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Classifying Daily and Sports Activities
Invariantly to the Positioning of
Wearable Motion Sensor Units

Billur Barshan and Aras Yurtman

Abstract—We propose techniques that achieve invariance to
the positioning of wearable motion sensor units on the body for
the recognition of daily and sports activities. Using two sequence
sets based on the sensory data allows each unit to be placed at
any position on a given rigid body part. As the unit is shifted
from its ideal position with larger displacements, the activity
recognition accuracy of the system that uses these sequence sets
degrades slowly, whereas that of the reference system (which
is not designed to achieve position invariance) drops very fast.
Thus, we observe a tradeoff between the flexibility in sensor unit
positioning and the classification accuracy. The reduction in the
accuracy is at acceptable levels, considering the convenience and
flexibility provided to the user in the placement of the units.
We compare the proposed approach with an existing technique
to achieve position invariance and combine the former with our
earlier methodology to achieve orientation invariance. We eval-
uate our proposed methodology on a publicly available data set
of daily and sports activities acquired by wearable motion sen-
sor units. The proposed representations can be integrated into
the preprocessing stage of existing wearable systems without
significant effort.

Index Terms—Accelerometer, activity recognition and mon-
itoring, gyroscope, inertial sensors, Internet of Things (IoT),
machine learning classifiers, magnetometer, position-invariant
sensing, wearable motion sensors, wearable sensing.

I. INTRODUCTION

W ITH the emergence of Internet of Things (IoT),
products and practices are being transformed by

communicating sensors and computing intelligence across
many industries. Smart environments are continuously being
developed and motion sensors such as low-cost inertial sensors
are being embedded in many objects in the physical world that
the users need to interact with in their daily lives (e.g., com-
puter mouse, smartphone, tools, biomedical devices, kitchen
and sports equipment). Bisio et al. [1] survey and compare the
accelerometer signal classification methods to enable IoT for
activity and movement recognition. The reference platforms
used as elements of IoT in that article are smartphones at four
different positions. Morales and Akopian [2] provide a detailed
review of the studies that use smartphones in human activity
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recognition. While developing algorithms for the interaction
between the different elements of IoT and for processing the
acquired sensory data, it is important to achieve position and
orientation invariance in the placement of sensor units on
these devices, which are either part of a smart environment
or in wearable form. If the algorithms are restricted to oper-
ate only with predetermined sensor positions and orientations,
this would require training the system for each possible sensor
configuration and considerably increase the required amount of
training time and training data. This is obviously not desirable.

Within the above context, recognizing human activities has
attracted considerable interest in areas such as healthcare,
sports science, fitness monitoring, and augmented/virtual real-
ity [3]. Activity recognition and monitoring are performed
either by motion sensor units worn by the user or sensors
embedded in the environment such as cameras, accelerometers,
vibration, and pressure sensors. These could be in the form of
smart furniture, smart upholstery and mats, or smart floors.
The former approach has become more preferable and advan-
tageous as a result of the reduced size, weight, and longer
battery life of wearable sensors as well as their integration into
commonly used accessories such as smartphones, watches, and
bracelets [4]. The latter approach restricts the user’s mobility
and raises privacy concerns.

Commonly employed motion sensor types are inertial sen-
sors (accelerometers and gyroscopes) and magnetometers.
These devices are typically triaxial, acquiring data on three
mutually perpendicular axes x, y, and z. Recorded measure-
ments of motion sensors depend on the position and orientation
of the device. Naturally, users tend to place the sensor units
with some uncertainty on their body parts, each time, at
slightly different positions and orientations compared to the
ideal. When this is the case, activity recognition accuracy tends
to degrade. Expecting the users to place these devices every
time in the same, predetermined way at their ideal positions
and orientations is not only restrictive but also difficult to
realize. This kind of restriction is impractical especially for
elderly, disabled, or injured users who may need to put these
devices on by themselves for fall detection, health monitoring,
or physical therapy applications [5]–[7]. Even if the wear-
able devices are placed correctly at first, their positions and
orientations may inevitably shift over time because of vibra-
tions, movement, impacts on the body, etc. [8]. If the units
are attached to clothing rather than directly on a body part,
the problem is exacerbated. Sensor placement issue is also
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present in prevalent smartphone applications because these
devices are carried at different positions and orientations on
the body such as in different pockets. Allowing the users
to place the sensor units with some possible offset in posi-
tion and orientation would bring them additional flexibility
and make wearable activity recognition systems particularly
advantageous and desirable compared to other approaches.

Uncertainty in the sensor unit placement is neglected in
most applications of wearable sensing and it is unrealistically
assumed that the users place each wearable exactly at the cor-
rect position and orientation on their body. Furthermore, most
existing studies on activity recognition rely on methods that
are sensitive to sensor placement [9]. Our earlier work on
activity recognition addresses the orientations at which sen-
sor units are worn on the body. We have proposed multiple
techniques to transform sensory data such that they become
invariant to the orientation of the sensor unit [10], [11], allow-
ing the users to place the wearable units at any orientation
at predetermined positions. To complement these studies, in
this article, we tackle the issue of achieving invariance to the
positioning of a sensor unit on a given rigid body part.

The main contribution of this article is to investigate how
the activity recognition accuracy is affected by the random
displacements of the sensor unit about its ideal spot while
still being positioned on the same rigid body part. To reduce
the degradation in accuracy, we propose the use of position-
invariant sequences that can be extracted from short segments
of recorded data independently. This allows the user to place
each sensor unit anywhere on a given rigid body part on which
it is supposed to be worn. We also provide a comparison based
on the classification accuracy and the run times of the proposed
approaches and an existing one.

The remainder of this article is organized as follows.
Section II summarizes the related work on position invariance.
We provide the methodology to achieve position invariance
on a given rigid body part in Section III. In Section IV,
we describe the data set and the activity recognition scheme
that we employ in this article. We present the results in
Section V. In Section VI, we provide and compare the run
times of the proposed approaches and the classifiers consid-
ered in this article. We summarize our contributions, draw
conclusions, and provide directions for future research in
Section VII.

II. RELATED WORK

Existing methods to achieve robustness to the positioning
of wearable motion sensor units can be grouped into four cat-
egories as described below [9], [12], [13], with their main
attributes summarized in Table I.

A. Extracting Position-Invariant Information From
Sensory Data

Some studies propose to heuristically transform the sensor
data or extract heuristic features to achieve robustness to the
positioning of the sensor units. Kunze and Lukowicz [8] argue
that the acceleration caused by rotational movements depends

on the sensor position whereas the acceleration caused by lin-
ear movements is the same for all possible sensor positions on
a given rigid body part. Based on this fact, the study neglects
the acceleration data when there is a significant amount of
rotational movement. This is decided to be the case if the dif-
ference between the magnitudes of the detected acceleration
vector and the Earth’s gravity (which approximately corre-
sponds to the magnitude of motion-originated acceleration)
is small compared to the magnitude of the angular accelera-
tion derived based on the gyroscope output. Low-pass filtering
the acceleration sequences brings out the gravitational compo-
nent of acceleration which is considered to be invariant to the
positioning of the unit on a given rigid body part [8], [14].

In addition to the activities of daily living, Hur et al. [15]
consider two commuting activities during which vibrations are
experienced by the whole body. Thus, the smartphone (whose
motion sensors are used) is allowed to be placed at any posi-
tion and orientation on the body. Classification is performed
based on heuristic features extracted from the acceleration
magnitude, discrete Fourier transform (DFT) of the vertical
acceleration, and the speed measured by the global position-
ing system (GPS), which are obtained by using the built-in
features of the Android mobile operating system.

B. Training Classifiers With Different Sensor Unit Positions

Another method to handle the varying positioning of the
sensor units is to train an activity classifier in a generalized
way to capture all (possible or considered) sensor unit posi-
tions. Some studies rely on such generalized classifiers mainly
because data are inevitably acquired with multiple sensor con-
figurations. This kind of natural variation in the data makes
the activity recognition process inherently invariant to the posi-
tioning of the sensor units even though no specific techniques
are developed or used for this purpose [16]–[20].

The data sets in [21]–[27] contain data from multiple sen-
sor units and the data segments obtained from each unit are
considered as separate training and test instances for general-
ized classification. In this scheme, the classifiers are trained
with multiple unit positions and tested by using each posi-
tion individually to demonstrate that the use of a single unit
is sufficient for the recognition of activities. In [22]–[25],
generalized classifiers trained with multiple sensor unit posi-
tions achieve accuracies slightly lower than position-specific
classifiers. In [24], the accuracy further decreases when the
leave-one-position-out method is used, where, for each posi-
tion, a classifier trained with the data of the remaining
positions is used. The studies [22], [23], [25]–[27] consider no
more than several possible sensor unit positions and several
activities, and the accuracy can drop abruptly if the numbers
are increased. Förster et al. [24], on the other hand, classify
aerobic movements with all the sensor units placed on the left
leg and basic hand gestures with all the units worn on the
right arm.

Förster et al. [24], Doppler et al. [28], Henpraserttae
et al. [29], and Thiemjarus et al. [30] analyze the case where
training and test data originate from different sensor unit posi-
tions and provide the accuracy for each position. When this is
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TABLE I
ATTRIBUTES OF EXISTING WORKS ON POSITION INVARIANCE. DATA SETS ARE SEPARATED BY &. ACC: ACCELEROMETER, GYRO: GYROSCOPE,

MAGN: MAGNETOMETER, GPS: GLOBAL POSITIONING SYSTEM, ADL: ACTIVITIES OF DAILY LIVING, Y: YES, N: NO. ACC AND GYRO ARE

TRIAXIAL UNLESS STATED OTHERWISE

the case, the accuracy significantly degrades because the data
acquired only from a single unit position are not sufficient
for training a generalized classifier. An acceptable accuracy
level can be obtained if the training data include multiple
positions, in particular, the position at which the test data are
acquired.

C. Adapting Classifiers to New Sensor Unit Positions

Positioning the sensor units differently on the body causes
variations in the features extracted from the acquired data.
Chavarriaga et al. [31] and Förster et al. [32] assume that
these variations only shift the class means in the feature space
and calculate the amount of shifts in an unsupervised way (i.e.,
without the use of class labels) given new data obtained from
a different sensor unit position. This assumption seems to hold
for the position changes that occur on the same rigid body part
(such as the torso or the left lower leg). However, both studies
obtain unsatisfactory classification accuracies across different
body parts. This is expected because the human body has 244
degrees of freedom where the body parts are connected at
approximately 230 joints as a complex kinematic chain of
links and joints. During an activity, in general, each body part
exhibits different motion characteristics. A major drawback of

these adaptation-based methods is the difficulty of deciding
when to start the adaptation process [31], [32].

D. Classifying Sensor Unit Positions

Some studies classify the sensor unit’s position on the body
during a predetermined set of activities assuming that there is
a finite set of positions, which may not always be the case.
Such position information can be used for context awareness
or to select an activity classifier that is trained specifically
for that position. Kunze et al. [33] distinguish the walking
activity from the other activity types by training a generalized
classifier for four predetermined sensor positions. Recordings
of the walking activity of at least 1-min duration are used to
classify the sensor unit’s position. In this scheme, it is assumed
that the sensor unit remains in the same position for at least a
couple of minutes. Both classification techniques are invariant
to the sensor unit orientations since the magnitudes of the
acceleration vectors are used.

In [34], a sparse representation classifier is trained for each
activity-sensor unit position pair. Then, the Bayesian fusion is
used to recognize the activity type independently of the sensor
unit position and to classify the position of the unit indepen-
dently of the performed activity. Lu et al. [35] consider each
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activity-position pair as a different class so that the activity and
sensor unit position can be simultaneously classified. Another
study [36] follows a two-stage approach by first classifying
the sensor unit’s position on the body and then recognizing the
activity type using a classifier specifically trained for that posi-
tion. By evaluating the accuracy through leave-one-subject-out
cross validation (see Section IV) on the same data set, it shows
that the two-stage approach performs considerably better than
a single-stage generalized activity classifier trained by using
all the sensor unit positions.

Sztyler and Stuckenschmidt [37] classify both the activ-
ity type and the sensor unit position following a three-stage
approach which is more complicated. At each time segment,
it first categorizes the activity into two (as static/dynamic)
without the position information. Then, it classifies the sensor
unit position by using the classifier specifically trained for the
determined activity category. Finally, it recognizes the activity
type by relying on the classifier trained for that particular sen-
sor unit position. In all three steps, the classifiers are trained
and tested separately for each subject. Hence, the method may
not be generalizable to a new, unseen subject, considering that
the activity recognition rate highly depends on the subject(s)
from whom the training data are acquired [38].

E. Other Approaches

Banos et al. [39] rely on a machine-learning approach to
fuse the decisions of multiple classifiers, each of which is
trained specifically for one of the sensor units. (The conven-
tional approach trains a single classifier by aggregating the
features of all the units.) This method can tolerate incorrect
positioning of a small subset of the sensor units by relying
on the correctly placed ones during the classification process.
Zhong and Deng [40] propose a transformation to handle dif-
ferently oriented sensor units in gait classification, claiming
that this method is invariant to the positioning of the units on
laterally symmetric points on the body (e.g., left/right wrist).

In [41], a feature set which is independent of the orienta-
tion of the sensor unit and the movement speed is proposed
and a two-stage signal processing algorithm is developed for
activity/gesture recognition.

The publicly available data sets used in [42] contain activity
data recorded by sensors at different positions on the body. To
remove the effect of different sensor positions, activity data
acquired from different positions are considered as sub data
sets on which their proposed methodology is applied.

F. Discussion

Most of the existing techniques to achieve position invari-
ance are not comparable with each other because of the
differences in the sensor types and configuration, activity
and movement types, classification and cross-validation tech-
niques, and the way of evaluating the accuracy, as displayed in
Table I. Moreover, the impact of the proposed position invari-
ance methods on the accuracy is not always presented because
of the lack of data acquired with correctly positioned sensor
units.

A variety of activity or movement classes are considered in
the previous studies (Table I), which highly affect the clas-
sification accuracy, as shown in [39]. Some studies consider
only a single stationary activity (during which the subject is
not even moving) [19], combine several activity types into
a single class [18], [20], [21], [23], [25]–[27], [35], or do
not include any [8], [24], [28], [31], [32], [34], [39], [40]
(Table I). Activities that are often poorly classified or confused
with each other are sometimes merged into a single class.
For example, ascending and descending stairs are combined
in [8], [17], and [33], which expectedly has a positive effect
on the accuracy, given that these activities are classified with
lower accuracy than the others in [9], [13], [19], [20], [22],
[23], and [26]. In contrast, our data set includes a wide variety
of stationary (static) and dynamic activities (see Section IV-A).
We simultaneously classify a total of 19 daily and sports activ-
ities where activities similar to each other are not merged
but considered as distinct classes. This is a more challeng-
ing problem than those addressed in many of the existing
studies. Unlike most of the existing studies (other than [36]),
we employ magnetometers in our proposed methodology
and exploit magnetometer data to achieve invariance to the
positioning of the sensor units in activity classification as well.

III. PROPOSED METHODOLOGY TO ACHIEVE POSITION

INVARIANCE ON A RIGID BODY PART

Measurements acquired from motion sensor units are
directly related to the linear and angular motion of the struc-
ture on which they are attached. We assume that the body
part on which the sensor unit is placed (e.g., the lower arm) is
rigid so that the relative position of any point with respect to
another arbitrary point on the same body part remains constant
in time during motion. In other words, the distance between
any two arbitrary points is preserved. The motion of a rigid
body at any time instant can be described by a translation and
a rotation in 3-D space [43]. The points constituting the rigid
body all have the same linear velocity and the same angu-
lar velocity. These velocities are represented by 3 × 1 column
vectors v and ω, respectively. The angular velocity (rate) vec-
tor ω points along the instantaneous axis of rotation and its
magnitude represents the rate of rotation. The direction of the
rotation can be determined by using the right-hand rule. A
triaxial gyroscope directly measures the angular rate vector ω

of the body part.
A magnetometer detects the vector sum of the Earth’s mag-

netic field m superposed with external magnetic sources, if
any. The Earth’s magnetic field vector points to the magnetic
north and its magnitude and direction do not change signifi-
cantly with the position of the sensor unit on the rigid body
part, as well as throughout the human body. Hence, the three
components of the magnetic field vector depend only on the
orientation of the magnetometer but not on its position on a
given body part.

Since both the gyroscope (ω) and the magnetometer (m)
sequences (as well as their magnitudes |ω| and |m|) are invari-
ant to the positioning of the sensor unit on a given rigid body
part, they can be directly used as position-invariant features
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Fig. 1. Sensor unit positioning on a rigid body part (the lower arm). The
displacement between two arbitrary positions as well as the centripetal and
Euler components of the acquired acceleration vector are shown.

in the activity recognition process. On the other hand, the
recorded acceleration sequences (a) do depend on the position
of the unit and the classification accuracy degrades when they
are directly employed in the classification process, as we show
later in Section V-B. Hence, we propose to select sequence
sets that are invariant to the positioning of the sensor unit on
a given body part and to use them in the classification process
instead of the raw acceleration data.

According to the Coriolis theorem, an accelerometer detects
the vector sum a of multiple acceleration components which
are the linear, centripetal, Euler, and Coriolis acceleration [43]

a = v̇ + g
︸ ︷︷ ︸

aL

+ω × (ω × r)
︸ ︷︷ ︸

aCP

+ ω̇ × r
︸ ︷︷ ︸

aE

+ 2ω × ṙ
︸ ︷︷ ︸

aC

. (1)

Here, v̇ is the translational, g is the gravitational, ω̇ is the
angular acceleration, and r is the position vector pointing from
an arbitrary point on the axis of rotation to the center of the
sensor unit, as illustrated in Fig. 1. The dot accent (˙) in (1)
represents the first-order time derivative.

When the position of the sensor unit is shifted by �r while
still on the same rigid body part, the new position vector is
r′ = r + �r, where �r is the sensor unit displacement vector
(Fig. 1). The acceleration vector a′ of the displaced sensor
unit can be expressed in terms of the acceleration vector a at
the original sensor unit position and the displacement �r as
follows:

a′ = v̇ + g + ω × (

ω × r′) + ω̇ × r′ + 2ω × ṙ′

= v̇ + g + ω × [ω × (r + �r)] + ω̇ × (r + �r)

+ 2ω × (

ṙ + �̇r
)

(2)

= a + ω × (ω × �r)
︸ ︷︷ ︸

�aCP

+ ω̇ × �r
︸ ︷︷ ︸

�aE

+ 2ω × �̇r
︸ ︷︷ ︸

�aC

.

We assume that once the user places the sensor unit on a
certain body part, its position with respect to that body part
remains fixed over time in the short term. (Here, short term

indicates the duration of a single data segment which is typi-
cally of the order of 1–10 s.) We represent this by keeping the
sensor unit displacement �r constant during each time seg-
ment of the data (�̇r = 0). Thus, the Coriolis acceleration
aC is not affected by the change in the sensor unit position
on the same body part (�aC = 0). This is also true for the
linear acceleration component aL in (1) since both v̇ and g
are constant everywhere on the body part; the former, pro-
vided that �̇r = 0. Hence, shifting the position of the sensor
unit while still on the same body part results in changes in
the Euler and centripetal components (�aE and �aCP) of the
total acceleration vector.

For a given position displacement vector �r, the com-
ponents �aE and �aCP are perpendicular to ω̇ and ω,
respectively. Their magnitudes are calculated as follows:

‖�aE‖ = ‖ω̇ × �r‖ = ‖ω̇‖‖�r‖ sin (∠(ω̇,�r)) (3)

‖�aCP‖ = ‖ω × (ω × �r)‖ = ‖ω‖2‖�r‖ sin (∠(ω,�r)).

To determine which of the two components is dominant in
general, we define the ratio

ρ � ‖�aE‖
‖�aCP‖ = ‖ω̇‖

‖ω‖2

sin (∠(ω̇,�r))
sin (∠(ω,�r))

. (4)

If ρ � 1, then, we may neglect �aCP. (Later in Section V-C,
we show that this is indeed the case for our large data set.)
Then, we can claim that the projection

p � a · ω̇

‖ω̇‖ (5)

of the total acceleration onto the direction of ω̇ is indepen-
dent of the sensor unit displacement �r because the dominant
component �aE that originates from the shifted position is
orthogonal to ω̇. Hence, we consider the component of the
total acceleration a along the direction of ω̇ as a position-
invariant feature which is approximately invariant to the sensor
unit position on the same body part. In the rest of this article,
we will denote this projection by p, which is a scalar quantity
that can change with time.

The orientation of the sensor unit with respect to the Earth
frame can also be employed as a feature which is independent
of position. To estimate the orientation of the sensor unit at
each time sample based on the accelerometer, gyroscope, and
magnetometer data, we use the novel orientation estimation
method we proposed in [44] and represent the 3-D orientation
at each time sample efficiently by a 4 × 1 quaternion vector
q, as a feature that is invariant to the position of the unit on
a certain body part.

We propose to investigate different combinations of the
position-invariant sequences |ω|, |m|,ω,m, p, and q for activ-
ity classification. Our purpose is to assess the performance of
different sequence combinations and identify the best perform-
ing one(s) when the sensor units are incorrectly positioned on
the same rigid body part.
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Fig. 2. (a) Configuration of the motion sensor units on the body.
(b) Connection diagram of the units. [The body sketch in part (b) is
from http://www.clker.com/clipart-male-figure-outline.html; the cables, Xbus
Master, and the motion sensor units were added by the authors.]

IV. DATA SET AND THE ACTIVITY

RECOGNITION METHODOLOGY

A. Data Set

We use the publicly available daily and sports activities data
set acquired by our research group [45], [46] by using five
Xsens MTx sensor units [47] that were placed on the chest,
on both wrists, and on the outer sides of both knees, as shown
in Fig. 2. Each wearable unit contains three triaxial sensors,
namely, an accelerometer, a gyroscope, and a magnetometer
whose outputs are sampled at 25 Hz. Eight subjects performed
the following 19 types of daily and sports activities:

Sitting; standing; lying on back; lying on right side; ascending
stairs; descending stairs; standing still in an elevator; moving
around in an elevator; walking in a parking lot; walking on a
flat treadmill at a speed of 4 km/h; walking on a 15◦-inclined
treadmill at a speed of 4 km/h; running on a flat treadmill at a
speed of 8 km/h, exercising on a stepper, exercising on a cross
trainer, cycling on an exercise bike in horizontal position, cycling
on an exercise bike in vertical position, rowing, jumping, and
playing basketball.

The data set comprises 5-min recordings that consist of
7500 time samples each. For each activity performed by each
subject, 45 (= 5 sensor units × 3 sensor types × 3 axes) time-
domain sequences are recorded since each of the five motion
sensor units contains three triaxial sensors.

B. Activity Recognition Scheme

To classify the activities, we follow the commonly used
activity recognition scheme with the basic stages of data
segmentation, feature extraction/normalization/reduction,
and classification of the (possibly transformed)
data [10], [11], [48]. We first divide the data into
nonoverlapping segments of 5-s duration each. During
the preprocessing stage, we either use the segmented data
directly (the reference approach) or apply one of the two

transformations, described in Section III, to achieve robustness
to sensor unit positioning.

We extract the following statistical features from each
time-domain sequence of each segment: minimum, maximum,
mean, variance, skewness, kurtosis, ten coefficients of the auto-
correlation sequence for the lag values of 5, 10, . . . , 45, 50
samples, and the five largest DFT peaks with the correspond-
ing frequencies where the separation between any two peaks
is taken to be at least 11 samples. There are 26 features for
each time-domain sequence in each segment. For the reference
approach that uses the ωma sequence set and does not involve
any kind of position-invariant elements in the preprocessing
stage, 1170 features (= 5 sensor units × 9 axes × 26 features)
are concatenated to form a 1170-element feature vector for
each segment. In general, the number of features depends on
the number of vector elements and scalars comprising a given
sequence set. For example, in the combination |m|ωmpq,
the total number of features per feature vector is 1560 (=
5 sensor units × 12 elements × 26 features). The features are
normalized to the interval [0, 1] for each subject and the num-
ber of features is reduced to 30 through principal component
analysis [49] which is a linear and orthogonal transformation
where the transformed features are sorted to have variances in
descending order.

We classify activities using seven state-of-the-art machine
learning classifiers [11] described as follows.

Support Vector Machines (SVMs): The feature space is non-
linearly mapped to a higher-dimensional space through the use
of a kernel function and divided into regions by hyperplanes.
In this article, we select the kernel as a Gaussian radial basis
function fRBF(x, y) = e−γ ‖x−y‖2

for any two (reduced) feature
vectors x and y. The penalty parameter C (see [50, eq. (1)]) and
the kernel parameter γ are jointly optimized by performing a
two-level grid search and the optimal values of C = 5 and γ =
0.1 are used in SVM throughout this article. A binary SVM
classifier is trained for each class pair and the decision of the
classifier with the highest confidence level is taken [51]. The
SVM classifier is implemented by using the MATLAB toolbox
LibSVM [52].

Artificial Neural Networks (ANNs): We design a three-layer
network of neurons where we select the input-output relation-
ship of each neuron as a sigmoid function [53]. The number
of neurons in the first (input) and the third (output) lay-
ers are equal to the reduced number of features (30) and
the number of classes (K), respectively. When a test feature
vector is provided at the input, the class decision is made
by selecting the class corresponding to the neuron with the
largest output (a scalar quantity). We select the number of
neurons in the second (or hidden) layer as the integer near-
est to the average of [log (2K)]/[log 2] and 2K − 1, with
the former expression corresponding to the optimistic case
where the hyperplanes intersect at different positions and the
latter corresponding to the pessimistic one where they are
parallel to each other. The weights of the linear combina-
tion calculated by each neuron are initialized randomly in the
interval [0, 0.2]. During training, the weights are updated by
the backpropagation algorithm [54] with a learning rate of
0.3. The algorithm terminates when the reduction in the error
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(if any) compared to the average of the last ten epochs is less
than 0.01.

Bayesian Decision Making (BDM): During the training
phase, a multi-dimensional Gaussian distribution with an arbi-
trary covariance matrix is fitted to the training feature vectors
of each class. Based on maximum-likelihood estimation, the
mean vector is estimated as the arithmetic mean of the feature
vectors and the covariance matrix is estimated as the sample
covariance matrix for each class. In the test phase, the test vec-
tor’s conditional probabilities given that it is associated with
a particular class are calculated for each class. According to
the maximum a posteriori decision rule, the class with the
maximum conditional probability is selected [49], [53].

Linear Discriminant Classifier (LDC): The only difference
of LDC from BDM is that the average of the covariance matri-
ces, individually calculated for each class, is used overall. In
this case, the Gaussians modeling the classes have identical
covariance matrices but different mean vectors, causing them
to be centered at different points in the feature space. Thus,
the decision boundaries in the feature space correspond to
hyperplanes, allowing the classes to be linearly separable [53].

k-Nearest Neighbor (k-NN): In the training phase, training
vectors are stored with their class labels. In the classification
phase, the class that the majority of the k training vectors that
have the smallest Euclidean distance to the test vector belong
to is selected [53]. Values of the k parameter between 1 and
30 are tested and k = 7 is employed.

Random Forest (RF): An RF classifier is a combina-
tion of multiple decision trees [55] where each tree is
trained by randomly and independently sampling the train-
ing data. The splitting criterion at each node is the normalized
information gain. The class decision is reached by majority
voting over the tree decisions. We have used 100 decision
trees and have observed that using more does not significantly
improve the accuracy while increasing the computational cost
considerably.

Orthogonal Matching Pursuit (OMP): The training phase
consists of only storing the training vectors with their class
labels as in k-NN. In the classification phase, each test vector
is represented as a linear combination of a very small fraction
of the training vectors with a bounded error. The vectors in
this sparse representation are selected iteratively by using the
OMP algorithm [56] where an additional training vector is
selected at each iteration. The algorithm terminates when the
desired representation error level (10−3) is reached. Then, a
residual for each class is calculated as the representation error
when the test vector is represented as a linear combination of
the training vectors of only that class, and the class with the
minimum residual error is selected.

Cross-Validation Techniques: We have used two different
cross-validation techniques to assess the accuracies of the clas-
sifiers: P-fold and leave-one-subject-out (L1O). In the former,
the data set is randomly divided into P = 10 equal partitions.
The feature vectors in each partition are classified using a clas-
sifier trained by the feature vectors in the remaining partitions
and their accuracies are averaged out. The main difference of
L1O from P-fold is that data are partitioned subjectwise so that
each partition contains the data acquired from only one of the

eight subjects [53]. Thus, in L1O, there are eight partitions and
the feature vectors of a given subject are left out while train-
ing the classifier with the remaining subjects’ feature vectors.
The left out subject’s feature vectors are then used for testing
(classification). This process is repeated for each subject. L1O
is more challenging and highly affected by the variation in the
data across the subjects, because the training and test sets are
associated with different subjects, usually with larger variation
between them [57]. It is usually employed to assess the gen-
eralizability of the system to an unseen subject and preferred
over P-fold in scenarios where training data are not collected
from the subjects who will use the system.

V. RESULTS

A. Random Position Displacement Model

To observe the effects of sensor unit positioning on the clas-
sification accuracy, we first consider the scenario where the
units are randomly displaced from their ideal positions on the
body parts at which they were originally placed while acquir-
ing the training data. We generate a random displacement
vector �r independently for each sensor unit at the beginning
of each time segment of the recorded data and then assume
that it remains constant during that segment. We calculate the
acceleration vector a′ for the displaced unit based on the orig-
inally acquired total acceleration vector a using (2) (the last
term being zero).

We assume that each sensor unit can be positioned on a
disk with a given radius R centered at its ideal position. The
random displacement �r is confined to this disk which lies
on the plane where the unit makes contact with the body part
it is attached to. Note that all five sensor units make con-
tact with the body on their x-y planes (see Fig. 2). Although
we have considered three different plausible models in [12],
here, we describe one of them where the points with dis-
placement �r from the origin are generated to have uniform
distribution per unit area on the x-y plane. Two indepen-
dent and identically (uniformly) distributed random variables
�rx, �ry are generated such that �rx, �ry ∼ U [−R,R],
where �r = [�rx, �ry, 0]T . The tip of the random vector
�r generated in this way falls uniformly onto a 2R × 2R
square region centered at the ideal position of the unit. If
the tip remains outside the disk centered at the ideal posi-
tion with radius R, the process is repeated as many times as
needed until �r resides inside the disk. (Note that the disk
is inside the square and tangent to it on its sides.) Thus, the
amount of displacement from the ideal spot is bounded by R in
this model.

B. Random Position Displacement on a Rigid Body Part
Without Attempting to Achieve Position Invariance

The standard activity recognition scheme is our reference
case where the sensor units are fixed ideally at their cor-
rect positions and orientations. In this scheme, the originally
recorded ωma sequences are employed without attempting to
achieve position invariance.
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Fig. 3. Activity recognition accuracy for ideally fixed (reference case) and
randomly shifted units. The lengths of the bars indicate the accuracy values
for different R values. The thin sticks represent ±1 standard deviation over
the cross-validation iterations at the top, and over the classifiers at the bottom
part of the figure.

To investigate the effect of randomly displacing the sensor
units on the activity recognition accuracy, we shift the posi-
tion of the sensor unit in the test data as described in the
previous section, while keeping the training data associated
with the correctly placed sensor units in their original form.
Although it is more likely that users will put the units on their
body with small displacements about their ideal positions (typ-
ically up to several centimeters), to determine the limitations
of the standard activity recognition scheme, as well as the
newly proposed schemes later, we consider R values between
0.5 and 100 cm.

In Fig. 3, we provide the classification accuracy of the ref-
erence system for each classifier separately at the top and
by averaging over the seven classifiers at the bottom for the
two cross-validation techniques. We observe that the activity
recognition accuracy naturally degrades when the sensor units
are attached to shifted positions about their ideal position on
the body part they are supposed to be put on. Displacements
up to a few centimeters can be tolerated by the standard
activity recognition scheme whereas the accuracy significantly
degrades for R > 10 cm. Such degradation in the accuracy is
expected because the training data are associated with the cor-
rectly positioned sensor units while in the test data, positions
of the sensor units are shifted randomly. The classifiers have
not been trained and prepared for such displacement of the
units. For R = 100 cm, the accuracy of L1O is higher than
P-fold because the training data in L1O have wider variations
(since each partition contains data acquired from one of the
subjects) and the classifiers are trained to be more tolerant for
possible variations in the test data.

Fig. 4. Statistics of the quantities σ, η, and ρ that are related to aCP and
aE. (a) Histogram of the percentage of σ calculations for which σ > 1 over
one time segment. (b) Histogram of calculated σ values. (c) Surface plot for
ρ on the α-β plane. (d) Histogram of calculated ρ values.

Note that up to this point, we have considered position shifts
for the reference activity recognition system only, which uses
the sequence set ωma, without any attempt to achieve position
invariance on a given rigid body part.

C. Random Position Displacement on a Rigid Body Part
With Position Invariance

First, we need to verify that the scalar quantity p, defined
in (5) is indeed position invariant. By defining the following:

σ � ‖ω̇‖
‖ω‖2

α � ∠(ω̇,�r) η � sinα

sinβ
β � ∠(ω,�r) (6)

the ratio in (4) may be expressed as ρ = ση. We statistically
analyze the quantities σ, η, and ρ in our data set as follows.

• Among all the 5-s time segments in the data set, σ > 1 in
at least 68.8% of the time samples in each time segment.
The histogram for the percentage of σ calculations for
which σ > 1 per time segment is shown in Fig. 4(a).

• The average value of σ , over all the 5 700 000 values of
σ calculated based on the data set, is σ̄ = 897.9. The
histogram for σ is depicted in Fig. 4(b) where 97.3% of
the σ values are greater than one.

• The ratio η is plotted as a function of the angles α and
β in Fig. 4(c). The angles depend on the direction of the
random displacement vector �r. The ratio η decreases as
α approaches to 0 or π rad and increases as β approaches
to 0 or π rad.

• Since the direction of �r is uniformly distributed, the
histogram for the distribution of ρ can be determined
empirically. It is illustrated in Fig. 4(d) where we
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(a)

(b)

(c)

Fig. 5. Original and shifted acceleration data. (a) Acceleration, angular
rate, and angular acceleration sequences acquired from the sensor unit at the
original position. (b), (c) Centripetal, Euler, and shifted acceleration sequences
calculated for the sensor unit when R = 2 cm and R = 15 cm.

observe that 97.8% of the calculated ρ values are greater
than one.

These statistics indicate that ρ � 1; that is, ‖�aE‖ �
‖�aCP‖ for the great majority of the time samples in the data
set. Hence, we can rely on this fact and neglect the component
�aCP to use p as a position-invariant feature on a given rigid
body part.

The x, y, and z components of the original acceleration a,
angular rate ω, and angular acceleration ω̇ vectors are plot-
ted as functions of time in Fig. 5(a) for the sensor unit on
the right leg of a subject during the activity of walking on
a treadmill in the flat position. The components of the vec-
tors �aCP and �aE caused by the sensor unit displacement,
as well as the acceleration a′ for the shifted sensor unit, are
plotted as functions of time for R = 2 cm and R = 15 cm
in Fig. 5(b) and (c), respectively. We observe that �aE has
a magnitude greater than �aCP most of the time and thus
has a stronger effect on the acceleration a′ measured by the
displaced sensor unit. The acceleration component p and the
elements of the orientation quaternion q are plotted as func-
tions of time in parts (a) and (b) of Fig. 6, respectively, for
the same recording illustrated in Fig. 5.

(a)

(b)

Fig. 6. Position-invariant sequences extracted from the sensor data.
(a) Feature p. (b) Four elements of the quaternion q.

Fig. 7. Average activity recognition accuracy over the seven classifiers for
the different sequence combinations considered to achieve position invariance
on a given rigid body part.

We have considered a number of different combinations
of the sequences |ω|, |m|,ω,m, p, and q to achieve position
invariance on a given rigid body part. The results averaged
over the classifiers are provided in Fig. 7, where we observe
that the sequence combination |m|ωmpq results in the high-
est accuracy for P-fold. Since adding |ω| to this combination
gives the same result for P-fold, results in a degradation for
L1O, and has a computational cost, we have not included |ω|
in the selected sequence combinations.

In the following, we propose to use |m|ωmp and |m|ωmpq
to achieve invariance to sensor unit positioning when the units
are shifted from their ideal spot on a given body part dur-
ing the activity recognition scheme. We acquire |m|ωmp (or
|m|ωmpq) based on the training data, whereas for the test
data, we first randomly shift the positions of the sensor units
and then acquire |m|ωmp (or |m|ωmpq).

Fig. 8 shows the activity recognition accuracy for the
sequence set |m|ωmp in combination with the random dis-
placement model. The accuracy is not much affected by
random sensor unit displacements up to R = 50 cm, whereas
the maximum displacement of R = 100 cm causes a notice-
able reduction in accuracy. On the other hand, the accuracy of
the reference system starts degrading significantly after about
R = 10 cm (compare Figs. 8 and 3). The results indicate that
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Fig. 8. Activity recognition accuracy for the |m|ωmp sequence set for ideally
fixed and randomly shifted units for different R values.

the position-invariant features |m| and p perform much better
when used in place of the raw acceleration sequence a when
the units are randomly displaced. Note also that using these
scalar quantities is simpler compared to using the triaxial a.

The activity recognition accuracies for the sequence set
|m|ωmpq when combined with the random displacement
model are provided in Fig. 9. Similar to |m|ωmp, using the
sequence set |m|ωmpq is robust to the displacement of the
sensor units on a rigid body part up to about R = 50 cm. The
accuracy of |m|ωmpq is higher than |m|ωmp on the average
(compare Figs. 8 and 9).

D. Comparison of the Proposed Approach With an Existing
One for Position Invariance on a Rigid Body Part

An existing approach that is applicable to our framework
is to low-pass filter (LPF) the acceleration data [8], [14]. It is
well known that the acceleration sequences recorded on Earth
contain both gravitational and motion-originated components.
Since the gravitational acceleration is independent of sensor
unit placement, low-pass filtered acceleration sequences, dom-
inated by gravity, are tolerant to the incorrect placement of the
sensor units. We filter the acceleration sequences using a zero-
phase Chebyshev type-II infinite impulse response LPF with a
cut-off frequency of 10 Hz as proposed in [14] to extract the
low-frequency components. In addition to the low-pass filtered
acceleration sequence aLPF, the gyroscope and magnetometer
sequences, ω and m, are also used in the activity recognition
process since they are already invariant to the positioning of
the sensor unit on a given rigid body part.

Fig. 10 illustrates the activity recognition rates for the
sequence set ωmaLPF [8], [14]. For random displacements

Fig. 9. Activity recognition accuracy for the |m|ωmpq sequence set for
ideally fixed and randomly shifted units for different R values.

Fig. 10. Activity recognition accuracy for the ωmaLPF sequence set for
ideally fixed and randomly shifted units for different R values.

bounded by a few centimeters, the accuracy achieved with
this method is high but when the displacement exceeds sev-
eral centimeters, it degrades at a much faster rate than those
of the proposed |m|ωmp and |m|ωmpq. This indicates that it
is not as robust as the newly proposed sequence sets to the
positioning of the sensor units. In particular, for the maximum
sensor unit displacement of R = 100 cm, the existing approach
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ωmaLPF performs poorly, whereas the proposed |m|ωmp and
|m|ωmpq perform fairly well. This is mainly because the two
sequence set combinations are selected in a way to be robust
to position shifts on the same rigid body part.

E. Randomly Changing Both the Position and Orientation of
the Sensor Unit on a Rigid Body Part Without Invariance

In this section, we combine the proposed methodology to
achieve position invariance on a rigid body part with our earlier
methodology to achieve orientation invariance. To represent
sensor units whose positions and orientations are randomly
changed while still on the same body part, we first shift the
sensor units according to the model described in Section V-A.
Then, we randomly rotate the sensor units in 3-D space
about their shifted positions. For this purpose, we indepen-
dently generate a random rotational transformation for each
time-segmented window of data (of 5-s duration) simultane-
ously acquired from the nine axes of each sensor unit. The
corresponding rotation matrix R is calculated based on the
three Euler angles φ, θ , and ψ (yaw, pitch, and roll) that are
randomly and uniformly distributed in the interval (−π, π ]
radians (where sφ � sinφ, cφ � cosφ, etc.).

R =
⎡

⎣

cφ −sφ 0
sφ cφ 0
0 0 1

⎤

⎦

⎡

⎣

cθ 0 sθ
0 1 0

−sθ 0 cθ

⎤

⎦

⎡

⎣

1 0 0
0 cψ −sψ
0 sψ cψ

⎤

⎦.

(7)

We premultiply each of the 3×1 measurement vectors ω,m,
and a with this rotation matrix to get the respective vectors
Rω, Rm, and Ra of the same size, that would have been
obtained if the sensor unit were rotated in 3-D. Note that the
measurement vectors of each of the three sensor types in the
same unit are rotated in the same way throughout a given
time segment. These transformations represent the case where
each sensor unit is placed at a random position and orientation
within a disk of radius R, whose center corresponds to the ideal
position of the sensor unit on a given rigid body part.

The results of random displacements about the ideal position
in combination with random rotation as described above, are
provided in Fig. 11 for the reference system. Compared to
ideally positioned and oriented units (topmost bars), keeping
the position fixed while randomly rotating the units (second
bars from the top) decreases the average accuracy abruptly,
by more than 56%. When the units are displaced as well, the
accuracy degradation is even more and keeps increasing with
larger displacements from the ideal position.

Note that, as in Section V-B, we keep the training data in
their original form. We randomly change both the position
and the orientation of the sensor units only at the beginning
of each time segment of the test data. This corresponds to
the real-world scenario where the user puts the sensor units
on with some error while using a wearable system previously
trained when the units were ideally placed on his/her body.

Again, we note that in this section, we have considered
random position and orientation shifts for the reference activ-
ity recognition system only, which uses the sequence triplet
ωma, without attempting to simultaneously achieve position
and orientation invariance on a given rigid body part yet.

Fig. 11. Activity recognition accuracy for ideally fixed, randomly rotated,
and both randomly shifted (for different R values) and randomly rotated units.

F. Methodology to Achieve Simultaneous Position and
Orientation Invariance on a Rigid Body Part

We have considered achieving invariance to the orienta-
tion of wearable sensor units within the context of activity
recognition in our earlier works [10], [11]. In [10], we have
considered invariance to sensor unit orientation and developed
two novel transformations (based on heuristics and singular-
value decomposition) to remove the effect of absolute sensor
orientation from the raw sensor data. The method proposed
in [11] is based on transforming the recorded motion sensor
sequences invariantly to sensor unit orientation by estimating
the sensor unit orientation and representing the sensor data
with respect to the Earth frame. We also determine the rota-
tion of the sensor unit between consecutive time samples and
represent it by quaternions with respect to the Earth frame.

To achieve orientation invariance in addition to position
invariance on a given rigid body part, we replace the position-
invariant sequences used in Section III with their counterparts
that can also achieve orientation invariance. To do this, we
first estimate the orientation of the sensor unit with respect
to the Earth frame based on the sensor recordings by using
the novel orientation estimation method we proposed in [44].
Based on the estimated orientation, we represent the position
invariance ω and m with respect to the Earth frame, denoting
them with the superscript E. (Previously, these quantities were
represented with respect to the sensor unit frame.) Note that p
is a scalar quantity independent of the reference frame.

In addition, we replace the orientation quaternion q (with
respect to the Earth frame) with the differential orientation
quaternion δq. To obtain δq, we first calculate the differential
rotation matrix Dn that represents the rotation of the sensor
unit frame between two consecutive time samples (n and n+1)
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Fig. 12. Activity recognition accuracy for the different sequence combi-
nations that are considered to achieve simultaneous position and orientation
invariance.

with respect to the Earth frame [11]. Representing a rotational
transformation with a 3×3 matrix (of nine elements) is ineffi-
cient because any 3-D rotation can be described by only three
angles. Instead, we represent the differential rotation matrix
Dn compactly by a four-element differential quaternion δqn
(with respect to the Earth frame) as

δqn =

⎡

⎢

⎢

⎣

δq1
δq2
δq3
δq4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

√
1+d11+d22+d33

2
d32−d23

4
√

1+d11+d22+d33
d13−d31

4
√

1+d11+d22+d33
d21−d12

4
√

1+d11+d22+d33

⎤

⎥

⎥

⎥

⎥

⎦

(8)

where dij (i, j = 1, 2, 3) are the elements of Dn [58]. (Here,
the dependence of the elements of δqn and Dn on n has been
dropped from the notation for simplicity). We finally drop the
subscript n from δqn as well and simply denote it by δq in
the following.

Since the sequences |ω|, |m|,ωE,mE, p, and δq do not
depend on the orientation at which the units are worn on
the body, it is possible to achieve invariance to sensor unit
orientation by employing combinations of these quantities.

We have considered a number of different combinations of
the above-mentioned sequences to achieve simultaneous posi-
tion and orientation invariance on a given rigid body part.
The results are provided in Fig. 12 where we observe that the
sequence combination |ω||m|ωEmEp δq gives the highest aver-
age accuracy for P-fold. On the other hand, the highest average
accuracy for L1O is obtained with |ω|ωEmEp δq. Replacing
|ω| with |m| or the addition of |m| to the sequence set in
L1O degrades the average accuracy by 0.2%–0.3%. Compared
to the reference system (topmost bars in the figure), using
|ω||m|ωEmEp δq results in 2.1% lower accuracy for P-fold.

TABLE II
AVERAGE PROCESSING TIME TO TRANSFORM THE ORIGINAL SEQUENCE

SET ωma INTO A NEW REPRESENTATION PER 5-s TIME SEGMENT

DURING THE PREPROCESSING STAGE

Using |ω|ωEmEp δq in L1O degrades the accuracy by 6.1%
but achieves orientation invariance as well. All of the results
given in Fig. 12 are for the ideal position and orientation of
the sensor unit. We observe that the sequence sets considered
here exhibit an acceptable drop in accuracy compared to the
reference system. Since these sequence sets are selected to be
both position and orientation invariant to begin with, when
the sensor unit is randomly shifted in position and randomly
rotated as well, we do not expect the accuracy to degrade as
fast as that of the reference system (Fig. 11).

VI. RUNTIME ANALYSIS

The average processing times of the techniques considered
in this article to transform the original sequence set ωma into
a new representation during the preprocessing stage are pro-
vided in Table II per 5-s time segment. This includes the
existing approach ωmaLPF, the proposed sequence sets to
achieve position invariance, and those to achieve simultane-
ous position and orientation invariance, as well as several
other sequence combinations that we have considered. The
processing was performed on a laptop computer containing
a quad-core Intel Core i7-4720HQ processor with a clock
speed of 2.6–3.6 GHz and 16 GB of RAM running 64-bit
MATLAB R2018b.

Among the techniques that achieve only position invari-
ance (the first five rows of the table), the proposed |m|ωmp
sequence set is computationally more efficient than the exist-
ing approach ωmaLPF, whereas the second proposed sequence
combination |m|ωmpq takes longer to execute.

Note that some members of the sequence sets in the last
four rows of the table are represented with respect to the
Earth frame, requiring the estimation of sensor unit orientation.
For this purpose, we employ the novel method we proposed
in [44], which takes most of the processing time. Nevertheless,
all of the run times in the table are much shorter than the
duration of a single time segment (5 s), indicating that the
new representations can be obtained in near real time.

Table III shows the average run times of the classifiers with
their standard deviations over all the transformation techniques
considered in this article (Figs. 7 and 12). In the second col-
umn of the table, we provide the average of the total run time
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TABLE III
AVERAGE RUN TIME OVER ALL THE TRANSFORMATION TECHNIQUES

CONSIDERED WITH ONE STANDARD DEVIATION IN PARANTHESES

(including the training phase, classification of all test feature
vectors in the test phase, and programming overheads) per
cross-validation iteration. We observe that the k-NN classi-
fier has the shortest average total run time among the seven
classifiers, whereas OMP has the longest.

Average training times of the classifiers per cross-validation
iteration are given in the third column of Table III. Since the
k-NN and OMP classifiers only store the training feature vec-
tors, effectively, they have zero training time. On the other
hand, the RF classifier takes the longest to train.

The average classification time per single test feature vector
associated with a 5-s time segment is given in the fourth col-
umn of Table III. Although all of the classifiers can label a test
feature vector in a duration much shorter than 5 s, the ANN
and LDC classifiers perform this operation almost instantly,
followed by k-NN, identifying the activity in no longer than
0.15 ms. The OMP classifier has the longest classification
time because it executes an iterative algorithm independently
for each test feature vector, but its run time is still much
shorter than the segment duration, allowing near real-time
implementation.

VII. DISCUSSION AND CONCLUSION

We have focused on the positioning of wearable sensor
units and proposed methods that allow the user the flex-
ibility to wear each sensor unit at shifted positions while
keeping it on the same rigid body part. To achieve position
invariance under these circumstances, we have proposed novel
approaches based on the use of a set of position-invariant
sequences. We have demonstrated their robustness to the posi-
tioning of a sensor unit on a rigid body part compared to an
existing approach and the reference system. Since the refer-
ence system is not designed to achieve position invariance, it
is highly vulnerable to position shifts. The proposed sequence
sets cause small degradation in the activity recognition accu-
racy when the units are correctly placed and obtain much
higher accuracies than the reference system when the posi-
tion of the sensor unit is shifted while the unit remains on the
same rigid body part. The main reason for the slower accuracy
degradation is the appropriate choice of the position-invariant
sequence sets in the proposed methods.

We have extended our methodology to achieve invariance to
both the position and orientation of wearable motion sensor
units at the same time. This scheme allows the user further

flexibility to place the wearable sensor units at any position
and orientation on a given rigid body part, provided that data
were acquired from that body part when the sensor unit was
ideally configured and the system was trained with that data.
More importantly, it substantially reduces the amount of time
and data required to train the system since it is no longer
necessary to train for each possible position and orientation
of the sensor units.

Theoretically, our proposed methods are generalizable to
position and orientation shifts within a rigid body part as well
(rather than being restricted to the surface of the body part).
However, in practice, sensor units are typically displaced on
the surface of the body part unless they are implanted.

We have comparatively evaluated the proposed and existing
approaches using our publicly available data set containing
daily and sports activities which are larger in number and
more complex than those considered in existing studies. We
have employed seven state-of-the-art machine learning classi-
fiers and two cross-validation techniques to demonstrate the
robustness of our methodology.

In developing the techniques in this article, we have inten-
tionally not used information on the activity types in the data
set and the sensor unit positions because our purpose was to
keep the proposed techniques sufficiently general to be appli-
cable to a broad range of wearable systems and scenarios. The
proposed transformations can be applied to each time segment
of the acquired data independently. Hence, the impact of a shift
or sudden change in the positions (and orientations) of the
sensor units is limited to the time segment during which the
change occurs. The classification accuracy in future time seg-
ments is not affected. The newly proposed techniques employ
multi-dimensional time-domain sequences with a format sim-
ilar to that of the raw data. As such, it is straightforward to
integrate them into a wide variety of existing wearable systems
by transforming the sensory data in the preprocessing stage
without much effort. This way, the system becomes robust to
variable sensor unit placement and its performance is not sig-
nificantly affected by shifts in the positions and orientations
of the sensor units on rigid body parts.

An interesting future research direction would be to inves-
tigate how the frequency content of the acquired acceleration
signals changes with random shifts in the sensor unit posi-
tion. This would depend on the body part the sensor unit is
placed on, the type of activity being performed, and the rate
of change of the angular velocity and acceleration during that
activity on a given rigid body part. While �r is assumed to
be constant during each short time segment of data in this
article, the case of �r instantaneously changing with time (at
each time sample) can be considered. We expect that this will
also modify the frequency content of the Euler and centripetal
acceleration components.

One may continue investigating additional features which
are robust and invariant to the positioning of the sensor units
as well as to the orientation, and the combination of both.
Methods can be developed to achieve position and orientation
invariance across different body parts and the lateral symmetry
of the human body can be exploited. The dependence of the
invariance techniques on the activity type or category can be
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investigated. An important related problem is the investigation
of position and orientation invariance of sensor units on the
other elements of IoT which are not necessarily worn on the
body, but are part of a smart environment.
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