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Abstract—A challenging problem in image content extraction
and classification is building a system that automatically learns
high-level semantic interpretations of images. We describe a
Bayesian framework for a visual grammar that aims to reduce
the gap between low-level features and high-level user semantics.
Our approach includes modeling image pixels using automatic
fusion of their spectral, textural, and other ancillary attributes;
segmentation of image regions using an iterative split-and-merge
algorithm; and representing scenes by decomposing them into
prototype regions and modeling the interactions between these re-
gions in terms of their spatial relationships. Naive Bayes classifiers
are used in the learning of models for region segmentation and
classification using positive and negative examples for user-de-
fined semantic land cover labels. The system also automatically
learns representative region groups that can distinguish different
scenes and builds visual grammar models. Experiments using
Landsat scenes show that the visual grammar enables creation of
high-level classes that cannot be modeled by individual pixels or
regions. Furthermore, learning of the classifiers requires only a
few training examples.

Index Terms—Data fusion, image classification, image segmen-
tation, spatial relationships, visual grammar.

I. INTRODUCTION

THE AMOUNT of image data that is received from satel-
lites is constantly increasing. For example, the National

Aeronautics and Space Administration (NASA) Terra satel-
lite sends more than 850 GB of data to the earth every day
(http://terra.nasa.gov). Automatic content extraction, classifi-
cation, and content-based retrieval have become highly desired
goals for developing intelligent databases for effective and
efficient processing of remotely sensed imagery. Most of the
previous approaches try to solve the content extraction problem
by building pixel-based classification and retrieval models
using spectral and textural features. However, there is a large
semantic gap between low-level features and high-level user
expectations and scenarios. This semantic gap makes a human
expert’s involvement and interpretation in the final analysis
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inevitable, and this makes processing of data in large remote
sensing archives practically impossible.

The commonly used statistical classifiers model image con-
tent using distributions of pixels in spectral or other feature
domains by assuming that similar land cover structures will
cluster together and behave similarly in these feature spaces.
Schröder et al. [1] developed a system that uses Bayesian clas-
sifiers to represent high-level land cover labels for pixels using
their low-level spectral and textural attributes. They used these
classifiers to retrieve images from remote sensing archives by
approximating the probabilities of images belonging to different
classes using pixel-level probabilities.

However, an important element of image understanding is the
spatial information because complex land cover structures usu-
ally contain many pixels and regions that have different feature
characteristics. Furthermore, two scenes with similar regions
can have very different interpretations if the regions have dif-
ferent spatial arrangements. Even when pixels and regions can
be identified correctly, manual interpretation is often necessary
for many applications of remote sensing image analysis like land
cover classification, urban mapping and monitoring, and ecolog-
ical analysis in public health studies [2]. These applications will
benefit greatly if a system can automatically learn high-level se-
mantic interpretations of scenes instead of classification of only
the individual pixels.

The VisiMine system [3] we have developed supports inter-
active classification and retrieval of remote sensing images by
extending content modeling from pixel level to region and scene
levels. Pixel-level characterization provides classification de-
tails for each pixel with automatic fusion of its spectral, textural,
and other ancillary attributes. Following a segmentation process,
region-level features describe properties shared by groups of
pixels. Scene-level features model the spatial relationships of
the regions composing a scene using a visual grammar. This hi-
erarchical scene modeling with a visual grammar aims to bridge
the gap between features and semantic interpretation.

This paper describes our work on learning the visual grammar
for scene classification. Our approach includes learning pro-
totypes of primitive regions and their spatial relationships for
higher level content extraction. Bayesian classifiers that require
only a few training examples are used in the learning process.
Early work on syntactical description of images includes the
picture description language [4] that is based on operators that
represent the concatenations between elementary picture com-
ponents like line segments in line drawings. More advanced
image processing and computer vision-based approaches on
modeling spatial relationships of regions include using cen-
troid locations and minimum bounding rectangles to compute
absolute and relative locations [5]. Centroids and minimum

0196-2892/$20.00 © 2005 IEEE



582 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 3, MARCH 2005

Fig. 1. Object/process diagram for the system. Rectangles represent objects
and ellipses represent processes.

bounding rectangles are useful when regions have circular
or rectangular shapes, but regions in natural scenes often do
not follow these assumptions. More complex representations
of spatial relationships include spatial association networks
[6], knowledge-based spatial models [7], [8], and attributed
relational graphs [9]. However, these approaches require either
manual delineation of regions by experts or partitioning of
images into grids. Therefore, they are not generally applicable
due to the infeasibility of manual annotation in large databases
or because of the limited expressiveness of fixed sized grids.

Our work differs from other approaches in that recognition
of regions and decomposition of scenes are done automatically
after the system learns region and scene models with only a
small amount of supervision in terms of positive and negative
examples for classes of interest. The rest of the paper is orga-
nized as follows. An overview of the visual grammar is given
in Section II. The concept of prototype regions is defined in
Section III. Spatial relationships of these prototype regions are
described in Section IV. Image classification using the visual
grammar models is discussed in Section V. Conclusions are
given in Section VI.

II. VISUAL GRAMMAR

We are developing a visual grammar [10], [11] for interactive
classification and retrieval in remote sensing image databases.
This visual grammar uses hierarchical modeling of scenes in
three levels: pixel level, region level, and scene level. Pixel-level
representations include labels for individual pixels computed
in terms of spectral features, Gabor [12] and cooccurrence
[13] texture features, elevation from digital elevation models
(DEMs), and hierarchical segmentation cluster features [14].
Region-level representations include land cover labels for
groups of pixels obtained through region segmentation. These
labels are learned from statistical summaries of pixel contents
of regions using mean, standard deviation, and histograms,
and from shape information like area, boundary roughness,
orientation, and moments. Scene-level representations include
interactions of different regions computed in terms of their
spatial relationships.

The object/process diagram of our approach is given in Fig. 1,
where rectangles represent objects and ellipses represent pro-
cesses. The input to the system is raw image and ancillary data.
Visual grammar consists of two learning steps. First, pixel-level
models are learned using naive Bayes classifiers [1] that pro-
vide a probabilistic link between low-level image features and
high-level user-defined semantic land cover labels (e.g., city,
forest, field). Then, these pixels are combined using an iter-
ative split-and-merge algorithm to find region-level labels. In

Fig. 2. Landsat scenes used in the experiments. (a) NASA dataset. (b) PRISM
dataset.

the second step, a Bayesian framework is used to learn scene
classes based on automatic selection of distinguishing spatial
relationships between regions. Details of these learning algo-
rithms are given in the following sections. Examples in the rest
of the paper use Landsat scenes of Washington, DC, obtained
from the NASA Goddard Space Flight Center, and Washington
State and Southern British Columbia obtained from the PRISM
project at the University of Washington. We use spectral values,
Gabor texture features, and hierarchical segmentation cluster
features for the first dataset, and spectral values, Gabor features,
and DEM data for the second dataset, shown in Fig. 2.

III. PROTOTYPE REGIONS

The first step in constructing the visual grammar is to find
meaningful and representative regions in an image. Automatic
extraction of regions is required to handle large amounts of data.
To mimic the identification of regions by analysts, we define the
concept of prototype regions. A prototype region is a region that
has a relatively uniform low-level pixel feature distribution and
describes a simple scene or part of a scene. Ideally, a prototype is
frequently found in a specific class of scenes and differentiates
this class of scenes from others.

In previous work [10], [11], we used automatic image
segmentation and unsupervised model-based clustering to
automate the process of finding prototypes. In this paper, we
extend this prototype framework to learn prototype models
using Bayesian classifiers with automatic fusion of features.
Bayesian classifiers allow subjective prototype definitions to
be described in terms of easily computable objective attributes.
These attributes can be based on spectral values, texture, shape,
etc. The Bayesian framework is a probabilistic tool to combine
information from multiple sources in terms of conditional and
prior probabilities.

Learning of prototypes starts with pixel-level classification
(the first process in Fig. 1). Assume there are prototype labels,

, defined by the user. Let be the attributes
computed for a pixel. The goal is to find the most probable pro-
totype label for that pixel given a particular set of values of these
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attributes. The degree of association between the pixel and pro-
totype can be computed using the posterior probability

(1)

under the conditional independence assumption. The condi-
tional independence assumption simplifies learning because the
parameters for each attribute model can be estimated
separately. Therefore, user interaction is only required for the
labeling of pixels as positive or negative examples
for a particular prototype label under training. Models for dif-
ferent prototypes are learned separately from the corresponding
positive and negative examples. Then, the predicted prototype
becomes the one with the largest posterior probability and the
pixel is assigned the prototype label

(2)

We use discrete variables in the Bayesian model where con-
tinuous features are converted to discrete attribute values using
an unsupervised clustering stage based on the -means algo-
rithm. The number of clusters is empirically chosen for each
feature. Clustering is used for processing continuous features
(spectral, Gabor, and DEM) and discrete features (hierarchical
segmentation clusters) with the same tools. (An alternative is
to use a parametric distribution assumption, e.g., Gaussian,
for each individual continuous feature, but these parametric
assumptions do not always hold.) In the following, we describe
learning of the models for using the positive training
examples for the th prototype label. Learning of
is done the same way using the negative examples.

For a particular prototype, let each discrete variable have
possible values (states) with probabilities

(3)

where , and is the set of param-
eters for the th attribute model. This corresponds to a multino-
mial distribution. Since maximum-likelihood estimates can give
unreliable results when the sample is small and the number of
parameters is large, we use the Bayes estimate of that can be
computed as the expected value of the posterior distribution.

We can choose any prior for in the computation of the pos-
terior distribution, but there is a big advantage to use conjugate
priors. A conjugate prior is one which, when multiplied with the
direct probability, gives a posterior probability having the same
functional form as the prior, thus allowing the posterior to be
used as a prior in further computations [15]. The conjugate prior
for the multinomial distribution is the Dirichlet distribution [16].
Geiger and Heckerman [17] showed that if all allowed states of
the variables are possible (i.e., ) and if certain parameter
independence assumptions hold, then a Dirichlet distribution is
indeed the only possible choice for the prior.

Given the Dirichlet prior
where are positive constants, the posterior distribution of

can be computed using the Bayes rule as

(4)

where is the training sample, and is the number of cases
in in which . Then, the Bayes estimate for can be
found by computing the conditional expected value

(5)

where and .
An intuitive choice for the hyperparameters of

the Dirichlet distribution is the Laplace’s uniform prior [18] that
assumes all states to be equally probable

which results in the Bayes estimate

(6)

Laplace’s prior was decided to be a safe choice when the dis-
tribution of the source is unknown and the number of possible
states is fixed and known [19].

Given the current state of the classifier that was trained using
the prior information and the sample , we can easily update
the parameters when new data is available. The new posterior
distribution for becomes

(7)

With the Dirichlet priors and the posterior distribution for
given in (4), the updated posterior distribution be-

comes

(8)

where is the number of cases in in which . Hence,
updating the classifier parameters involves only updating the
counts in the estimates for . Figs. 3 and 4 illustrate learning
of prototype models from positive and negative examples.

The Bayesian classifiers that are learned as above are used to
compute probability maps for all semantic prototype labels and
assign each pixel to one of the labels using the maximum a pos-
teriori probability (MAP) rule. In previous work [20], we used a
region merging algorithm to convert these pixel-level classifica-
tion results to contiguous region representations. However, we
also observed that this process often resulted in large connected
regions and these large regions with very fractal shapes may not
be very suitable for spatial relationship computations.

We improved the segmentation algorithm (the second process
in Fig. 1) using mathematical morphology operators [21] to au-
tomatically divide large regions into more compact subregions.
Given the probability maps for all labels where each pixel is as-
signed either to one of the labels or to the reject class for proba-
bilities smaller than a threshold (latter type of pixels are initially
marked as background), the segmentation process proceeds as
follows.

1) Merge pixels with identical labels to find the initial set of
regions and mark these regions as foreground.



584 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 3, MARCH 2005

Fig. 3. Training for the city prototype. Positive and negative examples of
city pixels in the image on the left are used to learn a Bayesian classifier that
creates the probability map shown on the right. Brighter values in the map
show pixels with high probability of being part of a city. Pixels marked with
red have probabilities above 0.9.

Fig. 4. Training for the park prototype using the process described in Fig. 3.

2) Mark regions with areas smaller than a threshold as back-
ground using connected components analysis [21].

3) Use region growing to iteratively assign background
pixels to the foreground regions by placing a window at
each background pixel and assigning it to the label that
occurs the most in its neighborhood.

4) Find individual regions using connected components
analysis for each label.

5) For all regions, compute the erosion transform [21] and
repeat:

a) threshold erosion transform at steps of three pixels
in every iteration;

b) find connected components of the thresholded
image;

c) select subregions that have an area smaller than a
threshold;

d) dilate these subregions to restore the effects of
erosion;

e) mark these subregions in the output image by
masking the dilation using the original image;

until no more subregions are found.
6) Merge the residues of previous iterations to their smallest

neighbors.

(a) (b)

(c)

Fig. 5. Region segmentation process. The iterative algorithm that uses
mathematical morphology operators is used to split a large connected region
into more compact subregions. (a) Landsat image, (b) A large connected region
formed by merging pixels labeled as residential, (c) More compact subregions.

The merging and splitting process is illustrated in Fig. 5. The
probability of each region belonging to a land cover label can be
estimated by propagating class labels from pixels to regions. Let

be the set of pixels that are merged to form a
region. Let and be the class label and its posterior
probability, respectively, assigned to pixel by the classifier.
The probability that a pixel in the merged region
belongs to the class can be computed as

(9)

where is the indicator function associated with the set .
Each region in the final segmentation are assigned labels with
probabilities using (9).

Fig. 6 shows example segmentations. The number of clusters
in -means clustering was empirically chosen as 25 both for
spectral values and for Gabor features. The number of clus-
ters for hierarchical segmentation features was automatically
obtained as 17. The probability threshold and the minimum
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Fig. 6. Segmentation examples from the NASA dataset. Images on the left
column are used to train pixel-level classifiers for city, residential area, water,
park and field using positive and negative examples for each class. Then, these
pixels are combined into regions using the iterative region split-and-merge
algorithm and the pixel-level class labels are propagated as labels for these
regions. Images on the right column show the resulting region boundaries and
the false color representations of their labels for the city (red), residential area
(cyan), water (blue), park (green), and field (yellow) classes.

area threshold in the segmentation process were set to 0.2
and 50, respectively. Bayesian classifiers successfully learned
proper combinations of features for particular prototypes. For
example, using only spectral features confused cities with
residential areas and some parks with fields. Using the same
training examples, adding Gabor features improved some of the
models but still caused some confusion around the borders of
two regions with different textures (due to the texture window
effects in Gabor computation). We observed that, in general,
microtexture analysis algorithms like Gabor features smooth
noisy areas and become useful for modeling neighborhoods of
pixels by distinguishing areas that may have similar spectral
responses but have different spatial structures. Finally, adding
hierarchical segmentation features fixed most of the confusions
and enabled learning of accurate models from a small set of
training examples.

In a large image archive with images of different sensors (op-
tical, hyperspectral, SAR, etc.), training for the prototypes can
still be done using the positive and negative examples for each

prototype label. If data from more than one sensor are available
for the same area, a single Bayes classifier does automatic fu-
sion for a particular label as given in (1) and described above.
If different sensors are available for different areas in the same
dataset, different classifiers need to be trained for each area (one
classifier for each sensor group for each label), again using only
positive and negative examples. Once these classifiers that sup-
port different sensors for a particular label are trained and the
pixels and regions are labeled, the rest of the processes (spatial
relationships and image classification) become independent of
the sensor data because they use only high-level semantic labels.

IV. SPATIAL RELATIONSHIPS

After the images are segmented and prototype labels are as-
signed to all regions, the next step in the construction of the
visual grammar is modeling of region spatial relationships (the
third process in Fig. 1). The regions of interest are usually the
ones that are close to each other.

Representations of spatial relationships depend on the rep-
resentations of regions. We model regions by their boundaries.
Each region has an outer boundary. Regions with holes also have
inner boundaries to represent the holes. Each boundary has a
polygon representation of its boundary pixels, and a smoothed
polygon approximation, a grid approximation, and a bounding
box to speed up polygon intersection operations. In addition,
each region has an ID (unique within an image) and a label that
is propagated from its pixels’ class labels as described in the
previous section.

We use fuzzy modeling of pairwise spatial relationships
between regions to describe the following high-level user
concepts.

Perimeter-class relationships:

• disjoined: Regions are not bordering each other.
• bordering: Regions are bordering each other.
• invaded by: Smaller region is surrounded by the larger one

at around 50% of the smaller one’s perimeter.
• surrounded by: Smaller region is almost completely sur-

rounded by the larger one.
Distance-class relationships:

• near: Regions are close to each other.
• far: Regions are far from each other.

Orientation-class relationships:

• right: First region is on the right of the second one.
• left: First region is on the left of the second one.
• above: First region is above the second one.
• below: First region is below the second one.

These relationships are illustrated in Fig. 7. They are divided
into subgroups because multiple relationships can be used to
describe a region pair at the same time, e.g., invaded by from
left, bordering from above, and near and right, etc.

To find the relationship between a pair of regions represented
by their boundary polygons, we first compute the following:

• perimeter of the first region ;
• perimeter of the second region ;
• common perimeter between two regions computed as

the shared boundary between two polygons;
• ratio of the common perimeter to the perimeter of the first

region ;
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Fig. 7. Spatial relationships of region pairs: disjoined, bordering, invaded by,
surrounded by, near, far, right, left, above, and below.

• closest distance between the boundary polygon of the first
region and the boundary polygon of the second region ;

• centroid of the first region ;
• centroid of the second region ;
• angle between the horizontal (column) axis and the line

joining the centroids ;

where with being the number of regions
in the image. Then, each region pair can be assigned a degree
of their spatial relationships using the fuzzy class membership
functions given in Fig. 8.

For the perimeter-class relationships, we use the perimeter
ratios with trapezoid membership functions. The motiva-
tion for the choice of these functions is as follows. Two re-
gions are disjoined when they are not touching each other. They
are bordering each other when they have a common boundary.
When the common boundary between two regions gets closer
to 50%, the larger region starts invading the smaller one. When
the common boundary goes above 80%, the relationship is con-
sidered an almost complete invasion, i.e., surrounding. For the
distance-class relationships, we use the perimeter ratios and
boundary polygon distances with sigmoid membership func-
tions. For the orientation-class relationships, we use the angles

with truncated cosine membership functions. Details of the
membership functions are given in [11]. Note that the pairwise
relationships are not always symmetric. Furthermore, some rela-
tionships are stronger than others. For example, surrounded by
is stronger than invaded by, and invaded by is stronger than bor-
dering, e.g., the relationship “small region invaded by large re-
gion” is preferred over the relationship “large region bordering
small region.” The class membership functions are chosen so
that only one of them is the largest for a given set of measure-
ments to avoid ambiguities. The parameters of the functions
given in Fig. 8 were manually adjusted to reflect these ideas.

When an area of interest consists of multiple regions, this area
is decomposed into multiple region pairs and the measurements
defined above are computed for each of the pairwise relation-
ships. Then, these pairwise relationships are combined using

Fig. 8. Fuzzy membership functions for pairwise spatial relationships.
(a) Perimeter-class relationships. (b) Distance-class relationships.
(c) Orientation-class relationships.

an attributed relational graph [21] structure. The attributed rela-
tional graph is adapted to our visual grammar by representing
regions by the graph nodes and their spatial relationships by
the edges between such nodes. Nodes are labeled with the class
(land cover) names and the corresponding confidence values
(posterior probabilities) for these class assignments. Edges are
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Fig. 9. Classification results for the “clouds” class which is automatically
modeled by the distinguishing relationships of white regions (clouds) with
their neighboring dark regions (shadows). (a) Training images for clouds.
(b) Images classified as containing clouds.

labeled with the spatial relationship classes (pairwise relation-
ship names) and the corresponding degrees (fuzzy membership
values) for these relationships.

V. IMAGE CLASSIFICATION

Image classification is defined here as a problem of assigning
images to different classes according to the scenes they con-
tain (the last process in Fig. 1). The visual grammar enables
creation of high-level classes that cannot be modeled by indi-
vidual pixels or regions. Furthermore, learning of these classes
require only a few training images. We use a Bayesian frame-
work that learns scene classes based on automatic selection of
distinguishing (e.g., frequently occurring, rarely occurring) re-
gion groups.

The input to the system is a set of training images that con-
tain example scenes for each class defined by the user. Denote
these classes by . Our goal is to find representative
region groups that describe these scenes. The system automati-
cally learns classifiers from the training data as follows.

1) Count the number of times each possible region group
(combinatorially formed using all possible relationships
between all possible prototype regions) is found in the set
of training images for each class. A region group of in-
terest is the one that is frequently found in a particular
class of scenes but rarely exists in other classes. For each
region group, this can be measured using class separa-
bility which can be computed in terms of within-class and
between-class variances of the counts as

(10)

where is the within-class
variance, is the number of training images for class

is the number of times this region group is found in

Fig. 10. Classification results for the “residential areas with a coastline” class
which is automatically modeled by the distinguishing relationships of regions
containing a mixture of concrete, grass, trees, and soil (residential areas) with
their neighboring blue regions (water). (a) Training images for residential areas
with a coastline. (b) Images classified as containing residential areas with a
coastline.

training image is
the between-class variance, and denotes the vari-
ance of a sample.

2) Select the top region groups with the largest class
separability values. Let be Bernoulli random
variables1 for these region groups, where if
the region group is found in an image and
otherwise. Let . Then, the number
of times is found in images from class has a

Binomial distribution

where is the number of training images for that
contain . Using a Beta(1, 1) distribution as the conju-
gate prior, the Bayes estimate for becomes

(11)

Using a similar procedure with multinomial distributions
and Dirichlet priors, the Bayes estimate for an image be-
longing to class (i.e., containing the scene defined by
class ) is computed as

(12)

3) For an unknown image, search for each of the region
groups (determine whether or )
and assign that image to the best matching class using the

1Finding a region group in an image can be modeled as a Bernoulli trial be-
cause there are only two outcomes: the region group is either in the image or
not.
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Fig. 11. Classification results for the “tree-covered islands” class which is
automatically modeled by the distinguishing relationships of green regions
(lands covered with conifer and deciduous trees) surrounded by blue regions
(water). (a) Training images for tree-covered islands. (b) Images classified as
containing tree-covered islands.

MAP rule with the conditional independence assumption
as

(13)

Classification examples from the PRISM dataset that in-
cludes 299 images are given in Figs. 9–11. In these examples,
we used four training images for each of the six classes defined
as “clouds,” “residential areas with a coastline,” “tree-covered
islands,” “snow-covered mountains,” “fields,” and “high-al-
titude forests.” Commonly used statistical classifiers require
a lot of training data to effectively compute the spectral and
textural signatures for pixels and also cannot do classifica-
tion based on high-level user concepts because of the lack of
spatial information. Rule-based classifiers also require signif-
icant amount of user involvement every time a new class is
introduced to the system. The classes listed above provide a
challenge where a mixture of spectral, textural, elevation and
spatial information is required for correct identification of the
scenes. For example, pixel-level classifiers often misclassify
clouds as snow and shadows as water. On the other hand, the
Bayesian classifier described above can successfully eliminate
most of the false alarms by first recognizing regions that belong
to cloud and shadow prototypes and then verify these region
groups according to the fact that clouds are often accompanied
by their shadows in a Landsat scene. Other scene classes like
residential areas with a coastline or tree-covered islands cannot
be identified by pixel-level or scene-level algorithms that do
not use spatial information. While quantitative comparison of
results would be difficult due to the unavailability of ground
truth for high-level semantic classes for this archive, our qual-
itative evaluation showed that the visual grammar classifiers

automatically learned the distinguishing region groups that
were frequently found in particular classes of scenes but rarely
existed in other classes.

VI. CONCLUSION

We described a visual grammar that aims to bridge the gap
between low-level features and high-level semantic interpreta-
tion of images. The system uses naive Bayes classifiers to learn
models for region segmentation and classification from auto-
matic fusion of features, fuzzy modeling of region spatial re-
lationships to describe high-level user concepts, and Bayesian
classifiers to learn image classes based on automatic selection
of distinguishing (e.g., frequently occurring, rarely occurring)
relations between regions.

The visual grammar overcomes the limitations of traditional
region- or scene-level image analysis algorithms which assume
that the regions or scenes consist of uniform pixel feature dis-
tributions. Furthermore, it can distinguish different interpreta-
tions of two scenes with similar regions when the regions have
different spatial arrangements. The system requires only a small
amount of training data expressed as positive and negative ex-
amples for the classes defined by the user. We demonstrated our
system with classification scenarios that could not be handled by
traditional pixel-, region-, or scene-level approaches but where
the visual grammar provided accurate and effective models.
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