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Abstract
In miniature robotics applications, compliant mechanisms are widely used because of their scalability. In addition, compliant
mechanism architecture is compatible with the manufacturing methods used to fabricate small scale robots, such as “foldable
robotics”, where the size and the materials used allow much larger deflections. In this paper, the kinematics of compliant
mechanisms used in miniature foldable robots are investigated with the assumption of nonlinear large deflections that occur at
the flexure joints. The solution of the large beam deflection is acquired using elliptic integrals and is verified with finite element
analysis and experiments on a simple small foldable leg linkage. The large deflection model takes joint strain energies into
account and yields accurate estimations for load capacity of the mechanism as well as the necessary input torque for actuation of
the leg. Therefore, the model presented can be used to estimate the load capacity of a miniature robot, as well as to select
appropriate actuators. The work is also extended to estimate the compliant leg kinematics and rigid body dynamics of a foldable
robot. The robot’s large deflection simulation results are compared with experiments and a simplified rigid-link pin-joint
kinematic model. Our results demonstrate the modeling accuracy of the two approaches and can be used by foldable robotics
community when deciding on the strategy to choose for modeling their robots.
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1 Introduction

Miniature robots have many exciting capabilities such as agile
locomotion, high maneuverability, and ability to scale obsta-
cles due to their small sizes and low weights. Such robots can
be used to easily and silently access confined spaces, therefore
theyare ideal for search and rescue operations under collapsed
buildings and surveillance practices in hazardous environ-
ments. Despite these advantages and potential uses, the
small-scale manufacturing challenges limit the widespread
use of miniature robots. There are a few manufacturing tech-
niques developed specifically for miniature robots, potentially
the most influential one being the smart composite
manufacturing (SCM) method [1]. SCM was one of the first
methods developed for manufacturing miniature robots and is
the ancestor to several other methods such as Printed Circuit
MEMS (PC-MEMS) [2], Pop-up book Micro-Electro-

Mechanical System (Pop-Up MEMS) [3], and foldable robot-
ics [4].

The aforementioned manufacturing techniques utilize dif-
ferent composite structures to manufacture mechanical struc-
tures. The laser type and the materials used, and the precision
achieved during the manufacturing differ betweenmembers of
this family of manufacturing methods, but the paradigm re-
mains the same. The ball bearings and revolute joints created
by conventional manufacturing methods become less efficient
and more prone to wear as they are scaled down because
surface forces, such as friction, start to dominate. In PC-
MEMS based techniques, the revolute joints are replaced with
flexure joints, creating compliant mechanisms. Compliant
mechanisms offer less movable parts and less assembly time
and effort compared to traditional mechanisms that have ro-
tating and sliding parts. On the other hand, the motion a com-
pliant joint generates might have high repeatability if elastic
deformations remain at specific limits. Because of these ben-
efits, compliant joints find a common use in micro-structures,
actuators and sensors, such as in MEMS, Scanning Probe
Microscopy (SPM), Atomic Force Microscopy Scanning
(AFM), and miniature robotic applications using SCM or de-
scendant manufacturing methods [5–7].
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Despite allowing easy scaling and manufacturing at the
small scale, compliant mechanisms limit the design possibili-
ties for miniature robot mechanisms. Since their motion
comes from repeated bending of flexible parts, the joints in
compliant mechanisms are subject to cyclic loading and fa-
tigue failure. In addition, most foldable robot mechanisms are
planar; therefore, mechanical stops are introduced to the sys-
tem without pin joints. Hence, there is a limit to the deflection
amount of a foldable robot joint [8]. For most compliant sys-
tems, the flexure joints experience small deflections.
However, the materials used in miniature robots are often
much more flexible, therefore the flexure joints can deflect
90∘ or even higher.

Most of the kinematic models developed for foldable min-
iature robots consider the flexure joints as ideal pin joints or
beams undergoing linear small deflections [9–12]. There are
also several works, such as [13, 14], that model the joints in
their walking or flying miniature robots using Howellâ€™s
pseudo-rigid-body model (PRBM) [8], where the flexure
joints are treated as ideal revolute joints connected in parallel
with torsional springs. These models are often preferred be-
cause they are easier to implement compared to nonlinear
large deflection beam models. However, implementing small
deflection or pure kinematic models for miniature foldable
robots prevents accurate kinematic analysis of the compliant
mechanism and affects the dynamic model of the robot alto-
gether [15]. Most of the existing dynamic models of miniature
mobile robots consider planar dynamics in sagittal- or hori-
zontal-plane, such as [16], unlike some of the larger scale
robots like Rhex [17], which describe the full body dynamics
in space.

This paper presents a workflow for designing, modeling,
and analyzing compliant mechanisms used in foldable minia-
ture robots, whose joints undergo large deflections. Even
though the study is based on a small foldable robot leg mech-
anism, the method used is not limited to miniature robotic
applications. The flexure joints used in the foldable compliant
mechanism are modeled as cantilever beams fixed from one
end and subjected to combined end forces and moment loads,
experiencing nonlinear large deflections. The solution of the
large deflection model is acquired using elliptic integrals and
the results are compared with finite element analysis (FEA)
and experimental data for verification.

The methods for solving large deflection of beams and the
effects of large deflections to compliant mechanism kinemat-
ics have been studied in literature before, and they are only
summarized in this paper for the completeness of the analysis.
The novel aspect of our work is using large deflection beam
models for foldable miniature robot analysis to determine the
effects of commonly overlooked large deflections on robot’s
payload capacity and robot dynamics. In this regard, the kine-
matic solutions for a simplified non-compliant model and the
compliant large angle deflection model of the foldable leg

mechanism of our quadruped robot, MinIAQ [6], are com-
pared with each other.

The major contribution of this work is to implement non-
linear large deflection theory of cantilever beams to model the
leg kinematics of mobile robots. This is applicable to origami-
inspired and foldable robotics field where the flexure joint
deflections may fall within the large angle regimes. Our con-
tribution specifically is to compare the results acquired from
both theories and the effects of the differences on robot dy-
namics. The large deflection model is significantly harder to
implement but more accurate. This trade-off should be con-
sidered when modeling foldable miniature robots. A compar-
ison is made to determine whether the gain in accuracy is
worth the modeling efforts and higher computational cost.

This paper is organized as follows: Section 2 gives an in-
sight into how compliant flexure mechanisms can be utilized
in miniature foldable robotics by analyzing MinIAQ’s leg
mechanism design. Sections 3 and 4 formulate the Euler–
Bernoulli linear small deflection and nonlinear large deflec-
tion beam theories, respectively, for the analysis of the robot’s
flexure joints. In Section 5, the presented theory is first veri-
fied with FEA and experiments on a single flexure joint. Next,
the effect of payload on the verified compliant mechanism is
investigated to determine the required motor torque. The de-
veloped methodology is then extended to analyze kinematics
of MinIAQ’s compliant leg mechanism. Lastly, in Section 6,
the dynamic behavior of the robot with different kinematic
solutions is investigated.

2 Modeling of Compliant Mechanisms
in Foldable Robots

In legged robots, it is necessary to design legs such that the
foot trajectory has long stride length, reasonable lift, and flat
ground contact. However, such requirements are not easily
attainable in small foldable robots as miniaturization and
foldability aggravate the design difficulties. Miniature robot
leg mechanisms are designed as compliant mechanisms to
reduce frictional losses [2]. They are also actuated with min-
imal number of actuators to reduce costs and weight. In addi-
tion, foldability further limits the leg linkage selection to the
ones for which unfolded crease patterns can bemade.MinIAQ
is a miniature foldable quadruped whose actuating mechanism
is designed with these guidelines in mind [6]. The robot is
approximately 10 cm long, weighs 23 g, and has independent
leg actuation as shown in Fig. 1. The flexure joints in its legs
bend up to about 120∘ at certain instances of a walking cycle.

Compliant mechanisms used in miniature foldable robots
often consist of kinematic chains made from rigid links and
flexure joints. Figure 2 illustrates the unfolded and folded
configurations of MinIAQ’s leg. The unfolded crease
patternof the linkage, shown in Fig. 2(a), is first sketched in
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2D. It is then cut from a thin flexible sheet under the laser and
is folded successively over the perforations to yield the three
dimensional shape (Fig. 2(b)). The folded triangular prismatic
parts, which are locked in place with the help of fasteners,
form the rigid links and the planar extensions between them
are the flexure joints.

As the rotation of foldable flexure joints are limited, the
crank link, which requires to make full rotation, must be made
of a separate part. The crank should be attached to a DCmotor,
which is fixed within the body, and be connected to the com-
pliant structure with a pin to form the closed chain fourbar
mechanism (see Figs. 1 and 2(c)). Thus, the kinematic chain
of foldable mechanisms in miniature robotics consist of sev-
eral flexure joints, whose deflection amounts are limited, and

at least two pin joints: one connecting the motor to the cam
and the other connecting the cam to the compliant mechanism.

Designing and modeling of origami robots require close
examination of the correlations between unfolded and folded
geometries. In designing origami legs, it is generally needed to
transform a planar mechanism with ideal revolute joints into a
foldable compliant mechanism. This requires careful design of
the unfolded links geometries where small dimensional errors
can result in an undesired leg linkage with poor foot trajectory.
Similarly, in kinematic modeling of an existing leg, the model-
ing errors should be minimized. This must be done by exam-
ining both the folded and unfolded structures as well as taking
all geometrical constraints into account when developing a leg
model. The original version of MinIAQ consists of simple
fourbar legs for the ease of planar design and assembly.
Figure 3(a) shows a proper model of its compliant leg, where
nodes A andG are fixed to the robot’s body,GI is the crank, EI
represents the small halved thickness of the coupler link,and
the rest of the dimensions are measured with respect to the
points shown along the joint line in Fig. 2(a).

Since the flexure joints in miniature robots undergo large
deflections, the analysis of their compliant mechanisms re-
quires solving complex nonlinear beam theories. This can be
a major drawback in simulating a robot where leg kinematics
is an integral part of a larger scale dynamic model and must be
solved thousands of times for a few seconds of simulation.
Consequently, for modeling purposes, it is very common to
opt for solving a simplified model for kinematics for easier
implementation and reduced runtime at the cost of accuracy.
In an effort to address the validity of this assumption, we

Fig. 2 Schematic of MinIAQ’s foldable compliant leg mechanism. (a)
The unfolded crease pattern. (b) The folded mechanism that is
functionally equivalent to an open kinematic chain of two links and two
flexure joints. (c) The closed chain fourbar linkage, corresponding to the
assembled leg of the robot

Fig. 3 (a) Schematic of MinIAQ’s proper compliant leg model (the
proposed model in this work), taking into account the flexure joints and
actual geometric constraints. (b) A simplified fourbar model of the leg
with pin joints and no correction for link shapes (the method generally
used in the literature and in our previous works)

Fig. 1 Side view of MinIAQ. The locomotion mechanism consists of
four compliant mechanisms individually actuated by a DC motor each.
There are two flexure joints in each compliant mechanism. Inset shows
two hollow triangular beams (rigid links) connected by a flexure joint.
The black elliptic line represents the foot trajectory
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examine the extent to which the dynamic model of MinIAQ is
influenced by the leg kinematics simplification. In this regard,
the results of dynamic simulation considering the accurate
compliant leg model (Fig. 3(a)) are compared with those with
a simplified fourbar leg (Fig. 3(b)). In the simplified fourbar,
ideal pin joints are considered in place of flexure joints and the
link shape geometric constraints are disregarded. Kinematic
analysis solution of the fourbar mechanism is easy to obtain
and is not addressed here for brevity. However, for the kine-
matic analysis of the compliant mechanism, necessary beam
deflection theories are given and validated in the
followingsections to properly model the flexure joints on
MinIAQ.

3 Linear Small Deflection Beam Theory

From a mechanism modeling perspective, modeling of the
motor-crank rotation is straightforward as the position of the
crank can be easily determined for a given motor phase. On
the other hand, modeling of the compliant structure is rather
complicated. Deflection of the flexure joints can be modeled
with linear deflection beam theory. In this regard, Euler–
Bernoulli deflection equations of flexible cantilever beams
should be first studied for combined end loads (see Fig. 4).
According to Euler–Bernoulli elastic beam theory, bending
moment, M, is proportional to its curvature, k, at any point
along the beam. Hence, the curvature equation can be written
as:

k ¼ dθ
ds

¼ M
EI

¼ d2y=dx2

1þ dy=dxð Þ2
h i3=2 ; ð1Þ

whereM is the bending moment, dθ/ds is the rate of change in
angular deflection, E denotes the Young’s modulus of the
material, and I is the area moment of inertia of the cross-sec-
tion. The rest of the terms in the equation are geometric pa-
rameters, as shown in Fig. 4. The linear moment-curvature
relation is obtained for small deflection assumption by
neglecting the (dy/dx)2 ≪ 1 term in Eq. 1.

The classical linear beam theory is originally developed for
small or intermediate deflection of cantilever beams (up to
about 10% of the length of a beam) [8]. This assumption
may not very well account for the flexure joints in miniature
robots which undergo large deflection angles. Nevertheless,
the analysis of a foldable flexure joint with the linear beam
theory is investigated as a proof of concept. The solution to
Eq. 1 is well studied in the literature and only the final form of
the solution is presented here for the sake of brevity [18]. The
deflection and end slope of the cantilever beam for x = L can
be found by:

ymax ¼
PL3

3EI
þ M 0 L2

2EI
; ð2Þ

θmax ¼ PL2

2EI
þ M 0 L

EI
; ð3Þ

and the moment at the fixed end of the beam (for x = 0) is
given by:

Mmax ¼ PLþM 0: ð4Þ

4 Nonlinear Large Deflection Beam Theory

The nonlinear large angle deflection theory is more appropri-
ate for predicting large deformations in cantilever beams. In
general, nonlinearities from large strains must be taken into
account if the strain is large enough to cause significant chang-
es in the geometry, such as in area or thickness of the beam [8].
However, these cases are not considered under this work be-
cause such geometrical changes are not dominant in miniature
foldable robots where the end loads are small and the materials
used are highly flexible.

Various methods exist in the literature to analytically solve
for nonlinear large angle deflections of beams, such as, elliptic
integral solutions [8, 19–28], pseudo-rigid-body model
(PRBM) methods [8, 29–37], chained beam constraint model
[8, 38–40], Adomian decomposition [19, 41] and circle-arc
method [42]. Elliptic integral solutions are considered to be
the most accurate ones in predicting large deflections as long
as the end slope and load parameters are known. In the

Fig. 4 (a) Euler–Bernoulli deflection of a flexure beam of uniform cross-
section with length L, moment of inertia I, and Young’s modulus E. (b)
Combined force P and moment M0 loads acting on the free end of the
cantilever beam with small deflections
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absence of these parameters, the solution should be found
using numerical techniques such as finite element analysis
(FEA). However, elliptic integral solutions converge very fast
compared to finite element methods. Fast solution conver-
gence is beneficial in kinematic or dynamic problems, such
as in optimization of a compliant mechanism or in simulating
full body dynamics.

Elliptic integral solution was first derived by Bisshopp and
Drucker for a vertical force acting on the free end of a canti-
lever beam [20]. The solution was improved by Frish-Ray
et al. for various loading cases [8, 22, 23, 25, 43]. The loading
modes, leading to the formation of an inflection point, are
modeled by Shoup et al. [8, 21, 24, 26, 27]. Beam with com-
bined end forces and moment loads acting on its free end (see
Fig. 5) is the hardest to derive elliptic equations for, especially
when combined end forces and moments are acting in oppo-
site directions, in which an inflection point may occur. A com-
prehensive solution for such loading case is derived by Zhang
and Chen [28] and only a brief summary of the solution pro-
cess is presented here.

The generalized curvature equation for large angle deflection
of a cantilever beam subject to combined end loads is given by:

dθ
ds

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P
EI

sin θ0−ncos θ0−sin θþ ncos θþ M 2
0

2PEI

� �s
; ð5Þ

where EI is the flexural rigidity of the beam, θ0 denotes the
deflected angle of the beam end, P and nP are the components
of the known end force ηP, and the rest of the terms are shown on
Fig. 5. Note that the sign in front of Eq. 5 is selected as positive
for a concave upward curvature or as negative for a convex
downward solution. This equation is often simplified to the fol-
lowing form:

dθ
ds

¼ �
ffiffiffi
2

p α
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p
; ð6Þ

using a dimensionless load coefficient (λ), a dimensionless force
index (α), and a load ratio (κ) defined by (see [8]):

α2 ¼ PL2

EI
; ð7Þ

κ ¼ M2
0

2PEI
; ð8Þ

λ ¼ sin θ0−ncos θ0 þ κ: ð9Þ

The solution to the curvature equation is expressed by:

α ¼ � 1ffiffiffi
2

p
Z θ0

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p ; ð10Þ

b ¼ � Lffiffiffi
2

p
α

Z θ0

0

sin θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p ; ð11Þ

a ¼ � Lffiffiffi
2

p
α

Z θ0

0

cos θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p : ð12Þ

where a and b are the horizontal and vertical deflection of the
beam, respectively.

Equations (10) to (12) are applicable when there is no in-
flection point on the flexure beam. Cantilever beamwith com-
bined loads may or may not have an inflection point depend-
ing on the end moment and the end force directions [24]. If the
bending caused by the end moment is in the opposite direction
of the bending caused by the end load, an inflection point will
occur. On an inflection point, k = dθ/ds = 0 andM = 0. In such
a case, Eqs. (10) to (12) must be rewritten as follows:

α ¼ −1ð ÞmSmffiffiffi
2

p ∑
m

j¼0
−1ð Þ j

Z θ̂ jþ1

θ̂ j

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p ; ð13Þ

a ¼ −1ð ÞmSmLffiffiffi
2

p
α

∑
m

j¼0
−1ð Þ j

Z θ̂ jþ1

θ̂ j

cos θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p ; ð14Þ

b ¼ −1ð ÞmSmLffiffiffi
2

p
α

∑
m

j¼0
−1ð Þ j

Z θ̂ jþ1

θ̂ j

sin θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p ; ð15Þ

where m is the number of inflection points, bθ is the deflection
angle at an inflection point, j specifies the jth inflection point
starting from the fixed end, and Sm is the sign of the end
moment load,M0, which is positive ifM0 is counterclockwise
and negative if clockwise. These equations can be solved with
the help of elliptic equations of the first and the second kind
(see [28] for detailed derivation).

5 Results and Discussion

5.1 Verification of the Nonlinear Large Deflection
Model with a Single Flexure Joint

In order to demonstrate the difference between the small and
large deflection solutions and verify the model presented in

Fig. 5 Combined forces and moment loads acting to the free end of
cantilever beam with large deflections
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Section 4, a simple cantilever beam, subject to a vertical force
only, is modeled in MATLAB using the linear beam theory
and elliptic integral solution of the nonlinear large deflection
model. In addition, a FEA is also conducted on the same beam
in COMSOL environment. The comparison of these results
are presented in Fig. 6.

When a compliant joint experiences large deflections, lin-
ear model formulations given in Section 3 yield inaccurate
results because of the geometric nonlinearities arising from
large deflections. Such cases occur often in foldable miniature
robot applications and therefore, large angle deflectionmodels
should be used to model the mechanisms. As can also be seen
in Fig. 6, beyond almost 30° of deflection, the behavior be-
comes nonlinear and the linearbeam theory prediction be-
comes inaccurate.

Besides using FEA to verify the results, a single-flexure-
joint mechanism is designed to compare the large deflection
theory with experiments. Theoretical and experimental results
of the vertical force acting on the compliant joint under differ-
ent deflection angles are compared. The setup used for the

experiments can be seen in Fig. 7(a). The rigid links of the
mechanism are made of a sandwich of cardboard-acrylic
adhesive-Kapton-acrylic adhesive-cardboard, whereas the
joints are made out of bare Kapton (polyimide film). The
vertical force acting on the compliant joint is measured by a
force sensor connected at the base as the servo motor rotates
the crank. Note that unlike Fig. 6, where the beam is assumed
to be under a vertical force only, the flexure joint in the test
setup is subject to combined force and moment loads.

In order to simulate the system, the mechanism’s kinematic
model should first be developed. A skeleton diagram of the
mechanism is shown in Fig. 7(b). In this mechanism, AC is a
compliant joint while AE, BC, CD, BD and BE are straight
links and their lengths are denoted by Li, where i refers to the
link name. AE is the fixed motor arm connected to the servo
whose shaft is coincident with point A but is placed behind the
mechanism and is not visible in Fig. 7(a). The input motor
angle is denoted by ψ and θ0 is the deflected angle of the
compliant joint end. LBC is an unknown variable as B is an
auxiliary point alongCD, which indicates the varying position
of the slider joint as the motor turns. Also note that point D is
the tip of the arm to which a payload can be attached (not done
in this experiment,Dx =Dy = 0). The known parameters of the
setup arepresented in Table 1, with the length, width, thick-
ness, and Young’s modulus of the compliant joint denoted by
L, w, t, and E, respectively.

The kinematic position analysis can be expressed by the
loop closure equations as follows:

Qx þ LBCcos θ0 þ LBEcos θ0 þ π
2

� �
−LAEcos ψ ¼ 0; ð16Þ

Qy þ LBCsin θ0 þ LBEsin θ0 þ π
2

� �
−LAEsin ψ ¼ 0; ð17Þ

in which the joint coordinates (Qx, Qy), LBC, and θ0 are un-
known. As deflection of beams are dependent on the applied
force and moment, the combined end loads at the compliant
joint must be determined. Figure 8 shows the free body dia-
grams of the links in the test setup. Thus, a set of equations

Fig. 6 End slope of a cantilever beam (flexure joint), θ, versus vertical
end load, P, for small and large deflection models. Joint parameters:
L=2 mm, b=6 mm, t=25 μm, M0=0 N·m and P=0.001 N to 0.02 N.
Material properties of Kapton is used, which is a commonly utilized
material for foldable robot fabrication

Fig. 7 (a) A single joint
compliant mechanism test setup,
used in experiments to verify
large deflection analysis. (b)
Skeleton diagram of the
mechanism showing the
trajectory path of the tip
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comes from static equilibrium of link CD:

∑Fx⇒Dx þ FBcos θ0 þ π
2

� �
þ nP ¼ 0; ð18Þ

∑Fy⇒Dy þ FBsin θ0 þ π
2

� �
−P−mg ¼ 0; ð19Þ

∑MC⇒FBLBC þ LCD Dycos θ0−Dxsin θ0
� �

−mgcos θ0 LCD=2−M 0 ¼ 0;

ð20Þ

where mg is the weight of the arm and the new unknown
variables are FB, P, nP, and M0. Using the schematic in Fig.
8(d), the following geometric constraints can be written:

L2AC ¼ Q2
x þ Q2

y ;

L2CE ¼ L2BE þ L2BC;

L2CE ¼ L2AE þ L2AC−2LAELACcos ψ−βð Þ;
β ¼ atan2 Qy;Qx

� �
;

which yield an extra equation in terms of the unknowns:

L2AE−L
2
BE−L

2
BC þ Q2

x þ Q2
y

� �
−2LAE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

x þ Q2
y

q
cos ψ−atan2 Qy;Qx

� �� �
¼ 0:

ð21Þ

The system of Eqs. (16) to (21) consists of six nonlinear
equations and eight unknown variables: θ0,Qx,Qy, LBC, FB, P,
nP, andM0. At least two more equations are needed in order to
solve for the unknowns. These equations come frommodeling
the bending of the compliant joint using the linear or nonlinear
deflection beam theories presented in Sections 3 and 4. If the
joint is modeled with the linear small deflection theory, the
extra equations are:

Qy−
PL3

3EI
−
M 0 L2

2EI
¼ 0; ð22Þ

θ0−
PL2

2EI
−
M 0 L
EI

¼ 0; ð23Þ

whereas, if it is modeled with nonlinear large deflection beam
theory, the following equations must be used instead:

α−
−1ð ÞmSmffiffiffi

2
p ∑

m

j¼0
−1ð Þ j

Z θ̂ jþ1

θ̂ j

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p ¼ 0; ð24Þ

Qx−
−1ð ÞmSmLffiffiffi

2
p

α
∑
m

j¼0
−1ð Þ j

Z θ̂ jþ1

θ̂ j

cos θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p

¼ 0; ð25Þ

Qy−
−1ð ÞmSmLffiffiffi

2
p

α
∑
m

j¼0
−1ð Þ j

Z θ̂ jþ1

θ̂ j

sin θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−sin θþ ncos θ

p ¼ 0;

ð26Þ

where λ ¼ sin θ0−ncos θ0 þM 2
0=2PEI , I = wt3/12,

α ¼ L
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
, and the rest of the parameters are as defined

in Section 4. When the joints are modeled as nonlinear beams
with large deflections, the system of equations become over
constrained and a nonlinear trust-region based solver is used
to obtain a solution. Note that for the linear case, no extra
constraint is added to Qx, which makes the horizontal length
of the beam, or in other words the total length of the bent
beam, a free parameter. This is indeed against the original
assumption of the linear deflection theory, which takes the
horizontal length to always remain equal to the total beam
length, L, (see Fig. 4). However, such an assumption creates
a singularity at 90° deflection, and thus we do not impose a

Table 1 The fixed parameters of
the compliant joint and links in
the test setup

LAE (mm) LCD (mm) LBE (mm) L (mm) w (mm) t (μm) E (GPa)

15.0 26.5 2.0 4.0 6.0 125 2.5

Fig. 8 Free body diagrams of (a)
the compliant joint, (b) the crank
connected to the motor, AE, and
(c) the rigid arm link, CD. (d) A
schematic of the single leg
compliant mechanism setup with
dashed lines to clarify geometric
relations
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constraint on the horizontal coordinate of the beam for the
linear elastic deflection case. For design or actuator selection
purposes, one can determine the minimum required motor
torque for bending the compliant joint to a certain angle
through static equilibrium balance for link AE:

∑MA⇒Tin ¼ LAE FBcos θ0−ψð Þ: ð27Þ

Figure 9 shows the simulation and average experimental
data for the compliant joint deflection versus vertical force.
The error bars on the experimental results, at each deflection
amount, represent the standard deviation of six trials. The
simulation results are obtained by solving the system of Eqs.
(16) to (23) for the linear case, and the nonlinear case is solved
by using Eqs. (16) to (26) with the help of elliptic integral
solutions. Ascan be seen, the large deflection model predic-
tions match closely with the experimental results over the
entire range of simulation, while the linear elastic theory starts
deviating more after 90°. The linear formulation cannot accu-
rately predict the behavior of the joint for large deflections
since the beam evidently elongates as its length is free to

change. Thus, the nonlinear theorymust be favored for model-
ing of compliant mechanisms in miniature robots, where the
loads are rather small butthe deflections can be as large as
120°. The underestimation of the joint deflection angles in
the simulations, compared to the experiments, can be attribut-
ed to the friction at the sliding joint and the moment acting on
the force sensor due to the position offset between the sensor
and the flexure joint. These experiments are run to verify the
nonlinear large angle deflection model that is developed in
MATLAB. The agreement between the experiments and the
simulations suggests that the model is indeed correctly imple-
mented and that it can be developed further to predict the
kinematics of MinIAQ’s compliant leg mechanism.

5.2 Payload Capacity and Calculation of Required
Motor Torque Using Nonlinear Large Deflection
Model

One of the most important parameters that needs to be inves-
tigated during foldable robot design is the maximum motor
torque output to decide if an actuator has enough torque to
generate leg motion. This output should be higher than the

Fig. 9 Compliant joint deflection angle (θ0) versus the vertical end load
(P): experimental average error (black), kinematic analysis of nonlinear
large angle deflection elliptic solution (red), and kinematic analysis of
linear elastic small deflection solution (blue)

Fig. 10 Limiting input crank
torque experiment setup. (a) No
load attached on the tip of the leg.
(b) Vertical load attached on the
tip of the leg

Fig. 11 Experimental torque limit versus angular deflection for an
unloaded and loaded leg under a payload of Dy= 1.7 g, carried at the
tip of the leg (see Figs. 7(b) and 10(b))
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torque needed for actuation of the locomotion mechanism
under robot’s weight and the large deflections sustained by
the flexure joints. A test setup, shown in Fig. 10, is designed
to check the required motor torque for unloaded (when the
robot’s legs are in air) and vertically loaded (when the robot’s
legs are touching the ground) cases.

In the setup, instead of a motor, a counterweight is used to
create a known torque on input crank. The output of the setup
is the end slope of the flexure joint, which is found by mea-
suring the angular displacement of the rigid link on the right
side of the flexure joint. The measurements are done using the
images captured during the experiments. The rigid link on the
left side of the joint is the mechanical ground. An unloaded
experiment is shown in Fig. 10(a). External vertical load,
which simulates therobot weight, can be added to the setup,
as can be seen in Fig. 10(b). The results of the unloaded ex-
periments where the leg is under no external load as well as the
results of the loaded experiments where the leg is under an
external weight are shown in Fig. 11. Note that the analysis of
the test setup mechanism is very similar to that of Section 1,

and thus is not presented for the sake of brevity. The only
differences are that the input to the simulation is the known
counterweight torque Tin, rather than the crank angle ψ, and
the vertical load Dy is nonzero for the loaded case.

The results show good trend agreement between the simu-
lations and the experiments, where the simulations are esti-
mating more rotation will occur under same motor torque (or
less torque is needed for the same rotation amount) compared
to the experiments. This difference can be attributed to fric-
tional losses in the system, which are not modeled. As a side
note, the simulations, when used with a safety factor, are quite
accurate in determining the minimum motor torque required
to actuate a mechanism under robot weight, which is a very
important parameter during the robot design.

Fig. 12 Compliant leg mechanism of MinIAQ

Fig. 13 Free body diagrams of (a)
the compliant joint AB, (b) the
compliant joint CD, (c) link GI:
the crank link connected to the
motor, (d) link BC, and (e) link
DF

Fig. 14 Experimental and simulation results of MinIAQ’s link angles (θ1
and θ2), obtained by kinematic analysis of the compliant mechanism with
large deflection beam theory and elliptic integral solution
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5.3 Leg Kinematics of MinIAQ

The methodology developed in section 1 can be extended for
the analysis of MinIAQ’s leg mechanism. Accordingly, kine-
matic and dynamic simulations of MinIAQ are run with a
compliant leg model and these results are compared with the
results acquired from a simplified rigid-link model. The kine-
matic model of MinIAQ’s compliant mechanism is developed
based on the skeleton diagram shown in Fig. 12. In the mech-
anism, AB and CD are compliant joints and pointsG and I are
ideal revolute/pin joints. BC, DE, EF, EI, and GI are rigid
links. The motor is positioned at the fixed point G, and ψ is
the input angle of the crank. Point F is the tip of the leg to
which any external load (Fx, Fy) may be applied during walk-
ing due to friction or contact. The link lengths are denoted by
LBC, LDE, LEF, LEI, LEG, LGI, LAH and LGH.

For any input crank angle ψ, the position kinematics can be
expressed by the following loop closure equations:

Qx1 þ LBCcos θ1 þ Qx2 þ LDEcos θ2 þ LEIcos θ2 þ π
2

� �
−LGIcos ψ−LAH ¼ 0;

ð28Þ

Qy1 þ LBCsin θ1 þ Qy2 þ LDEsin θ2 þ LEIsin θ2 þ π
2

� �
−LGIsin ψ−LGH ¼ 0:

ð29Þ

The unknown variables (θ1, Qx1, Qy1, θ2, Qx2, Qy2) in Eqs.
(28) and (29) are dependent on the applied loads at the tip of
the leg, which are required for determination of the bending
amounts of the flexure joints. In this regard, static equilibrium
analysis must be done to determine joint deflections and the
unknown link angles. This requires drawing the free body
diagrams of the links as shown in Fig. 13.

The static equilibrium equations for link BC can be written
as:

∑Fx⇒−nP2cos θ1−P2sin θ1 þ nP1 ¼ 0; ð30Þ
∑Fy⇒−nP2sin θ1 þ P2cos θ1−P1 ¼ 0; ð31Þ
∑MB⇒−M 01 þMD2 þ LBCP2 ¼ 0; ð32Þ

for link DF as:

∑Fx⇒Fx−Ix þ nP2sin
π
2
−θ1

� �
þ P2cos

π
2
−θ1

� �
¼ 0; ð33Þ

∑Fy⇒Fy−Iy þ nP2cos
π

2
−θ1

� �
−P2sin

π

2
−θ1

� �
¼ 0; ð34Þ

∑MD⇒ −M 02 þ LDF Fycos −θ2ð Þ þ Fxsin −θ2ð Þ� �
−LDE Iycos −θ2ð Þ þ Ixsin −θ2ð Þ� �
−LEI Ixcos −θ2ð Þ−Iysin −θ2ð Þ� � ¼ 0;

ð35Þ

and for the compliant joint CD as:

∑MC⇒−MD2 þM 02 þ Qx2P2 þ Qy2nP2 ¼ 0: ð36Þ

Fig. 15 (a) The compliant leg
mechanism of MinIAQ showing
the experimental foot trajectory
obtained by tracking a hole at the
tip of the leg via image
processing. (b) Trajectories of the
proper compliant leg kinematics
(Fig. 3(a)), the simplified pin-joint
fourbar kinematics (Fig. 3(b)),
and the actual experimental leg
setup

Fig. 16 A representation of the robot’s body-attached reference frame
used in modeling the dynamics
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In addition, one can determine the minimum required input
torque for the motor using the following relation:

∑MG⇒Tin ¼ LGI Ixsin ψ−Iycos ψ
� �

: ð37Þ

The inputs to the system of Eqs. 28 to 38 (nine equations)
are ψ, Fx,and Fy, and the unknown variables are: θ1, Qx1, Qy1,
θ2, Qx2, Qy2, Ix, Iy, P1, nP1, M01, P2, nP2, M02, and MD2. To
solve for these 15 unknowns, at least six more equations are
needed, which are obtained by modeling each compliant joint
with the nonlinear large deflection theory (similar to Eq. 24,
25 and 26). Solving simultaneously for the static force bal-
ance, the large angle deflection model, and the loop closure
equations yields the kinematic results. The solution to the
developed model is first verified using experimental data.

Simulation is done for a full rotation of the thecrank, in the
absence of any contact force at the foot, and the resulting
deflections of the flexure joints and the overall mechanism
configuration are obtained. Figure 14 represents the variation
of θ1 and θ2 link angles and verifies that the kinematic results
of the compliant leg model are in good agreement with the
experiments. Note that θ1 also represents the bending angle of
the flexure joint AB, whereas the bending angle of joint CD
can be measured as the difference of θ1 and θ2, which exceeds
115° of deflection at certain instances during a walking cycle.
Estimation of compliant joint deflections is of utmost impor-
tance during robot design from a fatigue failure perspective. A
similar kinematic solution was obtained by FEA method
matching very well with the large deflection model, however,
the runtime of the FEA method was more than 100 times
slower. This implies that the large angle model must be fa-
vored over FEA for dynamic simulation of the robot, which is
heavily dependent on the leg kinematics.

To further investigate the compliant model advantages,
MinIAQ’s foot trajectory for two different kinematic models
(presented in Fig. 3) are plotted and compared with experimental
results. The experimental trajectory path is obtained by using the
test setup shown in Fig. 15(a). The kinematic analysis of the
simplified rigid-link pin-joint leg mechanism is relatively simple
and straightforward; however, it can be clearly seen from
Fig. 15(b) that this method has lower accuracy, especially as
the flexures get longer. On the other hand, while compliant anal-
ysis requires more time and computational power to converge to
a solution, the output trajectory agrees very well with the exper-
imental results. Therefore, compliant kinematics using large de-
flection beam theory and elliptic integral solution can compen-
sate for the higher runtime with satisfactory results.

The major design challenge in miniature foldable robots is
designing the motion mechanism trajectory appropriately to
achieve a desired path. With the methods outlined here, the tra-
jectory of the compliant motionmechanism can be acquired with
a very highaccuracy. The obvious trade-off is the modeling effort
spent and the accuracy of the results. If one can accept lower
accuracy kinematic modeling, the large deflection based kine-
matic models are not needed. However, from our experience,
this is not always the case; for a miniature foldable robot to move
properly, the trajectory of the motion mechanism should be
known and optimized. Hence, large angle deflection based kine-
matic modeling should be performed.

6 Dynamic Analysis with Different Kinematic
Models

The importance of obtaining an accurate kinematic solution
for modeling and designing purposes can be further investi-
gated by analyzing the dynamic behavior of MinIAQ. For the
simulation of the robot’s locomotion, a 3D rigid body
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Fig. 17 Dynamic simulation and experimental results of MinIAQ’s trot
gait locomotion at 3.0 Hz motor speed with the compliant and simplified
leg kinematics. (a) The side view centroid position. (b) The roll angle
comparison. (c) The pitch angle comparison
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dynamic model is developed inMATLAB [15]. A state vector
of six translational and six rotational variables is obtained at
very small time steps by solving the Newton-Euler equations
for five seconds of simulation under trot gait at 3.0 Hz motor
speed. Figure 16 shows a schematic of MinIAQwith the com-
pliant leg model. The body-attached axes (B) placed at the
geometric centroid of the robot’s frame are used to define
the orientation based on Euler angle rotations (roll ϕ, pitch
θ, and yaw ψ). The position of the body centroid is also
tracked over time with respect to an inertial reference frame
(I ) fixed to the ground level and initially parallel with the
body-attached frame (not shown on the figure). The center
of mass as well as the inertia tensor were estimated from an
actual assembled robot by measuring the position and mass of
each individual component of the robot. Notice that the slight
shift of the center of mass with respect to the geometric cen-
troid (check the center of gravity, COG, symbol in Fig. 16)
causes an imbalance in the body and results in an asymmetric
dynamic behavior.

The governing rigid body dynamic equations are given by
the following 12 ordinary differential equations:

X˙ ¼

P˙ Ix

P˙ Iy

P˙ Iz

ϕ˙

θ˙

ψ˙

u˙

v˙

w˙

p˙

q˙

r˙

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

cθcψð Þuþ sθsϕcψ−sψcϕð Þvþ sθcϕcψþ sψsϕð Þw
cθsψð Þuþ sθsϕsψþ cψcϕð Þvþ sθcϕsψ−cψsϕð Þw
−sθð Þuþ cθsϕð Þvþ cθcϕð Þw
pþ qsin ϕþ rcos ϕð Þtan θ
qcos ϕ−rsin ϕ
qsin ϕþ rcos ϕ

cos θ
FBx
m

− qw−rvð Þ
FBy
m

− ru−pwð Þ
FBz
m

− pv−quð Þ
MBx− I zz−Iyy

	 

qr

Ixx
MBy− Ixx−I zzð Þrp

Iyy
MBz− I yy−Ixx

	 

pq

Izz

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
ð38Þ

where PI ¼ PIx PIy PIz
� �⊤

, Γ ¼ ϕ θ ψ½ �⊤,
VB ¼ u v w½ �⊤, and ΩB ¼ p q r½ �⊤ define the posi-
tion, orientation, translational speed, and rotational speed of
the robot, respectively. Note that c and s are abbreviations for
cosine and sine functions, respectively, m denotes the mass of
the robot, and {Ixx, Iyy, Izz} represent the mass moments of
inertia of the robot’s rigid body about the body-attached axes.
The inputs to the system are the net external force and moment
(FB and MB) along the body-attached axes, that are deter-
mined by a nonlinear viscoelastic spring-damper model based

on feet-ground interactions. The contact force model is an
implicit function of all system states as well as the leg kine-
matics. Detailed derivation of the dynamics and the contact
force model are presented in [15].

Two different sets of simulation are run in which all the dy-
namic parameters are held the same except for switching the leg
kinematic model between the compliant model and the simpli-
fied fourbar (see Fig. 3). SinceMinIAQ is originally designed for
trot gait, most experiments are run with trot gait straight walk at
3.0Hzmotor frequency and experimental data are extracted from
video footage for comparison with the simulations. Note that the
robot has no on-board sensing device (gyroscope or accelerom-
eter) to record the position and orientation data and thus, this is
done using raw video shots of multiple runs. The position of the
centroid and variations of pitch angle are measured from the side
view shots, and the roll angle is measured from the frontal shots.

MinIAQ’s dynamic simulation and experimental results are
shown in Fig. 17. Note that Fig. 17(a) represents the global
centroid position of the robot for the full five second period of
simulation; whereas, the pitch and roll angle results
(Figs. 17(b) and 17(c)) are cut down to two seconds of simu-
lation, due to their periodicity, for better clarity. As can be
seen, neither the compliant mechanism kinematics nor the
simplified pin-joint fourbar model can exactly predict the po-
sition and speed of the robot in space. It should be noted here
that predicting a miniature robot’s dynamics is often relatively
harder compared to predicting the dynamics of a macro scale
one because there are more sources of error and uncertainty in
experiments. This can be clearly seen from the change in
average robot speed between different steps in the experi-
ments, which ideally should not happen. The slip-stiction
problem of small legs, poor estimation of friction and impact
parameters, low speed controller response, and lack of proper
on-board sensors are some of the issues to which the
mismatching can be attributed to. On the other hand, the sim-
ulations with the compliant leg goes along a much more
straight path and in a stable manner compared to the simula-
tions with the simplified mechanism where the robot starts to
turn towards its heavier side (shifted COG). This is in-line
with our experimental results, where the robot moves along
a relatively straight and stable path.

The simulation results of roll and pitch variations show a good
trend agreement with the experimental data. The compliant
mechanism predicts the rolling effect very well, while the sim-
plified leg model slightly underestimates the actual maximum
body rolls. For the pitch angle results, both cases predict the
maximum experimental pitch correctly, however they both over-
estimate the actual pitching during the steps of the feet lift on the
heavier side. All in all, the dynamic simulation of the robot with
the compliant leg model yields more accurate and stable results
than the simplified kinematics at the cost of longer runtime. The
simulation runtime can be improved if the kinematic solution is
initially pre-solved once for a fine domain of inputs and a lookup
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table is generated for interpolating the kinematics during future
dynamic simulation runs.

7 Conclusions

Accurate kinematic modeling of miniature foldable robot
mechanisms is very important to estimate the motion of the
robot. In this work, kinematic modeling of compliant mecha-
nisms has been investigated based on elliptic integral solutions
of large deflection model by means of combining the loop
closure and static equilibrium equations. In order to check
the validity of the compliant kinematic model developed, a
simple single flexure joint compliant leg mechanism has been
used. The comparison of experimental force data generated by
the flexure joint with the simulations has shown that elliptic
integral kinematic solution predictions are accurate and the
large deflection model is implemented properly. Following
that step, kinematic analysis of the compliant leg mechanism
used in MinIAQ has been conducted using the same method.
With this kinematic model, we can obtain the trajectory of the
tip of the leg, maximum load carrying capacity with respect to
limiting material properties and the motor torque requiredto
rotate the crank link. The main advantage of the large deflec-
tion kinematic analysis is that the trajectory of the foot notice-
ably differs from traditional revolute joint kinematic analysis
and is very close to the experimental results. Although it takes
longer to converge to a solution compared to linear beam
theory or simplified kinematic methods, the compliant mech-
anism kinematic analysis based on large deflection theory
gives a much accurate solution. If the trajectory path is very
sensitive for acompliant mechanism application (and it often
is the case for miniature foldable robots), it is vital to use
elliptic integral solution in the design stage. This large deflec-
tion model of MinIAQ legs are then integrated with a rigid
body dynamic model ofour foldable miniature robot and the
results are compared with a dynamic simulation incorporating
a simplified leg model and experimental results. The large
deflection leg model predicts the actual robot’s dynamic be-
havior better than the simplified model with the trade-off in
modeling complexity and simulation runtime. The results pre-
sented here can be used by other foldable robotics researchers
to decide if they would like kinematic and dynamic simula-
tions of their robots with lower complexity, faster runtime and
lower accuracy or slower, complex, but more accurate results.

As the future work, we would like to focus on fatigue
analysis of joints in foldable robotics applications. The
large deflections occurring at compliant mechanisms often
cause the joints to fail under cyclic load, such as in the
actuation of compliant legmechanisms in the foldable ro-
bots case. This issue shortens the life of the compliant
mechanism, hence the robot’s. If fatigue failure analysis
can be done on the foldable robot flexure joints during the

design phase, we can manufacture longer lasting and thus
more impactful foldable miniature robots.
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