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The effects of a turnstile operation on the current-induced vibron dynamics in nanoelectromechanical systems
(NEMS) are analyzed in the framework of the generalized master equation. In our simulations each turnstile
cycle allows the pumping of up to two interacting electrons across a biased mesoscopic subsystem which is
electrostatically coupled to the vibrational mode of a nanoresonator. The time-dependent mean vibron number is
very sensitive to the turnstile driving, rapidly increasing/decreasing along the charging/discharging sequences.
This sequence of heating and cooling cycles experienced by the nanoresonator is due to specific vibron-assisted
sequential tunneling processes along a turnstile period. At the end of each charging/discharging cycle the
nanoresonator is described by a linear combination of vibron-dressed states sν associated to an electronic
configuration ν. If the turnstile operation leads to complete electronic depletion the nanoresonator returns to
its equilibrium position, i.e., its displacement vanishes. It turns out that a suitable bias applied on the NEMS
leads to a slow but complete cooling at the end of the turnstile cycle. Our calculations show that the quantum
turnstile regime switches the dynamics of the NEMS between vibron-dressed subspaces with different electronic
occupation numbers. We predict that the turnstile control of the electron-vibron interaction induces measurable
changes on the input and output transient currents.
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I. INTRODUCTION

The nanoelectromechanical systems are hybrid structures
in which the electrostatic interaction between vibrational
modes and open mesoscopic systems is expected to play a
role down to the quantum level [1]. To support this idea, the
sensing properties of nanoresonators (NR) in the presence of
electronic transport have been investigated in various experi-
mental settings.

For instance, singly clamped cantilevers or AFM tips were
shown to record single-electron tunneling from back-gate
contacts to the excited states of quantum dots deposited on
a substrate [2]. In another class of experiments, a suspended
carbon nanotube (CNT) with an embedded quantum dot is
actuated by microwave signals, and the dips of its resonance
frequency are associated to single-electron tunneling [3].
Besides flexural modes, the CNTs also develop longitudinal
modes with higher frequencies (up to a few GHz). Similarly,
the vibration energy h̄ω of single-molecule junctions is around
a few meVs [4]. For these systems, refined cooling techniques
were used to reach the regime h̄ω � kBT for which the
vibrations of the nanoresonator must be quantized [5,6].

*Corresponding author: valim@infim.ro

On the other hand, the implementation of nanoelectrome-
chanical systems as successful devices in quantum sensing
[7], molecular spintronics, or nano-optomechanics [8] re-
quires an accurate tuning of the underlying electron-vibron
coupling. For example, the electron-vibron coupling can be
switched on and off by controlling the location of a quantum
dot (QD) along the suspended CNT in which it is formed
[9,10].

In this theoretical study we focus on the time-dependent
control of the entangled electron-vibron dynamics of a NEMS
in the quantum turnstile regime. More precisely, we show
that the pumping of an integer number of electrons along
a turnstile period activates the coupling to the vibrational
mode during the charging cycle and then renders it ineffective
on the discharging cycle when the system is fully depleted.
We recall that in the turnstile setup [11–13], electrons are
first injected from the source (left) particle reservoir while
the contact to the drain (right) reservoir is closed. After
this charging half-period, the left/right contact closes/opens
simultaneously (see the sketch in Fig. 1).

In most experimental investigations on NEMS, a bias
voltage continuously supplies the charge flow through the
mesoscopic system which in turn interacts with the vibra-
tional mode. Then the hybrid structure evolves under the
electron-vibron coupling until a stationary transport regime
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FIG. 1. Schematic view of the NEMS in the turnstile regime.
Source (L) and drain (R) particle reservoirs with chemical potentials
μL,R are connected to an electronic structure [e.g., a quantum wire
(QW)]. The contact regions are modulated by switching functions
χL,R; the turnstile operation corresponds to periodic out-of-phase
oscillations of χL,R. A vibrational mode of frequency ω interacts with
the electrons, d being its displacement with respect to the equilibrium
position.

is reached. At the theoretical level, the latter is recovered by
solving rate equations [14,15] or hierarchical quantum master
equations (HQME) [16]. Also, the single-level Anderson-
Holstein model provides a sound description of the essential
spectral properties of NEMS via the Lang-Firsov polaron
transformation [17–19].

Let us stress that recent observation of real-time vibra-
tions in CNTs [20,21] and pump-and-probe measurements
[22] provide a strong motivation to scrutinize the time-
dependent vibron-assisted transport. Few theoretical descrip-
tions of vibron-assisted transport properties in the presence
of pumping potentials acting on the electronic system can
be mentioned. The effect of a cosine-shaped driving of
the contact regions has been considered within the Floquet
Green’s function formalism [23,24]. In a very recent paper the
HQME method was adapted for a time-dependent setting [25].
Avriller et al. [26] calculated the transient vibron dynamics
induced by a steplike coupling of molecular junctions to
source and drain particle reservoirs.

In the present work we rely on the generalized master
equation (GME) method which was previously used to study
the turnstile regime of single-molecule magnets [27] and
recently extended for hybrid systems such as NEMS or cavity-
QD systems [28]. The model Hamiltonian embodies both the
electron-electron interaction within the electronic subsystem
and the spin degree of freedom. We also consider turnstile
operations where more than one electron is transferred across
the system. The reduced density operator of the hybrid system
is calculated numerically with respect to the vibron-dressed
basis. As we are interested in the response of the NR to
the turnstile pumping we also calculate its associated dis-
placement which can be, in principle, measured. Note that
this quantity is mostly derived for the classical regime of
nanoresonators via the Langevin equation [29].

The rest of the paper is organized as follows. In Sec. II
we introduce the model and briefly recall the main ingredients
of the GME approach. The results are presented in Sec. III,
Sec. IV being left to conclusions.

II. FORMALISM

A typical NEMS setup is sketched in Fig. 1 where a
quantum wire (QW) is capacitively coupled to a nearby
nanoresonator (NR) and tunnel coupled to source and drain
leads. The closed nanoelectromechanical system (i.e., not
connected to particle reservoirs) is described by the following
general Hamiltonian

HS = HS,0 + Vel−vb, (1)

where HS,0 accounts for the two components of the NEMS,
i.e., the QW accommodating several interacting electrons
and the vibrational mode with frequency ω associated to a
molecule or a nanoresonator:

HS,0 =
∑
i,σ

εiσ c†iσ ciσ + 1

2

∑
σ,σ ′

∑
i, j,k,l

Vi jkl c
†
iσ c†jσ ′clσ ′ckσ

+ h̄ωa†a. (2)

Here c†iσ creates an electron with spin σ on the single-particle
state ψiσ of the electronic system with the corresponding
energy εiσ ; the second term is the two-body Coulomb in-
teraction within the electronic sample, and a† is the cre-
ation operator for vibrons. The eigenstates |ν, N〉 of HS,0

are products of electronic many-body configurations |ν〉 with
energies Eν of the electronic system and N-vibron Fock states
|N〉, such that HS,0|ν, N〉 = (Eν + Nh̄ω)|ν, N〉. The electron-
vibron coupling Vel-vb reads as

Vel-vb =
∑
i,σ

λic
†
iσ ciσ (a† + a), (3)

where λi is the electron-vibron coupling strength.
We denote by Eν,s and |ϕν,s〉 the eigenvalues and eigenfunc-

tions of the hybrid system such that

HS|ϕν,s〉 = Eν,s|ϕν,s〉. (4)

Since Vel-vb conserves the electronic occupation and the spin,
the fully interacting states |ϕν,s〉 can still be labeled by a many-
body configuration ν and written as:

|ϕν,s〉 = |ν〉 ⊗
{∑

N

A(ν)
sN |N〉

}
:= |ν〉 ⊗ |sν〉. (5)

The ν-dependent vibrational overlap |sν〉 contains different
states |N〉, A(ν)

sN being the weight of the N-vibron state. If |ϕν,s〉
are obtained by numerical diagonalization one should truncate
the indices N and s at a convenient upper bound N0. In this
case, the coefficients A(ν)

sN define a finite dimensional unitary
matrix which approximates the exact Lang-Firsov transfor-
mation defined by the operator S = ∑

i,σ (λi/h̄ω)c†iσ ciσ (a† −
a) (see, e.g., Ref. [30]). The exact eigenfunctions are then
|ϕν,s〉 = e−S|ν, N〉.

Let us stress that the electron-vibron coupling constants
λi depend on the single-particle wave functions ψiσ of the
electronic subsystem. In a recent work [31] we took this
dependence into account and showed that it leads to different
sensing efficiencies when a singly-clamped tip is placed above
the quantum wire and swept along it. In this work the position
of the NR is fixed and the transport involves, for simplicity,
only the lowest spin-degenerate single-particle state whose
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associated electron-vibron coupling strength will be denoted
by λ0. It is useful to introduce the Franck-Condon factors
(FC):

Fνν ′;ss′ := 〈sν |s′
ν ′ 〉 =

∑
N=0

A(ν)
sN A(ν ′ )

s′N , |nν − nν ′ | = 1, (6)

where nν is the number of electrons corresponding to the
many-body configuration ν. We shall see below that for a
given pair of electronic configurations {ν, ν ′} one gets a series
of vibron-assisted transitions controlled by Fνν ′;ss′ .

In view of vibron-assisted transport the electronic compo-
nent of NEMS is also coupled to source (L) and drain (R)
particle reservoirs characterized by chemical potentials μL,R,
as shown in Fig. 1. The total Hamiltonian therefore becomes:

H (t ) = HS +
∑

l=L,R

Hl + HT (t ), (7)

where Hl is the Hamiltonian of the lead l and the tunneling
Hamiltonian reads as (H.c. denotes Hermitian conjugate):

HT (t ) =
∑

l=L,R

∑
i,σ

∫
dqχl (t )

(
T (lσ )

qi c†qlσ ciσ + H.c.
)
. (8)

The functions χl (t ) simulate the turnstile modulation of the
contact barriers between the leads and the system and T (lσ )

qi is
the coupling strength associated with a pair of single-particle
states from the lead l and the central sample. For simplicity
we assume that the tunneling processes are spin conserving
and that T (lσ )

qi does not depend on σ . We describe the leads
as one-dimensional semi-infinite discrete chains which feed
both spin-up and -down electrons to the central system. Their
spectrum is εql = 2tL cos ql , where ql is electronic momentum
in the lead l and tL denotes the hopping energy on the leads.

The reduced density operator (RDO) ρ of the hybrid
system obeys a generalized master equation (GME) (for a
derivation via the Nakajima-Zwanzig projection method see,
e.g., Ref. [28]):

∂ρ(t )

∂t
= − i

h̄
[HS, ρ(t )] − (nB + 1)Lκ [a]ρ(t )

− nBLκ [a†]ρ(t ) − 1

h̄2

∫ t

t0

dsTrL{K(t, t − s; ρ(s))},

(9)

where TrL is the partial trace with respect to the leads’ degrees
of freedom and we introduced the non-Markovian dissipative
kernel due to the reservoirs:

K(t, t − s; ρ(s)) := [
HT (t ),Ut−s[HT (s), ρ(s)ρL]U †

t−s

]
. (10)

The right hand side of Eq. (9) also contains Lindblad-type
operators which capture the effect of a thermal bath described
by the Bose-Einstein distribution nB and by the temperature T
(κ is the loss parameter) [32]:

Lκ [a]ρ(t ) = κ

2
(a†aρ + ρa†a − 2aρa†). (11)

In Eq. (10) Ut = e− i
h̄ (HS+HL+HR )t is the unitary evolution of

the disconnected systems (i.e., NEMS+leads). Also, ρL is the
equilibrium density operator of the leads.

The GME is solved numerically with respect to the vibron-
dressed basis {ϕν,s} of the hybrid system. Let us stress that
choosing the fully interacting basis over the ‘free’ one {|ν, N〉}
allows us to calculate the matrix elements of e

i
h̄ HSt c†iσ e− i

h̄ HSt

which appear in the dissipative kernel of the leads [see
Eq. (10)]. Note also that in this representation the Lang-Firsov
transformation of the tunneling Hamiltonian is not needed
such that HT does not acquire an additional operator-valued
exponential. By doing so one carefully takes into account the
FC factors which can have both positive and negative signs, as
pointed out in Ref. [33].

The full information on the system dynamics is embodied
in the populations of various states

Pν,s(t ) = 〈ϕν,s|ρ(t )|ϕν,s〉. (12)

The time-dependent currents in each lead are identified from
the continuity equation of the charge occupation QS of the
system:

d

dt
QS (t ) = eTrϕ

{
N̂S

d

dt
ρ(t )

}
= JL(t ) − JR(t ), (13)

where N̂S = ∑
i,σ c†iσ ciσ is the particle number operator,

Trϕ stands for the trace with respect to the basis {ϕν,s}
of the hybrid system, and e is the electron charge. The
left and right transient currents JL,R are then calculated
by collecting all diagonal elements 〈ϕν,s|ρ̇(t )N̂S|ϕν,s〉 which
contain the Fermi function fl=L,R. The latter appears
when performing the partial trace of the integral kernel
K(t, t − s; ρ(s)) such that TrL{ρLc†q′l ′σ ′cqlσ } = δll ′δσσ ′δ(q −
q′) fl (εql ) Also, note that from the cyclic property of the
trace one has Trϕ{[HS, ρ(t )]N̂S} = Trϕ{ρ(t )[N̂S, HS]} = 0 and
Trϕ{Lκ [a]ρ(t )N̂S} = 0. Other relevant observables are the
average vibron number Nv = Trϕ{ρ(t )a†a} and the nanores-
onator displacement

d = l0Trϕ{(a† + a)ρ(t )}, (14)

where l0 =
√

h̄
2Mω

is the oscillator length and M is the mass of
the nanoresonator.

III. NUMERICAL RESULTS AND DISCUSSION

The nanoelectromechanical system considered in our cal-
culations is made of a two-dimensional quantum nanowire
connected to source and drain reservoirs and a vibrational
mode. The latter describes either a nearby suspended CNT
which supports longitudinal stretching modes or a vibrating
molecule deposited on a substrate. The length and width of
the nanowire are Lx = 75 nm and Lx = 15 nm, while for the
mass of the nanoresonator we set M = 2.5 × 10−15 kg. The
turnstile operation is switched on at instant t0 = 0. The bias
applied on the system is given by eV = μL − μR.

A. Vibron-dressed states and tunneling

In the following we express the lowest two single-particle
energies of the conducting system with respect to the equilib-
rium chemical potential of the leads μ0. Specifically, ε1σ =
0.875 meV and ε2σ = 3.875 meV. We choose tL = 2 meV
and the vibron energy h̄ω = 0.329 meV which is in the range
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of the observed longitudinal stretching modes of CNTs [10].
The value of the electron-vibron coupling parameter is λ0 =
0.096 meV. The temperature of the particle reservoirs equals
that of the thermal bath. We chose kBT = 4.3 μeV which
corresponds to a temperature of 50 mK.

The Hamiltonian HS of the hybrid system is diagonalized
within a truncated subspace containing ‘free’ states |ν, N〉
obtained from the lowest-energy 16 electronic configurations
and up to N0 = 15 vibronic states. In the presence of electron-
vibron coupling one gets an N0-dimensional vibronic mani-
fold {ϕν,s}s=0,...N0 associated with each electronic configura-
tion |ν〉.

For simplicity we set the chemical potentials of the leads
μL,R < ε2σ such that the tunneling processes involve only
the lowest energy one- and two-particle configurations. Then
only four electronic configurations will contribute to the
transport, namely the empty state |0〉, two spin-degenerate
single-particle states |↑1〉,↓1〉, and the two-electron ground
state |↑1↓1〉. Henceforth we shall drop the level index and use
↑,↓ instead of ↑1,↓1.

The transport through the hybrid system is then due to
the states |ϕ0,s〉, |ϕ↑,s〉, |ϕ↓,s〉, and |ϕ↑↓,s〉. Clearly, |ϕ0,s〉 =
|0, s〉 such that s is simply the vibron number of a Fock
state, because the electron-vibron coupling does not change
the ‘empty’ states. For a mixed vibrational state |ϕν 	=0,s〉,
s is related to the integer part of its corresponding vibron
number wν,s. Indeed, using the Lang-Firsov transformation
one obtains the analytical result

wν,s = 〈ϕν,s|a†a|ϕν,s〉 = 〈ν, s|eSa†ae−S|ν, s〉

= s +
(

λ0

h̄ω
nν

)2

, (15)

where we used the identities eSae−S = a + λ0
h̄ω

N̂S , N̂S|ν, s〉 =
nν |ν, s〉 and the fact that 〈ν, s|a† + a|ν, s〉 = 0. On the
other hand, the numerical diagonalization provides wν,s =∑N0

N=0 N |A(ν)
sN |2 which fits well to Eq. (15), at least for the

lowest vibronic components.
The vibrationally ‘excited’ states correspond to s > 0, but

it should be mentioned that even the lowest-energy states
|ϕν,s=0〉 have a nonvanishing vibron number wν,0 as they
are not entirely made of a ‘free’ state |ν, N = 0〉. Indeed,
for the parameters considered here we find [see Eq. (5)]
that the weights of |ν, N = 0〉 for the one- and two-particle
states are |A(↑)

0,0|2 = |A(↓)
0,0|2 = 0.9 and |A(↑↓)

0,0 |2 = 0.7 while the
corresponding vibron numbers are w↑,0 = w↓,0 ≈ 0.085 and
w↑↓,0 = 4wσ,0.

Note that the two-particle ground state carries more vibrons
because the coupling between the conducting system and
the NR increases with the particle number. Moreover, the
diagonal matrix elements of the displacement operator are
found as:

dν := 〈ϕν,s|a† + a|ϕν,s〉 = 2λ0

h̄ω
nν, (16)

and therefore depend only on nν .
In view of transport calculations let us denote by

�N,N+1(s, s′) = Eν,s − Eν ′,s′ the energy required to add one
electron from the leads such that the hybrid system evolves
from an N-electron state |ϕν ′,s′ 〉 to the (N + 1)-electron state

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

μL, Q=1,2

μR, Q=1

μR, Q=2

Δ N
,N

+1
(m

eV
)

0-1e
1-2e

FIG. 2. The energy differences associated with sequential tunnel-
ing processes leading to transitions between electronic configurations
with N and N + 1 electrons. δ denotes the difference between the
average number of vibrons for the vibrational states |sν〉, |s′

ν′ 〉. For
the simplicity of writing we do not indicate the pairs (s, s′) corre-
sponding to the same tunneling energy. The horizontal lines mark
the values of the chemical potential for which one obtains various
turnstile regimes (see the discussion in the text).

|ϕν,s〉. We calculate these energies for all pairs of configuration
{ν, ν ′} with a nonvanishing tunneling coefficient T (lσ )

νν ′;ss′ =
〈ϕν,s|c†σ |ϕν ′,s′ 〉 fl (Eν,s − Eν ′,s′ ) which describes the tunneling-in
processes from the lth lead. The tunneling coefficient T (lσ )

νν ′;ss′
appears naturally in the Lindblad version of the generalized
master equation (see for example Ref. [31]) and controls
the transport processes in the quasistationary regime, that is
when the charge occupation and mean vibron number do not
depend on time. The argument of the Fermi function reveals
the fact that in the quasistationary regime the energy εql

of the electron entering the sample matches the difference
Eν,s − Eν ′,s′ between two configurations of the latter. Note
that the tunneling amplitudes T (lσ )

νν ′;ss′ are controlled by the FC
factors Fνν ss′ [see Eq. (6)]. The same energy differences are
relevant for tunneling-out processes |ϕν,s〉 → |ϕν ′,s′ 〉 which
are controlled by the f l (x) = 1 − fl (x).

Now, let us discuss the energy differences �N,N+1(s, s′) in
terms of the difference δ = s − s′. For tunneling-in processes
one has δ > 0 if electrons have enough energy to excite more
vibrons while for δ < 0 the vibrations of the hybrid system
are absorbed and allow tunneling of electrons from the leads
at lower energies. The role of these transitions changes in the
case of tunneling-out processes: the system is ‘heated’ for δ <

0 and ‘cooled’ down if δ > 0. On the other hand, from Eq. (15)
one notices that if λ0/h̄ω � 1 the average vibron number is
only slightly changed by the ‘diagonal’ processes s = s′.

Figure 2 displays the tunneling energies as a function
of δ and helps us to identify which transitions contribute
to the current for a symmetric bias window set by μL,R =
Eν − Eν ′ ± ph̄ω/2, where p is an odd positive integer. For
example, the four dashed lines in Fig. 2 correspond to μL,R =
�0,1 ± h̄ω/2 and μL,R = �1,2 ± h̄ω/2.
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In agreement with the analytical results obtained via the
Lang-Firsov transformation, the eigenvalues corresponding to
the same electronic configuration ν are separated by integer
multiples of vibron quanta, that is Eν,s = Eν,0 + sh̄ω. This
implies that the tunneling energies are also equally spaced,
that is �0,1(s, s′) = ε̃1 + (s − s′)h̄ω and �1,2(s, s′) = ε̃1 +
U + (s − s′)h̄ω, where ε̃1 = ε1 − λ2

0/h̄ω and U is the direct
interaction term V1111 from the two-body Coulomb operator
in Eq. (2). For the parameters chosen here we find U ∼
1.67 meV.

One notes that pairs of vibrational components {|sν〉, |s′
ν ′ 〉}

which differ by the same amount of vibron quanta δ have
equal tunneling energies and will therefore contribute simulta-
neously to the current. However, their Franck-Condon tunnel-
ing amplitudes are different and decrease if s, s′ correspond
to excited vibronic states. We also find that the tunneling
amplitude of the ‘diagonal’ transitions is much larger than
the one of the ‘off-diagonal’ transitions (i.e., for s 	= s′) which
decreases as s − s′ increases.

B. The turnstile regime

We denote by tp the period of the charging/discharging
cycles, such that the time needed for each turnstile operation is
2tp. The value of the loss coefficient κ = 0.5 μeV. The GME
was solved numerically on a subspace containing the lowest in
energy 20 vibron-dressed states. We have checked that adding
more vibronic states will not qualitatively alter the presented
results. Let us mention here that the decreasing value of the
FC factors for transitions between highly excited vibronic
states is essential in order to set a reasonably small cutoff N0.
In principle one can include more states in the calculations,
but the numerical effort to solve the master equation in the
non-Markovian regime increases considerably.

The periodic switching functions χL,R which simulate the
turnstile operation are square-shaped and oscillate out-of-
phase, as shown in Figs. 3(a) and 3(b). We assume that the
initial state of the hybrid system |ν = 0, N = 0〉. The nu-
merical simulations were performed for two turnstile regimes
which differ by the number of charges Q transferred across
the system along each turnstile cycle. In the first regime we
set the chemical potentials of the leads such that the system
is charged with two electrons and then completely depleted,
hence Q = 2. For the second regime μR is pushed up to
μR = 1.65 meV such that the discharging sequence allows
only the tunneling from the two-particle configuration |↑↓〉.
Then at the end of the turnstile cycle the total charge trans-
ferred across the system is Q = 1. The selected values of the
chemical potentials for the Q = 1 and Q = 2 operations are
also indicated by horizontal solid lines in Fig. 2. These two
regimes should reveal the dependence of the electron-vibron
coupling on the number of levels contributing to the transport.

The effects of the turnstile operations Q = 1, 2 on the
displacement d and average vibron number Nv are presented
in Figs. 3(a) and 3(b). For the two-particle pumping [see
Fig. 3(a)] the displacement of the single-mode nanoresonator
roughly mimics the behavior of the potential χL applied on the
left contact. More precisely, d increases quickly as the elec-
trons enter the system, saturates once the charge occupation
reaches the maximum value QS = 2 (not shown), and then

FIG. 3. The dynamics of the vibron number Nv and the displace-
ment d of the nanoresonator in the two turnstile regimes which
allow the net pumping of Q electrons along each cycle: (a) Q = 2,
μL = 3.5 meV, μR = −0.25 meV and (b) Q = 1, μL = 3.5 meV,
μR = 1.65 meV. The dotted lines indicate the functions χL,R which
simulate the periodic on and off switching of the two contacts.
(c) The charge occupation and the transient currents JL,R for the
Q = 1 turnstile operation. Other parameters: tp = 0.35 ns.

drops to zero on the discharging half-periods. Note that the
oscillations of the displacement match the period of the turn-
stile cycle, 2tp = 0.7 ns. It is also clear that the NR bounces
between a maximum value dmax ≈ 0.24 fm which does not
depend on the turnstile cycle and the equilibrium position (i.e.,
d = 0). In particular, we have checked that d and the average
charge QS vanish simultaneously. This behavior confirms that
the electron-vibron coupling is indeed periodically switched
on and off along a turnstile cycle.

For Q = 2 turnstile operation the average vibron number
Nv displays a more surprising behavior: (i) It reaches a
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steady-state value Nv ≈ 0.5 on the first charging sequence but
then drops to a lower yet nonvanishing value during the deple-
tion cycle. (ii) By repeating the turnstile operation the same
pattern is recovered as more vibrons are stored in the NEMS.
Eventually, Nv reaches a quasistationary regime around t =
4.5 ns (not shown). We therefore see that along the depletion
cycles the vibrons are stored in the system in spite of the fact
that the electron-vibron coupling is ineffective since QS .

The single-particle turnstile operation (Q = 1) leads to a
similar behavior of the average vibron number [see Fig. 3(b)].
However, Nv reaches lower quasistationary values when com-
pared to the two-particle turnstile operation. A significant dif-
ference is noticed in the displacement oscillations. At the end
of each turnstile cycle the NR does not return to its equilib-
rium position but settles down to a distance d ′ = dmax/2 from
its equilibrium position. This happens because in the Q = 1
turnstile regime the effect of the electron vibron coupling is
only reduced but not turned off because one electron is always
present in the electronic system and therefore induces a min-
imal ‘deflection’ of the NR. In this sense, the single-particle
turnstile operation can be seen as a way to dynamically switch
between electron-vibron interactions corresponding to a fixed
number of particles. On the other hand, the different response
of the NR displacement can be used to ‘read’ the number
of charges transferred across the system along the turnstile
cycles, in the presence of vibrons.

In Fig. 3(c) we plot for completeness the dynamics of the
total charge QS along the single-particle turnstile operation
and the corresponding transient currents JL,R. The latter dis-
play sharp peaks, their different amplitudes being a conse-
quence of the different rates at which the system is charged or
depleted (note that QS drops more abruptly on each discharg-
ing half-period). We recall here that an ‘effective’ temperature
Teff of the hybrid system can be derived from the equilibrium
distribution function nB(ω, Teff ) corresponding to the calcu-
lated average vibron number Nv (see, e.g., Ref. [1]). Using this
equivalence we realize that both turnstile operations induce a
sequence of ‘heating’ and partial ‘cooling’ processes on the
NR, as already proved by the vibron dynamics. To explain this
behavior we look more closely at the populations Pν,s along
each turnstile cycle for ν = 0,↑,↓,↑↓. We discuss first the
two-electron turnstile operation. From Fig. 4(a) we observe
that at the end of the charging cycles the hybrid system is
completely described by several two-particle configurations
|ϕ↑↓,s〉 (smaller contributions of P↑↓,s>2 were not shown).
We also find that the populations P1,s = ∑

σ ρσ s,σ s reach a
maximum value shortly after the coupling of the source lead
and then vanish as the two-particle states are filled.

Fig. 4(b) shows that on the discharging cycles the reduced
density matrix of the system contains both the ‘ground’ and
‘excited’ purely vibronic states. Moreover, the occupation of
the states |ϕ0,s>0〉 on each depletion half-period increases until
a quasistationary regime is reached. This explains why the
mean vibron number Nv , which collects contributions of the
type wν,sPν,s, increases along each turnstile cycle. One can
also easily check that the decreasing population of the ground
state configuration |ϕ0,s=0〉 is balanced by the presence of
excited vibronic states.

The accumulation of vibrons in the empty system (i.e.,
the partial cooling mechanism) can be explained by carefully
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FIG. 4. The relevant N-particle populations Pν,s of the ground
and excited vibronic states: (a) P↑↓,s for Q = 2 operation, (b) P0,s

for Q = 2 operation, and (c) the total population of single-particle
configurations P1,s = P↑,s + P↓,s for Q = 1 operation.

counting the various vibron-assisted tunneling processes con-
necting pairs of fully interacting states {ϕν,s, ϕν ′,s′ }. The chem-
ical potentials of the leads are selected such that all relevant
tunneling processes (diagonal or off-diagonal) are active, i.e.,
most of the energies �N,N+1(s, s′) are within the bias window
(μR, μL ), for N = 0, 1 (see the chemical potentials for the
Q = 2 setting in Fig. 2). For the Q = 1 operation we have
instead �0,1(s − s′) < μR < �1,2(s − s′) < μL for the most
important tunneling processes. When looking at Fig. 2 we
notice that some transitions are left outside the bias window,
e.g., the ones corresponding to �0,1(δ = 3, 4). However, these
transitions have a small tunneling amplitude and they will
not significantly contribute to the transport. It is easy to see
that for the first charging cycle of the Q = 2 operation the
sequence of ‘diagonal’ transitions, e.g., |ϕ0,0〉 → |ϕσ=↑,0〉 →
|ϕ↑↓,0〉 involves only the lowest vibronic components (s =
s′ = 0) with small vibron numbers wν,0 [see Eq. (15)]. These
transitions are also the strongest, as the corresponding FC
factors are the largest ones. Note also that on the first charging
cycle the vibron absorption is not possible as the initial
state is |ϕ0,0〉, such that the ‘excited’ states |ϕσ,s>0〉 can only
be populated through ‘off-diagonal’ weaker transitions, for
example |ϕ0,0〉 → |ϕσ,1〉. Finally, the charging cycle brings
the second electron to the system and opens more tunneling
paths involving both diagonal and off-diagonal processes,
e.g., |ϕ0,0〉 → |ϕσ,1〉 → |ϕ↑↓,1〉 or |ϕ0,0〉 → |ϕσ,1〉 → |ϕ↑↓,2〉.
It is therefore clear that at the end of the first charging
cycle the system is described by the two-particle electronic

165409-6



QUANTUM TURNSTILE REGIME OF … PHYSICAL REVIEW B 101, 165409 (2020)

configuration |↑↓〉 and several vibronic components |s↑↓〉
with the associated vibron numbers w↑↓,s.

Now, during the first depletion cycle this mixed structure
of the reduced density matrix allows the activation of multiple
‘diagonal’ and ‘off-diagonal’ tunneling out processes between
(N + 1)-particle and N-particle configurations. For example
the ‘diagonal’ backward sequence |ϕ↑↓,1〉 → |ϕσ,1〉 → |ϕ0,1〉
leaves the hybrid system in the first vibronic excited state
whose population P0,1 ≈ 0.2 in Fig. 4(b). The small pop-
ulation P0,2 is due to the similar ‘off-diagonal’ transition
from |ϕσ,1〉 → |ϕ0,2〉. Other transitions leading to vibrational
‘cooling’ can be also identified. As a result the mean vibron
number drops over the depletion cycle, but does not vanish
due to the ‘diagonal’ tunneling events.

At the next charging cycle the excited single-particle states
|ϕσ,1〉 will be fed by both diagonal and off-diagonal tran-
sitions, because when switching on the coupling to the left
lead the reduced density matrix of the system reads ρ(2tp) =∑

s |ϕ0,s〉〈ϕ0,s|. As a consequence, the population P↑↓,1 almost
doubles with respect to the first charging cycle, whereas P↑↓,2

brings a small contribution as well. The vanishing of the
displacement d on each discharging sequence is mandatory, as
the system is completely described by purely vibronic states
and therefore 〈ϕ0,s|a†|ϕ0,s〉 = 0.

In Fig. 4(c) we present for completeness the populations of
one-particle configurations which describe the hybrid system
for the Q = 1 turnstile operation. Clearly, the discharging cy-
cles are now described by single-particle states |ϕσ=↑,↓,s〉. The
empty states |ϕ0,s〉 are no longer accessible in this case so they
were not shown. By comparing Figs. 4(b) and 4(c) one notices
a lower occupation of the excited states |ϕσ=↑,↓,s>0〉 which
explains why the ‘jumps’ and drops of the mean vibron num-
ber are less pronounced. This could be expected because the
electron-vibron coupling is now enhanced/reduced only due
to a single electron which is added/removed from the system.

In the following we investigate in more detail the role of
the bias window on the partial cooling processes in the Q = 2
turnstile operation. To this end the chemical potential of the
drain reservoir is pushed up to μR = 0.68 meV such that the
main ‘heating’ processes associated to the depletion cycles
are forbidden, that is �0,1(s, s′) < μR for some s < s′ (see
the lowest dotted horizontal line in Fig. 2). Figure 5 shows
that in this case the mean vibron number does not display
steps on the discharging cycles [as in Fig. 3(b)] but rather
vanishes: In other words, the hybrid system eventually cools
down to the temperature of the thermal bath T . In order to
capture the slow evolution of Nv we increased the turnstile
period to tp = 1 ns. Further insight into the vibron dynamics
is given by the populations P0,s of the purely vibronic states
which are also presented in Fig. 5. After an initial increase,
the excited states |ϕ0,1〉 and |ϕ0,2〉 are slowly depleted in
favor of the ground state |ϕ0,0〉 whose population increases
uniformly on each discharging sequence. This behavior differs
from the one shown in Fig. 4(b) and suggests a ‘redistribution’
of probability between various purely vibronic states. In the
following we explain this effect through the interplay of
tunneling-out and -in processes which involve the drain lead.

The sudden drop of Nv right after opening the contact to
the right reservoir is due to the ‘cooling’ transitions |ϕσ,s〉 →
|ϕ0,s′ 〉 for δ = s − s′ > 0, whose energies are still above μR
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FIG. 5. The dynamics of vibron number Nv and of the popula-
tions P0,s for the Q = 2 turnstile protocol. In contrast to Fig. 3(a) the
complete ‘cooling’ of the nanoresonator is insured by suppress-
ing the tunneling-out tunneling processes. Other parameters: μL =
3.5 meV, μR = 0.68 meV, tp = 0.5 ns.

(see Fig. 2). On the other hand, the excited vibronic states
|ϕσ,s>0〉 are still being populated via vibron-conserving transi-
tions |ϕσ,s〉 → |ϕ0,s〉 and to a lesser extent by the partial ‘cool-
ing’ transition |ϕσ,2〉 → |ϕ0,1〉. This scenario is confirmed by
the initial increase of the populations P0,1 and P0,2. We find
instead that the much slower vibronic relaxation involves two
more sequential tunnelings, one from the reservoir to the
central system and another one back to it. Indeed, given the
fact that �0,1(δ < 0) are below μR, electrons can tunnel back
from the contact via ‘cooling’ transitions |ϕ0,s〉 → |ϕσ,s′ 〉 (for
s′ < s). Finally, the lower-temperature single-particle states
are depleted through diagonal transitions |ϕσ,s′ 〉 → |ϕ0,s′ 〉.

Turning back to the symmetric bias setting [see Fig. 3(a)],
it is readily seen that the tunneling-mediated cooling mecha-
nism presented above cannot be active. In this case, electrons
are not allowed to tunnel back to the central system because
μR lies below all transition energies. Moreover, the cooling
processes |ϕσ,s′ 〉 → |ϕ0,s〉 with s < s′ are overcome by the
heating processes such that Nv settles down to a nonvanishing
value after the onset of the discharging sequence.

In order to check whether the electron-vibron coupling
affects not only the dynamics of the NR but also the
transport properties of the electronic subsystem, we present
in Fig. 6(a) the vibron dynamics for several values of the
electron-vibron coupling strength λ0. This parameter can be
tuned by changing either the equilibrium distance between
the electronic system and the nanoresonator (as shown in
previous work [31]) or the NR mass M. The amplitude of the
heating and cooling cycles decreases with λ0 and the hybrid
system approaches the quasistationary regime much faster at
larger values of λ0. For example, a considerable difference is
noticed between the first two cycles at λ0 = 0.162 meV, the
next cycles being rather similar.

In Fig. 6(b) we collect the amplitudes associated to the first
seven peaks of the current JL and to the different electron-
vibron couplings considered in Fig. 6(a). The peak evolution
over few turnstile cycles can also be extracted from transport
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FIG. 6. The effect of the electromechanical coupling strength λ0

(given in meV units) on (a) the vibron number Nv and (b) on the peak
amplitude of the transient current JL . The parameters correspond to
the Q = 2 turnstile protocol: μL = 3.5 meV, μR = −0.25 meV, tp =
0.35 ns.

measurements and provides indirect insight on the vibron
dynamics. In the weakly interacting case (λ0 = 0.028 meV)
the amplitudes of the peaks are nearly equal and one cannot
discern the negligible effect of the electron-vibron coupling
on the transport properties. In contrast, as λ0 increases, the
peaks display noticeable differences. More precisely, their
amplitude gradually decreases from one cycle to another until
it reaches a quasistationary value (for λ0 = 0.096 meV this
value is roughly 5.5 nA). Note that the first peak of the charg-
ing current JL is less sensitive with respect to changes of λ0

because at such short times the vibrons are not yet activated.
For the larger value λ0 = 0.162 meV a steep reduction of
the peak is noticed after two charging half-periods. A similar
behavior is recovered for the output current JR (not shown). By
comparing Figs. 6(a) and 6(b) one infers that the attenuation
of the peak amplitude is correlated to the emergence of the
quasistationary regime for the heating/cooling sequences.

We also considered other shapes for the switching func-
tions χL,R and we recovered similar effects of the turnstile
regime on the nanoresonator, i.e., heating/cooling on the
charging/discharging half-periods. Figure 7 shows the vibron
dynamics Nv and the displacement d for smoother switching

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.5  1  1.5  2  2.5
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

D
is

pl
ac

em
en

t (
fm

)

V
ib

ro
n 

nu
m

be
r

Time (ns)

d
NV
χL
χR

FIG. 7. The dynamics of the vibron number Nv and displacement
d of the nanoresonator for smoother switching functions χL,R. Other
parameters: λ0 = 0.096 meV, μL = 3.5 meV, μR = −0.25 meV,
tp = 0.35 ns.

functions. When compared to the results presented in Fig. 3(a)
we noticed minor changes in the local maximum and mini-
mum values of the average vibron number. However, the most
important effect is a delay of nanoresonator’s response to the
switching functions, i.e., Nv and d do not increase/decrease
immediately after charging/discharging. If one is interested in
implementing faster heating and cooling processes separated
by longer ‘isotherms’ (i.e., time intervals with constant vibron
number Nv) the square-wave driving is the most effective.

Finally, we stress that the oscillations of the displacement
record the charge variations along the turnstile operations
but do not discern between the vibron dynamics. In order to
understand why this happens let us observe first that if the
coherences 〈ϕν,s|ρ(t )|ϕν,s′ 〉 are negligible then from Eq. (16)
one gets a simpler formula for the displacement:

d ≈ 2λ0l0
h̄ω

∑
ν,s

nνPν,s. (17)

Secondly, since on the charging sequences the system settles
down to the two-electron configuration (i.e., nν = 2) and∑

s P↑↓,s = 1 for all chemical potentials μR < �0,1(s − s′ =
0), it follows that d cannot depend on μR, even if each occu-
pation Pν,s does. Equation (17) also confirms the doubling of
the quasistationary displacement dmax on the charging cycles
with respect to the value attained along the depletion cycles of
the Q = 1 turnstile operation, as shown in Figs. 3(a) and 3(b).

For the parameters selected here the coherences corre-
sponding to states with the same electronic configurations but
different vibron numbers (i.e., 〈ϕν,s|ρ(t )|ϕν,s′ 〉) do exist but
they are indeed too small to induce a noticeable change of the
various observables (not shown). In fact, we record some fast
oscillations of the displacement on the ‘steps’ of each turnstile
cycle; the period of these oscillations coincides with those of
the coherences mentioned above, but one can see from Fig. 3
that their amplitude is hardly noticeable.

Based on these results we state that the quantum turnstile
regime provides a dynamical switching of the electron-vibron
coupling effects on the hybrid system. Once the depletion
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process is complete the electron-vibron coupling is ineffec-
tive. However, the effect of the latter is imprinted in the non-
vanishing populations of the excited vibrational states ϕ0,s>0.
Alternatively, by pumping one electron per turnstile cycle
while keeping the lowest level occupied one initializes a con-
figuration made by single-particle states ‘dressed’ by vibrons.

On the other hand, the charging cycles activate the elec-
trostatic coupling and the vibron number increases. It also
turns out that both turnstile operations induce a heating of the
nanoresonator when the electron-vibron coupling is turned on
and at least a partial cooling when it is turned off.

IV. CONCLUSIONS

We proposed and studied theoretically a quantum turnstile
protocol for switching on and off the effect of electron-
vibron coupling between a biased mesoscopic system and a
vibrational mode. A detailed analysis of the vibron-assisted
tunneling processes is provided by the populations of the
vibron-dressed states which are calculated within the gen-
eralized master equation method. We identify the role of
various tunneling processes in the vibron emission (heating)
and absorption (cooling) processes. The turnstile charging and
discharging cycles impose periodic variations of the nanores-
onator’s displacement with respect to its equilibrium value.
As the electronic system empties the displacement vanishes.
Instead, a turnstile operation which allows only a partial
depletion sets a lower bound of the displacement due to an
extra electron residing in the system.

The values of the displacement obtained in our model are
probably too small to be detected. However, d increases as
more electrons tunnel across the system during a turnstile
cycle. This could be achieved by increasing the bias window
such that more electronic configurations participate in trans-

port. Alternatively, one can consider lighter nanoresonators
and therefore larger values of the oscillator length l0.

We find that in general the average number of vibrons does
not vanish along the discharging cycles when the electron-
vibron coupling is ineffective. In the quasistationary regime
the same amount of vibrons is emitted and absorbed along
a turnstile cycle. Otherwise stated, the system undergoes
periodic heating and cooling processes. A complete cooling
to the equilibrium temperature of the leads or of a thermal
bath can be achieved by a suitable choice of the chemical
potential of the drain reservoir. We also show that the peak
amplitude of the transient currents decreases as the strength of
the electron-vibron coupling increases. Moreover, it turns out
that as the heating/cooling cycles attain the quasistationary
regime the peak amplitude gradually reduces to a value which
does not depend on the charging/discharging half-period.

Let us emphasize that the quantum turnstile dynamics
differs considerably from the normal transport regime when
both leads are simultaneously coupled to the system and for
which one can only notice a heating process, as the average
vibron number uniformly increases before reaching its sta-
tionary value. Also, in the present setting the actuation of the
nanoresonator is only due to the electronic current as there
is no additional driving signal. In other words, we consider
that before the electronic subsystem is coupled to the leads
the nanoresonator is in the static deflection mode.
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