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Abstract We investigate influence of the electron-phonon interaction on persistent 
current in a mesoscopic ring threaded by a Aharonov-Bohm flux <P. We 
find that all thermodynamic quantities are still periodic in <P with a 
period <Po = he/e. In both cases, weak- and strong-coupling, effective 
mass of the electrons is increased and amplitude of persistent current is 
suppressed. In the latter case the amplitude decreases exponentially as 
a function of the electron-phonon coupling constant. 

1. INTRODUCTION 
In classical electrodynamics, motion of a charged particle is completely 

determined by local electric field E and magnetic field B that act upon 
it. The scalar potential cp and vector potential A were first introduced 
as a mathematical tool for calculation concerning electromagnetic fields. 
However, in quantum theory these potentials appear in the Schrodinger 
equation explicitly and therefore they affect all physical quantities di­
rectly. Aharonov and Bohm [1] have shown that contrary to the conclu­
sion of classical electrodynamics, there exist effects of the potentials on 
the charged particles, even in the region where all fields vanish (hence, 
there is no force acting on the particles). The experiment of Chambers [2] 
proved the existence of Aharonov-Bohm (AB) effect and stimulated ex­
perimental and theoretical studies in this field [3, 4, 5]. This effect has 
purely quantum mechanical origin because it comes from the interfer­
ence phenomenon. The most well-known example of the AB effect is 
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the persistent current in the normal-metal rings threaded by a magnetic 
flux [6, 7, 8]. 

Sensitivity of the equilibrium properties, such as average energy or 
magnetization of a small free electron systems to a magnetic field was 
noticed rather early [9, 10, 11]. Existence of non-decaying (persistent) 
current in normal-metal rings (where mean free path LiP exceeds the cir­
cumference of the ring L = 21r R) enclosing a magnetic flux was predicted 
by Kulik [6] in 1970. Later Biittiker, Imry, and Landauer [8] proposed 
the persistent current in the normal one-dimensional disordered ring. In 
1990's, experimental works [12, 13] confirmed the existence of persistent 
current in mesoscopic rings. This current arises due to the boundary 
conditions imposed on the wave function by the doubly connected na­
ture of the loop. As a consequences of the boundary conditions, all 
physical properties of the ring are periodic in magnetic flux cP with a 
period CPo = hcje [14, 15]. 

Scattering mechanisms result in decreasing, but not diminishing, of 
the persistent current. It is believed that inelastic, i.e. electron-phonon 
interaction, should be small to make the electronic states in the ring long­
lived (phase conserving). In the literature, the effects of the electron­
phonon interaction were studied in the mesoscopic AB rings in metal­
lic [16, 17] and semiconducting cases [18]. 

In this paper we investigate the electron-phonon interaction within 
two limiting cases (weak- and strong-coupling) in a metallic AB ring 
and show that the polaronic effect doesn't exclude the existence of flux 
quantization and persistent current in the ring. 

2. PERSISTENT CURRENTS IN MESOSCOPIC 
RINGS 
In this section we give a brief summary of the persistent current in 

mesoscopic AB rings in the absence of electron-phonon interaction (See 
Refs. [19, 20, 21]). Let us consider a one-dimensional ring with the 
circumference L = Na, where N is the number of lattice sites and a is 
the lattice constant (a = 1 is taken throughout this paper), threaded by 
a magnetic flux cP as illustrated in Fig. 18.1. 

Figure 18.1 One-dimensional ring 
of circumference L threaded by an 
AB flux~. 
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The existence of persistent current in the ring requires that there 
should not be strong localization, so that overlapping of the atomic or­
bitals is much important rather themselves. In the tight binding approx­
imation, we can write the Hamiltonian as 

(18.1) 

where to is hopping amplitude between the nearest-neighbors for an 
undistorted lattice, the operators an (at) annihilates (creates) an elec­
tron at site n and a is the corresponding phase change which can be 
expressed in terms of AB flux (P 

e I n+1 (P 
a = "he n A·dl = 211" N(Po ' (18.2) 

where (Po = he/e ~ 4.1 x 10-7 G cm2 is the flux quantum. We can 
express the wave function in terms of the atomic orbitals: 

(18.3) 

where 10) is the vacuum state. From property of Fermi operators, 
[a~, an ]+ = 8mn , and the periodic boundary condition, the SchrOdinger 
equation H'if! k = fk 'if! k gives us 

fk = -2to cos{k + a), 
211" 

k= Nn, n = 0, 1, 2 ... N - 1 . (18.4) 

The corresponding eigenvalue spectrum and the persistent current are 
given by 

(18.5) 

(18.6) 

where 10 = 4c1I"to/N(Po is the current amplitude. The energy is periodic 
in (P with a period (Po, so are all thermodynamic properties. The number 
of electrons, N, is an obvious restriction for total energy which is the 
sum of all eigenvalues corresponding to an occupied state. Ground state 
energy (we ignore spin of the electron) is given by 

(18.7) 
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Figu.re 18.2 The normalized total energy E(iJ!)j2to and the current I(iJ!)j1o as a 
function of flux iJ!jiJ!o for N = 20 and N = 10 in a one-dimensional ring. 

where the summation is carried out over N lowest energies for each value 
of flux iJ? The total current flowing along the ring can be written as 

f(iJ?) = ~fn = -fo ~sin [~ (n + :0)] . (18.8) 

Figure 2 shows the periodic nature of the total energy and current as a 
function of flux iJ?/iJ?0 for N = 20 and N = 10 in the ring. 

3. ELECTRON-PHONON INTERACTION IN 
THE RING 

3.1 Weak-Coupling Polarons 

The hopping amplitudes t n,n+l are changed when the atoms are dis­
placed by Un from their positions in the undistorted lattice, and which 
can be expanded to the first order about the equilibrium position [22]: 

tn,n+1 = to + g(un - un+d , (18.9) 

where 9 is the electron-lattice displacement (electron-phonon) coupling 
constant. In present case, the Hamiltonian is modified as 

N 

H - '"" t ( + ia + + -ia) - - L....t n,n+l an an+l e an+l ane . (18.10) 
n=l 
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If we substitute the Eq. (18.9) into (18.10), the second term can be 
treated as the electron-phonon interaction Hamiltonian which is given 
by 

N 

He-ph = 9 L (un - Un+1)(a~an+1eia + a~+1ane-ia) , (18.11) 
n=l 

where Un can be written in terms of the phonon operators band bt 

Un = L Mq(bq + b~q)eiqn , (18.12) 
q 

where Mq = (n/2MNwq)1/2, Wq = 2wol sin(q/2)I is the frequency of 
phonon with momentum q, and bq (bt) annihilates (creates) a phonon 
with momentum q. The operator an can be written in the momentum 
representation as 

1 '"' ikn an = VN~ake . 

By using Eqs. (18.12) and (18.13), He-ph becomes 

He-ph = -g L Mq(l - eiq)(bq + b~q) 
k,q 

(18.13) 

X [ei(k+a-q)atak_q + e-i(k+a+q)at+qak]' (18.14) 

For small values of coupling constant g, we can use the second order per­
turbation theory to determine contribution to the energy due to electron­
phonon interaction: 

(18.15) 

where CPo = atlO) is the ground state and cPq = at+qb~qIO) is the excited 

state, and E~O) = -2to cos (k + 0) are the energies of electron in the 
absence of electron-phonon interaction. Converting the summation in 
the Eq. (18.15) into integration, we get 

(2) _ j7r/2 cos2 (p + q) 
t::..E - -, dq . .. , 

k -7r/2 sm(p + q) smq/I smql +). 
(18.16) 

where, = ng2/1rMtowo, and), = nwo/2to and p = k + o. For small 
values of p, we can expand the integrand around p = 0 by using the 
Taylor expansion formula 

(18.17) 
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where 

_1011'/2 2 cos2 X 
Jo - dx . ,\' 

o Sill X + (18.18) 

Hence, the second order correction to the energy due to electron-phonon 
coupling is given by 

A (2) _ 'Y ( )2 u.Ek - -'YJo - 2,\2 k + a . (18.19) 

The total energy becomes 

Ek - E2 + ~Ek2) 
- Eo - 2to cos (k + a) - 2~2 {k + a)2 , (18.20) 

where Eo = -'YJo. For small values of k + a, we can use the expansion 
cos (k + a) !:::1 - (k + a)2/2, then 

t* 
Ek = Eo + "2{k + a)2 , (18.21) 

where Eo = Eo - 2to and t* = to(1 - 'Y/2,\2to). Since the effective 
mass of the electron is related to the hopping amplitude via m* ex l/t*, 
we conclude that the effective mass of the electron is increased due to 
electron-phonon interaction: 

(18.22) 

In addition to the increasing of effective mass since 10 ex t*, the ampli­
tude of persistent current is suppressed due to electron-phonon coupling. 

3.2 Strong-Coupling Polarons 
We have studied the weak-coupling polarons in the previous section. 

In this section we will consider the strong-coupling case. The strong 
coupling polaron is the self-trapped state of the electron. If we denote 
by I the characteristic size of the region which traps the electron (in 
reality, this region may move over the crystal as a whole), all of our 
calculations so far have related to case of large-radius polarons, I » a. 
We now consider small-radius polarons where I «a. The Hamiltonian 
of the system can be written as 

H = He + Hph + He-ph, (18.23) 
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where He is the electronic part of the Hamiltonian which is given by the 
Eq. (18.1), Hph represents the phononic part which is given by 

Hph = L liwqb;- bq , 
q 

(18.24) 

and He-ph denotes the electron-phonon interaction which can be written 
as 

He-ph = L Vqat+qak(bq + b~q) . (18.25) 
k,q 

Using the Eq. (18.13), He-ph can be written in the site representation 
as 

(18.26) 
n,q 

where Vq is the electron-phonon coupling constant which depends only 
on magnitude of q. We can take the wave function as 

(18.27) 

where em is a functions of the phonon operators. In the extreme 
strong-coupling limit one can neglect the hopping term (to = 0) in the 
Eq. (18.23). This approximation leads to a simplified equation 

L [1iwqb;-bq + Vq(bq + b~q)eiqm] em = Eem . (18.28) 
q 

Introducing a transformation, bq = Bq + Aq, in such a way that the 
electron-phonon interaction term in the Eq. (18.28) can be eliminated, 
yields 

,,[ + V,}] _ 7 liwqBq Bq - liwq em - Eem . (18.29) 

Notice that the operators bq and Bq have the same commutation rela­
tions, [bq, b;'l = 8q,q' ==> [Bq, B;l = 8q,q' , and Aq = -(Vq/Wq) exp (-iqm). 
The eigenvalues of the Eq. (18.29) are given by 

(18.30) 

Thus, the transformation leads to a decrease in phonon energy at each 
site by an amount b.. = Vq2/liwq, which is known as the polaron shift. 
For each values of q, the ground state wave function must satisfy the 
following relation: 

b .1.(0) = A .1.(0) q'f'q q'f'q. (18.31) 
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The solution of the Eq. (18.31) is given by 

",,~O) = exp (_~IAqI2) f (A;( (bt)n 10) . 
n=O 

(18.32) 

The same result can be received with a canonical transformation of Lang 
and Firsov [23]. For all allowed values of q, the ground state wave 
function becomes 

(18.33) 
q 

To understand the consequences of the strong electron-phonon coupling, 
we calculate matrix elements of He 

( "I]!(O) IH I"I]!(O)} - _t*eior _ t*e-ior n e m - (In,m+l (In,m-l • 

Here, the hopping amplitude is modified as 

t* = toe-r , 

where 

1071' dq v:2 

r = 2 -2 2 q 2 (1 - cos q) . 
o 1r n Wq 

(18.34) 

(18.35) 

(18.36) 

Thus, in the strong-coupling case (r » 1 and 1 ¢: a), the hopping 
amplitude decreases exponentially as a function of electron-phonon cou­
pling constant Vq. The effective mass increases exponentially because 
of m* ex l/t*. More important result is that, in the present case, 
amplitude of the persistent current is suppressed exponentially since 
10 ex t* = toe-r . Similar result was also obtained in Ref. [17] within a 
variational approach. 

4. CONCLUSIONS 
We investigated effects of electron-phonon interaction in the meso­

scopic metal rings threaded by a magnetic flux. In both cases, weak­
or strong-coupling, in spite of the fact that magnitude of the persistent 
current is suppressed, the current is still periodic in flux q) with a period 
q)o. In the strong-coupling case, the magnitude is decreased exponen­
tiallyas a function of the electron-phonon coupling strength. Finally, it 
is worth noting that the experiments were performed with a finite width 
rings [12]. Another effect of the electron-phonon interaction can be in 
the fluctuation pairing. This may increase 10 since it was found quite 
early [24] that superconductivity restores due to Aharonov-Bohm effect 
in a small ring. The polaronic effect in coupled mesoscopic rings, as well 
as superconducting pairing and finite temperature effects will be subject 
of future investigation. 
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