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Abstract—Multi-contrast MRI acquisitions of an anatomy en-
rich the magnitude of information available for diagnosis. Yet,
excessive scan times associated with additional contrasts may be
a limiting factor. Two mainstream frameworks for enhanced scan
efficiency are reconstruction of undersampled acquisitions and
synthesis of missing acquisitions. Recently, deep learning meth-
ods have enabled significant performance improvements in both
frameworks. Yet, reconstruction performance decreases towards
higher acceleration factors with diminished sampling density at
high-spatial-frequencies, whereas synthesis can manifest artefac-
tual sensitivity or insensitivity to image features due to the absence
of data samples from the target contrast. In this article, we propose
a new approach for synergistic recovery of undersampled multi-
contrast acquisitions based on conditional generative adversarial
networks. The proposed method mitigates the limitations of pure
learning-based reconstruction or synthesis by utilizing three priors:
shared high-frequency prior available in the source contrast to pre-
serve high-spatial-frequency details, low-frequency prior available
in the undersampled target contrast to prevent feature leakage/loss,
and perceptual prior to improve recovery of high-level features.
Demonstrations on brain MRI datasets from healthy subjects and
patients indicate the superior performance of the proposed method
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compared to pure reconstruction and synthesis methods. The
proposed method can help improve the quality and scan efficiency
of multi-contrast MRI exams.

Index Terms—Generative adversarial network (GAN),
synthesis, reconstruction, multi contrast, magnetic resonance
imaging (MRI), prior.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a preferred
modality for assessment of soft tissues due to diver-

sity of contrasts that it can provide. A typical MRI protocol
comprises a set of pulse sequences that capture images of the
same anatomy under different contrasts, with the aim to enhance
diagnostic information. For instance, in neuroimaging protocols,
T1-weighted images are useful for delineation of gray and
white matter, whereas T2-weighted images are more useful for
delineation of fluids and fat. Although acquisition of multiple
distinct contrasts is desirable, it may not be feasible due to
scan time limitations or uncooperative patients. Thus, methods
for accelerating MRI acquisitions without compromising image
quality are of great interest for multiple-contrast applications.

The predominant approach for accelerated MRI relies on
undersampled k-space acquisitions for scan time reduction, and
on reconstruction algorithms for recovery of missing samples
based on the collected evidence (i.e., acquired samples) [1]–[5].
Given the compressible nature of MR images, the state-of-the-art
approach is sparse recovery [3], [4], which employs variable-
density random undersampling in k-space to capture most of
the energy in the MR images while ensuring low coherence of
aliasing artifacts. The inverse problem of image reconstruction
from sub-Nyquist sampled data is then solved via regulariza-
tion from known transform domains [3], [4], learned transform
domains [6] or end-to-end deep neural networks [7]–[22]. De-
spite the promise of deep models for image reconstruction, the
evidence collected on the target MR image diminishes towards
high acceleration factors due to undersampling. In turn, this sig-
nificantly degrades the reconstruction performance, and causes
loss in particularly high-spatial-resolution image features that
may be relevant for diagnosis.

A fundamentally different approach for accelerated MRI is
to perform fully-sampled acquisitions of a subset of the de-
sired contrasts (i.e., source contrasts), and then to synthesize
missing contrasts (i.e., target contrasts). This approach requires
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Fig. 1. Proposed rsGAN method synergistically recovers undersampled multi-
contrast MRI acquisitions by complementarily using three priors: shared high-
frequency priors available in fully-sampled or lightly undersampled acquisitions
of one or more source contrasts to preserve high-spatial-frequency details, low-
frequency priors available in highly undersampled acquisitions of one or more
target contrasts to prevent feature leakage/loss, and a perceptual prior to improve
recovery of high-level features. The input-to-output mapping is implemented
using a conditional adversarial network with a generator and a discriminator.
The generator learns to recover realistic high-quality target-contrast images by
minimizing a pixel-wise, a perceptual and an adversarial loss function. The
discriminator learns to discriminate between synthetic and real pairs of multi-
contrast images by maximizing the adversarial loss function.

an intensity-based mapping model estimated using a collection
of image pairs in both source and target contrast [23]–[50].
The model can be based on sparse linear mapping between
source and target patches [32], or deep neural networks for
enhanced accuracy [28], [34]–[36], [39]–[50]. Although deep
models for synthesis are promising, local inaccuracies may
occur in synthesized images when the source contrast is less
sensitive to differences in relaxation parameters of two tissues
compared to the target contrast, or vice versa. For instance,
inflammation can be more clearly delineated from normal tissues
in T2-weighted as opposed to T1-weighted images. In such
cases, synthesized images might contain artificial pathology or
fail to depict existing pathology.

Here, we propose a new approach for synergistic recovery of
undersampled multi-contrast MRI acquisitions by complemen-
tarily using reconstruction and synthesis models (Fig. 1). The
reconstruction branch takes as a prior the low-spatial-frequency
information available in the collected evidence for the target
contrast, whereas the synthesis branch takes as a prior the
high-spatial-frequency information available in the fully sam-
pled or lightly undersampled source contrast. These low-level
spatial-frequency priors are complemented with a perceptual
prior that improves recovery of higher-level image features [51].
The input-to-output mapping is implemented using conditional
generative adversarial networks (GAN), which were recently
shown to outperform traditional deep network models for image
reconstruction [7]–[9], [14] and synthesis tasks [39], [40]. The
proposed reconstructing-synthesizing GAN (rsGAN) contains a
generator for estimating the target-contrast image given heavily
undersampled target-contrast evidence and either fully sampled
or lightly undersampled source-contrast image; and a discrim-
inator to ensure that recovered images are as realistic as possi-
ble [52]. Low-spatial-frequencies are densely sampled in both

target and source acquisitions, but reconstructions of the target
contrast will inherently focus on low-frequency information in
target acquisitions. Because the heavily undersampled target
contrast misses high-frequency samples at large, the source con-
trast serves as the primary basis of high-frequency information.
The proposed rsGAN model learns to fuse this multitude of input
information in a data-driven manner.

Deep neural networks were previously proposed for recovery
of multi-contrast MR acquisitions where each acquisition was
accelerated at an identical rate [53]–[55]. Despite improved
recovery compared to isolated reconstruction of individual con-
trasts, joint reconstruction may still suffer from loss of high-
spatial-frequency information towards higher acceleration fac-
tors. Deep neural networks were also proposed for enhanced
recovery of target-contrast images by incorporating structural
information from fully sampled images of a separate con-
trast [56]–[58]. Compared to [56]–[58] that employ loss terms
based on mean square/absolute errors or structural similarity,
rsGAN leverages an adversarial loss that demonstrated improved
capture of high-spatial-frequency information [39]. A recent, in-
dependent study proposed a GAN model for super-resolution in
a target contrast acquisition via the aid of fully-sampled images
of a source contrast [59]. There are several technical differences
between rsGAN and the model in [59]. In [59] sources have
to be fully sampled, whereas rsGAN also enables light under-
sampling of source contrasts. For improved recovery, rsGAN
further includes a perceptual prior. Lastly, the proposed rsGAN
architecture can handle multi-coil complex MRI datasets, and
enable reliable recovery at acceleration factors up to 50.

We demonstrated the proposed approach on several datasets:
two public datasets containing normal subjects, a public dataset
containing patients with high- or low-grade glioma, and a
multi-coil dataset containing normal subjects. To comparatively
evaluate the proposed method, following competing methods
were considered: a reconstructing network (rGAN) that recovers
the target-contrast image given undersampled images of the
targets contrasts accelerated at identical rates, a reconstructing
network (jGAN) that recovers the target-contrast image given
undersampled images of the both source and target contrasts ac-
celerated at identical rates, a synthesizing network (sGAN) that
synthesizes the target-contrast image given fully sampled images
of the source contrast, a joint super resolution reconstructing
network (sr-sGAN) [59] that recovers the target-contrast image
given undersampled images of the target contrasts and fully
sampled images of the source contrast, and a variant of rs-
GAN deprived of the perceptual prior (rsGAN-). Our results
indicate that rsGAN yields enhanced performance compared to
the competing methods. In particular, rsGAN enables higher
acceleration factors compared to rGAN and jGAN since it more
reliably recovers high-spatial-frequency information. Compared
to sGAN, rsGAN achieves improved reliability against artificial
feature loss or leakage since it uses collected evidence from the
target contrast to prevent hallucination. Compared to sr-sGAN,
rsGAN achieves enhanced recovery at low to intermediate ac-
celeration factors (up to 20x). Compared to rsGAN-, rsGAN
improves reliability of high-level features. Overall, the proposed
approach can successfully recover MR images of at acceleration
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factors up to 50x in the target contrasts, enabling a significant
improvement in multi-contrast MRI.

Contributions
1) To our knowledge, this is the first GAN-based architec-

ture that simultaneously leverages low-spatial-frequency,
high-spatial-frequency and perceptual priors to accelerate
multi-contrast MRI acquisitions.

2) The proposed approach can enable high acceleration fac-
tors up to 50x by incorporating information from both
source and target contrasts.

3) The proposed approach can successfully recover patholo-
gies that are either missing in the source contrast or are
not clearly visible in the undersampled acquisitions of the
target contrast.

4) The proposed approach can jointly reconstruct and syn-
thesize the target contrast even when the source contrasts
are moderately undersampled.

II. THEORY AND METHODS

A. Accelerated MRI

Two mainstream approaches that can be used to accelerate
MR acquisitions and enhance the diversity of acquired contrasts
are reconstruction of a target contrast given randomly under-
sampled acquisitions of the same contrast, and synthesis of a
target contrast based on fully-sampled acquisitions of a distinct
source contrast. Both approaches incorporate prior information
about image structure to improve the conditioning of the inverse
problem of recovering images of the target contrast. However,
they differ fundamentally in the type of prior information used.
The problem formulations for reconstruction and synthesis are
overviewed below.

1) Reconstruction: In this case, MR acquisitions are accel-
erated commonly via variable-density random undersampling
patterns:

Fum1 = y1a (1)

where Fu is the partial Fourier operator defined at the k-space
sampling locations, and m1 is the image of the target contrast,
y1a are the acquired k-space data. The reconstruction task is
then to recover the target image given the collected evidence
(i.e., acquired data). Note that the problem in Eq. 1 is ill-posed,
thus successful recovery requires additional prior information
about the image. In the CS framework, this prior information
reflects the sparsity of the image in a known transform domain
(i.e., wavelet, TV transforms). The prior can be incorporated
into the inverse problem as a regularization term:

m̂1 = argmin
m1

λ||Fum1 − y1a||2 +R(m1) (2)

where the first term enforces consistency of the reconstructed
and acquired data in k-space, R(m1) is the regularization term
reflecting the prior, and λ controls the relative weighting of data
consistency against the prior. R(m1) typically involves the �0
or �1-norm of transform coefficients.

Recent studies have proposed neural-network methods to
adaptively learn both nonlinear transform domains directly from

MRI data and how to recover images from these domains. In the
training stage, a large dataset of pairs of undersampled and fully-
sampled acquisitions are leveraged to learn the network-based
solution to the inverse problem:

Lrec(θ) = Emu
1t,m1t

||G(mu
1t; θ)−m1t||p (3)

where mu
1t and m1t represent undersampled and fully-sampled

training images, G(mu
1t; θ) is the reconstructed output of the

neural network based on network parameters θ, and ||.||p de-
notes �p-norm (where p is typically 1 or 2). Once the network
parameters that minimize the objective in Eq. 3 have been
learned, the following optimization problem can be cast to obtain
reconstructions of undersampled acquisitions:

m̂1 = argmin
m1

λ||Fum1 − y1a||2 + ||G(mu
1 ; θ

∗)−m1||2
(4)

where mu
1 is the undersampled image, G(mu

1 ; θ
∗) is the recon-

struction by the trained network with parameters θ∗, and m̂1

is final recovered image. In Eq. 4, the first term again enforces
consistency of reconstructed and acquired data. The second term
is analogous to R(m1) in Eq. 2, and it enforces consistency of
the recovered image to the network reconstruction.

2) Synthesis: In the synthesis case, fully-sampled images of
the source contrast are assumed to be available. The task is then
to recover target-contrast images (m1) given source-contrast
images (m2) of the same anatomy. A learning-based procedure
is used to estimate a mapping between the source and target
contrast images. In the training stage, a large dataset of pairs
of fully-sampled images from the source and target contrasts
are used (m2t,m1t). In the CS-based synthesis framework,
patch-based dictionaries (Φ2,Φ1) are formed for both source
and target contrasts using m2t and m1t. These dictionaries are
analogous to the sparsifying transform domains used in CS
reconstructions. The aim is to express each patch in the source
contrast images m2 as a sparse linear combination of transform
coefficients of the corresponding dictionary atoms:

α(j) = argmin
α(j)

||m2(j)− Φ2.α(j)||2 + ||α(j)||1 (5)

where α(j) is the learned combination coefficients for the jth
patch, m2(j) denotes the jth patch in the source contrast, and
Φ2 denotes the dictionary formed using patches from m2t. The
first term ensures consistency of the synthesized patch to the
true patch. The second term enforces sparsity of the vector of
combination coefficients. Once the combination is learned, it
can be used to synthesize target contrast images:

m̂1(j) = Φ1.α(j) (6)

whereΦ1 denotes the dictionary formed using patches fromm1t,
and m̂1(j) is the jth patch of the final synthesized image.

Recent studies have proposed neural-network methods to
directly learn an adaptive, non-linear mapping from the source
contrast to the target contrast. In the training stage, network
parameters are optimized based on a loss function that reflects
the error between the network output and the true target image:

Lsynth(θ) = Em1t,m2t
||G(m2t; θ)−m1t||p (7)
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where m1t and m2t represent pairs of source and target images,
and G(m2t; θ) is the mapping from source to target contrast
characterized by parameters θ. Once the network parameters
that minimize the objective in Eq. 7 are learned, the network
output can be directly calculated to obtain the synthesis results:

m̂1 = G(m2; θ
∗) (8)

where m̂1 is the prediction using the mapping G(m2; θ
∗) with

parameters θ∗. Unlike the reconstruction task, here there is
no evidence that has been collected about the target contrast.
Therefore, no optimization procedures are needed for synthesis
in the testing stage.

B. Joint Reconstruction-Synthesis via Conditional GANs

In the reconstruction task, the inverse problem solution uses
undersampled acquisitions of the target contrast as evidence,
and intrinsic image properties such as sparsity as prior. As the
acceleration factor grows, evidence becomes scarce particularly
towards high spatial frequencies that are sparsely covered by
variable-density patterns. This in turn elevates the degree of
aliasing artifacts; and if heavier weighting is given to the prior
as a remedy, important features may be lost in the recovered
images. Meanwhile, in the synthesis task, the inverse problem
solution uses fully-sampled acquisitions of a distinct source
contrast of the same anatomy as a prior. When the source and
target contrasts exhibit similar levels of sensitivity to differences
in tissue parameters, this prior can enable successful solution of
the inverse problem. However, when the source and target show
differential sensitivity, then features that are not supposed to be in
the target may leak from the source onto the synthesized image,
or features that must be present in the target may be missed.

To address the limitations of pure reconstruction or synthesis,
we proposed to synergistically combine the two approaches with
the aim to enhance recovery of multi-contrast MRI images.
As such, the proposed approach consists of two branches: 1)
A reconstruction branch that aggregates information from the
target contrasts in the form of magnitude and phase images. 2)
A synthesis branch that aggregates information from the source
contrasts in the form of magnitude images.

Given k target contrasts and n− k source contrasts, the joint
recovery problem can be formulated as:

m̂1,2,3,...,n = argmin
m1,2,...,n

λ

k∑
i=1

||Fum
hu
i − yia||2

+ λ

n∑
j=k+1

||Fum
lu
j − yja||2

+R(mhu
1 , . . . ,mhu

k ,mlu
k+1, . . . ,m

lu
n ) (9)

where R(mhu
1 , . . . ,mhu

k ,mlu
k+1, . . . ,m

lu
n ) is a regularization

term based on prior information, mhu
i is the ith contrast that

is heavily undersampled (i.e., target contrast), and mlu
j is jth

contrast that is lightly undersampled (i.e., source contrast), and
yia denotes the acquired data for the ith contrast. We recast Eq.

9 using a neural-network based formulation:

m̂1,2,3,...,n = argmin
m1,2,...,n

λ

k∑
i=1

||Fum
hu
i − yia||2

+ λ

n∑
j=k+1

||Fum
lu
j − yja||2

+
n∑

l=1

||G(mhu
1 , . . . ,mhu

k ,mlu
k+1, . . . ,m

lu
n ; θ∗)[l]−ml||2

(10)

Here, multiple separate channels for network output are con-
sidered since multiple contrast images can be recovered simul-
taneously. In Eq. 10, G(mhu

1 , . . . ,mhu
k ,mlu

k+1, . . . ,m
lu
n ; θ∗)[l]

denotes the lth channel of the network output, among a total of
n channels for the entire set of contrasts. The first two terms
respectively enforce the consistency of reconstructed data to
acquired data in the target and source contrasts. The last term
enforces consistency of the network outputs to the recovered
images. Solution of Eq. 10 yields estimates of the images for
each contrast separately as:

yir(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F{G(mhu
1 , . . . ,mhu

k ,

mlu
k+1, . . . ,m

lu
n ; θ∗)[i]}(k)+

λyia(k)

1 + λ
if k ∈ Ω

F{G(mhu
1 , . . . ,mhu

k ,

mlu
k+1, . . . ,m

lu
n ; θ∗)[i]}(k) otherwise

m̂i = F−1{yir} (11)

where yir denotes the k-space representation of the image for
the ith contrast, Ω is the set of acquired k-space samples, F is
the Fourier transform operator, and F−1 is the inverse Fourier
transform operator. The solution stated above performs two
subsequent projections on the input images. The first projection
takes undersampled acquisitions to generate the network predic-
tions. The second projection enforces data consistency between
data samples that were originally acquired and those that are
predicted by the network.

Based on the recent progress by generative adversarial net-
works in MR image synthesis and reconstruction tasks, we
chose to build the joint recovery network using a conditional
GAN architecture. Our network contains two subnetworks: a
generator and a discriminator. The task of the generator is to learn
a mapping from undersampled acquisitions onto fully-sampled
acquisitions of source and target images. Both synthesis and
reconstruction branches are provided to the generator part of
the network as separate input channels. During the training,
the network learns to adaptively fuse this information in a
data-driven way. Meanwhile, the task of the discriminator is
to differentiate between the images predicted by the generator
and the actual images. As such, an adversarial loss function is
typically used to train both subnetworks. Here for stabilized
training, we used adversarial loss as in LSGAN [60]:

LcondAdv(θD, θG) = −Emt
[(D(mt; θD)− 1)2]

− Emhu
t ,mlu

t
[D(G(mhu

t ,mlu
t ; θG); θD)2] (12)
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where mt represents the MR images aggregated across n con-
trasts (m1,m2, . . . ,mn) in the training dataset, mhu

t repre-
sents the heavily undersampled acquisitions aggregated across
k target contrasts (m1,m2, . . . ,mk), mlu

t represents the lightly
undersampled acquisitions aggregated across n− k source con-
trasts (mk+1,mk+2, . . . ,mn), G is the generator with pa-
rameters θG, D is the discriminator with parameters θG, and
LcondAdv(θD, θG) is the adversarial loss function.Gwas trained
to minimize Emhu

t ,mlu
t
[(D(G(mhu

t ,mlu
t ; θG))− 1)2] instead

of −Emhu
t ,mlu

t
[D(G(mhu

t ,mlu
t ; θG))

2]. To ensure reliable re-
covery in each channel, a pixel-wise loss function was incorpo-
rated to the generator:

LL1(θG) = Emt,mhu
t ,mlu

t

[||G(mt,m
hu
t ,mlu

t ; θG)−mt||1
]

(13)

Recent studies on MRI reconstruction and synthesis suggest
that incorporating an additional prior in the form of a perceptual
loss can further enhance the image quality [39], [40]. The percep-
tual loss relies on high-level features extracted via networks pre-
trained on natural images for more general tasks. Following [51],
we extracted feature maps right before the second max-pooling
layer of the VGG16 model trained on the ImageNet dataset [61]
for object classification. The loss function can be expressed as:

Lperc(θG) = Emt,mhu
t ,mlu

t

[||V (G(mt,m
hu
t ,mlu

t ; θG))

−V (mt)||1] (14)

where V (.) represents the features extracted via VGG16. The
adversarial, pixel-wise and perceptual losses are finally com-
bined to train the proposed reconstructing-synthesizing GAN
(rsGAN) model:

LrsGAN (θD, θG) = λpLL1(θG)

+ λpercLperc(θG)

+ LcondAdv(θD, θG) (15)

where λp and λperc are the relative weightings of the pixel-wise
and perceptual loss functions.

C. Competing Methods

To evaluate the effectiveness of rsGAN, we compared it
against other GAN architectures. A GAN trained to only perform
synthesis of the target-contrast images based on the respective
source-contrast images. Source-contrast images were taken to be
fully-sampled, high-quality images. We will refer to this network
as the synthesizing GAN (sGAN). A GAN trained to only
perform reconstruction of the target-contrast images based on
undersampled acquisitions of all target contrasts accelerated at
identical rates. We will refer to this network as the reconstructing
GAN (rGAN). A GAN trained to only perform reconstruction of
the target-contrast images based on undersampled acquisitions
of all source and target contrasts accelerated at identical rates.
We will refer to this network as the joint reconstructing GAN
(jGAN). In the public datasets, rsGAN was also compared
against a variant of rsGAN deprived of the perceptual prior,
referred to as rsGAN-, and a GAN trained to only perform
recovery of the target-contrast images based on fully sampled

acquisitions of source contrasts and low-resolution acquisitions
of target contrasts, referred to as the super-resolution synthesis
GAN (sr-sGAN). Note that sGAN, jGAN, rGAN and sr-sGAN
were also trained using the perceptual prior.

D. MRI Datasets

We demonstrated the proposed approach on three differ-
ent public datasets and a multi-coil dataset containing multi-
contrast MRI images. The public datasets MIDAS [62] and
IXI (http://brain-development.org/ixi-dataset/) comprised im-
ages collected in healthy normals. BRATS (https://sites.google.
com/site/braintumorsegmentation/home/brats2015) comprised
images collected in patients with low-grade glioma (LGG) or
high-grade glioma (HGG). Relevant details about each dataset
are given below.

1) MIDAS Dataset: T1-weighted and T2-weighted images in
the MIDAS dataset were considered. Data from 40 subjects were
analyzed. The scan protocols were as follows:

1) T1-weighted images: 3D Gradient-Echo sequence, repeti-
tion time (TR)=14 ms, echo time (TE)=7.7 ms, flip angle
= 25◦, volume size = 256 ×176× 256, voxel dimensions
= 1 mm × 1 mm × 1 mm.

2) T2-weighted images: 2D Spin-Echo sequence, repetition
time (TR)=7730 ms, echo time (TE)=80 ms, flip angle=
180◦, volume size = 256× 192× 256, voxel dimensions
= 1 mm × 1 mm × 1 mm.

2) IXI Dataset: T1-weighted, T2-weighted and PD-weighted
images in the IXI dataset were considered. Data from 40 subjects
were analyzed.

The scan protocols were as follows:
1) T1-weighted images: repetition time (TR) = 9.813 ms,

echo time (TE) = 4.603 ms, flip angle = 8◦, volume size
= 256 × 256 × 150, voxel dimensions = 0.94 mm ×
0.94 mm × 1.2 mm.

2) T2-weighted images: repetition time (TR) = 8178 ms,
echo time (TE) = 100 ms, flip angle = 90◦, volume size
= 256 × 256 × 130, voxel dimensions = 0.94 mm ×
0.94 mm × 1.2 mm.

3) PD-weighted images: repetition time (TR) = 8178 ms,
echo time (TE) = 8 ms, flip angle = 90◦, volume size
= 256× 256× 130, voxel dimensions = 0.94 mm ×
0.94 mm × 1.2 mm.

3) BRATS Dataset: T1-weighted, T2-weighted and FLAIR
images in the BRATS dataset were considered. Data from 40
Glioma patients were analyzed. Since the data were acquired
in various different sites, no single scan protocol existed. In
BRATS, all contrasts were already pre-registered and skull-
stripped as publicly shared.

4) Multi-Coil MR Images: T1-weighted, T2-weighted and
PD-weighted brain images from 10 subjects were acquired at
Bilkent University. Images were acquired on a 3 T Siemens Tim
Trio scanner (maximum gradient strength of 45mT/m and slew
rate of 200 T/m/s) using a 32-channel receive only coil. The scan
protocols were as follows:

1) T1-weighted images: 3D MP-RAGE sequence, repeti-
tion time (TR) = 2000 ms, echo time (TE) = 5.53 ms,
flip angle=20◦, volume size = 256× 192× 88, voxel

http://brain-development.org/ixi-dataset/
https://sites.google.com/site/braintumorsegmentation/home/brats2015
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Fig. 2. Examples of undersampling patterns for acquisitions accelerated in a
broad range (R = 5×, 10×, 20×, 30×, 40× , 50× ).

dimensions = 1 mm × 1 mm × 2 mm, acquisition time
(TA) = 6:26.

2) PD-weighted images: 3D Spin-Echo sequence, repetition
time (TR) = 750 ms, echo time (TE) = 12 ms, flip angle
= 90◦, volume size = 256 × 192× 88, voxel dimensions
= 1 mm × 1 mm × 2 mm, acquisition time (TA) = 13:14.

3) T2-weighted images: 3D Spin-Echo sequence, repetition
time (TR)= 1000 ms, echo time (TE)= 118 ms, flip angle
= 90◦, volume size = 256 × 192× 88, voxel dimensions
= 1 mm × 1 mm × 2 mm, acquisition time (TA) = 17:39.

In the public datasets, (25, 5, 10) subjects were used for
(training, validation, testing). In the IXI dataset, one test subject
was discarded due to poor registration quality. Within each
subject, around 100 central cross-sections that contained brain
tissues and that were relatively free of artifacts were selected.
Each model was trained using a batch size of 1. This corresponds
to nearly 2400-2600 iterations per epoch. In the multi-coil
dataset, (7, 1, 2) subjects were used for (training, validation,
testing). For each subject, around 155 central cross-sections that
contained brain tissues and that were relatively free of artifacts
were selected. Models were trained using a batch size of 1. This
corresponds to nearly 1085 iterations per epoch.

E. Image Registration

Since the multi-contrast volumes in the MIDAS, IXI and
multi-coil datasets were unregistered, these images were reg-
istered before training and testing. For the MIDAS dataset,
T2-weighted images of each subject were registered onto T1-
weighted images of the same subject using a rigid transfor-
mation. Images were registered based on mutual information
loss. For the IXI dataset, T2- and PD-weighted images of each
subject were registered onto T1-weighted images of each subject
using an affine transformation. In the multi-coil dataset, T2-
and PD-weighted images of each subject were registered onto
T1-weighted images of each subject using a rigid body trans-
formation. Images were registered based on mutual information
loss. Registrations were carried out using FSL [63], [64].

F. Undersampling Patterns

For heavily undersampled acquisitions of the target contrast,
we examined acceleration factors in a broad range (R=5×, 10×,
20×, 30×, 40×, 50×; Fig. 2). For lightly undersampled acqui-
sitions of the source contrast, we examined acceleration factors
in a relatively limited range (R = 1×, 2×, 3×). For rsGAN
and rGAN, variable-density undersampling was used [3]. The
undersampling patterns were generated using bi-variate normal
probability density functions. Covariance of the density func-
tions was separately adjusted for each value of R. Fully-sampled

images were Fourier transformed, and then retrospectively sam-
pled using the generated patterns. Distinct random patterns were
generated for each subject within each dataset.

For proof of concept demonstration at high acceleration rates,
we simulated 2D undersampling in the transversal plane for the
public datasets. For multi-coil acquisitions, 2D undersampling
was performed in the coronal plane on a 192 × 88 grid, so a
relative narrower range of accelerations were considered (R =
5×, 10×, 15×, 20×, 25×, 30×).

G. Model Training Procedures

All GAN-based models were trained using an identical set
of procedures. To train each conditional GAN, we adopted
the generator and discriminator from [51] and [65]. The gen-
erator consisted of the following convolutional layers (Conv)
connected in series: Conv (kernel-size = 7, output-features =
64, stride = 1, activation = ReLU), Conv (kernel-size = 3,
output-features = 64, stride = 2, activation = ReLU), Conv
(kernel-size = 3, output-features = 256, stride = 2, activation
= ReLU), 9x resnet blocks (kernel-size = 3, output-features
= 256, stride = 1, activation = ReLU), fractionally-strided
Conv (kernel-size = 3, output-features = 128, stride = 2,
activation = ReLU), fractionally-strided Conv (kernel-size =
3, output-features = 64, stride = 2, activation = ReLU), Conv
(kernel-size = 7, output-features = 1, stride = 1, activation =
none). The discriminator consisted of the following convolu-
tional layers (Conv) connected in series: Conv (kernel-size = 4,
output-features= 64, stride= 2, activation= leakyReLU), Conv
(kernel-size = 4, output-features = 128, stride = 2, activation
= leakyReLU), Conv (kernel-size = 4, output-features = 256,
stride = 2, activation = leakyReLU), Conv (kernel-size = 4,
output-features = 512, stride = 1, activation = leakyReLU),
Conv (kernel-size= 4, output-features= 1, stride= 1, activation
= none).

Generator and discriminator networks were trained for 100
epochs using the Adam optimizer [66], with decay rates for the
first and second moment estimates set as 0.5 and 0.999. For
the generator, the learning rate was set as 0.0002 for the initial
50 epochs and then linearly decayed to 0 during the remaining
epochs. For the discriminator, the learning rate was set as 0.0001
for the first 50 epochs and then linearly decayed to 0 during the
remaining epochs. Dropout regularization was used to enhance
the generalizability of the network model, with a dropout rate of
0.5. Instance normalization was applied [67]. All model weights
were randomly initialized based on a normally-distributed vari-
able with 0 mean and 0.02 standard deviation.

The optimal weightings of pixel-wise loss (λp) and perceptual
loss (λperc) terms were determined via a cross-validation proce-
dure supplemented by visual inspection. Using the training data,
separate models were obtained for λp in [10 150] and λperc in
[10 150]. Weight selection was then performed by maximizing
PSNR on the validation data. Recovered validation images were
also visually inspected. When needed, selected weights were
further fine-tuned to prevent low-quality recovery due to arti-
facts. Following these procedures, a common λp =100 value
was chosen for all datasets that yielded near-optimal results
consistently across datasets and acceleration factors. Note that
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our optimum λp value closely matches weighting reported for
conditional GAN models in the literature [39], [65]. Meanwhile,
a separate λperc value was chosen for each dataset and for
each acceleration factor. Relative weighting of data consistency
against the prior (λ) was set to infinity.

Note that although the public datasets used in this study
contain only coil combined magnitude images, the Fourier re-
constructions of undersampled acquisitions are complex valued.
Therefore, for each input contrast, two channels were designated
to represent the magnitude and phase image components. For
each target contrast, separate networks were trained to recover
fully-sampled magnitude images. In the multi-coil dataset, first
GCC [68] was used to reduce computational complexity by
decreasing the number of coils from 32 to 5. For each input
contrast, 5 channels were designated to represent magnitude
components. In practice, the comparative performance of rs-
GAN models without and with phase depends on the benefits of
added phase information against the disadvantages of fitting a
more complex model. In the multi-coil dataset with 5 virtual
coils, adding phase information for each individual contrast
amounts to 5 extra input channels, considerably expanding
model complexity. Since we observed that additional phase
channels caused a slight decline in performance, we preferred to
use rsGAN models without phase information in the multi-coil
analyses of rsGAN. For each target contrast, separate networks
were trained to recover fully-sampled coil-combined magnitude
images. Reference coil-combined images were obtained by us-
ing coil sensitivity maps estimated via ESPIRiT [69].

To maximize model performance, a separate model was
trained for each unique collection of source and target contrasts,
and acceleration factors. For generalizing the rsGAN model to
also handle light undersampling of the source contrast, a separate
rGAN model was first trained to recover undersampled source
acquisitions at each acceleration factor. In the testing phase, the
reconstructed source contrast was then fed to the rsGAN model.

For multi-coil data, rsGAN was first trained to recover a
coil-combined magnitude image for the target contrast from
undersampled multi-coil magnitude images for source and tar-
get contrasts. Second, a coil-combined complex image for the
target was obtained by adding onto the recovered magnitude
image the phase of the coil-combined undersampled images
of the target. Third, the coil-combined complex target image
was back-projected onto individual coils using coil sensitivity
maps. Data consistency was enforced on the resultant multi-
coil complex target data, and a coil-combined complex target
image was then obtained. As such, phase information in under-
sampled acquisitions was leveraged to enable data consistency
projections.

H. Experiments

1) Main Experiments: To evaluate the comparative perfor-
mance of the proposed approach, rsGAN, rGAN, jGAN, and
sGAN were individually trained and tested on multi-contrast
MRI datasets. Theoretically, as R approaches 1x, rsGAN, rGAN
and jGAN should show nearly identical performance that is
superior to sGAN since sGAN has no evidence collected about
the target contrast. As R goes to infinity, rsGAN and sGAN

should show nearly identical performance that is superior to
rGAN, since no evidence from the target contrast will be avail-
able to any of the networks. In intermediate R values, we
reasoned that rsGAN would outperform rGAN and jGAN in
terms of reliability in recovery of high-frequency information
since variable-density patterns suboptimally sample high spa-
tial frequencies in the target contrast. We also reasoned that
rsGAN would outperform sGAN especially when the source
and target contrasts showed differential sensitivity to differences
in tissue parameters. Based on these notions, we measured the
performance of all four methods across a broad range of accel-
eration factors. To evaluate the effects of perceptual prior and
variable-density sampling patterns, rsGAN was also compared
against rsGAN- and sr-sGAN in the public datasets. We rea-
soned that incorporation of the perceptual prior should enhance
performance. We also reasoned that as R approaches 1, rsGAN
should perform better than sr-sGAN since rsGAN contains more
high-spatial frequency information from the target contrast. As R
approaches infinity, rsGAN should perform similar to sr-sGAN
since the variable-density sampling patterns in rsGAN approach
the central sampling patterns in sr-sGAN at these acceleration
rates.

In both MIDAS and BRATS datasets, we considered two
main scenarios. First, T1-weighted acquisitions were taken as
the source contrast (R= 1x), and T2-weighted acquisitions were
taken as the target contrast (R = 5×, 10×, 20×, 30×, 40×,
50times;). Second, T2-weighted acquisitions were taken as the
source (R = 1x), and T1-weighted acquisitions were taken as
the target (R = 5×, 10×, 20×, 30×, 40×, 50times;).

Two distinct scenarios were examined in both IXI and multi-
coil datasets. First, T1-weighted acquisitions were taken as
the source contrast (R = 1x), and both T2- and PD-weighted
acquisitions were taken as the target contrasts (R = 5×, 10×,
20×, 30×, 40×, 50times; in the IXI dataset, and R = 5×, 10×,
15×, 20×, 25×, 30× in the multi-coil dataset). Since T2- and
PD-weighted acquisitions are typically performed using similar
sequences, the acceleration factors for these two contrasts were
always matched. Second, the source T1-weighted acquisitions
were lightly undersampled (R = 2x, 3x), and T1-, T2-, and
PD-weighted images were jointly recovered. The overall scan
time for an accelerated multi-contrast protocol depends on the
distribution of R across contrasts, and individual scan times
for all contrasts. To systematically examine scan efficiency, we
measured recovery performance for jGAN and rsGAN with the
same overall scan time. Analyses were performed on the in vivo
multi-coil datasets for a fixed scan time of 250 sec, where T1 was
the source contrast and T2 and PD were the target contrasts. For
jGAN this corresponds to R = 8.9x across all contrasts, whereas
for rsGAN this corresponds to RT1

= 3x for the source contrast
and R = 15x for target contrasts.

2) Control Experiments: Here, for more efficient model
training, we preferred to focus on cross-sections that contained
brain tissue. To rule out potential biases in model generalizability
due to this selection, we conducted control experiments where
rGAN, jGAN and rsGAN were trained on all available cross-
sections in the IXI dataset without any selection (referred to as
rGANAll, jGANAll and rsGANAll). These models were com-
pared with rGAN, jGAN and rsGAN trained on the originally
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selected central cross-sections. Performance comparisons were
carried out on independent test sets containing all cross-sections
within subjects without any selection procedures.

In the public datasets containing coil-combined magnitude
images, phase is only introduced during retrospective under-
sampling of k-space data, and the phase values are often small.
Thus, in theory, an rsGAN model that receives as inputs only
magnitude images should perform similarly to one that receives
both magnitude and phase images. To test this prediction, we
conducted additional analyses in the BRATS dataset where
a variant of rsGAN model with only magnitude channels as
inputs was trained, referred to as rsGANm. rsGANm was then
compared against rsGAN consisting of both magnitude and
phase channels as inputs. T1 was set as the source contrast and
T2 was set as the target contrast.

Here, rsGAN had different model complexity compared to
the competing methods (rGAN, jGAN and sGAN). To rule out
potential biases due to model complexity, we implemented ad-
ditional control experiments in the BRATS dataset with rGAN,
jGAN and sGAN models with matching complexity to rsGAN.
Complexity was balanced across models by maintaining an
identical number of input channels to the generator. In these
experiments, T1 was set as the source contrast and T2 was set
as the target contrast. Input to sGAN consisted of magnitude
images of fully sampled T1 contrast concatenated with mag-
nitude and phase images of undersampled T1 contrast. Input
to rGAN consisted of magnitude and phase images of highly
undersampled T2 contrast concatenated with magnitude images
of highly undersampled T2 contrast. Input to jGAN consisted of
magnitude and phase images of highly undersampled T2 contrast
concatenated with magnitude images of highly undersampled T1

contrast. These models are referred to as rGANMC, jGANMC

and sGANMC. These models were compared with rsGAN, and
regular rGAN, jGAN and sGAN.

In this study, rsGAN was mainly demonstrated for the recov-
ery of T1-, T2-, and PD-weighted contrasts. Several diagnostic
protocols also include FLAIR acquisitions. To examine the
ability of rsGAN to recover FLAIR acquisitions, we also trained
models for recovery of FLAIR images in the BRATS dataset.
T1 was used as the source contrast, and FLAIR was used as the
target contrast.

To maximize performance for individual contrasts, here the
recovery of each target contrast was taken as a separate task.
When multi-target-contrast images were considered, a separate
rsGAN model was constructed to recover each target contrast.
To assess the benefits of this strategy, we conducted additional
experiments in the BRATS dataset where two distinct sets of
rsGAN models were constructed. The first set consisted of the
original rsGAN models (named rsGAN1) trained to recover
target contrasts individually (one model recovering T2 from
undersampled T2 and fully-sampled T1 acquisitions, and another
model recovering FLAIR from undersampled FLAIR and fully-
sampled T1 acquisitions). The second set consisted of a unified
rsGAN model (named rsGAN2) trained to jointly recover T2 and
FLAIR from undersampled T2 and FLAIR, and fully-sampled
T1 acquisitions. The two sets of models were compared in terms
of average performance in recovery of T2 and FLAIR images.

TABLE I
QUALITY OF RECOVERED IMAGES IN THE MIDAS DATASET

PSNR and %SSIM values (mean±standard error) across the test subjects are listed
for sGAN, rGAN, jGAN, and rsGAN. T1-weighted acquisitions were taken as the
source contrast, and T2-weighted acquisitions were taken as the target contrast.
The highest PSNR and SSIM values in each row are marked in bold font, and the
significantly better performing values (p < 0.05) are marked with the ‘†’ symbol.

All network models and conventional reconstruction and syn-
thesis techniques were trained and tested on the same instances
of data and undersampling patterns. To quantitatively assess
the quality of recovered images, the fully-sampled reference
images were used. All images were first normalized to the range
[0 1]. Then, peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) were calculated between the
recovered and reference images. Statistical significance of dif-
ferences in PSNR and SSIM between methods were assessed
via a nonparametric Wilcoxon signed-rank test. In the public
datasets, the statistical significance tests were performed across
test subjects. In the multi-coil dataset, due to limited number
of test subjects, the statistical significance tests were performed
across cross-sections.

III. RESULTS

A. Main Experiments

1) Public Datasets: We first demonstrated the proposed rs-
GAN method against rGAN, jGAN and sGAN on the MI-
DAS dataset. We considered two separate models: a model
to recover T2-weighted images given T1-weighted images as
source contrast, and another to recover T1-weighted images
given T2-weighted images as source contrast. Tables I and II list
the respective PSNR and SSIM measurements for each model,
and Fig. 3 illustrates performance as a function of R.

T2- and T1-weighted images in the MIDAS dataset recovered
while R is varied from 10x to 50x are displayed in Figs. 4
and 5, respectively. Representative T2- and T1-weighted images
recovered with ZF, jGAN, sGAN and rsGAN at R = 50× are
shown in Fig. 6. As expected, the similarity between rsGAN
and jGAN results increases towards R = 10x, and that between
rsGAN and sGAN increases towards R = 50×. Furthermore,
rsGAN recovers images of higher visual quality and acuity than
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TABLE II
QUALITY OF RECOVERED IMAGES IN THE MIDAS DATASET

T2-weighted acquisitions were taken as the source contrast, and T1-weighted
acquisitions were taken as the target contrast.

Fig. 3. Proposed rsGAN method was demonstrated for synergistic
reconstruction-synthesis of T1- and T2-weighted images from the MIDAS
dataset. The acquisition for the source contrast was fully sampled, and the
acquisition for the target contrast was undersampled by R= 5×, 10×, 20×, 30×,
40×, 50×. PSNR was measured between recovered and fully-sampled reference
target-contrast images. (a) PSNR (mean±standard error) across the test subjects
for rsGAN, rGAN, jGAN, and sGAN when T1 is the source contrast and T2 is the
target contrast. (b) PSNR (mean±standard error) when T2 is the source contrast
and T1 is the target contrast. The performance of sGAN remains constant across
R since it does not use any evidence from the target-contrast acquisitions. As
expected, the performance of rGAN, jGAN, and rsGAN gradually decreases for
higher values of R where the evidence from the target contrast becomes scarce.
However, rsGAN performs well even at very high acceleration factors.

both competing methods, particularly at intermediate R values.
These results indicate that the incorporation of a fully-sampled
acquisitions of the source contrast enables rsGAN to more
reliably recover high-frequency information compared to rGAN
and jGAN, and that the use of evidence collected on the target
contrast ensures that rsGAN yields more accurate recovery com-
pared to sGAN. Next, we demonstrated the proposed method on
a dataset acquired in patients with high- or low-grade gliomas.
We considered two models on the BRATS dataset: a model
to recover T2-weighted images given T1-weighted images, and
another to recover T1-weighted images given T2-weighted im-
ages. Tables III and IV list the respective PSNR and SSIM
values, and Fig. 7 illustrates model performance as a function of
R. Representative T2- and T1-weighted images in the BRATS
dataset recovered with ZF, jGAN, sGAN and rsGAN at R =
50× are shown in Fig. 8. Note that multi-contrast images can
show differential sensitivity to tumor tissue, where tumors can

Fig. 4. T2-weighted images in the MIDAS dataset were recovered from heav-
ily undersampled acquisitions (R= 10×, 20×, 30×, 40×, 50×). The acquisition
for the source contrast (T1-weighted) was fully sampled. Target-contrast images
recovered by ZF (zero-filled Fourier reconstruction), sGAN, jGAN, and rsGAN
are shown with the fully-sampled reference image. As the value of R increases
the performance of jGAN degrades significantly. Meanwhile, rsGAN maintains
high-quality recovered images due to use of additional information from the
source contrast. Regions with enhanced recovery in rsGAN are marked with
arrows.

Fig. 5. T1-weighted images in the MIDAS dataset were recovered from heav-
ily undersampled acquisitions (R= 10×, 20×, 30×, 40×, 50×). The acquisition
for the source contrast (T2-weighted) was fully sampled. Target-contrast images
recovered by ZF, sGAN, jGAN, and rsGAN are shown with the fully-sampled
reference image. Regions with enhanced recovery in rsGAN are marked with
arrows.

be more easily delineated in T2- versus T1-weighted images
particularly in patients with low-grade glioma. As a result,
sGAN suffers from either loss of features in the target contrast
or synthesis of artefactual features. Meanwhile, jGAN suffers
from excessive loss of high spatial frequency information at
high R. In comparison, rsGAN achieves higher spatial acuity
while preventing feature losses and artefactual synthesis. Thus,
the rsGAN method enables more reliable and accurate recovery
when the source contrast is substantially less or more sensitive
to differences in relaxation parameters of two tissues compared
to the target contrast.

Next, we demonstrated the utility of rsGAN to recover multi-
ple target contrasts simultaneously. The specific model tested
on the IXI dataset was aimed to recover both T2- and PD-
weighted images given T1-weighted images as source contrast.
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Fig. 6. Multi-contrast images in the MIDAS dataset were recovered, where
the source contrast was fully sampled and the target contrast was undersampled
at R = 50×. Images were recovered using ZF, sGAN, jGAN and rsGAN.
(a) Recovered T2-weighted images are shown along with the fully-sampled
reference image and the source-contrast image. (b) Recovered T1-weighted
images are shown along with the fully-sampled reference image and the source-
contrast image. rsGAN yields visually accurate recovery of the target-contrast
image compared to sGAN and jGAN. Sample regions that are better recovered
by rsGAN are marked with arrows.

TABLE III
QUALITY OF RECOVERED IMAGES IN THE BRATS DATASET

T1-weighted acquisitions were taken as the source contrast, and T2-weighted
acquisitions were taken as the target contrast.

TABLE IV
QUALITY OF RECOVERED IMAGES IN THE BRATS DATASET

T2-weighted acquisitions were taken as the source contrast, and T1-weighted
acquisitions were taken as the target contrast.

Fig. 7. Proposed rsGAN method was demonstrated for synergistic
reconstruction-synthesis of T1- and T2-weighted images from the BRATS
dataset. The acquisition for the source contrast was fully sampled, and the
acquisition for the target contrast was undersampled by R=5×, 10×, 20×, 30×,
40×, 50×. PSNR was measured between recovered and fully-sampled reference
target-contrast images. (a) PSNR (mean±standard error) across the test subjects
for rsGAN, rGAN, jGAN, and sGAN when T1 is the source contrast and T2

is the target contrast. (b) PSNR (mean±standard error) when T2 is the source
contrast and T1 is the target contrast.

Fig. 8. Multi-contrast images in the BRATS dataset were recovered, where
the source contrast was fully sampled and the target contrast was undersampled
at R = 50×. Images were recovered using ZF, sGAN, jGAN and rsGAN. (a)
Recovered T2-weighted images along with the fully-sampled reference image
and the source-contrast image. (b) Recovered T1-weighted images along with
the fully-sampled reference image and the source-contrast image. rsGAN yields
visually superior images compared to sGAN and jGAN. Note that sGAN suffers
from either loss of features in the target contrast or synthesis of artefactual
features. Meanwhile, jGAN suffers from excessive loss of high spatial frequency
information. Sample regions that are more accurately recovered by rsGAN are
marked with arrows.

We examined the effect of light undersampling performed on
the source contrast (RT1

= 1×, 2×, 3×) in addition to heavy
undersampling on the target contrasts (R = 5×, 10×, 20×,
30×, 40×, 50×). Tables V and VI list the PSNR and SSIM
measurements for T2- and PD-weighted images, respectively.
Fig. 9 illustrates model performance as a function of RT1

and R.
Representative T2- and PD-weighted images in the IXI dataset
recovered with ZF, jGAN, sGAN and rsGAN at RT1

= 2×, R
= 30× are shown in Fig. 10. The rsGAN method yields sharper
images and improved suppression of aliasing artifacts compared
to jGAN and sGAN, even when the source contrast acquisitions
are accelerated. Across all public datasets, rsGAN achieves
1.66 dB higher PSNR and 3.45% higher SSIM compared to
rGAN, 1.40 dB higher PSNR and 2.80% higher SSIM compared
to jGAN, and 5.18 dB higher PSNR and 3.83% higher SSIM
compared to sGAN.

We also examined the effects of perceptual prior and variable-
density sampling patterns in rsGAN. Supp. Tables I-VI list the
PSNR and SSIM measurements across the recovered images



1082 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 6, OCTOBER 2020

TABLE V
QUALITY OF RECOVERED T2-WEIGHTED IMAGES IN THE IXI DATASET

T1-weighted acquisitions accelerated to various degrees (RT1
) were taken as the source contrast, and T2- and PD-weighted acquisitions were taken as the target contrasts. PSNR and

%SSIM values (mean±standard error) for T2-weighted images across the test subjects are listed for rGAN, jGAN, sGAN, and rsGAN. The highest PSNR and SSIM values in each row
are marked in bold font, and the significantly better performing values (p < 0.05) among rGAN, jGAN, sGAN, and rsGAN(T1

= 1) are marked with the ‘†’ symbol.

TABLE VI
QUALITY OF RECOVERED PD-WEIGHTED IMAGES IN THE IXI DATASET

T1-weighted acquisitions accelerated to various degrees (RT1
) were taken as the source contrast, and T2- and PD-weighted acquisitions were taken as the target contrasts.

Fig. 9. The proposed rsGAN method was demonstrated for synergistic
reconstruction-synthesis of T1-, T2- and PD-weighted images from the IXI
dataset. The acquisition for the source contrast (T1-weighted) was lightly
undersampled by RT1

= 1×, 2×, 3×, and the acquisitions for the target contrasts
(T2- and PD-weighted) were heavily undersampled by R = 5×, 10×, 20×,
30×, 40×, 50×. (a) PSNR (mean±standard error) across the test subjects for
rsGAN, rGAN, jGAN, and sGAN when T2 is the target contrast. (b) PSNR
(mean±standard error) for sGAN, rGAN, jGAN, and rsGAN when PD is the
target contrast. As expected, rsGAN outperforms sGAN, rGAN, and jGAN at
all R. At the same time, performance of rsGAN is highly similar for distinct
values of RT1

.

in all public datasets. We find that the original rsGAN model
outperforms rsGAN- on average by 0.53 dB PSNR and 0.37%
SSIM across the datasets. This result demonstrates the benefit
of the perceptual prior for recovery performance. Comparisons
among rsGAN and sr-sGAN indicate that rsGAN shows superior
performance to sr-sGAN at all acceleration factors up to R =
20 where rsGAN achieves 1.01 dB higher PSNR and 0.40%
higher SSIM, and the two methods perform similarly for R>20
where the differences are 0.16 dB PSNR and 0.12% SSIM.
Similar performance at very high accelerations is expected since

Fig. 10. Multi-contrast images in the IXI dataset were recovered, where the
source contrast (T1-weighted) was lightly undersampled at RT1

= 2x, and the
target contrasts (T2- and PD-weighted) were heavily undersampled at R = 30×.
Images were recovered using ZF, sGAN, jGAN and rsGAN. (a) Recovered T2-
weighted images. (b) Recovered PD-weighted images. Samples regions where
rsGAN yields sharper images and improved suppression of aliasing artifacts are
marked with arrows.

the variable-density sampling patterns in rsGAN approach the
central sampling patterns in sr-sGAN at these acceleration rates.

2) Multi-Coil Dataset: We then demonstrated the proposed
approach on complex multi-coil dataset. The model was aimed
to recover both T2- and PD-weighted images given T1-weighted
images as source contrast. We examined the effect of light
undersampling performed on the source contrast (RT1

=1×, 2×,
3×) in addition to heavy undersampling on the target contrasts
(R = 5×, 10×, 15×, 20×, 25×, 30×). Tables VII and VIII list
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TABLE VII
QUALITY OF RECOVERED T2-WEIGHTED IMAGES IN THE MULTI-COIL DATASET

T1-weighted acquisitions accelerated to various degrees (RT1
) were taken as the source contrast, and T2- and PD-weighted acquisitions were taken as the target contrasts.

TABLE VIII
QUALITY OF RECOVERED PD-WEIGHTED IMAGES IN THE MULTI-COIL DATASET

T1-weighted acquisitions accelerated to various degrees (RT1
) were taken as the source contrast, and T2- and PD-weighted acquisitions were taken as the target contrasts.

Fig. 11. Proposed rsGAN method was demonstrated for synergistic
reconstruction-synthesis of T1-, T2- and PD-weighted images from the multi-
coil dataset. The acquisition for the source contrast (T1-weighted) was lightly
undersampled by RT1

= 1×, 2×, 3×, and the acquisitions for the target contrasts
(T2- and PD-weighted) were heavily undersampled by R= 5×, 10×, 15×, 20×,
25×, 30×. (a) PSNR (mean±standard error) across the test images (coronal
cross-sections) for rsGAN, rGAN, jGAN, and sGAN when T2 is the target
contrast. (b) PSNR (mean±standard error) for sGAN, rGAN, jGAN, and rsGAN
when PD is the target contrast. As expected, rsGAN outperforms sGAN, rGAN,
and jGAN at high values of R. At the same time, performance of rsGAN is
highly similar for distinct values of RT1

.

the PSNR and SSIM measurements for T2- and PD-weighted
images, respectively. Fig. 11 illustrates model performance as a
function of RT1

and R. Overall, rsGAN is the leading performer.
rsGAN (RT1

= 1) achieves 0.67 dB higher PSNR and 1.81%
higher SSIM than rGAN, 0.58 dB higher PSNR and 1.56%
higher SSIM than jGAN, and 5.61 dB higher PSNR and 5.95%
higher SSIM than sGAN. Even at RT1

= 3 rsGAN outperforms
both rGAN and sGAN in terms of PSNR across values of
R>10x. The only exception is at R = 5x, where rGAN increases
T2 recovery quality over rsGAN. This result suggests that at very
low accelerations, the benefits of added prior information from

Fig. 12. Multi-contrast images in the multi-coil dataset were recovered, where
the source contrast (T1-weighted) was fully sampled, and the target contrasts
(T2- and PD-weighted) were heavily undersampled at R = 10×. Images were
recovered using ZF, sGAN, jGAN and rsGAN. (a) Recovered T2-weighted
images. (b) Recovered PD-weighted images. Sample regions that are better
recovered by rsGAN are marked with arrows.

the source can be outweighed by the added model complexity
in rsGAN.

Representative T2- and PD-weighted images in the multi-coil
dataset recovered with ZF, rGAN, sGAN and rsGAN at RT1

=
1×, R = 10× are shown in Fig. 12. The rsGAN method yields
sharper images and improved suppression of aliasing artifacts
compared to rGAN and sGAN.

Next we measured recovery performance for jGAN and rs-
GAN with the same overall scan time of 250 sec. For jGAN
this corresponds to R = 8.9× across all contrasts, whereas for
rsGAN this corresponds to RT1

= 3x for the source contrast
and R = 15× for target contrasts. Across all three contrasts,
rsGAN significantly outperforms jGAN in SSIM (p < 0.05)
by 0.63% while the two methods have similar PSNR. For the
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fixed scan time of 250 sec, we also compared the recovery
performance of rsGAN explicitly for the source contrast. We
observe that rsGAN outperforms jGAN by 4.69 dB in PSNR,
and 6.16% in SSIM (p < 0.05). This indicates that rsGAN is
superior in recovery of the source contrasts as expected. These
results showcase a scenario where rsGAN with nonuniform
acceleration is preferable to jGAN with uniform acceleration.

B. Control Experiments

To rule out potential biases in model generalizability due to
selection of cross-sections, we conducted control experiments
in the IXI dataset where we considered two sets of models
(see Methods for rGAN, jGAN, rsGAN and rGANAll, jGANAll,
rsGANAll). Supp. Table VII lists PSNR and SSIM measurements
across the recovered images. Overall, rGANAll outperforms
rGAN by 0.26 dB in PSNR and 0.35% in SSIM, jGANAll

outperforms jGAN by 0.30 dB in PSNR and 0.36% in SSIM,
and rsGANAll outperforms rsGAN by 0.32 dB in PSNR and
0.44% in SSIM. Note that the slight performance improvement
is natural since the test set contained peripheral cross-sections
that were intentionally removed from the training set of rGAN,
jGAN and rsGAN, but included in the training set of rGANAll,
jGANAll and rsGANAll. Second, we observe that results of the
control experiments are consistent with the original experiments
in demonstrating the superiority of rsGAN over alternative
models. Overall, rsGANAll achieves 1.80 dB higher PSNR and
4.27% higher SSIM than rGANAll, and 1.63 dB higher PSNR
and 3.74% higher SSIM than jGANAll. Note that rsGAN also
achieves 1.48 dB higher PSNR and 3.84% higher SSIM than
rGANAll, and 1.30 dB higher PSNR and 3.31% higher SSIM
than jGANAll.

To examine the effects of input phase channels in recovery
of coil-combined magnitude images, two sets of models were
considered (rsGANm and rsGAN) for T2 recovery in the BRATS
dataset. Supp. Table VIII lists PSNR and SSIM measurements
across the recovered images. We find that removing the phase
channels from the rsGAN model decreases average PSNR and
SSIM by 0.30 dB and 0.05%. This difference might be attributed
to the nature of phase images that typically emphasize informa-
tion about tissue boundaries.

Next, we conducted additional experiments to rule out any
bias that might have occurred due to differences in model
complexities among rGAN, jGAN, sGAN and rsGAN. These
experiments were conducted on the BRATS dataset where T1

was set as the source contrast and T2 was set as the target contrast.
Supp. Table IX lists PSNR and SSIM measurements across
the recovered images. We find that rsGAN still outperforms
rGANMC, jGANMC and sGANMC that were matched to rsGAN
in model complexity. Overall rsGAN outperforms rGANMC by
1.39 dB PSNR and 1.50% SSIM, jGANMC by 0.99 dB PSNR
and 1.19% SSIM, and sGANMC by 7.81 dB PSNR and 4.99%
SSIM. Furthermore, changing network complexity has minor
effects in terms of model performance. Overall, performance in
rGAN changes by 0.03 dB PSNR and 0.02% SSIM, in jGAN
changes by 0.19 dB PSNR and 0.04% SSIM, and in sGAN

changes by 0.56 dB PSNR and 0.19% SSIM. Taken together,
these experiments indicate that our results are not unduly biased
by variability in model complexity.

We also evaluated the ability of rsGAN in recovering FLAIR
images. rGAN, jGAN and rsGAN were compared in terms of
average performance on the BRATS dataset. Supp. Table X lists
PSNR and SSIM measurements across the recovered images.
We find that rsGAN outperforms both rGAN and jGAN (please
see Supp. Fig. 1 for representative images). In this task, rsGAN
outperforms rGAN by 0.74 dB PSNR and 0.85% SSIM, and
jGAN by 0.62 dB PSNR and 0.65% SSIM. These results suggest
that the proposed rsGAN model has potential to synthesize a
broader selection of contrasts.

Lastly, we compared the original rsGAN model that inde-
pendently recovers all targets in a multi-target-contrast setting
(rsGAN1) against a unified rsGAN model that simultaneously
recovers all target contrasts (rsGAN2). Comparisons were per-
formed for recovery of T2 and FLAIR images in the BRATS
dataset. Supp. Table XI lists PSNR and SSIM measurements
across the recovered images. We find that rsGAN1 yields 0.25 dB
higher PSNR and 0.10% higher SSIM than rsGAN2. Note that
this moderate performance drop in the unified model is expected,
as rsGAN2 has to compromise between recovery losses for the
two target contrasts.

IV. DISCUSSION

A synergistic reconstruction-synthesis approach based on
conditional GANs was presented for highly accelerated multi-
contrast MRI. In this approach, several source- and target-
contrast acquisitions accelerated to various degrees are taken
as input, and high-quality images for individual contrasts are
then recovered. The proposed rsGAN method yielded superior
recovery performance against state-of-the-art reconstruction and
synthesis methods in three public MRI datasets and a multi-coil
dataset. While rsGAN was demonstrated for multi-contrast MRI
here, it may also offer improved performance in recovery of
images in accelerated multi-modal datasets.

Several previous studies considered joint reconstructions of
multi-contrast acquisitions to better use shared structural infor-
mation among contrasts. In the CS framework, a typical scenario
involves multiple acquisitions with nearly identical accelera-
tion rates [70], [71]. Undersampled data are jointly processed,
and a joint-sparsity regularization term improves recovery of
shared features across contrasts. Another scenario involves the
fully-sampled acquisition of a reference contrast that is then
used as a structural prior for other contrasts [72]. Prior-guided
reconstructions use regularization terms that enforce consistency
of the magnitude and direction of image gradients across distinct
contrasts. These previous approaches yield enhanced quality
over independent processing of each contrast. However, hand-
crafted regularization terms based on transforms such as total
variation or wavelet reflect often suboptimal assumptions about
structural similarity among separate contrasts. The proposed
rsGAN method instead employs a data-driven approach to learn
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to utilize information from source contrast during recovery of
target contrasts.

Few recent studies proposed a learning-based method for
joint reconstruction of multi-contrast MRI data [[53]]–[[55]].
Acquisitions for separate contrasts were accelerated at identical
rates. Convolutional neural network architectures were used
with a subset of network weights shared across contrasts to
better capture structural similarities among contrasts. While
these previous methods were shown to outperform conventional
CS and parallel imaging reconstructions, these are pure recon-
struction approaches that can suffer from scarce sampling of high
spatial frequencies at high acceleration rates. In contrast, rsGAN
employs detailed structural information in a source contrast to
enhance the recovery of high-frequency samples in target con-
trasts. Since the source acquisitions are fully-sampled or lightly
undersampled, rsGAN shows improved reliability against losses
in resolution. Furthermore, GANs have been shown to better
learn the distribution of target images compared to conventional
network architectures.

Several independent studies proposed convolutional neural
networks for recovery of a target contrast by making use of
structural information from a source contrast [56]–[59]. Per-
haps, the closest to our study is [59], where recovery from a
low-resolution target-contrast image was enhanced by incor-
porating fully-sampled acquisition of a separate contrast [59].
Our study is different from [59] in the following aspects: 1)
We demonstrate the proposed approach for reconstruction of
multi-coil complex MR images, whereas [59] consider a model
to post-process coil-combined images that were already recon-
structed. 2) We demonstrate that the proposed approach can
jointly reconstruct and synthesize the target contrast even when
the source contrasts are undersampled. 3) We demonstrate that
the proposed approach can enable high acceleration factors up to
50× by incorporating information from both source and target
contrasts. 4) We incorporate an additional perceptual prior to
improve recovery of high-level image features. In addition to
these technical differences, we also demonstrated superiority
of rsGAN over [59] at all acceleration factors up to 20 (Supp.
Tables I-VI).

The synthesis framework is an alternative for recovery of
images of a target contrast, where data are only available in
a different source contrast. A powerful approach is to construct
dictionaries from multi-resolution image patches, and to learn a
mapping between the source and target dictionaries [23], [24],
[27], [28], [32]. Segregation of the dictionary extraction and
mapping stages might yield suboptimal performance. Network-
based approaches offer a remedy to this problem by unifying
the two stages [25], [34]–[36]. We recently proposed GAN-
based synthesis for multi-contrast MRI that yielded enhanced
performance compared to conventional methods [39]. Yet, due
to lack of evidence on the target contrast, a pure synthesis
approach can suffer from artificial sensitivity or insensitivity to
image features. The rsGAN method, on the other hand, always
collects a moderate to small amount of evidence. This helps
avoid artefactual feature leakage from the source to the target
contrast or loss of target-contrast features that are not apparent
in the source contrast.

An important query about the proposed approach is selection
of source and target contrasts. Note that rsGAN performs heavy
undersampling for only target contrasts, while moderately un-
dersampling source contrasts to preserve as much information
regarding detailed tissue structure as possible. This suggests
that, in a given MRI protocol, contrasts with better capture of
structural details and relatively shorter scan times should be
designated as source contrasts, whereas contrasts with relatively
limited capture of structural details and longer scan times should
be designated as target contrasts. Clinical protocols typically
start with a high-resolution T1-weighted acquisition, so we
considered T1 as a natural source contrast in the current study.
Meanwhile, remaining contrasts including T2, PD or FLAIR
with relatively lower capture of structural details and longer
scan times were designated as target contrasts. In cases where
multiple candidates exist, a selection might be necessary to
minimize the overall scan time. For example, diagnostic proto-
cols for glioma typically include T1-weighted, postcontrast T1-
weighted, T2-weighted, and FLAIR acquisitions. In this case,
both T1 and postcontrast T1 acquisitions are possible candidates
of source contrasts. Yet, given the benefits of postcontrast T1

over T1 in terms of diagnostic accuracy and/or tumor segmen-
tation, postcontrast T1 can be selected.

Here, the experiment for a fixed scan time was based on
T1-weighted acquisitions with a 3D MP-RAGE sequence, and
T2- and PD-weighted acquisitions with a 3D Spin-Echo se-
quence. Naturally the optimal distribution of acceleration factors
across contrasts might vary depending on the specific sequences
prescribed for each contrast. When other sequences or different
sets of sequence parameters are prescribed, the distribution of
acceleration factors across contrasts can be re-tuned empirically
to maximize reconstruction performance. To ensure optimal
performance, separate networks can be trained for each MR
protocol and overall scan time. But since network training is
performed off-line prior to MR scans, the recovery time would
not be affected.

The superiority of rsGAN over jGAN in recovering source
contrasts might motivate its use in several scenarios. First,
rsGAN can be used to recover a specific source contrast with
higher quality within an MRI protocol. The enhanced recov-
ery can prove useful when task-critical information is largely
concentrated in this source contrast. For instance, high-quality
T1-weighted brain images are vital for accurate segmentation of
white and gray matter, or high-quality postcontrast T1-weighted
images serve as a gold-standard tool for tumor localization.
Second, rsGAN can be employed in longitudinal imaging stud-
ies [73], [74], where subjects are scanned in multiple sessions
over extended periods of time. This can help reduce scan time
and increase patient comfort in multi-session MRI exams. In
such cases, fully-sampled source contrasts can be acquired
during the initial session, and they can then aid recovery in
subsequent sessions. Lastly, rsGAN might offer utility in facili-
tating efficient re-acquisition of problematic images in a multi-
contrast exam. When a subset of acquisitions suffers from severe
patient motion or artifacts, the acquisitions can be repeated at
significantly higher acceleration factors to minimize undesirable
increase in scan time. The resulting multi-contrast acquisitions
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with non-uniform undersampling across contrasts can then be
recovered with rsGAN. When the source contrast is affected by
motion, it could be reacquired at a moderate acceleration factor
and recovered using rGAN. Alternatively, a separate network for
suppression of motion artifacts could be trained [75] and used
as a pre-processing step to rsGAN.

Several technical developments are viable for improving the
current implementation of the proposed method. First, the model
can be generalized to simultaneously process multiple neighbor-
ing cross-sections in addition to multiple contrasts. Correlated
tissue structure across cross sections might enhanced recovery
despite the increase in model complexity. Second, when multiple
source contrasts are present, a weight sharing method can be used
to enforce a shared latent representation among contrasts for
improved performance. Lastly, a cycleGAN-based model [65]
might be implemented to allow for learning on unpaired multi-
contrast MRI datasets that are relatively more available than
paired datasets.

V. CONCLUSION

We proposed a synergistic reconstruction-synthesis method
for accelerated multi-contrast MRI based on conditional gener-
ative adversarial networks. End-to-end trained GANs are used to
recover high-quality images of target and source contrasts given
undersampled acquisitions. Unlike pure learning-based recon-
struction, rsGAN uses high-spatial-frequency prior information
in the source contrast to enhance recovery of the target contrast.
Unlike pure learning-based synthesis, rsGAN bases recovered
images on evidence collected through heavily undersampled
acquisitions of the target contrast. The proposed method out-
performs state-of-the-art reconstruction and synthesis methods,
with enhanced recovery of high-frequency tissue structure, and
improved reliability against feature leakage or loss. The rsGAN
method holds great promise for highly accelerated multi-contrast
MRI in clinical practice.
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