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Ordering of binary colloidal crystals by random
potentials†
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Structural defects are ubiquitous in condensed matter, and not always a nuisance. For example, they

underlie phenomena such as Anderson localization and hyperuniformity, and they are now being

exploited to engineer novel materials. Here, we show experimentally that the density of structural

defects in a 2D binary colloidal crystal can be engineered with a random potential. We generate the

random potential using an optical speckle pattern, whose induced forces act strongly on one species of

particles (strong particles) and weakly on the other (weak particles). Thus, the strong particles are more

attracted to the randomly distributed local minima of the optical potential, leaving a trail of defects in

the crystalline structure of the colloidal crystal. While, as expected, the crystalline ordering initially

decreases with an increasing fraction of strong particles, the crystalline order is surprisingly recovered

for sufficiently large fractions. We confirm our experimental results with particle-based simulations,

which permit us to elucidate how this non-monotonic behavior results from the competition between

the particle-potential and particle–particle interactions.

Introduction

Perfect crystalline structures are not commonly found in Nature,
because, even in the absence of impurities, structural defects
occur spontaneously and disrupt the periodicity of the crystalline
lattice.1 For example, when a melt is cooled down, multiple
crystallites grow with degenerate orientations.2 Since the coar-
sening time of these crystallites diverges with size, structural
defects appear and prevent the emergence of global order.3,4

While the existence of these defects is a challenge when
growing single crystals, it can also be an opportunity when
engineering the properties of materials; indeed, control over
defects enables the development of solid-state devices with
fine-tuned mechanical resilience, optical properties, and heat
and electrical conductivity.5–9 In atomic crystals, engineering
structural defects is an experimental challenge for two reasons:10

first, current visualization techniques at the atomic scale do not
provide a high spatial or time resolution;11,12 second, no current
technique can control the density of defects in a systematic
manner.13 The first challenge can be overcome studying colloidal
crystals as models for atomic systems,14,15 where colloidal parti-
cles can be individually tracked using standard digital video
microscopy techniques,16–18 and have in fact also been used to
study crystallisation and melting of colloidal crystals in the
presence of extended laser fields.19,20 Here, we demonstrate that
the second challenge can be solved combining a binary colloidal
mixture and an optical random potential generated by a speckle
light pattern. This permits us to control the density of structural
defects in the resulting 2D colloidal crystal and to explore
a surprising non-monotonic behavior of their ordering and
stability.

Results

We use a binary colloidal suspension of equally-sized poly-
styrene (refractive index nPS E 1.59) and silica (nSi E 1.42)
spherical particles with diameters dPS = 6.24 � 0.22 mm and
dSi = 6.73 � 0.22 mm, respectively. The particles interactions are
hard-sphere like but the following results can be reproduced
with soft interactions as well (see ESI†).21 To characterize
the composition of the mixture, we use the molar fraction of
polystyrene particles defined as w = Nps/Nt where Nps is the
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number of polystyrene particles and Nt is the total number of
particles. We let these particles sediment at the bottom surface
of a homemade sample chamber so that they are effectively
confined in a quasi-2D space (see the Section Materials and
methods). We illuminate from above with a speckle pattern,
which we generate by mode-mixing a laser beam in a multi-
mode optical fibre (see Fig. 5).22–24 Speckle patterns form
rough, disordered optical potentials characterized by wells
whose depths are exponentially distributed, with spatial corre-
lations that are Gaussian with an average width (grain size) set
by diffraction. As proposed in ref. 25, to characterize the
strength and correlation length of the optically generated
random field, we first identify the ‘‘bright spots’’ and then fit
a Gaussian to each spot, using the code in ref. 26. We found
s = 2.7 � 0.2 mm, which is less than half the diameter of the
particles. Furthermore, the fibre imposes a Gaussian envelope
(beam waist sG = 72.5 � 0.2 mm) to the speckle pattern, which
attracts the particles towards the center of the speckle pattern
effectively confining them in space. Since the optical forces
acting on the particles increase for larger mismatches between
their refractive index and that of the surrounding medium
(here water, nw E 1.33),27 the optical forces acting on the
polystyrene (strong) particles are about 2� higher than those
exerted on silica (weak) particles (estimated using the FORMA
method28). Importantly, the optical forces at the deepest local
minima of the speckle potential are strong enough to trap the
strong particles, but not the weak ones (see ESI† for an
estimation of the strength of the optical traps21).

We start with a low concentration of particles (1.4 � 107 ml�1)
and switch on the optical potential. The particles are attracted
towards its center by the Gaussian envelope. When only weak
particles are present (w = 0), they eventually form a compact
structure with hexagonal order, as shown in Fig. 1a. When we
introduce strong particles, these get trapped in the local minima of

the disordered potential and introduce defects that reduce the
hexagonal order. Already with only 20% of strong particles
(w = 0.2), the presence of structural defects is clearly visible (see
Fig. 1b). The impact is even more pronounced when 50% of the
particles (w = 0.5) are strongly interacting with the potential
(Fig. 1c). Thus, strong particles act as defects in the crystalline
structure of the weak ones, compromising global order. We were
able to determine that the deformation of the structure was not
caused by particle bidispersity since when subject only to a
Gaussian envelope the particles formed a crystalline structure
independently of the number of strong particles present (see
ESI†).21 The experimental results are confirmed by particle-based
simulations, as shown in Fig. 1d–f (see Section Materials and
methods). As we will see in more detail below, we can control the
density of defects by adjusting w as well as the intensity and grain
size of the pattern.

To quantify the order of the crystalline structure, we mea-
sure the six-fold bond-order parameter, hf6i, defined as29

hf6i ¼
1

6Nc

XNc

l

XNb

j

ei6ylj

�����
�����; (1)

where the out sum is over the Nc particles within 7.5 particle
diameters from the center of the potential (the area shown in
Fig. 1), which is the area where the aggregate is formed and
does not include the boundary particles. The inner sum is over
the Nb neighbors of a particle in the Voronoi tessellation, and
ylj is the angle between the x-axis and the line connecting the
centers of particles j and l. hf6i = 1 for perfect hexagonal
crystals (in practice, it is never exactly one, because of thermal
fluctuations and other transient perturbations to the periodic
order) and it decreases with the number of structural defects.
Fig. 2 shows hf6i obtained experimentally and numerically as a
function of the molar fraction w. For w = 0, hf6iE 1, consistent
with the formation of an hexagonal periodic structure.
As expected, as w increases, the value of hf6i decreases due to
the formation of structural defects. The snapshots in the top
rows of Fig. 2 show the final configurations (first row), the
corresponding Voronoi tessellations (second row), and the
spatial Fourier transform (third row), for different values of w.

Surprisingly, the data reported in Fig. 2 show that hf6i
reaches a minimum at wmin E 0.6, and that the global order
increases for w 4 wmin. In particular, for w = 1, the strong
particles self-assemble into a hexagonal crystal, despite the
presence of the underlying random potential. This non-
monotonic dependence is also observed at higher densities.
In Fig. S5 of the ESI,† 21 we shown that the same behavior is
observed numerically in a system with a number of particles
that is 25% higher. This result is corroborated by the Voronoi
tessellation of the final configurations and by the respective
spatial Fourier transforms. From this analysis, we can see that
the number of Voronoi cells with a number of neighbors
different from six becomes higher near the minimum of hf6i,
even though the Voronoi-cell size in both experiments
and simulations does not vary significantly compared with
the particle size (see Fig. S6 from the ESI†).21 Also, The Fourier

Fig. 1 Colloidal crystals with tunable degree of disorder. Final configura-
tions obtained in (a–c) experiments and (d–f) simulations, for different
molar fractions w of strong particles. The weak (silica) particles are light
gray, and the strong (polystyrene) particles are dark gray. The illumination
for the images is delivered by an optical fibre which produces the
vignetting effect observed in the experimental images.

Paper Soft Matter

View Article Online

https://doi.org/10.1039/d0sm00208a


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 4267--4273 | 4269

transforms display dimmer intensity peaks near the minimum
of hf6i.

In order to shed light on the non-monotonic behavior,
we first analyze the trajectories obtained by particle-based
simulations, without the Gaussian envelope and a particle
density 10� lower than that of maximal packing, to study the
interactions between the two particle species and the local
minima in the potential. Fig. 3(a) shows individual trajectories
of weak (light gray) and strong (dark gray) particles at various w.
In all cases, the weak particles can hop between minima, while
the strong particles are readily trapped in them. This qualitative
analysis for a lower density elucidates the possible underlying

mechanisms at higher densities. In the presence of the Gaussian
envelope, particles are dragged to the center and the strong
particles quickly populate the minima that are sufficiently deep
to prevent their escape. At low w, the number of strong particles is
lower than the number of such minima so they remain there for
the entire simulation time, because this configuration is energe-
tically favorable (Fig. 3b and c); therefore, the number of spatial
defects increases monotonically with the number of the trapped
strong particles, leading to a decrease of hf6i with increasing w.
At large w, the number of strong particles is greater than the
number of potential minima and thus it becomes energetically
favorable to have more than one strong particle in one minimum
(Fig. 3d). This allows the spatial rearrangement of the particles
since the energy of the interaction with the speckle is no longer
strong enough to localize the particles, a large-scale crystalline
structure is favorable, consistent with the increase in hf6i observed
in Fig. 2. When w = 1, all particles are strong and thus the hexagonal
crystalline structure is recovered. We also counted the number of
strong and weak particles situated in minima of the random
potential as a function of w. As shown in Fig. S8 of the ESI,† 21

the minima are mainly populated by strong particles and the
average number of particles is larger than one for values of w above
the one at which the six-fold bond order parameter is the minimum.

In order to explore how robust the non-monotonic dependence
of hf6i as a function of w is, we studied numerically how it depends
on the properties of the underlying speckle pattern. The speckle is
characterized by a strength V corresponding to the average potential
depth (in units of kBT, where kB is the Boltzmann constant and T is
the absolute temperature of the sample) and by a spatial correlation
s (in units of the particle diameter), which corresponds to the
average grain size. Fig. 4(a) shows hf6i for different V. Although the
curves in the range 1.51 o V r 18.8 feature one minimum, its
position and intensity vary with V: the number of minima that can
trap particles is expected to increase with V. Thus, the fraction of
particles that can be trapped also increases and the corresponding
value of wmin shifts to the right while the minimum becomes deeper.
For V 4 18.8, the behavior seems to become independent of the
molar fraction (and always disordered), because the weak particles
are also strongly trapped. Fig. 4(b) shows hf6i for different values
of s. A pronounced minimum is only observed for intermediate
values of s, close to unity (particle diameter). If sc 0.5 or s{ 0.5,
the optical forces are negligible for different reasons: for s c 0.5,
the gradient of the optical potential is very small on the scale of the
particle; and for s { 0.5, the optical potential varies on a length
scale smaller than the particle size and thus its gradient averages to
zero over the particle cross-section (see Fig. S9, ESI†).21 In the latter
case, the optical force on a particle is the sum of the contributions
over the particle’s cross-section, which can be described by an
effective random potential that differs from the one originally
applied (Fig. S10 and S11, ESI†).21

Discussion

In conclusion, we have shown that the order in a two-
dimensional binary colloidal crystal can be controlled by an

Fig. 2 Crystalline order for different molar fractions of strong particles.
Six-fold bond order parameter hf6i as a function of the molar fraction w
obtained experimentally (circles) and numerically (squares; the blue line
connects the symbols for visual guidance). The error bars show the
standard deviation of hf6i over 500 frames in the stationary state of the
experiments (i.e., after 30 minutes from the start of the experiments). The
numerical results are averages over 100 samples. The top snapshots
show the final configurations in the experiments (first row), the Voronoi
tessellation (second row), and the spatial Fourier transform (third row) for
w = 0, 0.23, 0.6, and 1. The filled (empty) circles at the center of the Voronoi
cells indicate strong (weak) particles. The cells are colored by the number
of nearest neighbors, namely, equal (green), lower (red), greater (blue) than
six. See also Supplementary Video 1 (ESI†).
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underlying random optical potential. While previous studies19,20

have shown how freezing and melting are influenced by the
intensity of the laser field and the particle density. We employ a
disordered potential and a binary mixture where some particles
interact strongly with the substrate and others are weakly
interacting. This permits us to study a system where disorder and
impurities are present, which is highly relevant for applications.
Since the intensity of the optical forces depends on the mismatch of

the indices of refraction of the particles and the surrounding
medium, the particles with the larger index mismatch are more
responsive (strong particles) than those with the lower mismatch
(weak particles). For the parameters of the optical potential that
were considered, only the strong particles respond significantly
to the potential. Thus, strong particles tend to occupy the
minima of the potential and nucleate structural defects in the,
otherwise, periodic hexagonal structure of the weak particles.

Fig. 3 Local dynamics of the interaction between particles and minima in the random potential. (a) Examples of trajectories of weak (light gray) and
strong (dark gray) particles in the presence of a speckle obtained numerically for different values of the molar fraction w. The particle density is 10� lower
than that of maximal packing and the Gaussian envelope is absent. The four simulations were preformed under exactly the same conditions, including the
same sequence of random numbers for the thermostat (see ESI†).21 The black circles on the top left corner indicate the particle size. The random
potential intensities are in units of kBT and s is one particle diameter. (b) When a weak particle (light gray) is located at a potential minimum and a strong
particle (dark gray) is in its vicinity, it is energetically favorable to exchange the two, but the opposite process (c) is not. (d) The free energy may be
significantly reduced when two particles of the same species share the same potential minimum. See also Supplementary Video 2 (ESI†).

Fig. 4 Dependence of the order parameter on the speckle properties. Six-fold bond order parameter as a function of the molar fraction (w) obtained
numerically, for different values of the speckle (a) strength and (b) spatial correlation s. Results in (a) were obtained for s = 0.5 and in (b) for V = 15.1,
and are averages over 100 samples.
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The density of defects is controlled by the fraction of strong
particles and the statistical properties of the underlying
potential. When the number of strong particles increases beyond
the number of local minima that can trap them, the trapping
mechanism becomes less effective and the hexagonal order is
recovered as the fraction of strong particles increases.

Here, we have considered a random optical potential with
Gaussian spatial correlations and a characteristic length that is
of the order of the particle size. However, it is technically
possible to generate other optical potentials, e.g. periodic27 or
with different spatial correlations.30,31 Thus, one can control
not only the density of defects but also their spatial distribu-
tion. Time-varying optical potentials or driving forces could
also be employed to change the position of strong particles and
defects in time, affecting the overall dynamics, what raises
several relevant fundamental and applied questions.18,23,32,33

Understanding how the spatial distribution of defects influ-
ences the physical properties of materials is a question of both
scientific curiosity and technological interest that can now be
addressed in a systematic way.

A non-monotonic dependence of the density of defects on
the particle ratio was also found for a binary mixture of Yukawa
particles coupled to a random (quenched) field in ref. 34, where
the particles differ in charge, which impacts the particle–particle
interaction, but the response to the external field is identical.
By contrast, here the particle–particle interactions are identical
for both species, while their response to the external field is
distinct. This difference is key to enable the external control of
the density of defects, as proposed here.

Materials and methods
Sample preparation

Diluted aqueous stock solutions of polystyrene and silica
colloidal spheres (microparticles GmbH, diameter dPS = 6.24 �
0.22 mm and dSi = 6.73 � 0.22 mm, respectively) were used to
prepare binary solutions with different molar fractions of poly-
styrene particles from w = 0 to w = 1. The total density of particles
was kept constant at 1.4 � 107 ml�1. These colloidal solutions
were confined in a homemade sample chamber (internal
thickness 200 mm), built between a bottom glass slide (made
hydrophilic by treatment in a 0.25 M NaOH solution) and a top
flat-terminated fibre coupler (Thorlabs, SM1SMA) held apart by
two layers of a thermoplastic spacer, which at the same time was
also used for sealing the chamber. The fibre coupler was used
to connect the output end of a multimode optical fiber (core
diameter 105 mm, NA = 0.22, length 51 m). See also Fig. 5.

Experimental setup

A homemade inverted optical microscope setup was used for
carrying out the experimental investigations of structural
defects in colloidal crystals formed under random optical
potentials, as schematically shown in Fig. 5.24 An image of
the sample with colloidal particles was projected by a micro-
scope objective (Nikon Plan Fluorite Imaging Objective, 20�,

NA = 0.5, WD = 2.1 mm) onto a monochrome charge-coupled
device (CCD) camera with an acquisition rate between 1 and 8
frames per second (fps). The incoherent illumination was
provided by a LED lamp at l = 625 nm coupled into the optical
fiber using a dichroic mirror (Thorlabs, DMLP650). The parti-
cles were tracked by digital video microscopy.35

The static speckle light pattern with a Gaussian envelope
was generated by focusing a laser beam (wavelength l = 976 nm,
output power P = 90 mW) into a multimode optical fiber using a
plano-convex lens (focal distance f = 25.4 mm). The output
speckle pattern is the result of the multipath interference of
the optical waves carrying random phases within the multimode
optical fiber.23,24,36 The length of the optical path between the
fiber tip and the imaging plane where the colloidal particles lay
(i.e., the bottom of the sample chamber) determines the final
speckle grain size. The typical duration of an experiment is about
90 minutes.

The smooth optical potential was obtained by the speckle
suppression using a high frequency mechanical oscillator
connected to the stretched interval of the optical fiber. The
vibrational frequency was adjusted with DC voltage up to
12 000 rpm.

Simulations

We performed Brownian dynamics (BD) simulations of a binary
mixture of N = 800 particles with several compositions, on a
two-dimensional square box with linear size L. The particle
species differ in the strength of their response to the optical
potential. The interaction potential between a pair of particles i
and j with diameter dp is independent of the species and is
given by the repulsive part of a Lennard-Jones potential:

VijðrÞ ¼ e
dp

r

� �12

� dp

r

� �6
" #

; (2)

where e sets the energy scale. This is a very steep and short-
ranged potential that only affects neighbouring particles within
a cut-off distance of rcut = 2�1/6dp.

The external potential has two contributions. The first
contribution is a Gaussian potential that attracts the particles

Fig. 5 Schematic representation of the experimental setup and sample
chamber.
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towards the centre of the simulation box, given by

VGaussianðrÞ ¼ �VGk
e
�ðr�7:5Þ

2

sG2 if r4 7:5

0 if r � 7:5

8><
>: (3)

where sG is the width of the Gaussian and VGk
sets the scale

of this interaction, which depends on the particle type k; the
interaction VGk

with the most responsive (strong) particles is
2� that with the least responsive (weak) ones; r is the distance
to the centre of the simulation box. By definition, we ensure
that the Gaussian potential is zero in the central region of the
box, of radius 7.5, where we carried out the statistical analysis
of the system. This potential is used to confine the particles in
the centre of the box at sufficiently high densities. The second
contribution to the external potential reproduces the potential
generated by a speckle pattern.22 We used the Fourier filtering
method (FFM) to generate numerically random potentials with
Gaussian spatial correlations.37,38 The FFM takes advantage of the
fact that the correlation function of a field E(-r), is the inverse
Fourier transform of the absolute value of its Fourier coefficients,
|Ek

-|2, as stated by the Wiener–Khinchin theorem.39 This relation
allows us to sample random Fourier coefficients that when trans-
formed back into real space describe a random potential with the
desired spatial correlations. The depths of those potentials have a
Gaussian distribution. To convert it into an exponential distribu-
tion, as measured for the speckle, we used the following procedure:
the random surface is discretized in 1024 � 1024 cells, which we
sort by the intensity of the potential. Then, we produce a sorted list
of intensities drawn from an exponential distribution and sub-
stitute each cell intensity by the corresponding entry on the
ranked list of intensities. We tested this procedure with Gaussian
and power-law correlation functions and confirmed that it
does lead to the desired distribution of intensities, without
affecting the nature of the correlation function. The forces due
to this potential are then calculated using finite differences.
In all simulations, we considered Gaussian correlations with a
dispersion s. When s o dp (where dp is the diameter of the
particles) the speckle features vary on distances shorter than the
particle size and we need to consider an effective speckle pattern
that is the result of the integration of the speckle intensities
over the particle volume (see below section ‘‘Effective speckle
properties’’). The results present in Fig. 1 and 2 were achieved
with s = 0.4. The potentials strength ratio is VG/V = 1 in the
simulations presented in Fig. 1, 2, 4(a) and (b).

The motion of a particle i in the surrounding medium is
described by the overdamped Langevin equation

g
d~ri
dt
¼ �~ri

X
j

VijðrÞ þ Vextð~riÞ
" #

þ~xi; jai; (4)

where g is the Stokes–Einstein friction coefficient and ~xi is a
random stochastic term that mimics the thermal noise that
results from the interaction with the medium. This term is given
by a normal distribution with zero mean and auto-correlation that
is independent of space and time and proportional to the
thermostat temperature T, i.e. hxn

i (t)xl
i(t0)i = 2kBTgidnld(t � t0),

where n and l are indices that run over the space dimensions
and kB is the Boltzmann constant. The characteristic time is
defined as t = dp

2g/kBT. Eqn (4) is integrated following the
algorithm developed by Branka and Heyes,40 i.e. a second-order
stochastic Runge–Kutta scheme, with a time step of Dt = 10�4t.
We set the diameter of the particle, dp, as the unit length, the
simulation box has linear size L = 50 and the width of the external
Gaussian potential is sG = L/2. The energy is given in units of
kBT with e = 10 and VG = 200. The simulations were run for
2 � 104t and the data used in the calculations was taken in the
last 1.5� 103t, when the evolution was found to be in the stationary
state in the centre of the box. For all data points, we used 100
samples to average the relevant quantities. While we do not expect a
strong dependence on the geometry of the experimental setup, in
order to make a direct comparison with the experimental results,
rather than using periodic boundary conditions, we considered the
same circular confinement with an external potential. This also
allows us to study the initial dynamics that result from increasing
the local concentration in the center due to the confining potential.
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