 þ 4flð2ÞS2

3S3

S1 ¼ 4k ½k þ l�r1 þ kr2
1 ½3jð1Þ þ 4lð2Þ� þ ½k þ l�½3jð1Þ þ 4lð2Þ� þ 12jð1Þlð2Þr1

S2 ¼ 4k ½k þ l�r1 þ 3kr2
1 ½jð1Þ � jð2Þ� þ 3½k þ l�½jð1Þ � jð2Þ� � 9jð1Þjð2Þr1

S3 ¼ 4k ½k þ l�r1½1� f � þ kr2
1 ½3jð1Þ½1� f � þ 3fjð2Þ þ 4lð2Þ� þ ½k þ l�½½4lð2Þ þ 3f jð2Þ� þ 3jð1Þ½1� f �� þ 3jð1Þr1½4lð2Þ þ 3fjð2Þ�

Mlupper ¼
1

10
½10lð2ÞX5 � 14½3jð2Þ þ lð2Þ�f�2=3X6 � 2½9jð2Þ þ 8lð2Þ�fX8�

see Appendix (B3)

Mllower ¼
5

2½5X5 � 7 1þ 3
jð2Þ

lð2Þ

" #
f�2=3X6 þ 6 2þ jð2Þ

lð2Þ

" #
fX8�

see Appendix (B4)

120f 5=3Ml2 þ ½3h1 � 2h2 � 24½g1 þ g2�f 5=3�Mlþ ½g1h2 � g2h1� ¼ 0 see Appendix (B3)
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behavior of composites accounting for extended general interfa-
ces, it is virtually impossible to explain the effective response of
more complex microstructures with polydisperse particles/fibers,
shown in Fig. 15, without recourse to computational methods such
as FEM. The first step toward the finite element implementation
of our theory is to derive the weak form of the governing equa-
tions. To do so, the strong form of the linear momentum balance
for the bulk and interface is contracted from left by a vector-
valued test function du 2 H 1ðBÞ and du 2 H 1ðIÞ, respectively,
where H 1 denotes the Sobolev space of order one. Then the
resulting equation is integrated over the corresponding domain.
The test functions are specified to be zero on the Dirichlet part of
the boundary. Integrating Eqs. (7) and (13) over their respective
domains, the integral form of the linear momentum balance reads

ð
B

Divr dV þ
ð

I

Divr dAþ
ð

I

½½r�� � n dA ¼ 0 (138)

Upon contracting with the test functions and using the divergence
theorem, after some mathematical steps, the weak form of the lin-
ear momentum balance reads

ð
B

r : Grad du dV þ
ð

I

r

: Grad du dAþ
ð

I

t � ½½du�� dA�
ð
@B

du � t0 dA ¼ 0 (139)

Table 12 Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding
perfect interfaces

Perfect interface model

Mj ¼ jð2Þ½3jð1Þ þ 4lð2Þ� þ 4flð2Þ½jð1Þ � jð2Þ�
3jð1Þ½1� f � þ 3fjð2Þ þ 4lð2Þ

Mlupper ¼
1

10
½10lð2ÞX5 � 14½3jð2Þ þ lð2Þ�f�2=3X6 � 2½9jð2Þ þ 8lð2Þ�fX8�

see Appendix (E3)

Mllower ¼
5

2½5X5 � 7 1þ 3
jð2Þ

lð2Þ

" #
f�2=3X6 þ 6 2þ jð2Þ

lð2Þ

" #
fX8�

see Appendix (E4)

120f 5=3Ml2 þ ½3h1 � 2h2 � 24½g1 þ g2�f 5=3�Mlþ ½g1h2 � g2h1� ¼ 0 see Appendix (E3)

Table 10 Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding
elastic interfaces

Elastic interface model

Mj ¼ 3jð2Þ½4½k þ l�r1 þ r2
1 ½3jð1Þ þ 4lð2Þ�� þ 4flð2Þ½4½k þ l�r1 þ 3r2

1 ½jð1Þ � jð2Þ��
3½4½k þ l�r1½1� f � þ r2

1 ½3jð1Þ½1� f � þ 3fjð2Þ þ 4lð2Þ��

Mlupper ¼
1

10
½10lð2ÞX5 � 14½3jð2Þ þ lð2Þ�f�2=3X6 � 2½9jð2Þ þ 8lð2Þ�fX8�

see Appendix (C3)

Mllower ¼
5

2½5X5 � 7 1þ 3
jð2Þ

lð2Þ

" #
f�2=3X6 þ 6 2þ jð2Þ

lð2Þ

" #
fX8�

see Appendix (C4)

120f 5=3Ml2 þ ½3h1 � 2h2 � 24½g1 þ g2�f 5=3�Mlþ ½g1h2 � g2h1� ¼ 0 see Appendix (C3)

Table 11 Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding
cohesive interfaces

Cohesive interface model

Mj ¼ 3jð2Þ½kr2
1 ½3jð1Þ þ 4lð2Þ� þ 12jð1Þlð2Þr1� þ 4flð2Þ½3kr2

1 ½jð1Þ � jð2Þ� � 9jð1Þjð2Þr1�
3½kr2

1 ½3jð1Þ½1� f � þ 3fjð2Þ þ 4lð2Þ� þ 3jð1Þr1½4lð2Þ þ 3fjð2Þ��

Mlupper ¼
1

10
½10lð2ÞX5 � 14½3jð2Þ þ lð2Þ�f�2=3X6 � 2½9jð2Þ þ 8lð2Þ�fX8�

see Appendix (D3)

Mllower ¼
5

2½5X5 � 7 1þ 3
jð2Þ

lð2Þ

" #
f�2=3X6 þ 6 2þ jð2Þ

lð2Þ

" #
fX8�

see Appendix (D4)

120f 5=3Ml2 þ ½3h1 � 2h2 � 24½g1 þ g2�f 5=3�Mlþ ½g1h2 � g2h1� ¼ 0 see Appendix (D3)

Fig. 15 Schematic illustration of complex polydisperse micro-
structures for fiber-composites (left) and particulate-
composites (right)
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where t0 is the prescribed traction on the boundary of the body. In
view of the weak form Eq. (139), the interface position enters
through a reflected in t ¼ ffrgg½1�a � � n. As mentioned earlier,
the body forces are neglected since we limit our discussion to the
microscale problem. The last integral in Eq. (139) acts on the
boundary of the domain and is therefore not influenced by the
interface at the microscale. This term is standard in all computa-
tional homogenization schemes dependent on the boundary condi-
tion imposed on the RVE. For further details on implementing

boundary conditions in computational homogenization, see, e.g.,
Saeb et al. [166]. Note that in this context, it proves convenient to
use a curvilinear-coordinate-based finite element method [633]
since it mimics the underlying geometrical and mathematical con-
cepts for two-dimensional manifolds embedded into a three-
dimensional space. Further details of the computational imple-
mentation of the scheme are omitted, for the sake of brevity. The
analytical solutions here are compared with our computational
simulations and an excellent agreement is observed consistently.

Fig. 16 Comparison of the overall material response obtained from the extended general interface model, gen-
eral interface model, cohesive interface model, and elastic interface model. The top segment corresponds to
the effective bulk modulus and the bottom segment corresponds to the effective shear modulus. The left and
right plots in each segment exhibit two different views of the same graph representing the variation of the over-
all modulus with respect to stiffness ratio as well as RVE size. To better illustrate the variation of the moduli, the
two plots at the center depict two cutouts of the side plots; one cut at incl:/matr:5 1 with varying size and one
cut at size 5 1 with varying stiffness ratio.
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Figures 16 and 17 provide a thorough comparison between the
extended general interface model and the classical interface mod-
els for both fiber-reinforced and particle-reinforced composites.
The general interface model is recovered via setting a ¼ 0:5. The
elastic interface model can be recovered from our model via set-
ting k !1 and a ¼ 0:5, the cohesive interface model can be
recovered via setting k ¼ 0; l ¼ 0 and a ¼ 0:5. The top segment
in each figure corresponds to the effective bulk modulus and the
bottom segment corresponds to the effective shear modulus. For
the top segments, volumetric expansion is prescribed on the RVE

to compute the effective bulk modulus Mj and the stress distribu-
tion throughout the RVEs is depicted. Pressure-like quantities
½rxx þ ryy�=2 for the two-dimensional case and ½rxx þ ryy þ rzz�=3
for the three-dimensional case are illustrated as relevant stress
measures. On the other hand, for the bottom segments, simple
shear is prescribed on the RVE to compute the effective shear
modulus Ml in which case the shear stress rxy is provided as a
more appropriate quantity. The left and right plots in each seg-
ment exhibit two different views of the same graph representing
the variation of the overall modulus with respect to stiffness ratio

Fig. 17 Comparison of the overall material response obtained from the extended general interface model, gen-
eral interface model, cohesive interface model, and elastic interface model. The top segment corresponds to
the effective bulk modulus and the bottom segment corresponds to the effective shear modulus. The left and
right plots in each segment exhibit two different views of the same graph representing the variation of the over-
all modulus with respect to stiffness ratio as well as RVE size. To better illustrate the variation of the moduli, the
two plots at the center depict two cutouts of the side plots; one cut at incl:/matr:5 1 with varying size and one
cut at size 5 1 with varying stiffness ratio.
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as well as RVE size. In these graphs, the extended general inter-
face model with various interface positions a is compared against
the general, cohesive, and elastic interface models. To better
understand the surface plots, the two plots at the center depict two
sections of the plots on the sides; one at incl:=matr: ¼ 1 with vary-
ing size and one at size ¼ 1 with varying stiffness ratio. In these
plots, the solutions associated with the extended general interface
model are illustrated by points and the solutions obtained by the
cohesive and elastic interface models are depicted by lines. Again,
note that the extended general interface model at a ¼ 0:5 coin-
cides with the general interface model. The stress distributions are
elaborated for incl:=matr: ¼ 1 and at size ¼ 1. It is observed that
the material response due to extended general interfaces is always
bounded between the response due to the cohesive interface from
below and the elastic interface from above. When a ¼ 0 the mate-
rial response is closer to the cohesive interface. Increasing a
results in a stiffer response where the material behavior tends to
approach the elastic interface model. Another interesting observa-
tion is that the effective properties obtained by the elastic interface
model are identical to the extended general interface model with
a ¼ 1 for compliant inclusions or in other words small stiffness
ratios (left surface plots). However, for large stiffness ratios, the
elastic interface response overestimates the response due to the
extended general interface model with a ¼ 1 (right surface plots).
An opposite trend can be seen between the cohesive interface
model and the extended general interface model with a ¼ 0. For
very stiff inclusions, the material renders identical behavior for
these two interface models whereas, for compliant inclusions,
their responses deviate from each other with the cohesive inter-
face model rendering a more compliant response. This trend can
be observed more clearly in the bottom plots at the center in each
figure where the effective moduli versus the stiffness ratio are
shown at size ¼ 1. Looking at the top plots at the center associ-
ated with incl:=matr: ¼ 1, we observe that all the interface models
tend to converge at large sizes that is intuitive due to diminishing
interface effects. On the other hand, at small sizes, the solutions
are distinct from each other. Moving the interface from the inclu-
sion toward the matrix (increasing a) leads the overall material
response to shift from smaller-weaker to smaller-stronger.

5 Conclusion

This paper provides a comprehensive review of homogeniza-
tion of composites embedding interfaces. First, the historical
development of analytical and computational methods available
in the literature to model heterogeneous materials have been
reviewed; their specific features were extensively discussed and
compared in several cases. Next, interphases between the constitu-
ents of a heterogeneous medium were introduced. Various inter-
phase types as well different analytical and computational
schemes developed to analyze them were extensively studied.
This was then followed by an extensive review of canonical inter-
face models developed to capture interphases. Balance equations
governing the interface models were revisited and a major conjec-
ture restricting the position of the interface to the midlayer in the
general interface model was pointed out. We demonstrated that
the assumption of enforcing the interface to coincide with the
midlayer is unnecessary and consequently, we developed an
extended general interface model where the interface is allowed to
occupy any arbitrary position between its bulk neighbors. We
extended the homogenization technique to account for this novel
interface model and, for the first time, proposed explicit expres-
sions for the effective bulk modulus, effective shear modulus as
well as the upper and lower bound on the effective shear modulus
of fiber-reinforced and particle-reinforced composites embedding
the extended general interface model. We showed that the choice
of the interface position can lead to smaller-stronger or smaller-
weaker responses, which were usually attributed to the elastic and
cohesive interface models, respectively. Our proposed interface
model can recover any of the general interface model, elastic

interface model, cohesive interface model, and perfect interface
model. A finite element framework suitable for the extended gen-
eral interface model was established. Finally, we presented an
exhaustive parametric study through numerical examples and
examined the overall behavior of composites. Excellent agree-
ments between the computational and our proposed analytical sol-
utions were observed. The presented examples show the potential
of the extended general interface model to understand and design
architected materials with extraordinary properties. We believe
that this paper deepens our understanding of the interface effects
and size-dependent behavior of composites which, in turn, paves
the way toward the computational design of metamaterials.
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Nomenclature

B ¼ bulk domain
Bh ¼ discretized bulk domain
B� ¼ bulk domain on the minus side of the interface
Bþ ¼ bulk domain on the plus side of the interface
C ¼ bulk constitutive fourth-order tensor

Ck ¼ interface tangential constitutive tensor
C? ¼ interface orthogonal constitutive tensor
Div ¼ divergence operator
Div ¼ interface divergence operator

e ¼ Levi-Civita permutation tensor
f ¼ inclusion volume fraction

Grad ¼ gradient operator
Grad ¼ interface gradient operator

k ¼ interface orthogonal resistance
I ¼ second-order identity tensor
I ¼ interface domain

I h ¼ discretized interface domain
Iþ ¼ plus side of the interface domain
I� ¼ minus side of the interface domain

I ¼ second-order interface identity tensor
n ¼ unit normal to the boundary of the bulk
~n ¼ unit normal along with the interface
n ¼ unit normal across the interface
r1 ¼ radius of the inclusion
r2 ¼ radius of the matrix

size ¼ size of the RVE
t ¼ traction field in the bulk
t ¼ traction field on the interface
u ¼ displacement field in the bulk

uþ ¼ displacement on the plus side of the interface
u ¼ displacement field on the interface

u� ¼ displacement on the minus side of the interface
e ¼ strain field on the interface

j2 ¼ matrix bulk modulus
k2 ¼ matrix first Lam�e parameter
l2 ¼ matrix shear modulus
l ¼ shear modulus of the interface

Mllower ¼ lower bound on macro shear modulus
Ml ¼ macroscopic shear modulus
Mj ¼ macroscopic bulk modulus

r ¼ stress field on the interface
r� ¼ stress on the minus side of the interface
r ¼ stress field in the bulk

rþ ¼ stress on plus side of the interface
w ¼ interface free energy density
x ¼ position vector for a point in the domain
a ¼ weighted average parameter
d ¼ Kronecker delta
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k ¼ first Lam�e parameter of the interface
k ¼ first Lam�e parameter of the bulk

k1 ¼ inclusion first Lam�e parameter
l ¼ shear modulus of the bulk

l1 ¼ inclusion shear modulus
e ¼ strain field in the bulk

j1 ¼ inclusion bulk modulus
Mlupper ¼ upper bound on macro shear modulus

w ¼ bulk free energy density
@B ¼ boundary of B
@Bþ ¼ boundary of Bþ

@B� ¼ boundary of B�

@I ¼ boundary of I
f•g ¼ an arbitrary bulk quantity
f•ga ¼ weighted average of f•g
½½f•g�� ¼ jump of f•g

Mf•g ¼ macroscopic counterpart of f•g

f•g½1�a � ¼ a complimentary weighted average of f•g
fg ¼ an arbitrary interface quantity

fff•ggg ¼ classical average of f•g

Abbreviations

CCA ¼ composite cylinder assemblage
CSA ¼ composite sphere assemblage
DBC ¼ displacement boundary condition
FEM ¼ finite element method

GSCM ¼ generalized self-consistent method
PBC ¼ periodic boundary condition

PD ¼ problem dimension
RVE ¼ representative volume element
SCM ¼ self-consistent method
TBC ¼ traction boundary condition

Appendix A: Coefficients for Bounds and Estimates on the Shear Modulus of Composites Embedding Extended

General Interfaces

This section elaborates on the components of the matrices constructed from the system of equations that were obtained via imposing
the boundary and the interface conditions.

A.1 Upper Bound on the Shear Modulus and Effective Shear Modulus for Fiber Composites Embedding Extended General
Interfaces

D11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; D21 ¼

6al 1ð Þj 1ð Þ þ k 2j 1ð Þ þ l 1ð Þ
� �

r1

k 2j 1ð Þ þ l 1ð Þ
� � ; D31 ¼

6 1� a½ �l j 1ð Þ þ l 1ð Þ
� �

r1 2j 1ð Þ þ l 1ð Þ
� �

D12 ¼
2al 1ð Þ þ kr1

k
; D22 ¼

2al 1ð Þ þ kr1

k
; D32 ¼

2 1� a½ �l � 2l 1ð Þr1

r1

D13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; D23 ¼

6 1� a½ �j 2ð Þl 2ð Þ � k 2j 2ð Þ þ l 2ð Þ
� �

r1

k 2j 2ð Þ þ l 2ð Þ
� � ; D33 ¼

6al j 2ð Þ þ l 2ð Þ
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r1 2j 2ð Þ þ l 2ð Þ
� �

D14 ¼
2 1� a½ �l 2ð Þ � kr1

k
; D24 ¼

2 1� a½ �l 2ð Þ � kr1

k
; D34 ¼

2al þ 2l 2ð Þr1

r1

D15 ¼
6 1� a½ �l 2ð Þ þ kr1

k
; D25 ¼

�6 1� a½ �l 2ð Þ � kr1

k
; D35 ¼

6al þ 6l 2ð Þr1

r1

D16 ¼
�4 1� a½ �j 2ð Þl 2ð Þ � kr1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þk

; D26 ¼
2 1� a½ �j 2ð Þ � kr1

k
; D36 ¼

�2alk2 � 4j 2ð Þl 2ð Þr1

l 2ð Þr1

D41 ¼ �
�12 1� a½ �l j 1ð Þ þ l 1ð Þ

� �
� 6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; D51 ¼ 0; D61 ¼ 0

D42 ¼
�4 1� a½ �l � 2l 1ð Þr1

r1

; D52 ¼ 0; D62 ¼ 0

D43 ¼
�12al j 2ð Þ þ l 2ð Þ

� �
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k2

f 2j 2ð Þ þ l 2ð Þ
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f

D44 ¼
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(A1)

Applied Mechanics Reviews JULY 2021, Vol. 73 / 040802-37

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/73/4/040802/6735866/am

r_073_04_040802.pdf by Bilkent U
niversitesi user on 05 M

arch 2022



A.2 Lower Bound on the Shear Modulus for Fiber Composites Embedding Extended General Interfaces

E11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; E21 ¼

6al 1ð Þj 1ð Þ þ k 2j 1ð Þ þ l 1ð Þ
� �

r1

k 2j 1ð Þ þ l 1ð Þ
� � ; E31 ¼

6 1� a½ �l j 1ð Þ þ l 1ð Þ
� �

r1 2j 1ð Þ þ l 1ð Þ
� �

E12 ¼
2al 1ð Þ þ kr1

k
; E22 ¼

2al 1ð Þ þ kr1

k
; E32 ¼

2 1� a½ �l � 2l 1ð Þr1

r1

E13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; E23 ¼

6 1� a½ �j 2ð Þl 2ð Þ � k 2j 2ð Þ þ l 2ð Þ
� �

r1

k 2j 2ð Þ þ l 2ð Þ
� � E33 ¼

6al j 2ð Þ þ l 2ð Þ
� �

r1 2j 2ð Þ þ l 2ð Þ
� � ;

E14 ¼
2 1� a½ �l 2ð Þ � kr1

k
; E24 ¼

2 1� a½ �l 2ð Þ � kr1

k
; E34 ¼

2al þ 2l 2ð Þr1

r1

E15 ¼
6 1� a½ �l 2ð Þ þ kr1

k
; E25 ¼

�6 1� a½ �l 2ð Þ � kr1

k
; E35 ¼

6al þ 6l 2ð Þr1

r1

E16 ¼
�4 1� a½ �j 2ð Þl 2ð Þ � kr1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þk

; E26 ¼
2 1� a½ �j 2ð Þ � kr1

k
; E36 ¼

�2alk2 � 4j 2ð Þl 2ð Þr1

l 2ð Þr1

E41 ¼ �
�12 1� a½ �l j 1ð Þ þ l 1ð Þ

� �
� 6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; E51 ¼ 0; E61 ¼ 0

E42 ¼
�4 1� a½ �l � 2l 1ð Þr1

r1

; E52 ¼ 0; E62 ¼ 0

E43 ¼
�12al j 2ð Þ þ l 2ð Þ

� �
þ 6l 2ð Þj 2ð Þr1

r1 2j 2ð Þ þ l 2ð Þ
� � ; E53 ¼ 0; E63 ¼

6j 2ð Þl 2ð Þ

f 2j 2ð Þ þ l 2ð Þ
� �

E44 ¼
�4al þ 2l 2ð Þr1

r1

; E54 ¼ 2l 2ð Þ; E64 ¼ 2l 2ð Þ

E45 ¼
�12al � 6l 2ð Þr1

r1

; E55 ¼ 6l 2ð Þf 2; E65 ¼ �6l 2ð Þf 2

E46 ¼
4alk2 þ 2j 2ð Þl 2ð Þr1

l 2ð Þr1

; E56 ¼ �4j 2ð Þf ; E66 ¼ 2j 2ð Þf

(A2)

040802-38 / Vol. 73, JULY 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/73/4/040802/6735866/am

r_073_04_040802.pdf by Bilkent U
niversitesi user on 05 M

arch 2022



A.3 Upper Bound on the Shear Modulus and Effective Shear Modulus for Particulate Composites Embedding Extended
General Interfaces
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A.4 Lower Bound on the Shear Modulus for Particulate Composites Embedding Extended General Interfaces
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�2a k þ l

� �
9j 2ð Þ þ 15l 2ð Þ
� �

þ l 2ð Þr1 3j 2ð Þ � 2l 2ð Þ
� �

l 2ð Þr1

Q35 ¼ �
24 a k þ l

� �
þ l 2ð Þr1

� �
r1

; Q36 ¼ �
2 6aj 2ð Þ k þ l

� �
þ l 2ð Þr1 9j 2ð Þ þ 4l 2ð Þ

� �h i
l 2ð Þr1

Q41 ¼
�2 1� a½ � k þ 3l

� �
� 2l 1ð Þr1

r1

; Q42 ¼
2 1� a½ �j 1ð Þ 27k þ 57l

� �
þ 2 1� a½ �l 1ð Þ 45k þ 67l

� �
þ 2l 1ð Þr1 24j 1ð Þ þ 5l 1ð Þ

� �
3l 1ð Þr1

Q43 ¼
�2a k þ 3l

� �
þ 2l 2ð Þr1

r1

; Q44 ¼
2aj 2ð Þ 27k þ 57l

� �
þ 2al 2ð Þ 45k þ 67l

� �
� 2l 2ð Þr1 24j 2ð Þ þ 5l 2ð Þ

� �
3l 2ð Þr1

Q45 ¼
8 a 3k þ 4l
� �

þ 2l 2ð Þr1

� �
r1

; Q46 ¼
2 6aj 2ð Þ k þ l

� �
� 4al 2ð Þl þ 3j 2ð Þl 2ð Þr1

� �
l 2ð Þr1

Q51 ¼ 0; Q52 ¼ 0

Q53 ¼ 2l 2ð Þ; Q54 ¼ 3j 2ð Þ � 2l 2ð Þ
� �

f�2=3

Q55 ¼ �24l 2ð Þf 5=3; Q56 ¼ �2 9j 2ð Þ þ 4l 2ð Þ
� �

f

Q61 ¼ 0; Q62 ¼ 0

Q63 ¼ 2l 2ð Þ; Q64 ¼ �
2

3
24j 2ð Þ þ 5l 2ð Þ
h i

f�2=3

Q65 ¼ 16l 2ð Þf 5=3; Q66 ¼ 6j 2ð Þf

(A4)

Appendix B: Coefficients for Bounds and Estimates on the Shear Modulus of Composites Embedding General

Interfaces

In this section, the coefficient matrices corresponding to the bounds and estimates on the shear modulus of composites embedding
general interfaces are presented.
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B.1 Upper Bound on the Shear Modulus and Effective Shear Modulus for Fiber Composites Embedding General Interfaces

D11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; D21 ¼

3l 1ð Þj 1ð Þ þ k 2j 1ð Þ þ l 1ð Þ
� �

r1

k 2j 1ð Þ þ l 1ð Þ
� � ; D31 ¼

3l j 1ð Þ þ l 1ð Þ
� �

r1 2j 1ð Þ þ l 1ð Þ
� �

D12 ¼
l 1ð Þ þ kr1

k
; D22 ¼

l 1ð Þ þ kr1

k
; D32 ¼

l � 2l 1ð Þr1

r1

D13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; D23 ¼

3j 2ð Þl 2ð Þ � k 2j 2ð Þ þ l 2ð Þ
� �

r1

k 2j 2ð Þ þ l 2ð Þ
� � ; D33 ¼

3l j 2ð Þ þ l 2ð Þ
� �

r1 2j 2ð Þ þ l 2ð Þ
� �

D14 ¼
l 2ð Þ � kr1

k
; D24 ¼

l 2ð Þ � kr1

k
; D34 ¼

l þ 2l 2ð Þr1

r1

D15 ¼
3l 2ð Þ þ kr1

k
; D25 ¼

�3l 2ð Þ � kr1

k
; D35 ¼

3l þ 6l 2ð Þr1

r1

D16 ¼
�2j 2ð Þl 2ð Þ � kr1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þk

; D26 ¼
j 2ð Þ � kr1

k
; D36 ¼

�lk2 � 4j 2ð Þl 2ð Þr1

l 2ð Þr1

D41 ¼ �
�6l j 1ð Þ þ l 1ð Þ

� �
� 6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; D51 ¼ 0; D61 ¼ 0

D42 ¼
�2l � 2l 1ð Þr1

r1

; D52 ¼ 0; D62 ¼ 0

D43 ¼
�6l j 2ð Þ þ l 2ð Þ

� �
þ 6l 2ð Þj 2ð Þr1

r1 2j 2ð Þ þ l 2ð Þ
� � ; D53 ¼

k2

f 2j 2ð Þ þ l 2ð Þ
� � ; D63 ¼

1

f

D44 ¼
�2l þ 2l 2ð Þr1

r1

; D54 ¼ 1; D64 ¼ 1

D45 ¼
�6l � 6l 2ð Þr1

r1

; D55 ¼ �f 2; D65 ¼ f 2

D46 ¼
2lk2 þ 2j 2ð Þl 2ð Þr1

l 2ð Þr1

; D56 ¼
f j 2ð Þ þ l 2ð Þ
� �

l 2ð Þ ; D66 ¼ f

(B1)

B.2 Lower Bound on the Shear Modulus for Fiber Composites Embedding General Interfaces

E11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; E21 ¼

3l 1ð Þj 1ð Þ þ k 2j 1ð Þ þ l 1ð Þ
� �

r1

k 2j 1ð Þ þ l 1ð Þ
� � ; E31 ¼

3l j 1ð Þ þ l 1ð Þ
� �

r1 2j 1ð Þ þ l 1ð Þ
� �

E12 ¼
l 1ð Þ þ kr1

k
; E22 ¼

l 1ð Þ þ kr1

k
; E32 ¼

l � 2l 1ð Þr1

r1

E13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; E23 ¼

3j 2ð Þl 2ð Þ � k 2j 2ð Þ þ l 2ð Þ
� �

r1

k 2j 2ð Þ þ l 2ð Þ
� � ; E33 ¼

3l j 2ð Þ þ l 2ð Þ
� �

r1 2j 2ð Þ þ l 2ð Þ
� �

E14 ¼
l 2ð Þ � kr1

k
; E24 ¼

l 2ð Þ � kr1

k
; E34 ¼

l þ 2l 2ð Þr1

r1

E15 ¼
3l 2ð Þ þ kr1

k
; E25 ¼

�3l 2ð Þ � kr1

k
; E35 ¼

3l þ 6l 2ð Þr1

r1

E16 ¼
�2j 2ð Þl 2ð Þ � kr1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þk

; E26 ¼
j 2ð Þ � kr1

k
; E36 ¼

�lk2 � 4j 2ð Þl 2ð Þr1

l 2ð Þr1

E41 ¼ �
�6l j 1ð Þ þ l 1ð Þ

� �
� 6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; E51 ¼ 0; E61 ¼ 0

E42 ¼
�2l � 2l 1ð Þr1

r1

; E52 ¼ 0; E62 ¼ 0

E43 ¼
�6l j 2ð Þ þ l 2ð Þ

� �
þ 6l 2ð Þj 2ð Þr1

r1 2j 2ð Þ þ l 2ð Þ
� � ; E53 ¼ 0; E63 ¼

6j 2ð Þl 2ð Þ

f 2j 2ð Þ þ l 2ð Þ
� �

E44 ¼
�2l þ 2l 2ð Þr1

r1

; E54 ¼ 2l 2ð Þ; E64 ¼ 2l 2ð Þ

E45 ¼
�6l � 6l 2ð Þr1

r1

; E55 ¼ 6l 2ð Þf 2; E65 ¼ �6l 2ð Þf 2

E46 ¼
2lk2 þ 2j 2ð Þl 2ð Þr1

l 2ð Þr1

; E56 ¼ �4j 2ð Þf ; E66 ¼ 2j 2ð Þf

(B2)

Applied Mechanics Reviews JULY 2021, Vol. 73 / 040802-41

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/73/4/040802/6735866/am

r_073_04_040802.pdf by Bilkent U
niversitesi user on 05 M

arch 2022



B.3 Upper Bound on the Shear Modulus and Effective Shear Modulus for Particulate Composites Embedding General
Interfaces

P11 ¼
l 1ð Þ þ kr1

k
; P12 ¼

1

2
l 1ð Þ � kr1

� �
3j 1ð Þ � 2l 1ð Þ
� �

kl 1ð Þ

P13 ¼
l 2ð Þ � kr1

k
; P14 ¼

3j 2ð Þ � 2l 2ð Þ
� � 1

2
l 2ð Þ þ kr1

� �
kl 2ð Þ

P15 ¼
�12l 2ð Þ � 3kr1

k
; P16 ¼

�l 2ð Þ 9j 2ð Þ þ 4l 2ð Þ
� �

� 3kr1 j 2ð Þ þ l 2ð Þ
� �

kl 2ð Þ

P21 ¼
l 1ð Þ þ kr1

k
; P22 ¼

�l 1ð Þ 24j 1ð Þ þ 5l 1ð Þ
� �

� kr1 15j 1ð Þ þ 11l 1ð Þ
� �

3kl 1ð Þ

P23 ¼
l 2ð Þ � kr1

k
; P24 ¼

�l 2ð Þ 24j 2ð Þ þ 5l 2ð Þ
� �

þ kr1 15j 2ð Þ þ 11l 2ð Þ
� �

3kl 2ð Þ

P25 ¼
8l 2ð Þ þ 2kr1

k
; P26 ¼

3j 2ð Þ � 2kr1

k

P31 ¼
k þ l
� �

� 2l 1ð Þr1

r1

; P32 ¼
� k þ l
� �

9j 1ð Þ þ 15l 1ð Þ
� �

� l 1ð Þr1 3j 1ð Þ � 2l 1ð Þ
� �

l 1ð Þr1

P33 ¼
k þ l
� �

þ 2l 2ð Þr1

r1

; P34 ¼
� k þ l
� �

9j 2ð Þ þ 15l 2ð Þ
� �

þ l 2ð Þr1 3j 2ð Þ � 2l 2ð Þ
� �

l 2ð Þr1

P35 ¼
�12 k þ l

� �
� 24l 2ð Þr1

r1

; P36 ¼ �
6j 2ð Þ k þ l

� �
þ 2l 2ð Þr1 9j 2ð Þ þ 4l 2ð Þ

� �
l 2ð Þr1

P41 ¼
� k þ 3l
� �

� 2l 1ð Þr1

r1

; P42 ¼
j 1ð Þ 27k þ 57l
� �

þ l 1ð Þ 45k þ 67l
� �

þ 2l 1ð Þr1 24j 1ð Þ þ 5l 1ð Þ
� �

3l 1ð Þr1

P43 ¼
� k þ 3l
� �

þ 2l 2ð Þr1

r1

; P44 ¼
j 2ð Þ 27k þ 57l
� �

þ l 2ð Þ 45k þ 67l
� �

� 2l 2ð Þr1 24j 2ð Þ þ 5l 2ð Þ
� �

3l 2ð Þr1

P45 ¼
12k þ 16l þ 16l 2ð Þr1

r1

; P46 ¼
6j 2ð Þ k þ l

� �
� 4l 2ð Þl þ 6j 2ð Þl 2ð Þr1

l 2ð Þr1

P51 ¼ 0; P52 ¼ 0

P53 ¼ 1; P54 ¼ 2� 3
j 2ð Þ

l 2ð Þ

" #
f�2=3

P55 ¼ 3f 5=3; P56 ¼ 3þ 3j 2ð Þ

l 2ð Þ

" #
f

P61 ¼ 0; P62 ¼ 0

P63 ¼ 1; P64 ¼ �
11

3
þ 5

j 2ð Þ

l 2ð Þ

" #
f�2=3

P65 ¼ �2f 5=3; P66 ¼ 2f

(B3)
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B.4 Lower Bound on the Shear Modulus for Particulate Composites Embedding General Interfaces

Q11 ¼
l 1ð Þ þ kr1

k
; Q12 ¼

1

2
l 1ð Þ � kr1

� �
3j 1ð Þ � 2l 1ð Þ
� �

kl 1ð Þ

Q13 ¼
l 2ð Þ � kr1

k
; Q14 ¼

3j 2ð Þ � 2l 2ð Þ
� � 1

2
l 2ð Þ þ kr1

� �
kl 2ð Þ

Q15 ¼
�12l 2ð Þ � 3kr1

k
; Q16 ¼

�l 2ð Þ 9j 2ð Þ þ 4l 2ð Þ
� �

� 3kr1 j 2ð Þ þ l 2ð Þ
� �

kl 2ð Þ

Q21 ¼
l 1ð Þ þ kr1

k
; Q22 ¼

�l 1ð Þ 24j 1ð Þ þ 5l 1ð Þ
� �

� kr1 15j 1ð Þ þ 11l 1ð Þ
� �

3kl 1ð Þ

Q23 ¼
l 2ð Þ � kr1

k
; Q24 ¼

�l 2ð Þ 24j 2ð Þ þ 5l 2ð Þ
� �

þ kr1 15j 2ð Þ þ 11l 2ð Þ
� �

3kl 2ð Þ

Q25 ¼
8l 2ð Þ þ 2kr1

k
; Q26 ¼

3j 2ð Þ � 2kr1

k

Q31 ¼
k þ l
� �

� 2l 1ð Þr1

r1

; Q32 ¼
� k þ l
� �

9j 1ð Þ þ 15l 1ð Þ
� �

� l 1ð Þr1 3j 1ð Þ � 2l 1ð Þ
� �

l 1ð Þr1

Q33 ¼
k þ l
� �

þ 2l 2ð Þr1

r1

; Q34 ¼
� k þ l
� �

9j 2ð Þ þ 15l 2ð Þ
� �

þ l 2ð Þr1 3j 2ð Þ � 2l 2ð Þ
� �

l 2ð Þr1

Q35 ¼
�12 k þ l

� �
� 24l 2ð Þr1

r1

; Q36 ¼
�6j 2ð Þ k þ l

� �
� 2l 2ð Þr1 9j 2ð Þ þ 4l 2ð Þ

� �
l 2ð Þr1

Q41 ¼
� k þ 3l
� �

� 2l 1ð Þr1

r1

; Q42 ¼
j 1ð Þ 27k þ 57l
� �

þ l 1ð Þ 45k þ 67l
� �

þ 2l 1ð Þr1 24j 1ð Þ þ 5l 1ð Þ
� �

3l 1ð Þr1

Q43 ¼
� k þ 3l
� �

þ 2l 2ð Þr1

r1

; Q44 ¼
j 2ð Þ 27k þ 57l
� �

þ l 2ð Þ 45k þ 67l
� �

� 2l 2ð Þr1 24j 2ð Þ þ 5l 2ð Þ
� �

3l 2ð Þr1

Q45 ¼
12k þ 16l þ 16l 2ð Þr1

r1

; Q46 ¼
6j 2ð Þ k þ l

� �
� 4l 2ð Þl þ 6j 2ð Þl 2ð Þr1

l 2ð Þr1

Q51 ¼ 0; Q52 ¼ 0

Q53 ¼ 2l 2ð Þ; Q54 ¼ 3j 2ð Þ � 2l 2ð Þ
� �

f�2=3

Q55 ¼ �24l 2ð Þf 5=3; Q56 ¼ �2 9j 2ð Þ þ 4l 2ð Þ
� �

f

Q61 ¼ 0; Q62 ¼ 0

Q63 ¼ 2l 2ð Þ; Q64 ¼ �
2

3
24j 2ð Þ þ 5l 2ð Þ
h i

f�2=3

Q65 ¼ 16l 2ð Þf 5=3; Q66 ¼ 6j 2ð Þf

(B4)

Appendix C: Coefficients for Bounds and Estimates on the Shear Modulus of Composites Embedding Elastic

Interfaces

In this section, the coefficient matrices corresponding to the bounds and estimates on the shear modulus of composites embedding
elastic interfaces are presented.
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C.1 Upper Bound on the Shear Modulus and Effective Shear Modulus for Fiber Composites Embedding Elastic Interfaces

D11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; D21 ¼ r1; D31 ¼

3l j 1ð Þ þ l 1ð Þ
� �

r1 2j 1ð Þ þ l 1ð Þ
� �

D12 ¼ r1; D22 ¼ r1; D32 ¼
l � 2l 1ð Þr1

r1

D13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; D23 ¼ �r1; D33 ¼

3l j 2ð Þ þ l 2ð Þ
� �

r1 2j 2ð Þ þ l 2ð Þ
� �

D14 ¼ �r1; D24 ¼ �r1; D34 ¼
l þ 2l 2ð Þr1

r1

D15 ¼ r1; D25 ¼ �r1; D35 ¼
3l þ 6l 2ð Þr1

r1

D16 ¼
�r1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þ ; D26 ¼ �r1; D36 ¼

�lk2 � 4j 2ð Þl 2ð Þr1

l 2ð Þr1

D41 ¼ �
�6l j 1ð Þ þ l 1ð Þ

� �
� 6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; D51 ¼ 0; D61 ¼ 0

D42 ¼
�2l � 2l 1ð Þr1

r1

; D52 ¼ 0; D62 ¼ 0

D43 ¼
�6l j 2ð Þ þ l 2ð Þ

� �
þ 6l 2ð Þj 2ð Þr1

r1 2j 2ð Þ þ l 2ð Þ
� � ; D53 ¼

k2

f 2j 2ð Þ þ l 2ð Þ
� � ; D63 ¼

1

f

D44 ¼
�2l þ 2l 2ð Þr1

r1

; D54 ¼ 1; D64 ¼ 1

D45 ¼
�6l � 6l 2ð Þr1

r1

; D55 ¼ �f 2; D65 ¼ f 2

D46 ¼
2lk2 þ 2j 2ð Þl 2ð Þr1

l 2ð Þr1

; D56 ¼
f j 2ð Þ þ l 2ð Þ
� �

l 2ð Þ ; D66 ¼ f

(C1)

C.2 Lower Bound on the Shear Modulus for Fiber Composites Embedding Elastic Interfaces

E11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; E21 ¼ r1; E31 ¼

3l j 1ð Þ þ l 1ð Þ
� �

r1 2j 1ð Þ þ l 1ð Þ
� �

E12 ¼ r1; E22 ¼ r1; E32 ¼
l � 2l 1ð Þr1

r1

E13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; E23 ¼ �r1; E33 ¼

3l j 2ð Þ þ l 2ð Þ
� �

r1 2j 2ð Þ þ l 2ð Þ
� �

E14 ¼ �r1; E24 ¼ �r1; E34 ¼
l þ 2l 2ð Þr1

r1

E15 ¼ r1; E25 ¼ �r1; E35 ¼
3l þ 6l 2ð Þr1

r1

E16 ¼
�r1 j 2ð Þ þ l 2ð Þ
� �

l 2ð Þ ; E26 ¼ �r1; E36 ¼
�lk2 � 4j 2ð Þl 2ð Þr1

l 2ð Þr1

E41 ¼ �
�6l j 1ð Þ þ l 1ð Þ

� �
� 6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; E51 ¼ 0; E61 ¼ 0

E42 ¼
�2l � 2l 1ð Þr1

r1

; E52 ¼ 0; E62 ¼ 0

E43 ¼
�6l j 2ð Þ þ l 2ð Þ

� �
þ 6l 2ð Þj 2ð Þr1

r1 2j 2ð Þ þ l 2ð Þ
� � ; E53 ¼ 0; E63 ¼

6j 2ð Þl 2ð Þ

f 2j 2ð Þ þ l 2ð Þ
� �

E44 ¼
�2l þ 2l 2ð Þr1

r1

; E54 ¼ 2l 2ð Þ; E64 ¼ 2l 2ð Þ

E45 ¼
�6l � 6l 2ð Þr1

r1

; E55 ¼ 6l 2ð Þf 2; E65 ¼ �6l 2ð Þf 2

E46 ¼
2lk2 þ 2j 2ð Þl 2ð Þr1

l 2ð Þr1

; E56 ¼ �4j 2ð Þf ; E66 ¼ 2j 2ð Þf

(C2)
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C.3 Upper Bound on the Shear Modulus and Effective Shear Modulus for Particulate Composites Embedding Elastic
Interfaces

P11 ¼ r1; P12 ¼
�r1 3j 1ð Þ � 2l 1ð Þ
� �

l 1ð Þ

P13 ¼ �r1; P14 ¼
r1 3j 2ð Þ � 2l 2ð Þ
� �

l 2ð Þ

P15 ¼ �3r1; P16 ¼
�3r1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þ

P21 ¼ r1; P22 ¼
�r1 15j 1ð Þ þ 11l 1ð Þ
� �

3l 1ð Þ

P23 ¼ �r1; P24 ¼
r1 15j 2ð Þ þ 11l 2ð Þ
� �

3l 2ð Þ

P25 ¼ 2r1; P26 ¼ �2r1

P31 ¼
k þ l
� �

� 2l 1ð Þr1

r1

; P32 ¼
� k þ l
� �

9j 1ð Þ þ 15l 1ð Þ
� �

� l 1ð Þr1 3j 1ð Þ � 2l 1ð Þ
� �

l 1ð Þr1

P33 ¼
k þ l
� �

þ 2l 2ð Þr1

r1

; P34 ¼
� k þ l
� �

9j 2ð Þ þ 15l 2ð Þ
� �

þ l 2ð Þr1 3j 2ð Þ � 2l 2ð Þ
� �

l 2ð Þr1

P35 ¼
�12 k þ l

� �
� 24l 2ð Þr1

r1

; P36 ¼ �
6j 2ð Þ k þ l

� �
þ 2l 2ð Þr1 9j 2ð Þ þ 4l 2ð Þ

� �
l 2ð Þr1

P41 ¼
� k þ 3l
� �

� 2l 1ð Þr1

r1

; P42 ¼
j 1ð Þ 27k þ 57l
� �

þ l 1ð Þ 45k þ 67l
� �

þ 2l 1ð Þr1 24j 1ð Þ þ 5l 1ð Þ
� �

3l 1ð Þr1

P43 ¼
� k þ 3l
� �

þ 2l 2ð Þr1

r1

; P44 ¼
j 2ð Þ 27k þ 57l
� �

þ l 2ð Þ 45k þ 67l
� �

� 2l 2ð Þr1 24j 2ð Þ þ 5l 2ð Þ
� �

3l 2ð Þr1

P45 ¼
12k þ 16l þ 16l 2ð Þr1

r1

; P46 ¼
6j 2ð Þ k þ l

� �
� 4l 2ð Þl þ 6j 2ð Þl 2ð Þr1

l 2ð Þr1

P51 ¼ 0; P52 ¼ 0

P53 ¼ 1; P54 ¼ 2� 3
j 2ð Þ

l 2ð Þ

" #
f�2=3

P55 ¼ 3f 5=3; P56 ¼ 3þ 3j 2ð Þ

l 2ð Þ

" #
f

P61 ¼ 0; P62 ¼ 0

P63 ¼ 1; P64 ¼ �
11

3
þ 5

j 2ð Þ

l 2ð Þ

" #
f�2=3

P65 ¼ �2f 5=3; P66 ¼ 2f

(C3)
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C.4 Lower Bound on the Shear Modulus for Particulate Composites Embedding Elastic Interfaces

Q11 ¼ r1; Q12 ¼
�r1 3j 1ð Þ � 2l 1ð Þ

� �
kl 1ð Þ

Q13 ¼ �r1; Q14 ¼
r1 3j 2ð Þ � 2l 2ð Þ
� �

kl 2ð Þ

Q15 ¼ �3r1; Q16 ¼
�3r1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þ

Q21 ¼ r1; Q22 ¼
�r1 15j 1ð Þ þ 11l 1ð Þ

� �
3l 1ð Þ

Q23 ¼ �r1; Q24 ¼
r1 15j 2ð Þ þ 11l 2ð Þ
� �

3l 2ð Þ

Q25 ¼ 2r1; Q26 ¼ �2r1

Q31 ¼
k þ l
� �

� 2l 1ð Þr1

r1

; Q32 ¼
� k þ l
� �

9j 1ð Þ þ 15l 1ð Þ
� �

� l 1ð Þr1 3j 1ð Þ � 2l 1ð Þ
� �

l 1ð Þr1

Q33 ¼
k þ l
� �

þ 2l 2ð Þr1

r1

; Q34 ¼
� k þ l
� �

9j 2ð Þ þ 15l 2ð Þ
� �

þ l 2ð Þr1 3j 2ð Þ � 2l 2ð Þ
� �

l 2ð Þr1

Q35 ¼
�12 k þ l

� �
� 24l 2ð Þr1

r1

; Q36 ¼
�6j 2ð Þ k þ l

� �
� 2l 2ð Þr1 9j 2ð Þ þ 4l 2ð Þ

� �
�

l 2ð Þr1

Q41 ¼
� k þ 3l
� �

� 2l 1ð Þr1

r1

; Q42 ¼
j 1ð Þ 27k þ 57l
� �

þ l 1ð Þ 45k þ 67l
� �

þ 2l 1ð Þr1 24j 1ð Þ þ 5l 1ð Þ
� �

3l 1ð Þr1

Q43 ¼
� k þ 3l
� �

þ 2l 2ð Þr1

r1

; Q44 ¼
j 2ð Þ 27k þ 57l
� �

þ l 2ð Þ 45k þ 67l
� �

� 2l 2ð Þr1 24j 2ð Þ þ 5l 2ð Þ
� �

3l 2ð Þr1

Q45 ¼
12k þ 16l þ 16l 2ð Þr1

r1

; Q46 ¼
6j 2ð Þ k þ l

� �
� 4l 2ð Þl þ 6j 2ð Þl 2ð Þr1

l 2ð Þr1

Q51 ¼ 0; Q52 ¼ 0

Q53 ¼ 2l 2ð Þ; Q54 ¼ 3j 2ð Þ � 2l 2ð Þ
� �

f�2=3

Q55 ¼ �24l 2ð Þf 5=3; Q56 ¼ �2 9j 2ð Þ þ 4l 2ð Þ
� �

f

Q61 ¼ 0; Q62 ¼ 0

Q63 ¼ 2l 2ð Þ; Q64 ¼ �
2

3
24j 2ð Þ þ 5l 2ð Þ
h i

f�2=3

Q65 ¼ 16l 2ð Þf 5=3; Q66 ¼ 6j 2ð Þf

(C4)

Appendix D: Coefficients for Bounds and Estimates on the Shear Modulus of Composites Embedding Cohesive

Interfaces

In this section, the coefficient matrices corresponding to the bounds and estimates on the shear modulus of composites embedding
cohesive interfaces are presented.
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D.1 Upper Bound on the Shear Modulus and Effective Shear Modulus for Fiber Composites Embedding Cohesive
Interfaces

D11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; D21 ¼

3l 1ð Þj 1ð Þ þ k 2j 1ð Þ þ l 1ð Þ
� �

r1

k 2j 1ð Þ þ l 1ð Þ
� � ; D31 ¼ 0

D12 ¼
l 1ð Þ þ kr1

k
; D22 ¼

l 1ð Þ þ kr1

k
; D32 ¼ �2l 1ð Þ

D13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; D23 ¼

3j 2ð Þl 2ð Þ � k 2j 2ð Þ þ l 2ð Þ
� �

r1

k 2j 2ð Þ þ l 2ð Þ
� � ; D33 ¼ 0

D14 ¼
l 2ð Þ � kr1

k
; D24 ¼

l 2ð Þ � kr1

k
; D34 ¼ 2l 2ð Þ

D15 ¼
3l 2ð Þ þ kr1

k
; D25 ¼

�3l 2ð Þ � kr1

k
; D35 ¼ 6l 2ð Þ

D16 ¼
�2j 2ð Þl 2ð Þ � kr1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þk

; D26 ¼
j 2ð Þ � kr1

k
; D36 ¼ �4j 2ð Þ

D41 ¼ �
6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; D51 ¼ 0; D61 ¼ 0

D42 ¼ �2l 1ð Þ; D52 ¼ 0; D62 ¼ 0

D43 ¼
6l 2ð Þj 2ð Þr1

r1 2j 2ð Þ þ l 2ð Þ
� � ; D53 ¼

k2

f 2j 2ð Þ þ l 2ð Þ
� � ; D63 ¼

1

f

D44 ¼ 2l 2ð Þ; D54 ¼ 1; D64 ¼ 1

D45 ¼ �6l 2ð Þ; D55 ¼ �f 2; D65 ¼ f 2

D46 ¼ 2j 2ð Þ; D56 ¼
f j 2ð Þ þ l 2ð Þ
� �

l 2ð Þ ; D66 ¼ f

(D1)

D.2 Lower Bound on the Shear Modulus for Fiber Composites Embedding Cohesive Interfaces

E11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; E21 ¼

3l 1ð Þj 1ð Þ þ k 2j 1ð Þ þ l 1ð Þ
� �

r1

k 2j 1ð Þ þ l 1ð Þ
� � ; E31 ¼ 0

E12 ¼
l 1ð Þ þ kr1

k
; E22 ¼

l 1ð Þ þ kr1

k
; E32 ¼ �2l 1ð Þ

E13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; E23 ¼

3j 2ð Þl 2ð Þ � k 2j 2ð Þ þ l 2ð Þ
� �

r1

k 2j 2ð Þ þ l 2ð Þ
� � ; E33 ¼ 0

E14 ¼
l 2ð Þ � kr1

k
; E24 ¼

l 2ð Þ � kr1

k
; E34 ¼ 2l 2ð Þ

E15 ¼
3l 2ð Þ þ kr1

k
; E25 ¼

�3l 2ð Þ � kr1

k
; E35 ¼ 6l 2ð Þ

E16 ¼
�2j 2ð Þl 2ð Þ � kr1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þk

; E26 ¼
j 2ð Þ � kr1

k
; E36 ¼ �4j 2ð Þ

E41 ¼ �
6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; E51 ¼ 0; E61 ¼ 0

E42 ¼ �2l 1ð Þ; E52 ¼ 0; E62 ¼ 0

E43 ¼
6l 2ð Þj 2ð Þr1

r1 2j 2ð Þ þ l 2ð Þ
� � ; E53 ¼ 0; E63 ¼

6j 2ð Þl 2ð Þ

f 2j 2ð Þ þ l 2ð Þ
� �

E44 ¼ 2l 2ð Þ; E54 ¼ 2l 2ð Þ; E64 ¼ 2l 2ð Þ

E45 ¼ �6l 2ð Þ; E55 ¼ 6l 2ð Þf 2; E65 ¼ �6l 2ð Þf 2

E46 ¼ 2j 2ð Þ; E56 ¼ �4j 2ð Þf ; E66 ¼ 2j 2ð Þf

(D2)
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D.3 Upper Bound on the Shear Modulus and Effective Shear Modulus for Particulate Composites Embedding Cohesive
Interfaces

P11 ¼
l 1ð Þ þ kr1

k
; P12 ¼

1

2
l 1ð Þ � kr1

� �
3j 1ð Þ � 2l 1ð Þ
� �

kl 1ð Þ

P13 ¼
l 2ð Þ � kr1

k
; P14 ¼

3j 2ð Þ � 2l 2ð Þ
� � 1

2
l 2ð Þ þ kr1

� �
kl 2ð Þ

P15 ¼
�12l 2ð Þ � 3kr1

k
; P16 ¼

�l 2ð Þ 9j 2ð Þ þ 4l 2ð Þ
� �

� 3kr1 j 2ð Þ þ l 2ð Þ
� �

kl 2ð Þ

P21 ¼
l 1ð Þ þ kr1

k
; P22 ¼

�l 1ð Þ 24j 1ð Þ þ 5l 1ð Þ
� �

� kr1 15j 1ð Þ þ 11l 1ð Þ
� �

3kl 1ð Þ

P23 ¼
l 2ð Þ � kr1

k
; P24 ¼

�l 2ð Þ 24j 2ð Þ þ 5l 2ð Þ
� �

þ kr1 15j 2ð Þ þ 11l 2ð Þ
� �

3kl 2ð Þ

P25 ¼
8l 2ð Þ þ 2kr1

k
; P26 ¼

3j 2ð Þ � 2kr1

k

P31 ¼ �2l 1ð Þ; P32 ¼ �3j 1ð Þ þ 2l 1ð Þ

P33 ¼ 2l 2ð Þ; P34 ¼ 3j 2ð Þ � 2l 2ð Þ

P35 ¼ �24l 2ð Þ; P36 ¼ �18j 2ð Þ � 8l 2ð Þ

P41 ¼ �2l 1ð Þ; P42 ¼
48j 1ð Þ þ 10l 1ð Þ

3

P43 ¼ 2l 2ð Þ; P44 ¼
�48j 2ð Þ � 10l 2ð Þ

3

P45 ¼ 16l 2ð Þ; P46 ¼ 6j 2ð Þ

P51 ¼ 0; P52 ¼ 0

P53 ¼ 1; P54 ¼ 2� 3
j 2ð Þ

l 2ð Þ

" #
f�2=3

P55 ¼ 3f 5=3; P56 ¼ 3þ 3j 2ð Þ

l 2ð Þ

" #
f

P61 ¼ 0; P62 ¼ 0

P63 ¼ 1; P64 ¼ �
11

3
þ 5

j 2ð Þ

l 2ð Þ

" #
f�2=3

P65 ¼ �2f 5=3; P66 ¼ 2f

(D3)
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D.4 Lower Bound on the Shear Modulus for Particulate Composites Embedding Cohesive Interfaces

Q11 ¼
l 1ð Þ þ kr1

k
; Q12 ¼

1

2
l 1ð Þ � kr1

� �
3j 1ð Þ � 2l 1ð Þ
� �

kl 1ð Þ

Q13 ¼
l 2ð Þ � kr1

k
; Q14 ¼

3j 2ð Þ � 2l 2ð Þ
� �

1� a½ �l 2ð Þ þ kr1

� �
kl 2ð Þ

Q15 ¼
�12l 2ð Þ � 3kr1

k
; Q16 ¼

�l 2ð Þ 9j 2ð Þ þ 4l 2ð Þ
� �

� 3kr1 j 2ð Þ þ l 2ð Þ
� �

kl 2ð Þ

Q21 ¼
l 1ð Þ þ kr1

k
; Q22 ¼

�l 1ð Þ 24j 1ð Þ þ 5l 1ð Þ
� �

� kr1 15j 1ð Þ þ 11l 1ð Þ
� �

3kl 1ð Þ

Q23 ¼
l 2ð Þ � kr1

k
; Q24 ¼

�l 2ð Þ 24j 2ð Þ þ 5l 2ð Þ
� �

þ kr1 15j 2ð Þ þ 11l 2ð Þ
� �

3kl 2ð Þ

Q25 ¼
8l 2ð Þ þ 2kr1

k
; Q26 ¼

3j 2ð Þ � 2kr1

k
Q31 ¼ �2l 1ð Þ; Q32 ¼ �3j 1ð Þ þ 2l 1ð Þ

Q33 ¼ 2l 2ð Þ; Q34 ¼ 3j 2ð Þ � 2l 2ð Þ

Q35 ¼ �24l 2ð Þ; Q36 ¼ �18j 2ð Þ � 8l 2ð Þ

Q41 ¼ �2l 1ð Þ; Q42 ¼
48j 1ð Þ þ 10l 1ð Þ

3

Q43 ¼ 2l 2ð Þ; Q44 ¼
�48j 2ð Þ � 10l 2ð Þ

3
Q45 ¼ 16l 2ð Þ; Q46 ¼ 6j 2ð Þ

Q51 ¼ 0; Q52 ¼ 0

Q53 ¼ 2l 2ð Þ; Q54 ¼ 3j 2ð Þ � 2l 2ð Þ
� �

f�2=3

Q55 ¼ �24l 2ð Þf 5=3; Q56 ¼ �2 9j 2ð Þ þ 4l 2ð Þ
� �

f
Q61 ¼ 0; Q62 ¼ 0

Q63 ¼ 2l 2ð Þ; Q64 ¼ �
2

3
24j 2ð Þ þ 5l 2ð Þ
h i

f�2=3

Q65 ¼ 16l 2ð Þf 5=3; Q66 ¼ 6j 2ð Þf

(D4)

Appendix E: Coefficients for Bounds and Estimates on the Shear Modulus of Composites Embedding Perfect

Interfaces

In this section, the coefficient matrices corresponding to the bounds and estimates on the shear modulus of composites embedding
perfect interfaces are presented.

E.1 Upper Bound on the Shear Modulus and Effective Shear Modulus for Fiber Composites Embedding Perfect Interfaces

D11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; D21 ¼ r1; D31 ¼ 0

D12 ¼ r1; D22 ¼ r1; D32 ¼ �2l 1ð Þ

D13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; D23 ¼ �r1; D33 ¼ 0

D14 ¼ �r1; D24 ¼ �r1; D34 ¼ 2l 2ð Þ

D15 ¼ r1; D25 ¼ �r1; D35 ¼ 6l 2ð Þ

D16 ¼
�r1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þ ; D26 ¼ �r1; D36 ¼ �4j 2ð Þ

D41 ¼ �
6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; D51 ¼ 0; D61 ¼ 0

D42 ¼ �2l 1ð Þ; D52 ¼ 0; D62 ¼ 0

D43 ¼
6l 2ð Þj 2ð Þr1

r1 2j 2ð Þ þ l 2ð Þ
� � ; D53 ¼

k2

f 2j 2ð Þ þ l 2ð Þ
� � ; D63 ¼

1

f

D44 ¼ 2l 2ð Þ; D54 ¼ 1; D64 ¼ 1

D45 ¼ �6l 2ð Þ; D55 ¼ �f 2; D65 ¼ f 2

D46 ¼ 2j 2ð Þ; D56 ¼
f j 2ð Þ þ l 2ð Þ
� �

l 2ð Þ ; D66 ¼ f

(E1)
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E.2 Lower Bound on the Shear Modulus for Fiber Compo-
sites Embedding Perfect Interfaces

E11 ¼
k 1ð Þr1

2j 1ð Þ þ l 1ð Þ
� � ; E21 ¼ r1; E31 ¼ 0

E12 ¼ r1; E22 ¼ r1; E32 ¼ �2l 1ð Þ

E13 ¼
�k2r1

2j 2ð Þ þ l 2ð Þ
� � ; E23 ¼ �r1; E33 ¼ 0

E14 ¼ �r1; E24 ¼ �r1; E34 ¼ 2l 2ð Þ

E15 ¼ r1; E25 ¼ �r1; E35 ¼ 6l 2ð Þ

E16 ¼
�r1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þ ; E26 ¼ �r1; E36 ¼ �4j 2ð Þ

E41 ¼ �
6l 1ð Þj 1ð Þr1

r1 2j 1ð Þ þ l 1ð Þ
� � ; E51 ¼ 0; E61 ¼ 0

E42 ¼ �2l 1ð Þ; E52 ¼ 0; E62 ¼ 0

E43 ¼
6l 2ð Þj 2ð Þr1

r1 2j 2ð Þ þ l 2ð Þ
� � ; E53 ¼ 0; E63 ¼

6j 2ð Þl 2ð Þ

f 2j 2ð Þ þ l 2ð Þ
� �

E44 ¼ 2l 2ð Þ; E54 ¼ 2l 2ð Þ; E64 ¼ 2l 2ð Þ

E45 ¼ �6l 2ð Þ; E55 ¼ 6l 2ð Þf 2; E65 ¼ �6l 2ð Þf 2

E46 ¼ 2j 2ð Þ; E56 ¼ �4j 2ð Þf ; E66 ¼ 2j 2ð Þf

(E2)

E.3 Upper Bound on the Shear Modulus and Effective
Shear Modulus for Particulate Composites Embedding Perfect
Interfaces

P11 ¼ r1; P12 ¼
�r1 3j 1ð Þ � 2l 1ð Þ

� �
l 1ð Þ

P13 ¼ �r1; P14 ¼
r1 3j 2ð Þ � 2l 2ð Þ
� �

l 2ð Þ

P15 ¼ �3r1; P16 ¼
�3r1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þ

P21 ¼ r1; P22 ¼
�r1 15j 1ð Þ þ 11l 1ð Þ

� �
3l 1ð Þ

P23 ¼
l 2ð Þ � kr1

k
; P24 ¼

r1 15j 2ð Þ þ 11l 2ð Þ
� �

3l 2ð Þ

P25 ¼ 2r1; P26 ¼ �2r1

P31 ¼ �2l 1ð Þ; P32 ¼ �3j 1ð Þ þ 2l 1ð Þ

P33 ¼ 2l 2ð Þ; P34 ¼ 3j 2ð Þ � 2l 2ð Þ

P35 ¼ �24l 2ð Þ; P36 ¼ �18j 2ð Þ � 8l 2ð Þ

P41 ¼ �2l 1ð Þ; P42 ¼
48j 1ð Þ þ 10l 1ð Þ

3

P43 ¼ 2l 2ð Þ; P44 ¼
�48j 2ð Þ � 10l 2ð Þ

3

P45 ¼ 16l 2ð Þ; P46 ¼ 6j 2ð Þ

P51 ¼ 0; P52 ¼ 0

P53 ¼ 1; P54 ¼ 2� 3
j 2ð Þ

l 2ð Þ

" #
f�2=3

P55 ¼ 3f 5=3; P56 ¼ 3þ 3j 2ð Þ

l 2ð Þ

" #
f

P61 ¼ 0; P62 ¼ 0

P63 ¼ 1; P64 ¼ �
11

3
þ 5

j 2ð Þ

l 2ð Þ

" #
f�2=3

P65 ¼ �2f 5=3; P66 ¼ 2f

(E3)

E.4 Lower Bound on the Shear Modulus for Particulate
Composites Embedding Perfect Interfaces

Q11 ¼ r1; Q12 ¼
�r1 3j 1ð Þ � 2l 1ð Þ

� �
l 1ð Þ

Q13 ¼ �r1; Q14 ¼
r1 3j 2ð Þ � 2l 2ð Þ
� �

l 2ð Þ

Q15 ¼ �3r1; Q16 ¼
�3r1 j 2ð Þ þ l 2ð Þ

� �
l 2ð Þ

Q21 ¼ r1; Q22 ¼
�r1 15j 1ð Þ þ 11l 1ð Þ

� �
3l 1ð Þ

Q23 ¼ �r1; Q24 ¼
r1 15j 2ð Þ þ 11l 2ð Þ
� �

3l 2ð Þ

Q25 ¼ 2r1; Q26 ¼ �2r1

Q31 ¼ �2l 1ð Þ; Q32 ¼ �3j 1ð Þ þ 2l 1ð Þ

Q33 ¼ 2l 2ð Þ; Q34 ¼ 3j 2ð Þ � 2l 2ð Þ

Q35 ¼ �24l 2ð Þ; Q36 ¼ �18j 2ð Þ � 8l 2ð Þ

Q41 ¼ �2l 1ð Þ; Q42 ¼
48j 1ð Þ þ 10l 1ð Þ

3

Q43 ¼ 2l 2ð Þ; Q44 ¼
�48j 2ð Þ � 10l 2ð Þ

3
Q45 ¼ 16l 2ð Þ; Q46 ¼ 6j 2ð Þ

Q51 ¼ 0; Q52 ¼ 0

Q53 ¼ 2l 2ð Þ; Q54 ¼ 3j 2ð Þ � 2l 2ð Þ
� �

f�2=3

Q55 ¼ �24l 2ð Þf 5=3; Q56 ¼ �2 9j 2ð Þ þ 4l 2ð Þ
� �

f
Q61 ¼ 0; Q62 ¼ 0

Q63 ¼ 2l 2ð Þ; Q64 ¼ �
2

3
24j 2ð Þ þ 5l 2ð Þ
h i

f�2=3

Q65 ¼ 16l 2ð Þf 5=3; Q66 ¼ 6j 2ð Þf

(E4)
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