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Abstract

Although most contest games are modeled in such a way that the outcome
depends only on the efforts exerted by the contestants, what is arguably more im-
portant is the contestants’ effective efforts which may be influenced also by their
ability, human capital, strength, etc. In this paper, we investigate an extensive
model including such an effectiveness parameter and analyze the optimal invest-
ment behavior in a dynamic conflict framework. At each period, two contestants
compete for a common prize by choosing contest efforts and investment levels.
Each contestant’s investment accumulates as his/her human capital which depre-
ciates through time. Who wins the component contest at a particular period is
determined by the contestants’ effective efforts, defined as increasing functions of
their efforts and human capitals. Following the analysis of subgame perfect Nash
equilibrium in a two-period model and of open-loop equilibrium in an infinite-
horizon model, we provide intuitive comparative static results.

JEL classification: C72, D74
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1 Introduction

Human capital is a measure of an individual’s knowledge, talent, or other intangible
resources that can be used to create economic value; and it is considered to be one
of the key determinants of economic growth. Following the seminal works by Mincer
(1958), Schultz (1961), and Becker (1962), there has emerged a vast literature on the
theoretical and empirical investigation of human capital emergence, investment, and
accumulation. This literature mostly concentrates on the relationships between human
capital and growth (see Mankiw et al., 1992; Galor and Weil, 2000; Barro, 2001, among
others), human capital and earnings (see Ben-Porath, 1967; Mincer, 1997; Huggett et al.,
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2006, among others), human capital and productivity (see Black and Lynch, 1996; En-
gelbrecht, 1997; Dearden et al., 2006, among others), and other relevant issues. In this
paper, we also contribute to this literature by studying investment on human capital in
a dynamic contest model.

A contest game is a strategic interaction in which each participant exerts irreversible
and costly efforts to win a valuable prize. Perhaps the most common real-life exam-
ples are sports, warfare, firm competition, patent races, etc.1 Although most of these
interactions can be modeled as a static game, there is also a bulk of literature concen-
trating on dynamic models (see Leininger and Yang, 1994; Gradstein, 1998; Gradstein
and Konrad, 1999; Yildirim, 2005; Grossmann and Dietl, 2009; Konrad and Kovenock,
2009, among others). Such dynamic contest models allow for the analyses of several in-
teresting concepts; such as the discouragement effect (see Konrad and Kovenock, 2009;
Doğan et al., 2017), the effect of learning (see Clark and Nilssen, 2013), optimal contest
design (see Gradstein, 1998; Gradstein and Konrad, 1999), adding to the previously
exerted effort (see Yildirim, 2005), comparisons between the equilibrium behavior in
static and dynamic models (see Leininger and Yang, 1994; Keskin and Sağlam, 2017),
and investment decisions affecting future outcomes (see Fu and Lu, 2009; Grossmann
and Dietl, 2009).

In this paper, we are interested in a dynamic contest game where two participants
[i] make costly investments which accumulate as their human capital and [ii] exert
costly efforts to win a component contest in each period. For this model, we offer
the following interpretation: Consider a dynamic competition between two individuals
working in the same firm. A period ends with the firm owner giving a premium to one of
these individuals. Each individual can invest in his/her education, which consequently
improves his/her human capital in the following period. They also exert costly efforts to
receive the premium; and the winner in a given period is determined by their effective
efforts, defined as increasing functions of their contest efforts and human capitals. For
instance, suppose that each individual chooses how much time to allocate in work,
education, and leisure.2 If an individual allocates more time in work this period, then
his/her chance of winning the current contest increases; but if an individual allocates
more time in education this period, then his/her human capital in the following period
improves, which in turn increases the chances of winning the contests in periods to come.

For a more concrete real-life example, consider two countries engaged in a dynamic
market competition in a labor-intensive market (such as agriculture, tourism, etc.).
A country’s aim is to help its firms increase their market shares. The market share
depends on the quality of the end-product, which is influenced by the productivity
and amount of labor used in production. It is the product quality that determines a
country’s success in the component contest in a given period. Each country has an
option to [i] invest in human capital (by improving the education system) to increase

1For detailed investigations of the works in the contest literature, see Corchón (2007); Konrad (2009);
Dechenaux et al. (2015) among others.

2As a matter of fact, leisure choice is not explicitly modeled here, but it is captured in the cost of
allocating time in work or education.
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future productivity and [ii] subsidize labor hiring to boost current production. The
trade-off between these two options is in the center of our analysis. As a matter of fact,
it is possible to motivate the productivity/effectiveness parameter in a different context
other than human capital. Consider two countries engaged in a dynamic warfare, such
that the effectiveness parameter is now labeled as military strength. Investment in
military training and/or weapons technology improves the country’s military strength;
and in each period, the winner of the component contest is determined by the countries’
effective efforts, defined as functions of their contest efforts and military strengths.3

We should mention that investment-type decisions are already incorporated in the
dynamic contest literature; see Fu and Lu (2009); Grossmann and Dietl (2009); Gross-
mann et al. (2011); Bevia and Corchón (2013) for some examples.4 Broadly speaking,
in all of these papers, an increase in the strategy chosen in period t positively affects
the outcome of the component contest in the following period t + 1. In comparison
to Fu and Lu (2009) and Bevia and Corchón (2013), we are interested in a different
model which includes effectiveness accumulating through time. This is an important
difference, since “accumulation” implies that the investment in period t also indirectly
affects the outcomes of all the contests throughout. In that regard, our model is much
closer to the models studied by Grossmann and Dietl (2009) and Grossmann et al.
(2011). However, we also differ from their models in the following sense. Rather than
interpreting contest efforts as indirect investments, we consider two separate choice vari-
ables: effort and investment. This way, we distinguish between effort and investment
decisions, thereby capturing a dynamic missing from the existing models. To the best
of our knowledge, we are the first to investigate a two-choice-variable dynamic contest
game with accumulating investments.

In the first part of the following section, we study a two-period version of this dy-
namic contest. We show in a subgame perfect Nash equilibrium that players exert the
same equilibrium efforts independent of the asymmetry in their effectiveness levels in a
given period. This implies that the ratio of winning probabilities is directly proportional
to the ratio of effectiveness levels. Moreover, we find that the equilibrium investments
depend on the asymmetry in the education efficiency. In the second part of the following
section, we analyze open-loop equilibrium in an infinite-horizon version of the contest.
Our findings indicate that the steady state efforts have similar characteristics with the

3Given this alternative interpretation, our work can also be seen as a theoretical contribution to
the literature on military expenditures (see Rothschild, 1973; Deger and Smith, 1983; Kollias, 1996;
Pieroni, 2009; Alptekin and Levine, 2012, among others). This literature mostly focuses on the amount
of military investments and its effects on a country’s economy (e.g., international trade, economic
growth, etc.). To our knowledge, earlier works have not considered a dynamic game-theoretic model to
investigate the strategic interaction that incentivizes the contending parties to invest in their military.
Our model can fill this gap, since it provides a strategic framework to understand how countries can
utilize their military expenditures against their rivals through time.

4There are other studies having a similar flavor, but they are quite different than the model studied
here as they capture the effect of investment by a decrease in the cost of effort (see Münster, 2007;
Clark and Nilssen, 2013). Furthermore, in a rather different investment-contest game, Amegashie (2011)
shows that an asset owner might overinvest when property rights are incomplete.
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equilibrium efforts in the two-period version. Interestingly, the steady state investments
turn out to be symmetric as well, independent of any asymmetry in the model, whereas
the asymmetry in the education efficiency significantly affects the steady state human
capitals. All these results highlight the importance of investment on human capital in
dynamic conflict situations.5

The rest of the paper is organized as follows. In Section 2, we formulate the model
structure and analyze equilibrium behavior in both finite- and infinite-horizon versions
of the model. Section 3 concludes.

2 The Model

There are two players in a dynamic contest game. At each period t = 1, 2, . . ., they
participate in a component contest choosing a strategy (ei,t, si,t) where ei,t denotes the
contest effort and si,t denotes the investment. Each player i’s effective effort in period t
is defined as an increasing function of ei,t and the effectiveness parameter hi,t (also
referred to as human capital parameter). The effective efforts determine the outcome of
the component contest in period t. The winner gets a common prize of V > 0, whereas
the loser gets a normalized payoff of 0. Furthermore, player i’s investment in period t
directly affects player i’s effectiveness in period t+1, which accumulates over time. Due
to accumulation, investment in period t indirectly affects his/her effectiveness in all of
the following periods t′ > t; and as a result, investment in period t also indirectly affects
player i’s probability of winning the battle at any period t′ > t.

Given a list of actions
(ej,t, sj,t)t=1,2,...

for player j and for all periods t = 1, 2, . . ., we say that player i maximizes∑
t=1,2,...

βt−1
[
pi(e1,t, h1,t, e2,t, h2,t)V − ci(ei,t, si,t)

]
subject to

hi,t+1 = (1− δ)hi,t + ϕi(si,t)

given h1,1, h2,1 > 0.
In this context, β ∈ (0, 1) is the common discount factor; δ ∈ (0, 1) is the common

depreciation rate for effectiveness; V > 0 is the common prize a player receives after
winning a component contest; and for each player i ∈ {1, 2}, pi(e1,t, h1,t, e2,t, h2,t) denotes
the respective winning probability, ci(ei,t, si,t) denotes the respective total cost of effort
and investment, and ϕi(si,t) denotes the respective influence of investment on the player’s

5Grossmann et al. (2010) show that linear costs imply immediate convergence of the asset stocks
to the steady state. Later, Grossmann et al. (2011) show that if the cost function is convex, then the
speed of convergence significantly depends on the elasticity of the cost function. In contrast to these
results, we find that even with linear cost functions, non-immediate convergence is possible such that
the speed of convergence depends on multiple model parameters.
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effectiveness level in period t+1. We further assume that all functions are differentiable
and for each player i ∈ {1, 2}:

� the contest success function pi is increasing in ei,t and hi,t, but decreasing in ej,t
and hj,t;

� the cost function ci is increasing and convex in both arguments; and

� the effectiveness transformation function ϕi is increasing and concave in its argument,
and it satisfies limsi,t→∞ ϕ

′
i(si,t)→ 0.

In the following subsections, we study equilibrium behavior in both finite- and
infinite-horizon versions of this contest.

2.1 Finite-horizon

We consider a two-period model and analyze pure-strategy subgame perfect Nash equi-
librium. For that we perform backward induction. In the second period, there will be no
investment in the equilibrium: s∗1,2 = s∗2,2 = 0. Therefore, each player only determines
his/her effort level in period 2. Given ej,2, the optimal solution satisfies the following
first order condition for player i ∈ {1, 2}:

∂pi(e1,2, h1,2, e2,2, h2,2)

∂ei,2
V − ∂ci(ei,2, 0)

∂ei,2
= 0 . (1)

Whenever they exist, the equilibrium efforts (e∗1,2, e
∗
2,2) are implicitly characterized by

this system of equations, (1).
Knowing these equilibrium efforts in the second period, we can proceed to period 1.

Given ej,1 and sj,1, the first order condition with respect to ei,1 for player i ∈ {1, 2}:

∂pi(e1,1, h1,1, e2,1, h2,1)

∂ei,1
V − ∂ci(ei,1, si,1)

∂ei,1
= 0 . (2)

Given ej,1 and sj,1, the first order condition with respect to si,1 for player i ∈ {1, 2}:

∂ϕi(si,1)

∂si,1

(
∂pi(e

∗
1,2, h1,2, e

∗
2,2, h2,2)

∂e∗i,2

∂e∗i,2
∂hi,2

V +
∂pi(e

∗
1,2, h1,2, e

∗
2,2, h2,2)

∂hi,2
V

+
∂pi(e

∗
1,2, h1,2, e

∗
2,2, h2,2)

∂e∗j,2

∂e∗j,2
∂hi,2

V −
∂ci(e

∗
i,2, 0)

∂e∗i,2

∂e∗i,2
∂hi,2

)
=

1

β

∂ci(ei,1, si,1)

∂si,1
.

(3)

Whenever they exist, the equilibrium efforts (e∗1,1, e
∗
2,1) and investments (s∗1,1, s

∗
2,1)

for both players are implicitly characterized by this system of equations: (2)–(3). For
concreteness, suppose that the cost function is additively separable. Then for any player
i ∈ {1, 2}, the first order condition (2) becomes independent of si,1, so that the equi-
librium efforts (e∗1,1, e

∗
2,1) can directly be derived using only these first order conditions.

And given the equilibrium efforts in both periods, the equilibrium investments (s∗1,1, s
∗
2,1)
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are those that solve the first order conditions with respect to si,1. On the other hand, if
the cost function is not additively separable, then all of these four first order conditions
should be solved simultaneously.

Now, in order to have more concrete ideas about the subgame perfect Nash equilib-
rium of this model, we utilize specific functional forms for pi, ϕi, and ci. In particular,
we consider the following Tullock-type contest success function pi:

6

pi(e1,t, h1,t, e2,t, h2,t) =
hi,tei,t

h1,te1,t + h2,te2,t
(4)

and the following effectiveness transformation function ϕi:

ϕi(si,t) = γisi,t
α (5)

where α ∈ (0, 1) represents the curvature and captures diminishing marginal returns
of investment, and γi ≥ 1 regulates the asymmetric rate of increase indicating the
efficiency of the education system. We also consider an additively separable, linear cost
function ci:

ci(ei,t, si,t) = ei,t + si,t . (6)

The equilibrium strategies are summarized in the following proposition.

Proposition 1. In the two-period dynamic contest game above, the equilibrium invest-
ments in period 2 are s∗1,2 = s∗2,2 = 0. The equilibrium efforts are given by

e∗1,1 = e∗2,1 =
h1,1h2,1V

(h1,1 + h2,1)2
and e∗1,2 = e∗2,2 =

h1,2h2,2V

(h1,2 + h2,2)2
.

Moreover, for player i ∈ {1, 2}, the equilibrium investment level in period 1 is implicitly
characterized by

s∗i,1
1−α = 2αβγiV

[
(1− δ)hi,1 + γis

∗
i,1
α
]
·
[
(1− δ)hj,1 + γj

(
γj
γi

) α
1−α

s∗i,1
α
]

[
(1− δ)(hi,1 + hj,1) + γis∗i,1

α + γj

(
γj
γi

) α
1−α

s∗i,1
α
]3 for j 6= i.

The equilibrium analysis is provided below. Once again, we already know that
s∗1,2 = s∗2,2 = 0. Consider player 1’s effort decision in period 2. The respective first order
condition (1) becomes

h1,2h2,2e2,2
(h1,2e1,2 + h2,2e2,2)2

V − 1 = 0 . (7)

6Clark and Riis (1998) argue that this contest success function becomes particularly useful when
winning probabilities depend on personal characteristics of the contestants. In the current context, the
effectiveness parameter hi,t represents a personal characteristic. The interested reader is referred to
Clark and Riis (1998) for an axiomatization.
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Considering the symmetric first order condition for player 2, we have the following best
response functions:

e∗1,2 =

√
h1,2h2,2e∗2,2V − h2,2e∗2,2

h1,2
and e∗2,2 =

√
h1,2h2,2e∗1,2V − h1,2e∗1,2

h2,2
. (8)

This yields the following equilibrium effort strategies for players 1 and 2:

e∗1,2 = e∗2,2 =
h1,2h2,2V

(h1,2 + h2,2)2
. (9)

We now proceed to period 1. In a similar manner, the first order condition with
respect to e1,1 becomes

h1,1h2,1e2,1
(h1,1e1,1 + h2,1e2,1)2

V − 1 = 0 . (10)

Considering the symmetric first order condition for player 2, we find the equilibrium
effort strategies for players 1 and 2 to be

e∗1,1 = e∗2,1 =
h1,1h2,1V

(h1,1 + h2,1)2
. (11)

In both periods, both players’ equilibrium efforts increase in the winning prize V . More-
over, for any t ∈ {1, 2}, if hi,t > hj,t, then both e∗i,t and e∗j,t decrease in hi,t and
increase in hj,t. This implies that as the distance between the effectiveness parame-
ters increases/decreases, the component contest becomes less/more competitive, so that
the equilibrium efforts decrease/increase. In case hi,t = hj,t for some t ∈ {1, 2}, the
equilibrium efforts e∗i,t and e∗j,t become independent of the effectiveness parameters.

We further observe that e∗1,1 = e∗2,1 and e∗1,2 = e∗2,2. This means that the ratio
of equilibrium efforts do not depend on the ratio of effectiveness parameters. More
precisely, even when hi,t > hj,t for i 6= j, both players exert the same amount of effort
in period t. Accordingly, the one with a higher effectiveness parameter would always
have a higher probability of winning at the equilibrium. Hence, not so surprisingly,
being more effective turns out to be extremely important, which further highlights the
importance of investment decisions.

Finally, the first order condition with respect to s1,1 becomes

αγ1s1,1
α−1
(

h1,2h2,2e
∗
2,2

(h1,2e∗1,2 + h2,2e∗2,2)
2

h2,2(h2,2 − h1,2)
(h1,2 + h2,2)3

V 2

+
h2,2e

∗
1,2e
∗
2,2

(h1,2e∗1,2 + h2,2e∗2,2)
2
V −

h1,2h2,2e
∗
1,2

(h1,2e∗1,2 + h2,2e∗2,2)
2

h2,2(h2,2 − h1,2)
(h1,2 + h2,2)3

V 2

−h2,2(h2,2 − h1,2)
(h1,2 + h2,2)3

V

)
=

1

β
.

(12)

Writing e∗1,2, and e∗2,2 explicitly, we have

s1,1
α−1 2h1,2h2,2V

(h1,2 + h2,2)3
=

1

αβγ1
. (13)
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Considering the symmetric first order condition with respect to s2,1 and dividing them
side-by-side:

s∗1,1
s∗2,1

=

(
γ1
γ2

) 1
1−α

. (14)

Therefore, the ratio of equilibrium investments depends only on α and γi’s. To be more
precise, no matter what h1,1 and h2,1 are, the player with a higher γ invests more in the
equilibrium. On top of that, the difference between γi’s becomes more important as α
increases.

Using equation (14) in equation (13), we obtain

s∗1,1
1−α = 2αβγ1V

[
(1− δ)h1,1 + γ1s

∗
1,1

α
]
·
[
(1− δ)h2,1 + γ2

(
γ2
γ1

) α
1−α

s∗1,1
α
]

[
(1− δ)(h1,1 + h2,1) + γ1s∗1,1

α + γ2

(
γ2
γ1

) α
1−α

s∗1,1
α
]3 . (15)

This equation implicitly characterizes the equilibrium investment level for player 1.7

And player 2’s equilibrium investment is characterized by a symmetric equation. Un-
fortunately, these equations are too complicated to be solved further. Accordingly, we
analyze the extreme case δ = 1 in order to have some understanding of the equilibrium
strategies in closed form. Then we return to the general case, consider some numerical
values for model parameters, and provide the best response graphs using equation (13)
and its symmetric version.

For now, let δ = 1. Then equation (15) and its symmetric version yield

s∗1,1 =
2αβγ

2
1−α
1 γ

1
1−α
2 V(

γ
1

1−α
1 + γ

1
1−α
2

)3 and s∗2,1 =
2αβγ

1
1−α
1 γ

2
1−α
2 V(

γ
1

1−α
1 + γ

1
1−α
2

)3 . (16)

In this extreme case, both equilibrium investments increase in β and V , which seem to
have straightforward intuitions. Moreover, when γ1 6= γ2, s

∗
i,1 is increasing in γi and

decreasing in γj if and only if γi/γj < 21−α. This inequality is surely satisfied when
γj > γi; however, when γi > γj, it is satisfied only for sufficiently small values of α
and γi. In case γ1 = γ2, however, s∗1,1 = s∗2,1 turns out to be independent of γi’s.

For the case in which δ < 1, we provide a numerical analysis below. Assume that
δ = 0.25, α = 0.5, β = 0.95, and V = 4. We further fix h2,1 = 2 and γ2 = 2, and we
consider h1,1 ∈ {2, 4} and γ1 ∈ {1, 2} to investigate several asymmetric cases.

[Figure 1]

As seen in Figure 1, under symmetry, i.e., when h1,1 = 2 and γ1 = 2, the best
response functions are symmetric, which leads to symmetric equilibrium investments:

7Calculating the limit values of both sides, one can verify that a positive solution exists.
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0.1677. When h1,1 increases to 4, the best response functions cease to be symmetric;
but since γ1 = γ2, the equilibrium investments are still symmetric: 0.0953. For this
particular example, we observe a decrease in the equilibrium investments as h1,1 be-
comes greater than h2,1. The interpretation provided for the equilibrium efforts also
applies here: when the distance between the initial effectiveness parameters increases,
the component contest becomes less competitive, so that the equilibrium investments
decrease. Moreover, given that γ1 = γ2 and that players make the same amount of
investments at the equilibrium, we see that h1,2 > h2,2 in the second period. Following
this observation, we can conjecture that for any T -period game in which γ1 = γ2, the
initially disadvantaged player can never catch up with the initially advantaged player.

In the remaining numerical examples, we consider two cases in which γ1 = 1. We
observe that Player 2 invests more at the equilibrium than player 1 does. More pre-
cisely, the equilibrium investments are given by (0.1216, 0.4864) when h1,1 = 2 and by
(0.0294, 0.1175) when h1,1 = 4. Once again, we observe a substantial decrease in the
equilibrium investments for both players once there is an increase in the initial human
capital h1,1. We further see that if γ1 decreases while h1,1 is kept constant, then the
equilibrium investment for player 1 decreases, whereas the same for player 2 increases.
Finally, in case h1,1 = 2 and γ1 = 1, we have h1,2 < h2,2, meaning that player 2 gains
an advantage over player 1 in the second period as he/she becomes more effective than
player 1; however, when h1,1 = 4 and γ1 = 1, although player 2 is able to decrease
the gap between their effectiveness parameters, player 1 remains to be the advantaged
player in the second period. At this point, we can present another conjecture: If the
contest has sufficiently many number of periods, then the initially disadvantaged player
can eventually catch up with the initially advantaged player, if there exists asymmetry
in γi’s in favor of the former.

2.2 Infinite-horizon

We consider an infinite-horizon model. Assuming that a player’s effort and investment
decisions are not observable to his/her competitor, we resort to open-loop strategies and
analyze pure-strategy open-loop equilibrium. Accordingly, each player chooses an action
path in the first period and commits to these strategies throughout the game. Taking a
pre-committed action path (ej, sj) = (ej,t, sj,t)

∞
t=1 for player j as given, player i ∈ {1, 2}

determines his/her best responses aiming to maximize his/her expected utility in the
whole game.8

To analyze open-loop equilibrium, we first define a value function for each player
i ∈ {1, 2}:

V
(
hi,1

∣∣ {hj,1, (ej, sj)}) = max
ei,si

∞∑
t=1

βt−1
[
pi(e1,t, h1,t, e2,t, h2,t)V − ci(ei,t, si,t)

]
(17)

8A technical reason of analyzing open-loop equilibrium is tractability. Recently, in two related
studies, Grossmann et al. (2010) and Grossmann et al. (2011) also resort to open-loop strategies,
suffering from similar technical difficulties.
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where i 6= j. The bounds on discounting and the limit condition on the effectiveness
transformation function guarantee a finite value function. Under our assumptions, it
can also be shown that the value function V is non-negative and continuous (see Stokey
and Lucas, 1989; Le Van and Dana, 2003, among others). Given these observations, the
associated Bellman equation for each player i ∈ {1, 2} can be written as:

V(hi,t) = max
ei,t,si,t

{
pi(e1,t, h1,t, e2,t, h2,t)V − ci(ei,t, si,t) + β · V(hi,t+1)

}
subject to hi,t+1 = (1− δ)hi,t + ϕi(si,t)

(18)

given hi,1, hj,1 > 0 and (ej,t, sj,t)
∞
t=1 where i 6= j. This gives the following Lagrangian

function for player i ∈ {1, 2}:

Li = V(hi,t) + λt ·
[
(1− δ)hi,t + ϕi(si,t)− hi,t+1

]
(19)

which is to be maximized with respect to ei,t, si,t, hi,t+1, and λt.
The respective first order conditions for optimality are

∂pi(e1,t, h1,t, e2,t, h2,t)

∂ei,t
V =

∂ci(ei,t, si,t)

∂ei,t
; (20)

λt
∂ϕi(si,t)

∂si,t
=
∂ci(ei,t, si,t)

∂si,t
; (21)

β · V ′(hi,t+1) = λt ; (22)

and
hi,t+1 = (1− δ)hi,t + ϕi(si,t) . (23)

Notice that the first order condition (20) is similar to the first order conditions (1) and
(2) in the two-period version. This indicates that the equilibrium efforts are similar in
nature for both finite- and infinite-horizon versions of the game. By contrast, the first
order conditions (21) and (22) are different than their two-period version counterpart. In
that regard, it would not be unreasonable to expect some differences in the equilibrium
investment levels.

The envelope condition can be written as

V ′(hi,t) =
∂pi(e1,t, h1,t, e2,t, h2,t)

∂hi,t
V + (1− δ)λt . (24)

From equations (22) and (24), we obtain

β

(
∂pi(e1,t+1, h1,t+1, e2,t+1, h2,t+1)

∂hi,t+1

V + (1− δ)λt+1

)
= λt ; (25)

which is used in the derivation of the following Euler equation:

∂pi(e1,t+1, h1,t+1, e2,t+1, h2,t+1)

∂hi,t+1

βV =

∂ci(ei,t,si,t)

∂si,t

∂ϕi(si,t)

∂si,t

− β(1− δ)
∂ci(ei,t+1,si,t+1)

∂si,t+1

∂ϕi(si,t+1)

∂si,t+1

. (26)

10



Whenever they exist, the equilibrium efforts and investments for player i ∈ {1, 2} are
implicitly characterized by equations (20), (23), and (26).

In order to have more concrete ideas about the open-loop equilibrium of this model,
we utilize the same functional forms used in the finite-horizon model. Doing that, we
also intend to compare our findings for finite- and infinite-horizon versions. In particular,
we consider the following Tullock-type contest success function pi:

pi(e1,t, h1,t, e2,t, h2,t) =
hi,tei,t

h1,te1,t + h2,te2,t
(4)

and the following effectiveness transformation function ϕi:

ϕi(si,t) = γisi,t
α (5)

where α ∈ (0, 1) and γi ≥ 1. We also consider the following cost function ci:

ci(ei,t, si,t) = ei,t + si,t . (6)

The steady state values are summarized in the following proposition.

Proposition 2. In the infinite-horizon dynamic contest game above, the unique steady
state is characterized by

e1 = e2 =
γiγjV

(γi + γj)2
; s1 = s2 =

αβδγ1γ2V

(γ1 + γ2)2(1− β(1− δ))
;

and hi =
γi
δ
sα for every i ∈ {1, 2} .

The equilibrium analysis is provided below. For each player i ∈ {1, 2}, directly
incorporating the specified functions (4), (5), and (6) into the first order conditions
(20), (23) and the Euler equation (26), we have

h1,th2,tej,t
(h1,te1,t + h2,te2,t)2

V = 1 for j 6= i ; (20′)

hi,t+1 = (1− δ)hi,t + γisi,t
α ; (23′)

and

e1,t+1hj,t+1e2,t+1

(h1,t+1e1,t+1 + h2,t+1e2,t+1)2
βV =

si,t
1−α − β(1− δ)si,t+1

1−α

αγi
for j 6= i . (26′)

Using equation (20′) and its symmetric version for player j, we can see that

∀t : ei,t = ej,t = et .

11



Then we proceed to the steady state analysis. Denoting the steady state values by
dropping t from the corresponding variables, we can write that the steady state value
for effort is

ei = ej = e =
hihjV

(hi + hj)2
. (27)

This finding is consistent with our aforementioned observation that the equilibrium
efforts in finite- and infinite-horizon models are similar in nature. The steady state value
for effort increases in the winning prize V . Moreover, given that hi > hj, the steady state
value decreases in hi, but increases in hj. This implies that as the distance between the
steady state values for effectiveness increases/decreases, the component contest becomes
less/more competitive, so that the steady state efforts decrease/increase. Moreover,
when hi = hj, the steady state e turns out to be independent of γi. These findings are
exactly the same with those for the equilibrium efforts in the two-period model.

The steady state values also satisfy

δhi = γisi
α (23ss)

and
hj

(h1 + h2)2
βV =

(1− β(1− δ))si1−α

αγi
for j 6= i (26ss)

for every i ∈ {1, 2}. Using equation (23ss) and its symmetric version for player j, we
obtain

hi
hj

=
γi
γj

(
si
sj

)α
.

Using equation (26ss) and its symmetric version for player j, we further obtain

hi
hj

=
γi
γj

(
sj
si

)1−α

.

These equations jointly imply that

si = sj = s and
hi
hj

=
γi
γj

.

This finding is in stark contrast to our results in the two-period model. Previously,
independent of the initial effectiveness parameters, the equilibrium investments were
equal to each other only when γ1 = γ2. On the other hand, at the steady state of
the infinite-horizon model, it turns out that players always make the same steady state
investments. Instead, the ratio of γi’s governs the relationship between the steady state
values for human capital. Independent of the initial effectiveness parameters, the player
with a higher return to education ends up being more advantaged at the steady state.

Then using equation (23ss) once again, for every i ∈ {1, 2}:

hi =
γi
δ
sα; (28)

12



and substituting this into equation (12ss):

s =
αβδγ1γ2V

(γ1 + γ2)2(1− β(1− δ))
. (29)

Finally, we can further write that the steady state effort is

e =
γiγjV

(γi + γj)2
. (30)

Our equilibrium analysis reveals that the steady state exists and is unique. The
stability analysis is relegated to the Appendix. There we prove that the steady state
cannot be a “source”; so that, it is either “saddle-path stable” or a “sink” depending
on the values of model parameters. For instance, there exists a critical value for the
winning prize above which a multiplicity of equilibrium paths emerges. The dynamics
of the system around the unique steady state exhibits local indeterminacy if V < VC
where

VC =
(γ1 + γ2)

2

γ1γ2

(1− β(1− δ))
αβδ

(
(1− α)β(1− δ)
1− αβ (1− δ)

) 1−α
α2

.

Moreover, when V > VC , the unique steady state turns out to be saddle-path stable.
To provide a further understanding of our model, we carry out a similar analysis using
another bifurcation parameter. More precisely, rather than V , we choose γ1 as the
bifurcation parameter, after normalizing γ2 = 1. There exist two critical values γ−1
and γ+1 such that the unique steady state is saddle-path stable when γ−1 < γ1 < γ+1 .
Otherwise, we observe local indeterminacy. These critical values are given by

γ+1 =
1 +

√
1−

4(1+β(1−δ))( (1−α)β(1−δ)
1−αβ(1−δ) )

1−α
α2

αβδV

1−

√
1−

4(1+β(1−δ))( (1−α)β(1−δ)
1−αβ(1−δ) )

1−α
α2

αβδV

and γ−1 =
1−

√
1−

4(1+β(1−δ))( (1−α)β(1−δ)
1−αβ(1−δ) )

1−α
α2

αβδV

1 +

√
1−

4(1+β(1−δ))( (1−α)β(1−δ)
1−αβ(1−δ) )

1−α
α2

αβδV

.

Notice that γ+1 = 1/γ−1 . This further implies that the unique steady state turns out to
be saddle-path stable if the asymmetry between players’ effectiveness parameters is suf-
ficiently low. However, when one of the players is too dominant in terms of effectiveness,
the unique steady state exhibits local indeterminacy.

For the stable steady state, the following comparative static results apply. Noting
that the comparative statics for the steady state efforts is already provided above, we
now concentrate on the comparative statics for s and hi’s. The steady state value for
investment s increases in β and V , which seem to have straightforward intuitions. It
is also increasing in α and δ. Intuitively, an increase in α enhances the effect of the
effectiveness transformation function so that players are more motivated to invest; and
an increase in δ decreases the amount of human capital after depreciation so that players
need to invest more to cover for that loss. When γi > γj, the investment s decreases in γi,
but increases in γj. This implies that as the distance between γi’s increases/decreases,
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the steady state investment decreases/increases. Moreover, if γi = γj, then s turns out
to be independent of γi. Recalling our findings on the equilibrium investments in the
two-period model, we see that both models have similar interpretations.9

The steady state value for effectiveness hi is an increasing and concave function
of the steady state investment s. The direct implication is that hi preserves the same
comparative statics results and interpretations with s for the parameters α, β, γj, and V .
On top of that, hi is decreasing in δ and increasing in γi. The former shows that as
the depreciation rate for human capital increases, the economy ends up at a lower level
of human capital; and the latter indicates that as investment has a higher return, the
economy stabilizes at a higher level of human capital.

3 Conclusion

In this paper we have studied a bilateral dynamic conflict in which both individuals
make two choices at each period: effort and investment. Investment in period t im-
proves effectiveness (i.e., human capital) in the next period, which also accumulates
through time; and contest effort and human capital in period t jointly determine the
individual’s probability of winning the component contest in period t. This way, we
distinguish between effort and investment decisions, thereby capturing an important
dynamic missing from the earlier models in the relevant literature.

First, we have analyzed subgame perfect Nash equilibrium in a two-period version
of the contest. We have shown that players exert the same equilibrium efforts indepen-
dent of the asymmetry in their effectiveness levels in a given period. The equilibrium
investments depend on the asymmetry in the education efficiency. Second, we have
analyzed open-loop equilibrium in an infinite-horizon version of the contest. The steady
state efforts have similar characteristics with the equilibrium efforts in the two-period
version. Interestingly, the steady state investments turn out to be symmetric as well,
independent of any asymmetry in the model, whereas the asymmetry in the education
efficiency significantly affects the steady state human capitals. Our results highlight the
importance of investment on human capital in dynamic conflict situations.

9The only difference is that in the two-period model, there is an additional condition regulating the
comparative statics on γi’s.
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Appendix

In this Appendix we provide the stability analysis. For each i ∈ {1, 2}, the human
capital constraint is

hi,t+1 = (1− δ)hi,t + γisi,t
α

and our Euler equation can be re-written as

si,t+1 =

(
1

β(1− δ)
si,t

1−α − αγiV

1− δ
· (1− δ)hj,t + γjsj,t

α

[(1− δ)(h1,t + h2,t) + γ1s1,tα + γ2s2,tα]2

) 1
1−α

.

Taking the derivatives with respect to si,t, sj,t, hi,t, and hj,t yields

∂si,t+1

∂si,t
=

1

1− α
si,t+1

α
1−α .

(
1− α
β(1− δ)

si,t
−α

+
2α2γ2i V

1− δ
si,t

α−1 (1− δ)hj,t + γjsj,t
α

[(1− δ)(h1,t + h2,t) + γ1s1,tα + γ2s2,tα]3

)
∂si,t+1

∂sj,t
=

1

1− α
si,t+1

α
1−α ·

(
α2γiγjV

1− δ
sj,t

α−1 (1− δ)(hj,t − hi,t) + γjsj,t
α − γisi,tα

[(1− δ)(h1,t + h2,t) + γ1s1,tα + γ2s2,tα]3

)

∂si,t+1

∂hi,t
=

1

1− α
si,t+1

α
1−α ·

(
2αγiV

(1− δ)hj,t + γjsj,t
α

[(1− δ)(h1,t + h2,t) + γ1s1,tα + γ2s2,tα]3

)
and

∂si,t+1

∂hj,t
=

1

1− α
si,t+1

α
1−α ·

(
αγiV

(1− δ)(hj,t − hi,t) + γjsj,t
α − γisi,tα

[(1− δ)(h1,t + h2,t) + γ1s1,tα + γ2s2,tα]3

)
.

Recall that at the steady state

si = sj = s

and
hi =

γi
δ
sα and hj =

γj
δ
sα.

Thus we have

(1− δ)(hi + hj) + γisi
α + γjsj

α =
γi + γj
δ

sα

(1− δ)(hi − hj) + γisi
α − γjsjα =

γi − γj
δ

sα.

Recall also that

s =
αβδγ1γ2V

(γ1 + γ2)2(1− β(1− δ))
.
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We then obtain

∂si,t+1

∂si,t

∣∣∣∣
SS

=
(1− α)(γ1 + γ2) + 2αδγi(1− β(1− δ))

β(1− δ)(1− α)(γ1 + γ2)

(
αβδγ1γ2V

(γ1 + γ2)2(1− β(1− δ))

) α2

1−α

∂si,t+1

∂sj,t

∣∣∣∣
SS

=
αδ(γj − γi)(1− β(1− δ))
β(1− δ)(1− α)(γ1 + γ2)

(
αβδγ1γ2V

(γ1 + γ2)2(1− β(1− δ))

) α2

1−α

∂si,t+1

∂hi,t

∣∣∣∣
SS

=
2αδ2γiγjV

(1− α)(γ1 + γ2)3

(
αβδγ1γ2V

(γ1 + γ2)2(1− β(1− δ))

) 2α2−α
1−α

and

∂si,t+1

∂hj,t

∣∣∣∣
SS

=
αδ2γi(γj − γi)V

(1− α)(γ1 + γ2)3

(
αβδγ1γ2V

(γ1 + γ2)2(1− β(1− δ))

) 2α2−α
1−α

.

The respective Jacobian matrix is

∂si,t+1

∂si,t

∣∣∣
SS

∂si,t+1

∂sj,t

∣∣∣
SS

∂si,t+1

∂hi,t

∣∣∣
SS

∂si,t+1

∂hj,t

∣∣∣
SS

∂sj,t+1

∂si,t

∣∣∣
SS

∂sj,t+1

∂sj,t

∣∣∣
SS

∂sj,t+1

∂hi,t

∣∣∣
SS

∂sj,t+1

∂hj,t

∣∣∣
SS

γiαs
α−1 0 1− δ 0

0 γjαs
α−1 0 1− δ


where the first row consists of the equations above; the second row consists of the
symmetrics of those equations; and the third and fourth row consist of the derivatives
of hi,t+1 and hj,t+1 with respect to the corresponding parameters, respectively.

Then, we need to find the eigenvalues of this matrix in order to complete our stability
analysis. Letting

x =
1− α(1− δ)(1 + βδ)

(1− α)(1− δ)
,

y =
1

β

(
αβδγ1γ2V

(γ1 + γ2)2(1− β(1− δ))

) α2

1−α

, and

z =
1− δ + xy

2
,

we can write the eigenvalues as follows:

µ1 = µ2 = z −
√
z2 − y, (31)

µ3 = µ4 = z +
√
z2 − y. (32)
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Here we see that x > 1 + δ and y > 0, so that z > 0. As a result, the roots can not
be repeated complex conjugates since

z2 − y =
(xy)2 + (2 (1− δ)x− 4) y + (1− δ)2

4
≥ 0.

This stems from the fact that the roots of the quadratic equation

(xy)2 + (2 (1− δ)x− 4) y + (1− δ)2 = 0

are complex conjugates, since its discriminant is negative:

(2 (1− δ)x− 4)2 − 4 (x (1− δ))2 = 16 (1− (1− δ)x)

= −16 (1− β(1− δ))αδ
1− α

< 0.

By the equations (31) and (32), we have

µi + µj = 2z > 0,

µi · µj = y > 0,

for every i ∈ {1, 2} and j ∈ {3, 4}. This leads to monotonic convergence as

µ1 = µ2 > 0

µ3 = µ4 > 0.

As the dynamics are governed by the placement of the two sets of repeated roots
on the real line, the parameter combinations which qualitatively change the stability
properties of the dynamic system should be analyzed in more detail. To do so, we
need to focus on the parameter values under which unit eigenvalues are obtained. The
following table summarizes the possible cases:

(i) (ii) (iii)
z2 = y z2 > y z2 > y
y = 1 y = 2z − 1 y = 2z − 1
z = 1 z > 1 z < 1
µ1,2 = 1 µ1,2 = 1 µ1,2 < 1
µ3,4 = 1 µ3,4 > 1 µ3,4 = 1

Case (i) requires that z2 = y = 1; but this would imply that x = 1+ δ which contradicts
with x > 1 + δ. Thus, case (i) cannot occur.

Note that if y = 2z − 1, then we have either µ1,2 = 1 or µ3,4 = 1 depending on
whether z > 1 or z < 1, respectively. We have y = 2z − 1 if and only if

V = VC ≡
(γ1 + γ2)

2

γ1γ2

(1− β(1− δ))
αβδ

(
(1− α)β(1− δ)
1− αβ (1− δ)

) 1−α
α2

.
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Furthermore, z = 1 if and only if

V = VZ ≡
(γ1 + γ2)

2

γ1γ2

(1− β(1− δ))
αβδ

(
(1− α)β(1− δ2)

1− α (1− δ) (1 + βδ)

) 1−α
α2

.

Note that VC < VZ since the parameters α, β, and δ are less than one.

Case (ii) cannot occur as V = VC implies that V < VZ, i.e., z < 1.

Case (iii) is the only possibility that remains.

These reveal that the steady state cannot be a “source”. The steady state is either
“saddle-path stable” or a “sink” depending on the value of the winning prize V . Indeed,
there exists a critical value for the winning prize above which a multiplicity of equilibrium
paths emerges. The dynamics of the system around the unique steady state exhibits
local indeterminacy (i.e., µ1,2 < µ3,4 < 1) if V < VC . Moreover, as soon as V > VC , the
unique steady state turns out to be saddle-path stable (i.e., µ1,2 < 1 < µ3,4). Figure 2
summarizes these dynamics for the following parameter values: β = 0.95, δ = 0.25,
α = 0.5, and γ1 = γ2 = 2.

[Figure 2]

The analysis above takes V into consideration as the bifurcation parameter. To
provide a further understanding of our model, in the following we normalize γ2 = 1
and concentrate on γ1 as the bifurcation parameter. Once again, among the three cases
specified above, only Case (iii) occurs. Then there exist two critical values γ−1 and γ+1
such that the unique steady state is saddle-path stable when γ−1 < γ1 < γ+1 . Otherwise,
we observe local indeterminacy. These critical values solve µ3,4 = 1 by definition, and
they are given by

γ+1 =
1 +

√
1−

4(1+β(1−δ))( (1−α)β(1−δ)
1−αβ(1−δ) )

1−α
α2

αβδV

1−

√
1−

4(1+β(1−δ))( (1−α)β(1−δ)
1−αβ(1−δ) )

1−α
α2

αβδV

and γ−1 =
1−

√
1−

4(1+β(1−δ))( (1−α)β(1−δ)
1−αβ(1−δ) )

1−α
α2

αβδV

1 +

√
1−

4(1+β(1−δ))( (1−α)β(1−δ)
1−αβ(1−δ) )

1−α
α2

αβδV

.

Notice that γ+1 = 1/γ−1 . This further implies that the unique steady state turns out
to be saddle-path stable if the asymmetry between players’ effectiveness parameters is
sufficiently low. However, when one of the players is too dominant in terms of effective-
ness, the unique steady state exhibits local indeterminacy. Figure 3 summarizes these
dynamics for the following parameter values: β = 0.95, δ = 0.25, α = 0.5, and V = 8.

[Figure 3]
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We should also note that for given values of α, β, and δ, there exists a critical value for
the winning prize below which a solution for µ3,4 = 1 does not exist. In such cases, we
always have local indeterminacy.

Finally, as for the speed of convergence, we can note that the properties of the
dynamics depend on the stable eigenvalue µs ≡ µ1,2 ∈ (0, 1) such that a higher value
of µs would imply a slower convergence to the steady state. Accordingly, in contrast
to Grossmann et al. (2010)’s results that linear costs imply immediate convergence
of the asset stocks to the steady state and the convexity of cost functions influence
the speed of convergence, we find that even with linear cost functions, non-immediate
convergence is possible. Obviously, the speed of convergence depends on multiple model
parameters. For concrete examples, given the parameter values used in Figure 2, the
speed of convergence decreases as V increases; and given the parameter values used in
Figure 3, the speed of convergence first decreases but then increases as γ1 increases.
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(a) h1,1 = 2, γ1 = 1 (b) h1,1 = 2, γ1 = 2

(c) h1,1 = 4, γ1 = 1 (d) h1,1 = 4, γ1 = 2

Figure 1: Best Response Functions and the Corresponding Equilibrium Investment Levels in Period 1
under the Given Values of Model Parameters
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Figure 2: Eigenvalues under the Given Values of Model Parameters (V is the Bifurcation Parameter)

Figure 3: Eigenvalues under the Given Values of Model Parameters (γ1 is the Bifurcation Parameter)
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