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A Conversational Agent Framework with Multi-modal Personality
Expression

SINAN SONLU and UĞUR GÜDÜKBAY, Bilkent University, Turkey

FUNDA DURUPINAR, University of Massachusetts Boston, USA

Fig. 1. We adjust voice, body movement, and facial expressions to simulate personalities of virtual agents. The left half shows an extraverted agent, and the
right half shows an introverted agent in a scenario involving interaction with a passport officer where the agent responds to questions about his passport
and origin. The portraits show the corresponding facial expressions.

Consistently exhibited personalities are crucial elements of realistic, en-

gaging, and behavior-rich conversational virtual agents. Both nonverbal

and verbal cues help convey these agents’ unseen psychological states,

contributing to our effective communication with them. We introduce a

comprehensive framework to design conversational agents that express

personality through non-verbal behaviors like body movement and facial

expressions, as well as verbal behaviors like dialogue selection and voice

transformation. We use the OCEAN personality model, which defines per-

sonality as a combination of five orthogonal factors of openness, consci-

entiousness, extraversion, agreeableness, and neuroticism. The framework

combines existing personality expression methods with novel ones such

as new algorithms to convey Laban Shape and Effort qualities. We perform

Amazon Mechanical Turk studies to analyze how different communication

modalities influence our perception of virtual agent personalities and com-

pare their individual and combined effects on each personality dimension.

The results indicate that our personality-based modifications are perceived

as natural, and each additional modality improves perception accuracy,

with the best performance achieved when all the modalities are present.

We also report some correlations for the perception of conscientiousness

with neuroticism and openness with extraversion.
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1 INTRODUCTION

Concepts from human psychology, such as emotions and person-

ality, are widely used in research on intelligent agents for creating

realistic characters with a rich set of behaviors and effective com-

munication skills. Especially, endowing virtual agents with per-

sonality has been shown useful in building rapport and enhancing

user experience in various domains [Gratch et al. 2007]. For in-

stance, a virtual character can be equipped with the most favorable

personality to build trust with a job applicant [Zhou et al. 2019], in-

crease patients’ willingness to disclose health information [Lucas

et al. 2014], help reduce anxiety in individuals with autism and de-

velopmental disorders [Burke et al. 2017], take part in a virtual au-

dience to alleviate the fear of public speaking [Batrinca et al. 2013],

or support creativity by brainstorming ideas taking user personal-

ity into consideration [Buisine et al. 2007].

Creating compelling personalities is a multi-faceted task, and

the omission of necessary communication channels can be detri-

mental to the believability of the virtual agent and the communi-

cation of the message. In humans, various modalities such as phys-

ical appearance and body posture [Naumann et al. 2009], as well as

speech [Polzehl 2015] and dialogue content [Mairesse et al. 2007],

influence judgments of others’ personalities. Previous research on
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virtual characters indicates correlations between different modal-

ities of behavior and the perceived personalities of characters. For

instance, there is a link between the facial features of virtual char-

acters and personality inference [Todorov et al. 2008]. Similarly,

people assess the personalities of animated characters based on

their gestures, speech content [Neff et al. 2010], and movement

styles [Durupinar et al. 2017] and react to them as they would to

real humans [de Borst and de Gelder 2015].

We introduce a framework to create conversational agents that

express personality through a comprehensive model consisting of

facial expressions, body movement, verbal style, and voice trans-

formation. In technical terms, we translate the agent’s personality

features into automated modifiers for three-dimensional (3D) an-

imation and auditory parameters, referring to theories from psy-

chology and social sciences to analyze and parameterize each con-

cept. We then evaluate how much each modality contributes to

personality perception to understand effective (virtual) communi-

cation strategies. Such a model can be used in video games and an-

imated movies to build immersive experiences, and in developing

virtual tutors and assistants to improve approachability (e.g., vir-

tual health-care, support desk) and in social virtual environments

to represent the individual better.

We use the OCEAN model [McCrae and John 1992] to de-

scribe the personality of an agent. We utilize Laban Movement

Analysis (LMA) [Adrian 2008; Maletic 2011] to define body mo-

tion controlled by OCEAN factors as a formal parameterization

between OCEAN and LMA elements that exist in the literature

[Durupinar et al. 2017]. For the connection between speech con-

tent and OCEAN personality, we refer to the correlations intro-

duced by Mairesse and Walker [2010], who link a set of linguistic

cues [Tausczik and Pennebaker 2010] to OCEAN personality traits.

We adopt this theory to handcrafted dialogue text that fits each

personality type. To configure the vocal features of speech that in-

fluence the perceived personality, we use the mapping introduced

by Polzehl [2015].

The contributions of this work are twofold:

• We introduce a comprehensive conversational agent frame-

work that allows the creation of virtual characters that in-

teract with human users through various communication

channels. The characters are capable of expressing all the

five factors of personality through dialogue, voice, body mo-

tion, and facial expressions. To our knowledge, no such sys-

tem that combines all these modalities of personality expres-

sion exists to-date. Our system uses both existing methods

shown to be effective in conveying personality and novel al-

gorithms. Specifically, we introduce new methods for the ex-

pression of Laban Shape and Effort Qualities in addition to

updating emotional facial expressions given OCEAN person-

ality values. We define a mapping between personality traits

and Laban Shape Qualities to improve personality expression

through body motion and validate this through Amazon Me-

chanical Turk studies. Additionally, we establish affinities be-

tween emotional facial expressions and personality through

crowd-sourcing experiments on Amazon Mechanical Turk.

We provide the source code of our implementation at https://

github.com/sinansonlu/Conversational-Agent-Framework.

• We analyze the effectiveness of different communication

modalities and their combinations in the perception of vir-

tual human personalities. We show that additional modalities

generally improve personality recognition, with the highest

performance achieved when all the modalities are combined.

We also analyze the correlations between different OCEAN

dimensions when different communication channels are ac-

tive. The results indicate correlations for the perception of

conscientiousness with neuroticism, and openness with ex-

traversion. Our evaluations are based on the data that we col-

lected through Amazon Mechanical Turk studies.

In Section 2, we summarize the background and review related

work. We introduce the system framework in Section 3, describe

the animation modification process in Section 4, explain our exper-

iments and evaluation in Section 5, and provide a general discus-

sion about experimental findings in Section 6. We conclude with

future research directions in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Communication Model. Communication is an encoded

message transfer between two sides. Reception can occur through

multiple channels, and decoding is required on the receiver’s side

to interpret the message. Humans communicate through channels

of facial expression, body language, voice, verbal style, and verbal

content [Ekman 2019]. Key [1975] groups interpersonal communi-

cation as indirect and direct. Indirect communication includes ex-

ternal factors such as the surrounding environment. Direct com-

munication is internal to the sender and the receiver. It includes

anything that belongs to or emerges from them. Key [1975] catego-

rizes direct communication into verbal and nonverbal. The verbal

category covers language-related topics, including grammar and

word preferences, which form the message as a sentence. This sen-

tence could be spoken or transferred using a language substitute.

Key [1975] classifies the nonverbal category into paralanguage and

kinesics. Paralanguage includes non-speech sounds, vocal features,

and intonation. Kinesics include all movements resulting from the

muscular and skeletal shift, which is encapsulated by the appear-

ance. She examines the muscular activity in the face in a group

called facial expression, and the remaining movements in posture.

We adapt the communication model of Key [1975] to computer

animation. An animated scene consists of an environment and at

least one agent. The environment covers indirect communication

elements of scene properties, lighting, and camera. The agent cov-

ers direct communication, including the 3D model, body move-

ment, facial expression, and speech. We further categorize speech

as voice and content. The agent’s movement, facial expression, and

speech can be used expressively to communicate a message encap-

sulated by personality.

2.1.2 OCEAN Personality Model. Five-factor Personality

Model is a commonly used personality classification framework in

psychology [McCrae and Costa 2005]. In this model, the person-

ality of an individual is analyzed in five orthogonal dimensions

including Openness to Experience, Conscientiousness, Extra-

version, Agreeableness, and Neuroticism, that form the acronym
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OCEAN. Each dimension is two ended, and the low and high

ends are explained with multiple personality attributes that are

grouped in one factor. The orthogonal and descriptive nature of

this model makes it a popular choice in computer science.

Another popular personality model used in the simulation of

virtual crowds and interactive agents is the PEN model of person-

ality [Eysenck and Eysenck 1985], which focuses on three dimen-

sions: psychoticism, extraversion, and neuroticism. As an example,

Bera et al. [2017] introduce an automatic classifier for predicting

pedestrian personality in crowd videos using the PEN model. Both

the PEN and OCEAN personality models are factor analytic—their

main difference is the factors they represent. The approaches that

we employ, such as Mairesse and Walker [2007], Polzehl [2015],

and Durupinar et al. [2017], use the OCEAN model of personality;

therefore, we also employ this five-factor model.

2.1.3 Laban Movement Analysis. Laban Movement Analysis

(LMA) is a framework used for describing human movement. LMA

is used by many researchers in computer graphics and robotics

to describe humanoid motion [Bernstein et al. 2015; Burton et al.

2016; Durupinar et al. 2017; Lourens et al. 2010; Zhao and Badler

2001]. LMA includes components to analyze motion in terms of

spatial and temporal relations of body parts. We can translate these

concepts into computer animation using quantitative descriptors

for human motion [Larboulette and Gibet 2015]. As a link between

the OCEAN model and LMA, we refer to previous research that

connects these concepts together [Durupinar et al. 2017].

2.2 Related Work

2.2.1 Expressive Agents. Expressive conversational behavior is

a crucial part of realistic communication in animated virtual

agents [van Straalen et al. 2009]. Early research in this area has es-

tablished models that integrate nonverbal elements into communi-

cation. For instance, Cassell et al. [1994] couple speech, intonation,

facial expressions, and hand gestures in animated conversation;

Allbeck and Badler [2002] model the agent’s personality, mood,

and affect; Gebhard [2005] introduces ALMA—a layered model of

affect; and Pelachaud [2005] utilize Affective Presentation Markup

Language for expressive nonverbal behavior.

Expressive verbal and non-verbal behaviors in virtual char-

acters convey a wide range of traits such as friendliness and

warmth [Randhavane et al. 2019a], competence [Nguyen et al.

2015], and gender [Vala et al. 2011]; as well as increasing the sense

of presence in virtual reality environments [Randhavane et al.

2019b]. Appropriate speech and gaze increase the social presence

in multi-party interaction [Yumak and Magnenat-Thalmann 2016].

Rendering style is another factor that influences the perception of

friendliness, appeal, and realism of virtual characters [McDonnell

et al. 2012; Zell et al. 2015]. However, attention must be paid to

virtual character design, as incongruous expressions may lead to

the exaggeration of the uncanniness effect [Tinwell et al. 2011].

Castellano et al. [2011] show that people can identify the emo-

tional content of synthesized gestures when a motion’s expres-

sive features such as fluidity are mapped from the captured mo-

tion to synthesized animation. This suggests that motion style can

be separated from motion content, and expressed in new motions.

Similarly, the computer graphics community has been interested

in establishing a mapping between high-level motion features and

apparent personality or emotions. LMA is a popular choice for

analyzing and designing expressive motion [Burton et al. 2016;

Durupinar et al. 2017; Masuda and Kato 2010] and generally used

for parameterizing high-level motion.

2.2.2 Personality Expression in Virtual Agents. Several works

employ personality to guide virtual character behavior such as mo-

tion, multi-agent interaction, and speech [Durupınar et al. 2016;

Gebhard 2005; Shvo et al. 2019]. We compare our work to others

that investigate the influence of different communication elements

on apparent personality. Among these, Durupinar et al. [2017] de-

scribe links between low-level motion parameters and LMA to ex-

press OCEAN personality in virtual characters. They focus on the

whole-body motion and manipulate animation keyframes to define

LMA parameters in collaboration with LMA experts. They per-

form a user study to establish an OCEAN-LMA mapping, which

we adopt in this work. Different from Durupinar et al. [2017], we

use a different set of low-level motion parameters to implement

LMA qualities and apply Inverse Kinematics to adjust hand mo-

tion further. We also include dialogue, vocal adjustments, and fa-

cial expressions to investigate the influence of these modalities on

apparent personality.

Similarly, Smith and Neff [2017] focus on gesture performance

using a set of motion modification parameters mapped onto

OCEAN personality. They analyze each motion parameter’s influ-

ence on apparent personality in short animated clips. They con-

clude that people’s perception of personality happens in a two-

dimensional space when it is based only on gestures. This is also

compatible with the Big Two model of personality, which consists

of plasticity (openness and extraversion) and stability (conscien-

tiousness, agreeableness, and neuroticism). Our findings also sup-

port the existence of these two higher order dimensions. Smith and

Neff [2017] include the speech of the motion capture actor in one

experiment; however, different from our work, they do not investi-

gate the influence of verbal elements on personality. Besides, they

exclude the agent’s face, while we use it as an additional vessel of

personality.

2.2.3 Data-driven Approaches in Expressive Motion. Data-

driven techniques have been commonly used to generate expres-

sive agent behavior. Ball and Breese [2001] diagnose the user’s

emotions and personality to generate appropriate agent behavior

using Bayesian networks. Hartmann et al. [2002] synthesize ges-

ture from augmented conversation transcripts utilizing high-level

gesture definitions. Lee and Marsella [2006] extract nonverbal be-

havior rules from real-life video clips that accompany the dialogue.

Recently, Burton et al. [2016] generate emotional motion by au-

tomatically quantifying LMA parameters; and Randhavane et al.

[2019c] generate expressive walking animation for varying domi-

nance levels.

An effective strategy to generate varying motion styles is style

transfer [Aberman et al. 2020; Yümer and Mitra 2016], which mod-

ifies the style of an existing motion while preserving its intention.

Motion datasets with emotion, age, or movement style labels are

available [Xia et al. 2015]; yet, there is still a need for personality-

annotated motion datasets of adequate size, whether they are 3D

motions or 2D full-body videos. Examples such as Escalante et al.
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[2018] employ user videos that focus on the face with limited in-

formation on the body. As a result, procedural methods are still

popular and offer manageable environments for personality per-

ception experiments. As more data becomes available, replacing

procedural methods with data-driven techniques will be straight-

forward thanks to the usage of LMA as an intermediate motion

descriptor between personality expression and low-level motion

parameters.

2.2.4 Audio and Verbal Features. Verbal interaction with the

agent is possible through natural language processing [Best et al.

2020] and is a crucial aspect of expressive communication. The

choice of words in social media messages has shown strong

connections to personality [Golbeck et al. 2011]. Linguistic cues

are effective predictors of OCEAN traits, especially extraver-

sion [Mairesse et al. 2007]. Text that expresses certain personal-

ity types can be generated using rule-based language modifiers in

a specific context [Mairesse and Walker 2007]. We adopt the lin-

guistic cues described by Mairesse and Walker [2007] to convey

personality in agent dialogue.

Additionally, vocal features carry information about personal-

ity; and this knowledge is used to both detect personality and to ex-

press it. Machine learning models can successfully predict person-

ality based on speech signals [Gilpin et al. 2018]. Through a user

study, Polzehl [2015] labels a speech dataset with OCEAN person-

ality factors and extracts audio descriptors such as intensity, pitch,

and loudness to train a Support Vector Machine. Polzehl’s findings

lay the foundation of our vocal feature adjustments. In addition

to personality, audio features can be used to express emotions in

procedural speech animation [Charalambous et al. 2019].

Although there exist many models and experiments that ex-

plore the influence of different subsets of movement, facial ex-

pression, dialogue, and voice on personality, a thorough analysis

of a comprehensive system that incorporates all these elements is

needed. We present such a framework to understand the influence

of the combination of such modalities on personality perception.

The framework is component-based and open-source so that re-

searchers can test their own models, animations and methods to

expand our knowledge of virtual agent communication.

3 SYSTEM FRAMEWORK

The system consists of two main components: Scenario Handler

and Animation Modifier. The input consists of agent personality

and user speech. The agent responds to the user with a personality-

driven dialogue utterance and expressive animation.

Scenario Handler (see Figure 2) is a state machine that deter-

mines the agent’s response to the user’s speech. Using Watson

API [IBM 2015], it transcribes the speech, finds user intent,

selects an appropriate response based on the intent, and vocalizes

this response by text-to-speech conversion. We train Watson

Assistant by setting entities and intents using multiple examples

per scenario. For example, for “Show Passport” intent, we train the

system using examples such as “May I take a look at your pass-

port?”, “Could you give me your passport, please?”, and “Where

is your passport?” so that it can recognize similar inputs. Entities

are the variable words within training examples of intents. They

are trained in the same manner and recognized within the intent.

Fig. 2. The Scenario Handler flowchart.

Based on the extracted intent and entities, Scenario Handler

determines the corresponding dialogue that is compatible with

agent personality and the accompanying base animation without

personality-based modifications. Scenario Handler then uses Wat-

son Text to Speech API to convert the dialogue into speech and

tweaks the vocal features of the generated speech according to the

OCEAN parameters of the agent. At the end of the agent speech,

Scenario Handler checks whether the end state of the current

scenario is reached, in which case it stops execution. Otherwise,

it updates the state of the current scenario and starts a new turn.

Animation Modifier (see Figure 3) is responsible for adjusting

the bone rotations and facial shape keys of the agent at each frame,

by modifying the base animation according to agent personality. It

maps the OCEAN values into three groups of animation modifica-

tion parameters: Laban Shape Quality (LSQ), Laban Effort (LE), and

Facial Expression. These parameters are calculated once at the be-

ginning and used throughout the execution. LSQ parameters deter-

mine positions and weights of Inverse Kinematics (IK) targets; LE

parameters further refine the animation with additional rotations;

Facial Expression parameters regulate the interpolation of facial

shape keys. We extract visemes from speech using Lipsync [Ocu-

lus 2019] and blend them into facial shape keys to animate the

mouth. Agent emotions are shown as facial expressions and decay

over time. We have developed the system in Unity [2019] and used

Fuse [Adobe 2019] for creating 3D human models with a skeletal

rig and facial shape keys.

To evaluate the system, we implemented three scenarios: In-

troduction, Fastfood, and Passport. Each scenario includes an

appropriate scene setup, one main agent, and a dialogue state
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Fig. 3. The Animation Modifier flowchart.

Fig. 4. Personality modification modules and models used in the experi-
ments.

machine. The scenarios aim to direct the user input into a specific

direction, because each agent is designed for scenario-specific dia-

logues. The user is either given a task at the beginning of a scenario

or guided with state-specific descriptions inside the scene. The sce-

narios are described in Appendix A. We performed a detailed per-

ception study for the Passport Scenario. The Animation Modifier

runs in real-time, and the bottleneck of the Scenario Handler is

the external APIs that we use for speech transcription and genera-

tion. To minimize the latency caused by any external API, we used

predefined user and agent sentences in the perception study.

4 PERSONALITY-DRIVEN MODIFICATION MODULES

We group the operations that modify a given input based on agent

personality into four modules: dialogue, voice, body movement,

and facial expression modification, as shown in Figure 4. Each

module uses internal mappings to customize the animation for ex-

pressing the desired personality.

4.1 Dialogue Module

Generally, personality cues are inherent in dialogue content; an av-

erage person can make personality judgments based on dialogue

text [Mairesse et al. 2007]. To our knowledge, except for domain-

specific models [Mairesse and Walker 2010], the state-of-the-art

natural language systems are not capable of generating general

dialogue for OCEAN personality types [Dušek et al. 2020]. It is

Table 1. An Example for Personality Specific Dialogue Lines

Type Text (Original: “Ok, I will buy my return ticket.”)

O (+) “Of course, I’m going to buy it for sure. I should have
done it before; this will be a lesson for me.”

O (−) “Oh, ok. I will buy it.”
C (+) “Yes, I am going to buy my return ticket as soon as

possible.”

C (−) “I will buy it... I will, as soon as possible.”

E (+) “Yes, I will buy the return ticket immediately. Thank
you, officer.”

E (−) “Ok, I will.”

A(+) “Thank you very much for reminding, I’m going to buy
it as soon as possible.”

A(−) “Well, I have to, you know. I will buy it.”

N (+) “I. . . I am going to buy it. I will buy it as soon as
possible.”

N (−) “Sure, I will buy it as soon as possible.”

a common approach to use handcrafted dialogue with embod-

ied agents to express personality [Brixey and Novick 2019]. We

leave the incorporation of an automated, personality-driven dia-

logue generation for future work and use handcraft utterances for

each personality type, following the natural language features in

Mairesse and Walker [2007].

Table 1 shows example variations for one line of dialogue from

the Passport Scenario.

4.2 Voice Module

According to Polzehl [2015], the vocal features of speech can

be adjusted to reinforce personality. Watson Text-to-Speech

API [IBM 2015] supports multiple transformable voices. We use

“en_US_Michael” for male and “en_US_Allison” for female voices.

We use the following parameters of IBM Watson API for trans-

forming the voice:

Pitch: The frequency of the voice. Speech sounds more excited

when the pitch is high, and calmer when it is low.

Pitch range: The pitch variation during the speech. A higher

range sounds more melodic and dynamic, and a lower range

is monotonous.

Rate: The speed of the voice. A high rate is perceived as hurried

and excited, and a low rate sounds calm.

Breathiness: The amount of escaping air during sound produc-

tion. High breathiness is perceived as calm.

Glottal tension: The hardness of the voice. High glottal tension is

perceived dynamic and tense, and low glottal tension sounds

calmer and softer.

We follow the personality-to-vocal features mapping introduced

by Polzehl [2015]. Polzehl uses words such as “high,” “medium,”

and “low” in the mapping. We interpret these correlations as a

weighted average of OCEAN factors as shown in Table 2. We map

the feature values into different ranges to keep the transformed

voice natural.
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Table 2. Numerical Mapping between Vocal Features and OCEAN
Personality, Following Polzehl [2015]

Feature O C E A N Range

Pitch 1 0.5 0.5 −0.5 −0.5 [−80, 80]

PitchRange 1 — 1 — — [−100, 100]

Rate 1 1 −1 1 — [−70, 70]

Breathiness 1 — — 1 — [−50, 50]

GlottalTension 1 −1 — 1 — [−100, 100]

4.3 Facial Expression Module

Recent studies have shown associations between facial features

and judgment of personality on virtual characters [Ferstl and

McDonnell 2018; Wang et al. 2013]. However, personality judg-

ments of real and virtual faces tend to differ [Ferstl and McDonnell

2018], and the associations observed for real faces are not always

consistent (e.g. correlating facial symmetry with high extraver-

sion) [Fink et al. 2005], requiring further research. Evaluating our

judgments and understanding possible biases are valuable, and em-

ploying these findings in character design can enhance our interac-

tion with virtual characters. However, it also poses the risk of pro-

moting stereotypes. So instead, we look for associations between

personality and dynamic features of appearance, one of which is

the usage of facial expressions.

We animate the facial expression of an agent, as a facade of its

emotions, by blending facial shape keys calculated as a weighted

sum of five different emotions: anger, sadness, happiness, disgust,

surprise. We use 50 shape keys of the model generated from Adobe

Fuse [Adobe 2019]. Please refer to Appendix B for the shape key

weights of each emotion. We store the current and target values of

shape keys in arrays and linearly interpolate the current value of

each shape key toward its target at each frame.

Each emotion takes a value between 0 and 1 and decays over

time. The emotion update is based on two inputs. The first one is

the agent’s current utterance, as dialogue is a natural indicator of

emotional content for a conversational agent. The second one is

the agent personality, which indicates a tendency to experience

certain emotions more than others. We performed a user study

to establish a link between personality perception and the facial

expression of emotions. Please refer to Appendix C.2 for the details

of this study.

Watson Natural Language Understanding API [IBM 2015]

estimates emotions of anger, disgust, sadness, and happiness

from text, returning an emotion value between 0 and 1 for each

sentence. For example, “Such a lovely day.” produces joy = 0.78,

anдer = 0.01, disдust = 0.01, sadness = 0.03, and f ear = 0.09;

while “I don’t want to talk with you anymore” produces joy = 0.04,

anдer = 0.11, disдust = 0.09, sadness = 0.59, and f ear = 0.20.

For each line of agent dialogue, we update the agent’s emotion

value using the Watson API output for that line. Then, we add

personality-based expression parameters given in Table 3 to align

the expression of emotions with agent personality. For instance,

for an extravert agent uttering “Such a lovely day,” the facial

expression parameters for happy, sad, angry, surprised, and dis-

gusted will be updated by (0.78 + 0.25), (0.03–0.25), 0.01, 0.09, and

0.01, respectively. These values are then clamped between 0 and 1.

Table 3. Additive Facial Expression Values from the
Facial Expression-Personality Experiment

Factor Hap. Sad. Ang. Sur. Dis.

O (+) +0.13 0.00 −0.25 0.00 0.00

C (+) +0.13 0.00 −0.13 −0.35 −0.13

E (+) +0.25 −0.25 0.00 0.00 0.00

A (+) +0.25 0.00 −0.50 −0.25 −0.35

N (+) −0.13 +0.35 +0.50 +0.35 +0.35

Corresponding values are added to the agent’s facial expression
per turn of dialogue. Negative factors have the opposite sign.

The resulting expression is a blend of multiple emotions [Martin

et al. 2006]. Although some complex facial expressions can be

interpreted differently when there are multiple blending factors,

we do not focus on analyzing these combinations, because they

rarely occur in the current system.

Emotion decay occurs while the agent is listening, which helps

produce a natural listening animation [Maatman et al. 2005].

We calculate the emotion decay rate using neuroticism, similar

to Kasap et al. [2009]. Additionally, we scale the facial expression

by an expressiveness factor, which is determined by the extraver-

sion parameter. This makes it possible to have subtle expressions

on introvert agents and exaggerated ones on extraverts. Finally,

different from the other shape keys, we update the blink speed

based on neuroticism [Hoppe et al. 2018].

4.4 Body Movement Module

4.4.1 Movement Modifications by Laban Shape Qualities. La-

ban Shape Qualities describe the way the body changes form

during movement in three orthogonal axes: longitudinal (Ris-

ing/Sinking), frontal (Spreading/Enclosing), and sagittal (Advanc-

ing/Retreating). We modify a given motion by orienting the end

effectors (hands) toward a certain direction based on Shape param-

eters. To this end, we place six anchor points equidistantly around

the center of the body, positioning them up, down, left, right, front,

and back—the body center is the seventh anchor. These anchor

points, along with Shape parameters, are used to update the hand

IK targets at each frame.

We calculate Laban Shape Quality values (LSQi ∈ [−1, 1] , where

i ∈ {Rising, Spreading,Advancing}) based on OCEAN parameters.

The sign of LSQi determines the direction of movement. For ex-

ample, LSQRising > 0 indicates rising motion whereas LSQRising <

0 indicates sinking motion. Each LSQi determines the attraction

toward a specific anchor. For example, we use the top anchor for

LSQRising > 0, and the bottom anchor for LSQRising < 0. Sagittal

axis is computed similarly, using the top and bottom anchors for

both hands. In the frontal axis, however, we need to use separate

anchor points for each hand. We use the center anchor (Enclosing)

and the left anchor (Spreading) for the left hand (Figure 5), and the

center anchor (Enclosing) and the right anchor (Spreading) for the

right hand.

We compute the attraction toward a specific direction of the cor-

responding axis by multiplying the sign of LSQi by an attraction

factor. At each time step, we use linear interpolation to find IK tar-

get positions for each LSQi and take their average as the final IK
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Fig. 5. The anchor points for the left hand.

target position for each hand h. We then feed the calculated posi-

tions into the IK Solver to generate a refined pose.

Depending on the nature of the animation, attraction factors

can be constant or time-variant. As a preprocessing step, we

calculate a constant attraction factor (AF ) for each anchor, nor-

malizing the difference between the farthest distance of the hand

from the anchor and the closest distance of the hand from the

anchor during the course of the hand’s base animation. For certain

motions, such as an idle animation where hands move slightly

around their resting position, using this time-invariant attraction

factor is sufficient. Because hand displacement is minimal in such

cases, keeping the attraction to all the anchors at minimum avoids

unnatural poses. However, larger-scale hand motions require the

attraction factor to be updated dynamically. In those cases, we

use time-variant attraction weights (W ) to preserve the essence of

the base animation. Multiplying them by AF gives us time-variant

attraction factors AFt . For instance, consider a pointing motion

starting with the hand at a resting position and ending with the

hand in a forward-pointing state. To update this motion in the

sagittal direction, we need to move the hand position forward

during the animation. Doing this at the starting state would

impair the intent of pointing motion. Instead, the hand should be

pushed further away from the body during the pointing step. In

other words, we want to use the highest attraction weight toward

the front anchor when the hand is closest to the anchor point and

the lowest one when it is farthest from the anchor point. Figure 6

shows waving, which is a relatively large-scale hand motion,

with constant and varying attraction weights. Constant anchor

weights cause the hand trajectory to change dramatically, so the

resulting motion no longer appears natural. In contrast, with

variable anchor weights, the resulting animation is still similar to

the base animation with Spreading Shape.

Although our current Laban Shape Quality adjustment algo-

rithm is designed for atomic gestures, it is relatively straightfor-

ward to extend it to modify motion clips that are composed of

multiple gestures, as long as we know the start and end frames of

each gesture. We can then compute the hand movement range for

Fig. 6. The trajectory of the left hand for a waving motion. The base ani-
mation is shown in red. The modified animations express Spreading Shape
with a constant anchor weight (blue) and with variable anchor weights
(green). Because waving has a wide range of arm movement, using con-
stant anchor weights causes dramatic changes in the base animation,
modifying its original curve and undermining its naturalness.

Fig. 7. The distances in attraction weight calculations, assuming h is the
left hand, a is the left anchor, and the red arc is the path of the left hand
during the motion. We project the distances on a line for better visualiza-
tion.

each gesture, and update the attraction factors accordingly. Motion

segmentation can be done manually, or better yet, automatically,

considering the semantics of the movement. However, we leave

this as a future work, because our scenario handling mechanism

employs separate animation clips with atomic actions.

The calculation of attraction factors and weights is as follows:

NF(a, h, s) = 1
(AbsoluteMax(a, h, s)−AbsoluteMin(a, h, s))

,

AF(a, h, m, s) = (max(dahm) −min(dahm)) · NF(a, h, s),

W(a, h, t, m, s) =
(

max(dahm )−dahm (t )
max(dahm )−min(dahm )

)
,

AFt (a, h, t, m, s) = W(a, h, t, m, s) · AF (a, h, m, s ),

where NF(a, h, s) is the normalizing factor for the skeleton s per

anchor a and hand h. AbsoluteMax(a, h, s) and AbsoluteMin(a, h, s)

functions find the absolute maximum and minimum a-to-h dis-

tances by projecting a line of arm length from the shoulder point

of h away from anchor a, and toward anchor a, respectively (see

Figure 7). AF(a, h, m, s) is the attraction factor for hand h toward
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Table 4. The Space Effort Rotation Axes and Signs

Bone Rotation Axis Space − Space +

Left Shoulder Longitudinal + −
Left Shoulder Sagittal − +

Left Upper Arm Sagittal − +

Left Foot Longitudinal + −
Left Hand Longitudinal − +

Left Fingers Frontal + −
Bones on the right side have the opposite sign of the corresponding bone
on the left side.

Table 5. The Weight Effort Rotation Axes and Signs

Bone Rotation Axis Weight − Weight +

Spine Frontal − +

Neck Frontal − +

Left Shoulder Sagittal + −
Left Upper Leg Frontal + −
Left Lower Leg Frontal − +

Bones on the right side have the opposite sign of the corresponding bone on
the left side.

anchor a for motion m using skeleton s. It is a time-invariant fac-

tor that summarizes the movement range of motion m. dahm is the

array of a-to-h distances for motion m, calculated per time step.

W(a, h, t, m, s) is the time-variant attraction weight of hand h to-

ward anchor a at time t for motion m using skeleton s, which is

multiplied by AF(a, h, m, s) to get the time-variant attraction fac-

tor AFt (a, h, t, m, s).

4.4.2 Movement Modifications by Laban Effort Parameters. We

map LE parameters into individual bone rotations that are blended

into the current pose. We use the LE-OCEAN mapping introduced

by Durupinar et al. [2017]. Because LMA concepts are reproducible

using different motion parameters [Durupinar et al. 2017], we in-

troduce a different implementation of LE modifications. We blend

various bone rotations to add the impact of the Weight and Space

components to the posture. We change animation speed dynami-

cally to add the impact of the Time component, and we blend small

rotations for each bone based on Perlin noise to add the impact of

the Flow component.

The Space component reflects the inner attitude toward atten-

tion to the environment. Indirect Space (−) has an affinity with

Spreading Shape, and Direct Space (+) has an affinity with Enclos-

ing Shape. Blended rotation axes and signs for this component are

shown in Table 4. We determine the rotation limits manually in a

way that looks natural. The blending factor is determined by the

magnitude of the Space parameter.

The Weight component reflects the gravitational force on the

body. Blended rotation axes and signs for this component are

shown in Table 5. Strong Weight (+) has a Sinking Shape, whereas

Light Weight (−) has a Rising Shape.

We change the speed of the animation in a non-uniform manner

to implement the Time Effort. We preprocess the base animation to

determine a rank per time step, based on the average displacement

of hands at that time step. During runtime, the animation speed is

modified based on the rank of the corresponding time step and the

Time Effort value. The usage of variable speeds helps changing the

movement speed in a more natural way.

As an example, consider a pointing gesture that starts and ends

with the same idle pose. The hand transitions into the pointing po-

sition and stays still for a short time before returning to the idle

pose. A direct speed-up would shorten the pointing time, but un-

dermine realism. The preferred result is to make the transitional

motion quick, without drastically changing the pointing duration.

We preprocess the animation with a constant sample rate to calcu-

late the average displacement of hands per step, following Algo-

rithm 1. We rank each step according to the average hand displace-

ment and map this to a speed factor. The speed factor is the highest

for the time step with the largest hand displacement and the lowest

for the one with the lowest hand displacement. The speed factor

boundaries are adjustable.

ALGORITHM 1: Preprocessing for the animation speed update.

forall Base Animation A do
DisplacementArr = new Float[A.FrameCount-1];

for t = 1 to A.FrameCount do
dL = GetHandDisplacementBwFrames(t-1, t, A.LeftHand);

dR = GetHandDisplacementBwFrames(t-1, t, A.RightHand);

DisplacementArr[t] = (dL + dR ) / 2;

end

A.RankArr = new Integer[A.FrameCount-1];

for t = 1 to A.FrameCount do
A.RankArr[t] = GetRank(DisplacementArr[t]);

end

end

We set the animation speed, which is an internal Unity param-

eter, during runtime using Algorithm 2. We determine the speed

range [MinSpeed: MaxSpeed] by the Time Effort parameter, which

is in the [−1, 1] range. For Time = −1, the speed range is [0.5 : 1];

and for Time = 1, it is [1 : 2]. The resulting animation appears

faster or slower without breaking relative stops.

ALGORITHM 2: Setting the animation speed at each frame.

A = GetCurrentBaseAnimation();

t = A.GetCurrentFrame();

rank = A.RankArr[t];

A.speed =Map rank from [1, A.FrameCount] to [MinSpeed,

MaxSpeed];

We add rotational fluctuations per bone using Perlin noise based

on the Flow Effort parameter to have a similar effect to the flour-

ishes in Durupinar et al. [2017]. Free Flow has maximum fluctu-

ations, indicating uncontrollability; whereas Bound Flow has no

additional rotational fluctuations. Figure 8 depicts the influence of

Laban Effort parameters on the agent’s body.

For OCEAN-LE mapping, we use the mapping introduced by

Durupinar et al. [2017]. As for the OCEAN-LSQ mapping, no di-

rect mathematical link has been defined in the literature to the best

of our knowledge. Therefore, we follow an experimental approach

to quantize the OCEAN-LSQ link considering the descriptions of

Shape Qualities and hand movement in body language [Key 1975].

For example, an extravert tends to expose his/her hands more than

an introvert, this is why we associate positive extraversion with

Opening LSQ. LSQ parameters are calculated as a weighted sum
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Fig. 8. The influence of each Laban Effort modification. (a) Enclosing vs.
spreading motion for Direct vs. Indirect Space. (b) Rising vs. sinking motion
for Light vs. Strong Weight. (c) Constrained vs. fluctuating movements for
Bound vs. Free Flow. Figures show the superimposition of multiple frames
of a still motion. (d) Slow vs. fast movement for Sustained vs. Sudden Time.
Figures show the superimposition of multiple frames of a pointing mo-
tion. The red dots illustrate the hand position captured at each time step.
Because Sustained Time has slow movement, it spans more frames than
Sudden Time.

Table 6. OCEAN Weights for LSQ

LSQ/Personality O C E A N

Rising 0.25 0.25 0.25 0.25 0.00

Spreading 0.30 0.00 0.70 0.00 0.00

Advancing 0.00 0.00 0.50 0.00 0.50

of OCEAN factors, using the weights in Table 6. All the move-

ment and personality parameters take values in the range [−1, 1].

Through perceptual studies, we verified that the Shape adjust-

ments contribute to the perception of personality and improve the

distinction of personality factors compared to solely using Effort-

based modifications. Please refer to Appendix C.3 for the experi-

mental evaluation.

5 EXPERIMENTS

5.1 Experimental Setup

We performed perception studies on Mechanical Turk [Amazon

2018] to evaluate the amount of distinction between the two ex-

tremes of each personality trait, using incremental combinations

of personality expression modules. The system can express each

OCEAN factor on a scale and combine the influence of different

factors. However, we focus on singular factor changes with the ex-

treme values to keep the number of experiments at a manageable

size.

We performed two preliminary experiments to tune various sys-

tem parameters before the main experiment. The first preliminary

experiment is a user survey to select the most neutral looking char-

acter to prevent personality perception bias due to the appearance

of the 3D model. Please refer to Appendix C.1 for details. The sec-

ond one is another user study to test the effect of facial expres-

sions on the perception of personality and construct a link be-

tween the two. To our knowledge, emotions have not been used

as a direct element to influence the perceived personality of a vir-

tual character. We provide the details in Appendix C.2 and use the

results of the experiment in our personality to facial expression

mapping. In addition to the preliminary experiments, we ran two

user studies to (1) validate the Laban modifications for body mo-

tion and (2) evaluate the naturalness of the agent in terms of its

movement and speech. The details are provided in Appendices C.3

and C.4.

We performed eight main experiments, wherein we tested the

same 3D agent model with different active communication chan-

nels. Each main experiment assessed ten samples of the model en-

dowed with one OCEAN extreme at a time while the remaining

factors were set to neutral. All ten samples of each experiment

were rated by 50 unique participants. We did not allow the par-

ticipants to take part in multiple experiments to avoid familiarity

bias. Thus, a total of 400 Turkers participated in the eight main

experiments, where non-overlapping sets of 50 Turkers rated all

the ten samples of each experiment. We conducted the main ex-

periments in two stages. The difference between the two stages

is the presence/absence of dialogue and voice. The first stage in-

volved dialogue, where vocal communication was active in all but

one case, and the text was available in all. The second stage dis-

abled both the text (dialogue) and voice modules to keep the at-

tention on body and face movements. The second stage experi-

ment samples were shorter, focusing only on the key actions. We

presented the samples in random order. We ran the Passport Sce-

nario, which covers the interaction between a passport officer (the

user representative) and a visitor (the agent) always with the same

scenario flow, except for the agent answers, which were crafted to

reflect the desired personality. We showed the video of each con-

versation, expecting answers to personality statements about the

agent on a 7-point Likert scale. We used the Ten-Item Personal-

ity Inventory [Gosling et al. 2003] for the statements, which were

in the following structure: “This character looks Extraverted and

Enthusiastic,” with the underlined traits updated depending on the

personality type. Each sample and the accompanying statements

were displayed on the same page. For each sample, we random-

ized agent names and occupations to make sure that they would

be perceived as different individuals. Participants were free to view

each sample as many times as they needed. We did not have con-

trol over the setup where the participants performed the studies,

as they were run on Mechanical Turk. Participants were not able

to return to a sample after submitting their response. Providing de-

mographics was not mandatory. Among the 64% of all participants

who shared this information, 73.79% are male, 27.21% are female,

and the average age is 31.46 ± 7.64. The majority of the partic-

ipants are from India (43.14%), followed by USA (25.80%), Spain

(14.11%), and England (5.64%).
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Table 7. Modules in Each Model

Model Dialogue Voice Face Body

Base Model + − − −
Model V + + − −
Model VF + + + −
Model VB + + − +

Model VFB + + + +

Model F − − + −
Model B − − − +

Model FB − − + +

“+” denotes active and “−” denotes inactive.

5.2 Models

Each main experiment involves a model with different active

modalities. Table 7 shows the active and inactive modules in each

model, and Figure 9 shows screenshots from each model in the first

stage.

5.3 Results and Analysis

For each experiment, we performed Welch’s t-tests to compare the

means of the participant scores for positive and negative samples,

where the null hypothesis assumes no significant difference. Be-

cause we made multiple comparisons, we adjusted the p-values to

correct Type 1 error using False Discovery Rate control [Benjamini

and Hochberg 1995].

Tables 8 and 9 show the mean differences between the scores of

positive and negative samples followed by the adjusted p-value of

each mean difference per OCEAN factor. The columns represent

the pairs of simulations with two personality poles and the mod-

els. The magnitude of the difference indicates the clarity of the dis-

tinction between the positive and negative samples, demonstrating

the success of the modifications made for that personality trait. A

small p-value shows that the difference is not coincidental.

5.3.1 Perception of Individual OCEAN Factors. For openness,

the perception of the Models VB and VFB yield significant mean

differences between the negative and positive extremes. Combin-

ing facial expressions with movement cues slightly increases the

distinction factor– the mean difference is higher for VFB. How-

ever, we observe that dialogue, voice, and body movement play

the main role here, as Model VF does not yield a significant dif-

ference by itself. In the absence of dialogue and voice, none of the

models achieve a significant perceptual difference between the two

extremes of openness, alluding to the intellectual associations of

this trait.

For conscientiousness, Models VF, VB, and VFB have significant

effects on helping distinguish the two extremes. The combination

of VF and VB seems to have an averaging effect on VFB. Individ-

ually, Models V and FB have similar performance, suggesting that

their combination has an additive influence. Conscientiousness is

best distinguished by Model VB. Similar to openness, the absence

of dialogue and voice result in poor performance.

Extraversion is significantly distinguished from introversion us-

ing the models V, VB, VFB, F, and FB, where VB and VFB perform

the best. Among all the OCEAN factors, extraversion is the best-

distinguished one from its opposite, with a mean difference of 2.96

Fig. 9. Screenshots showing each model, excluding Model VFB, which is
similar to Model VB, except that the facial expressions are as in Model VF,
rather than being neutral. Among the second stage experiments, Model F
is similar to Model VF, Model B is similar to Model VB, and Model FB is
similar to Model VFB, excluding dialogue and voice.

using Model VFB. It is also the one that gains the most benefit

from combining facial expressions with body movement modifica-

tions. Interestingly, for extraversion, although Model VB outper-

forms Model VF, the exclusion of dialogue and voice makes Model

F to perform better than Model B. This is possibly due to the change

of focus between the two stages of experiments. The first stage is

longer, shifting viewers’ attention toward dialogue and body, de-

creasing the influence of facial expressions.

The two poles of agreeableness can be distinguished signifi-

cantly using Models V, VF, VB, VFB, F, and FB. The best performing

models are VB, VFB, and FB. Using only body movement or dia-

logue is not adequate to achieve significant differences in means.

The best distinguishable factor using Model V is agreeableness,
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Table 8. OCEAN Score Difference and Significance of This Difference per Model and Target Factor

Sample O+, O− Sample C+, C− Sample E+, E− Sample A+, A− Sample N+, N−
Base V VF VB VFB Base V VF VB VFB Base V VF VB VFB Base V VF VB VFB Base V VF VB VFB

ΔO 0.47 0.55 0.85 1.16 1.53 0.24 0.12 −0.06 0.46 0.56 −0.14 0.71 0.85 1.20 1.32 0.27 0.20 0.91 0.67 0.86 −0.29 −0.31 −0.96 −.68 −1.19

ρO 0.002 0.036 0.001 0.000 0.000 0.045 0.002 0.000 0.000 0.000 0.204 0.000 0.000 0.000 0.000 0.011 0.016 0.001 0.000 0.000 0.939 0.001 0.000 0.000 .000

ΔC 0.37 0.87 1.17 1.48 1.92 0.38 0.82 1.18 1.74 1.50 0.03 0.31 0.61 0.61 0.73 0.22 0.58 0.86 0.98 1.54 −0.56 −1.07 −1.88 −2.62 −2.74

ρC 0.193 0.522 0.775 0.002 0.003 0.057 0.002 0.000 0.000 0.000 0.562 0.315 0.478 0.053 0.002 0.873 0.167 0.657 0.030 0.085 0.016 0.000 0.035 .000 .000

ΔE 0.14 1.39 1.17 2.00 2.63 0.10 0.19 0.15 0.44 0.82 0.16 0.94 1.56 2.12 2.96 0.12 0.40 0.66 0.16 0.66 −0.45 −0.59 −1.26 −1.15 −1.64

ρE 0.296 0.004 0.002 0.000 0.000 0.826 0.086 0.004 0.000 0.000 0.342 0.003 0.000 0.000 0.000 0.241 0.004 0.001 0.000 0.000 0.999 0.242 0.001 .002 .000

ΔA 0.47 0.68 1.14 1.03 1.71 −.03 0.27 0.09 0.44 0.37 0.14 0.66 0.76 0.86 1.01 0.62 1.11 1.81 2.32 2.65 −0.26 −0.25 −0.71 −.45 −.74

ρA 0.131 0.353 0.000 0.002 0.000 0.203 0.015 0.009 0.000 0.000 0.394 0.054 0.007 0.561 0.009 0.009 0.001 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000

ΔN −0.01 −0.88 −1.24 −1.11 −1.55 −0.43 −0.96 −0.58 −1.35 −1.49 0.00 −0.22 −0.84 −0.78 −1.22 −0.48 −1.14 −1.61 −2.01 −2.63 0.58 1.05 2.04 2.14 2.76

ρN 0.093 0.138 0.001 0.000 0.000 0.025 0.002 0.000 0.000 0.000 0.033 0.018 0.000 0.000 0.000 0.040 0.253 0.005 0.028 0.001 0.013 0.000 0.000 .000 .000

Δx represents the mean score difference (in terms of the 7 point likert-scale) between y+ and y− samples for each sample y ∈ {O, C, E, A, N }, per dimension x ∈
{O, C, E, A, N }, rounded to 2 decimals. ρx represents the adjusted p-value for the significance of the difference between y+ and y− samples in terms of dimension x ,

rounded to 3 decimals. Columns represent the two extreme samples of the dimension of interest. Sub-columns represent each model that is used in the experiments. Gray

cells indicate ρx < 0.05 with 1 ≤ Δx < 2, blue cells indicate ρx ≤ 0.001 with 1 ≤ Δx < 2, and green cells indicate ρx ≤ 0.001 with 2 ≤ Δx .

Table 9. OCEAN Score Difference and Significance of This Difference per Silent Model and Target Factor

Sample O+, O− Sample C+, C− Sample E+, E− Sample A+, A− Sample N+, N−
B F FB B F FB B F FB B F FB B F FB

ΔO 0.20 0.47 0.34 0.04 0.24 −0.07 0.12 1.14 0.96 0.45 1.34 0.81 −0.14 −0.78 −0.60

ρO 0.440 0.069 0.182 0.870 0.320 0.794 0.643 0.000 0.000 0.084 0.000 0.001 0.595 0.005 0.033

ΔC 0.27 1.16 0.71 0.29 0.63 0.80 0.15 0.94 0.36 0.65 1.08 1.24 −0.09 −1.29 −1.08

ρC 0.368 0.000 0.013 0.315 0.033 0.004 0.626 0.000 0.214 0.016 0.001 0.000 0.745 0.000 0.000

ΔE 0.42 0.01 0.50 −0.26 −0.02 −0.46 0.82 1.31 1.95 0.56 1.05 0.98 −0.17 −0.86 −0.88

ρE 0.130 0.969 0.067 0.386 0.946 0.128 0.006 0.000 0.000 0.051 0.001 0.001 0.585 0.001 0.003

ΔA −0.15 1.35 1.45 −0.23 0.49 0.43 0.40 1.11 1.00 0.42 1.91 2.03 −0.22 −0.79 −1.11

ρA 0.625 0.000 0.000 0.437 0.118 0.128 0.207 0.000 0.001 0.118 0.000 0.000 0.434 0.010 0.000

ΔN −0.24 −1.83 −1.67 −0.12 −0.78 −1.16 −0.52 −1.33 −0.91 −0.65 −1.85 −2.11 0.31 1.99 2.30

ρN 0.465 0.000 0.000 0.691 0.009 0.001 0.089 0.000 0.005 0.032 0.000 0.000 0.318 0.000 0.000

Please refer to Table 8 caption for details.

namely, vocal features contribute to the perception of agreeable-

ness more than the other personality traits. Despite the appar-

ent influence of voice, when dialogue and voice are excluded,

Model FB still achieves a large mean difference. This suggests

that facial expressions and vocal features may be substitutable for

agreeableness.

Most of the models represent neuroticism well. Between neu-

roticism and stability, Models V, VF, VB, and VFB yield signifi-

cant mean differences, with Model V slightly less than the others.

Among these, Model VFB performs the best. When voice and dia-

logue are enabled, body movement is as effective as facial expres-

sions in expressing neuroticism. However, excluding the dialogue

and voice has a dramatic negative influence on the effect of body

movement.

Some traits require longer exposure times so that the viewer

can assess their influence on perceived personality. Features such

as the dependability of conscientiousness and the adventurous

nature of openness can be hardly illustrated in short sequences.

Behavioral planning similar to Shvo et al. [2019] can be used

to express such traits through the scenario flow. Additionally,

the second stage experiments indicate that viewer attention is

controlled by the existence of dialogue and voice, as well as the

exposure duration. In general, longer sequences with dialogue

shift the attention toward the agent’s body, whereas short se-

quences without dialogue keep the focus on facial expressions,

reducing the performance of body movement modifications.

Providing a reference point, such as comparing two agents, as

in our movement modifications evaluation (see Appendix C.3),

increases the influence of body movement.

5.3.2 Comparison of Models. We compare the results of the

models by performing one-way ANalysis Of VAriance (ANOVA)

with Tukey Honestly Significant Difference (HSD) to reveal signif-

icant differences for each OCEAN factor [Tukey 1949]. Tables 10

and 11 show the difference-in-differences (DID) in means of pairs

of models, which are based on positive and negative samples for

each OCEAN factor. Each value reports the improvement provided

by the model on the left over the model on the right. For exam-

ple, Model VFB is 2.80 times more successful than Base Model

for extraversion. Note that we evaluate the dialogue-based and

silent models separately as they involve different experimental se-

tups. The information in these tables is also presented as graphs in

Appendix D.

In the dialogue-based experiments, combining facial expres-

sions with movement modifications works best for extraversion;

probably because each module adds non-overlapping features
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Table 10. The DID in Means of the Pairs of Models for
Each OCEAN Factor

Model O C E A N

V - Base 0.08 0.44 0.78 0.49 0.47

VF - Base 0.38 0.80 1.40 1.19 1.46

VB - Base 0.69 1.36 1.96 1.70 1.56

VFB - Base 1.06 1.12 2.80 2.03 2.18

VF - V 0.30 0.36 0.62 0.70 0.99

VB - V 0.61 0.92 1.18 1.21 1.09

VFB - V 0.98 0.68 2.02 1.54 1.71

VB - VF 0.31 0.56 0.56 0.51 0.10

VFB - VF 0.68 0.32 1.40 0.84 0.72

VFB - VB 0.37 −0.24 0.84 0.33 0.62

Bold values show significant differences (p < 0.05).

Table 11. The DID in Means of the Pairs of Silent
Models for Each OCEAN Factor

Model O C E A N

F-B 0.27 0.34 0.49 1.49 1.68

FB-B 0.14 0.51 1.13 1.61 1.99

FB-F −0.13 0.17 0.64 0.12 0.31

Bold values show significant differences (p < 0.05).

related to extraversion. For instance, facial expressions project

positive emotions and sociability, whereas body movement con-

veys the energetic nature of extraversion. We observe a similar

effect on neuroticism. Again, we can surmise that each modality

contributes to a different aspect of neuroticism expression.

Without dialogue and voice, the face becomes more important

than the body in expressing personality. This is demonstrated in

openness, agreeableness, and neuroticism. A combination of facial

expressions and body motion has clear advantages over only body

motion for extroversion, agreeableness, and neuroticism. How-

ever, adding body motion to facial expressions yields no significant

improvements over only adjusting facial expressions.

5.3.3 Correlation of OCEAN Factors. We observe correlations

between the perception of different OCEAN factors in different

models. For instance, the modifications that focus on openness

increase the perception of extraversion. The adjustments to ex-

press conscientiousness tend to be negatively correlated with the

perception of neuroticism. Such an outcome is expected, because

slower movements convey conscientious behavior, which can be

perceived as calm and stable—an indicator of negative neuroticism.

For the first stage of experiments, where dialogue and voice are en-

abled, we perform principal component analysis (PCA) for Models

VF, VB, and VFB to analyze the correlations. We ignore the Base

Model and Model V, because they do not have enough separation.

We apply PCA to the models individually, where the population

consists of OCEAN scores of each sample rated by each participant.

This results in matrices of 500 rows (10 samples × 50 participants)

and 5 columns (each OCEAN factor) per model.

We use Kaiser-Meyer-Olkin (KMO) test [Dziuban and Shirkey

1974] as a measure to show the suitability of the data for PCA.

KMO greater than 0.7 is generally accepted as an adequate thresh-

old for factor analysis. Each principal component in Table 12 acts

Table 12. PCA Results for Models VF, VB, and VFB

Model VF VB VFB

Comp. PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

O 0.65 — 0.68 0.70 0.49 0.37 0.77 0.35 —

C 0.74 — −0.37 0.83 — −0.38 0.81 — −0.42

E 0.62 0.67 — 0.68 0.57 — 0.71 0.55 0.31

A 0.72 -0.53 — 0.72 −0.45 0.45 0.76 −0.39 0.45

N −0.83 — — −0.84 0.35 — −0.88 — —

CVar 50.71 66.80 81.40 57.14 75.52 86.56 62.43 75.92 86.63

KMO 0.752 0.747 0.810

KMO shows Kaiser-Meyer-Olkin test result, we suppress coefficients less than 0.3,
and display components that capture at least 80% of the cumulative variance (CVar).

as a new linearly uncorrelated dimension that captures some por-

tion of the variance. We specify the coefficients for each OCEAN

factor per principal component, suppressing values less than 0.3.

The results show that we can use three components to capture at

least 80% of the cumulative variance for models VF, VB, and VFB.

Each positive OCEAN dimension except neuroticism has at least

one trait that has positive connotations in a general sense. For in-

stance, imagination (O), dependability (C), sociability (E), polite-

ness (A), and calmness (N-) are among the descriptive traits of the

five factors. We expect that people’s perception of personality is

influenced by a dimension that encapsulates the overall positive-

ness, similar to the Big One in the literature [Musek 2007]. PC1 in

all models can be interpreted as this positiveness dimension, which

is exhibited the most in positive conscientiousness and negative

neuroticism.

We interpret PC2 as the dominant extraversion dimension. In

general, extraversion is the best-distinguished OCEAN factor. We

believe that this is due to the expanding and energetic behavior

that it encompasses. Other than extraversion, PC2 is correlated

with different factors in each model. In Model VF, it is not surpris-

ing that PC2 is related to positive extraversion (happiness expres-

sion) and negative agreeableness (anger and disgust expressions)

where strong and energetic facial expressions emerge. In Model

VB, extraversion is coupled well with openness, similar to Smith

and Neff [2017], but it also related to negative agreeableness and

positive neuroticism. The open posture of positive openness, ex-

tending limbs of high extraversion, quick and angry movements

of low agreeableness, and rushed motion of high neuroticism all

contribute to this energetic behavior component. We believe that

in Model VFB, the inclusion of facial expressions helps distinguish

whether the motion speed signals energetic or anxious behavior.

PC3 yields a complementary output to PC2, with the common

correlation factor being negative conscientiousness across models.

In Model VF, it can be interpreted as a creativity dimension where

highly creative—a feature of positive openness–individuals gener-

ally express negative conscientiousness traits such as being less

organized [Feist 2019].

In Model VB, PC3 consists of negative conscientiousness, pos-

itive openness, and agreeableness. This result may be due to the

less bound and faster movements of negative conscientiousness.

In Model VFB, the additive influence of facial expressions for ex-

traversion and agreeableness may be responsible for the additional

variance. Again, more relaxed use of expressions such as smiling
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Table 13. PCA Results for Models F and FB, with Similar Setup as
Table 12

Model F FB

Comp. PC1 PC2 PC3 PC1 PC2 PC3

O 0.80 — 0.45 0.69 0.48 —

C 0.81 — −0.31 0.75 −0.35 0.45

E 0.50 0.83 — 0.47 0.78 —

A 0.82 — — 0.77 — −0.52

N −0.85 — — −0.84 0.31 —

Cvar 58.95 77.05 86.68 51.08 73.31 84.68

KMO 0.767 0.703

may be indicators of a more carefree attitude, as seen in negative

conscientiousness. This carefree attitude would go well with the

cheerful nature of positive extraversion and forgiving mindset of

positive agreeableness, which would explain the correlation.

PCA on the second stage experiments reveals similar results

(Table 13). We exclude Model B, since it yields KMO < 0.7. PC1

in both models expresses a similar Big One-like structure, where

extraversion is not dominant. PC2 again represents the dominant

extraversion dimension, coupled with negative conscientiousness

in Model FB. Interestingly, PC2 in Model F has no other contribut-

ing factors. PC3 in Model F is similar to PC3 in Model VF, with

openness being less influential due to the exclusion of dialogue

and voice. In model FB, the order of negative conscientiousness

and negative agreeableness dimensions are switched, compared to

Model VFB. This can be explained by dialogue improving the dis-

tinction of agreeableness. Overall, PCA results are very similar to

the first stage experiments, only with a reduced representation of

openness and agreeableness.

6 DISCUSSION

The experiments indicate that adding new modalities improves

personality perception, and the combination of all the modalities

performs the best. Although adding a new modality does not al-

ways yield a statistically significant increase in the perceptual ac-

curacy, the overall effect is additive. There is only one exception

where the improvement slightly decreases when a new modality

is added, and that is for conscientiousness when body movement

is added to facial animation and voice. However, the amount of

the decrease is not statistically significant. When the communica-

tion channels are all active, all the five personality factors show

statistically significant improvements over the baseline model,

where personality is expressed only through dialogue. Previous

research also indicates the effectiveness of multi-modal commu-

nication. For instance, Neff et al. show that combining language

variation and gesture parameters improves the perception of ex-

traversion [Neff et al. 2010] and neuroticism [Neff et al. 2011] in

conversational agents. In another domain, for personality detec-

tion from videos of real people, combining speech signals with

hand and body movement descriptors performs better than indi-

vidual channels [Nguyen et al. 2013].

We verify that the users perceived the models as natural in a

survey described in Appendix C.4. The survey results suggest that

the users judged the speech based on the naturalness of body mo-

tion and facial expressions. The users reported a slight decrease in

naturalness when facial expressions and body movement modifi-

cations were combined; however, they generally agree that agent

movement, facial expression, and voice modifications are natural.

Although we can conclude that multi-modal communication im-

proves personality perception in general, there are some variations

across the contributions of different combinations depending on

the personality factor. For example, the combination of dialogue

and voice modules performs slightly better than using body and

face modules together for openness and conscientiousness. In con-

trast, the body-face combination outperforms the dialogue-voice

combination for the remaining factors. Thus, in systems where di-

alogue is not prominent, such as crowd simulations, we expect ex-

troversion, agreeableness, and neuroticism to be conveyed more

effectively. This is indeed backed by previous crowd simulation

work [Durupinar et al. 2011], where the recognition rates of these

three factors are higher than the rates of openness and conscien-

tiousness.

Among the five factors, extraversion is distinguished the best,

followed by neuroticism and agreeableness. These three factors

are more expressive as they are related to social attitudes. In fact,

the markers for extraversion, neuroticism, and agreeableness are

found to be more consistent across different species [Gosling and

John 1999]. Openness and conscientiousness, however, are related

to the intellectual and long-term aspects of personality [Goldberg

1990]; and they are not distinguished as much. We believe that cap-

turing their cues would require exposure to the agent in different

contexts and for longer durations. Their especially poor perfor-

mance in the absence of dialogue implies the need for contextual

cues to represent them.

The results show that the modifications that focus on one

OCEAN factor also influence the perception of other OCEAN

dimensions, although they are considered orthogonal. Under-

standing the reason behind these correlations requires further

experiments, but one possible explanation is the limited number

of movement modifications to represent each factor. For instance,

movement speed has different interpretations for neuroticism

and conscientiousness [Durupinar et al. 2017], which we found

to be inversely correlated. Sudden movements are perceived as

erratic, and thus the agent looks neurotic. At the same time,

they imply carelessness, so observers associate them with low

conscientiousness. However, it is interesting to see the same

relationship between neuroticism and conscientiousness when

only the voice module is active. Several studies have identified

two meta-traits above the five OCEAN dimensions through sub-

sequent factor analysis [Cieciuch and Strus 2017; DeYoung et al.

2002]. The two meta-traits group extraversion with openness,

and conscientiousness with agreeableness and neuroticism. These

are consistent with the correlations that we found. For example,

Table 8 shows similar results for openness and extraversion, albeit

with a higher recognition rate for extraversion. However, there is

a clear distinction between extraversion and agreeableness, which

belong to different meta-traits.

7 CONCLUSION AND FUTURE RESEARCH

We combine various methods of personality expression in con-

versational virtual agents to create a multi-modal framework and
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evaluate the individual and combined influence of different modal-

ities on personality perception. Body animation, facial expressions,

voice transformation, and dialogue content are used in coopera-

tion to convey the underlying psychological states of the agent

to the user. The user studies suggest that each additional module

contributes to the perception of personality, with the best perfor-

mance achieved when all the modules are active. Some limitations

and future research directions are as follows:

Real-time conversation with the agent: We performed the per-

ception studies using recordings of the agent to prevent potential

delays due to the external APIs. Using the current system, there is

a 2–6 s delay after the user’s speech until the agent starts speak-

ing. We hope to reduce this delay to an acceptable range by using

local speech generation and understanding techniques. In the fu-

ture, we plan to test the system with users directly interacting with

the agent through conversation. We expect direct interaction to in-

crease user engagement in the scenario and elicit more empathy

toward the agent. It would also be interesting to observe how users

adjust their conversation styles based on agent personality. For in-

stance, users might talk more politely to a highly agreeable agent,

tend to keep their conversation short with an introverted agent,

and be impatient with an unconscientious agent.

Personality-based automated style transfer for text: Currently,

we use handcrafted dialogue; however, injecting personality into

neutral sentences can provide richer dialogue. This would re-

quire large data sets with sentences that have a similar mean-

ing and different personality scores for training. Having multi-

ple units that focus on singular text operations is a possible so-

lution. For example, one unit could be responsible for adding hesi-

tation into text by a given degree, another for adding surprise, and

so on.

Data-driven approach: Using motion capture data with personal-

ity scores, a mapping between animation modification parameters

and personality can be defined. Similar to Ran et al. [2015] who in-

troduce an automated model to predict LMA qualities of recorded

motion, deep learning can be used to modify an animation based

on personality. Facial expression data can also be used to accom-

pany movement modifications.

A more sophisticated model for emotions: Emotions are currently

reflected as facial expressions that are customized based on the

agent’s dialogue sentences and personality. A more sophisticated

model involves agent emotions to be influenced by the different

aspects of communication with the user, such as acting defen-

sively against an angry user. An emotion model similar to Kasap

et al. [2009] can be utilized for this purpose. A complex emo-

tion model also entails the influence of personality. For example,

a highly agreeable agent would be expected to be more caring

when the user sounds sad, as opposed to a disagreeable agent that

would not be interested in cheering up the user. In addition, we

currently limit the communication of emotions to facial expres-

sions. Although the link between personality traits and body mo-

tion has been established in the literature, we have little knowledge

about how this link would be affected when emotions are superim-

posed on personality. This is a future research area that we aim to

explore.

Interaction with multiple agents: Currently, the system focuses

on conversation with a single agent. It could be interesting to in-

tegrate it into a simulation where multiple agents interact based

on personality. The goals and needs for each agent could be deter-

mined by a model, and human players could train agent behavior.
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