PERSISTENT CURRENT AND PERSISTENT CHARGE IN
NANOSTRUCTURES

[.LO.KULIK

Department of Physics, Bilkent University
Bilkent 06533, Ankara, Turkey

Abstract. Quantim effects in the interaction of electromagnetic field with small, but
not microscopically small, metallic particles and rings are investigated. The aspects of
mesoscopic systems related to time-independent (or magnetic) Aharonov-Bohm effect,
time-dependent (electric) Aharonov-Bohm effect, and to quantum high-frequency effects
in a coupled system: optical fiber+ mesoscopic conducting loop are discussed.

1. Introduction

Electromagnetic field is primarily a wave. The quantum mechanics tell us that the field
exists in a form of quanta, the photons.

Electrons are believed to be primarily particles, the point-like objects. Quantum physics
then introduces a wave aspect of electron through the notion of particle-wave dualism.
The electrons and photons are to be considered on same footing.

Unlike photons, electrons are charged, which brings a new aspect to the wave mechanics of
electrons interacting with the electromagnetic field. This was first recognized by Aharonov
and Bohm [1] who have shown that electromagnetic potentials A, ¢ are of primary impor-
tance, rather than electromagnetic fields H, E themselves, and that at certain topology
of space (or space-time) it may appear that the effects related to vector potential A alone
(with H and E identically equal to zero), or that of scalar potential ¢ alone (again, with
H = 0, E = 0) may exist. These effects are: the persistent currents in metallic loops {2,3],
persistent charges in metallic granules [4] and resistance oscillations in mesoscopic rings
and networks [5,6].

We will consider the wave phenomena in collection of electrons which are large in number
(say, N ~ 10 in a metallic granule of size ~ 1pm) but at certain condition may behave
similar to a single atom. The condition is specified by the requirement that electron in a
granule does not suffer inelastic collision which acts as a measuring event, resulting in the
reduction of the wave packet and elimination of coherent electron phase. [The elastic scat-
tering, on contrary, preserves the electron phase.] The phase-breaking length of electron
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l, is related to the electron-electron and electron-phonon scattering as
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in a clean metal (lgas5: > L), and

l(p ~ (li'm:llelmxt)1/2 (2)

in a dirty metal (least < L) where Linei, leiast are inelastic and elastic mean free paths,
L is the typical size of the system, wp the Debye energy, and vr and e are the electron
Fermi velocity and Fermi energy, respectively. A, and A._,4 are dimensionless electron-
electron and electron-phonon coupling constants which can be crudely taken as quantities
of order 1. Typically, er ~ 1 —10eV and wp ~ 10— 100meV which means that mesoscopic
behavior appears in system of micron size at temperature T below 1K.

2. Persistent current

Persistent current is a dissipationless non-decaying current in a mesoscopic loop induced
by a static magnetic flux piercing the loop (Fig.1). The current was first predicted for a
normal-metal loop in the paper [2] following the pioneering work of Imry and Gunther [7]
who have shown that in a one-dimensional superconducting loop with a superconductivity
destroyed by quantum fluctuations, a non-decaying, or “persistent” current (according to
later terminology [3]) reappears . As stated in Ref.[2], in a normal metal “...the current
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Figure 1. (a) Schematic of the Aharonov-Bohm effect in the ring with a solenoid, and, (b) in an homo-
geneous magnetic field; (c) The dependence of current on magnetic flux. Solid line corresponds to T' = 0,
dotted line to T > 0.

state corresponds to a minimum of free energy, so that allowance for dissipation does not
lead to its decay”.
The origin of the current in a ring can be understood with a generic Hamiltonian

N
H=-t Z(a:anﬂe“" + a:_}_lane_’“). (3)
n=1
where a,, is an electron annihilation operator at site n, ¢ is the transmission amplitude
between the nearest sites, and a is the phase related to the magnetic flux in the ring
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The quantity &, = 4-10~7G - em? is the flux quantum of a normal metal. The flux in the
ring determined as

@:/Adl:/ﬂds, 5)

can be produced either by a solenoid inserted inside the ring (Fig.1(a)), or by an externally
applied magnetic field (Fig.1(b)). In the first case, no classical effect of magnetic field is
expected because for the electrons confined within the ring, the magnetic field appears to
be identically zero. The effect of vector potential is introduced by the phase factor exp(ia)
in the hopping amplitude in Eq.(3) where a = f:“ Adl. Calculating the eigenstates of
the electron within the Hamiltonian of Eq.(3)-

ep = —2tcos(k+a), k= %m, m=0,1,2.N -1 (6)
and calculating the thermodynamic potential
Q=T In(1 + e Plern) (7)
k
where 8 = 1/T and p is the chemical potential, we evaluate a current J as a derivative
o0
J = —Ca—Q. (8)

The dependence Q(®) vanishes in the imit N — oo consistent with the van Leuven
theorem stating that in classical mechanics thermodynamic parameters are independent
of A and ¢. Calculation shows that J is periodic in ® with a period of flux quantum ®g,
see Fig.1(c).

The oscillatory dependence is a hallmark of the persistent-current effect and serves as
an experimental indication that the effect is there [8,9]. The magnitude of the persistent
current

J.~evp/L~10°nA at T =0and L~ lum 9)

where L = Na is the circumference of the ring (a is atomic period). Estimate (9) corre-
sponds to a current produced by one electron orbiting around the ring with velocity of
order of Fermi velocity vp ~ 108cm/s.

The magnetic moment corresponding to this current M = %JS where S is the cross section
of the ring, is much larger than microscopic Bohr magneton

M/pg ~ kpL ~ 10% (10)

However, the magnetic energy associated with the moment, E; ~ M?/L3, is much smaller
than electron level spacing Ae ~ hvp/L,

e/a
Ey/Ae ~ —=~ 1075 11
1/ € mc2 10 ( )

which means that we may neglect the self-action of the current on the magnetic field within
the ring.
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The current remains nonzero if scattering (both elastic and inelastic), 3d lattice effects
and finite temperature are taken into account. However, the magnitude of critical current
reduces.

Inelastic scattering reduces the magnitude of J. according to an exponential factor exp(—L/1,).
The 3d effects increase the value of J. by a factor of /Ny where Ny = k%S/47? is the
number of “perpendicular channels” (number of components of electron momenta perpen-
dicular to the direction of current). The effect of finite temperature is to mix the electron
states around the Fermi energy and therefore to reduce the value of J, because due to k-
dependence of the energy of individual electron states (6), the a-dependence of Q2 flattens
at increasing T. The effect is accounted for by a factor exp(—L/&r) [2] where {7 is the
temperature dependent “coherence length” of normal metal

&r = hop/2xT. (12)

[In a dirty metal, ér is given by ér = (hvplelus,/27rT)1/2. ]

The effect of elastic collision on magnitude of the persistent current is more subtle. It
seems at first that elastic scattering does not influence J, since it preserves the coherent
phase of electron. The other extreme is to introduce the uncertainty of the energy due
to scattering 6e ~ hvp/leqst and to compare that with the energy spacing in presence of
vector potential Ae ~ hivp/L. The reduction factor of order lj,s:/ L may follow [10] which
however is not correct. Kirczenow {11] showed that smaller reduction does in fact emerges
in a specific model of potential scattering.

If we introduce some barriers V; representing impurities in ring than at large V; the ®-
dependent part of energy will be proportional to 1/|V;|, whereas resistivity due to these
barriers will increase as |V;|?. This means that J, ~ AQ should scale with 1/+/R and not
with 1/R as follows from the reduction factor leas/ L.

Consider perfect 1d ring interrupted at some point with a é-functional barrier of height
V. Eigenvalue problem in the tight-binding approximation (3) is easily solved giving for
the current from a particular eigenstate (6) labeled with m, an expression

em? | i3
5V sin ZWE. (13)

Jm = (=1)"
Summing over all k., up to |k,,| = kF gives an estimate of J,

evp t'
J. ~ — = 14
o~ S (14)
where t’ is the transmission amplitude in the ring with a barrier.
Considering more general case of many barriers and combining the efect of many transverse
channels we receive an estimate of the maximal current in dirty metal

evp Ry, /2
~ 220 15
where Rg is quantum of resistance Ro = h/2e* ~ 12.9kQ and R is the reristance along the
ring (resistance of a rod of length L and cross section S received by cutting the ring at
some point). The formula (15) is in qualitative agreement with the experimentally mea-
sured magnitude of persistent current [8].
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3. Persistent charge

Consider two small (mesoscopic) pieces of metal P, P; separated by distance d and placed
either in the field of time-dependent scalar potential #(t), with electric field confined
within a capacitor (Fig.2(a)), or in an external electric field producing the scalar potential
difference between the particles ¢ = Ed (Fig.2(b)). In both cases, the quantity in question
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Figure 2. Schematic of the electric Aharonov-Bohm effect with (a) a thin capacitor , and, (b) in an
homogeneous electric field. (c) and (d) represent E(t) and Q(®) dependences respectively.

which determines the Aharonov-Bohm effect is the “electric flux” &’ defined as
& = / Edzd. (16)

Integral is taken over the period (7o) of the electric field variation. If, for instance, we
choose the dependence E(t) in the form of the Kronig-Penney barrier (Fig.2(c))

_ Ey, if |t - ’nTol < 11
E(t) = {0, if |¢ = nTo| > t; an

then we receive & = Egt,d. The generic Hamiltonian of the problem

H= ¢ 2(t)0'z + T120% (18)
where o; are Pauli matrices and 7}, is the hopping amplitude between P, and P;.
Suppose that at ¢ = 0 the system acquired amplitudes ug, vo in the upper and lower
states of (18). Then, at a later time, it may occupy any of two states with amplitudes u,
v thus creating the dipole moment P = ed(|u|? — |v|?). Solution of the time-dependent
Schrédinger equation gives

P(t) = 4eRe(ugvo)Im((t), (19)
where
e2mv _ e2m'Nu omiNy eVo Y
&)= ——mmm— +F™, V== (20)

and N = [t/Ty], F ={t/To} where [z] and {z} are the integer and the fractional parts
of z, respectively. The quantity v is the electric flux &' in units of flux quantum (4).
The charge Q = P/e is accumulated between the granules. The value of the charge is an
oscillating function of ®'/®,, analogous to the oscillation of persistent current vs ®/®g in
a static Aharonov-Bohm effect.
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If the electric flux &’ is slowly varying in time (with period T3 much larger than Tp) then
we will observe the periodic variation of @ with & provided that Tj is much smaller than
the phase-breaking time 7, = l,/vF. The oscillating behavior will persist to temperature
of order of fi/Ty. No such experiment have sofar been performed.

4. Resistance oscillation

Suppose that mesoscopic loop of Fig.1(a) is connected by conducting wires with two ther-
mal reservoirs Ry, R; held at different voltages Vj, V2 (Fig.3(a)). Then the transport

+
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Figure 8. (a)Mesoscopic loop connected to incoherent voltage sources (thermal reservoirs) Ri, Rz. (b)A
“quantum mechanical transistor” [13].

current flowing through the loop will be superimposed over the persistent current pro-
duced by the external flux. The electrical resistance of the loop R = (V, — V4)/J¢r can be
calculated with the Landauer formula [6,12]

R—E ik 2
=3 ltal (21)
af

where 4 is the transmission amplitude between one of perpendicular channels of electron
eigenstate to the left of the ring () and to the right of one (). This formula is applicable
when electron state a enters the ring from the left equilibrium reservoir, and emerges to
the state 8 in the right reservoir. It is assumed that energy conserves within the ring, i.e.
motion of electron is “ballistic” in energy. Magnetic flux ® piercing the ring will affect
electronic states a, 8 and therefore will alter the resistance of the ring.

Resistance oscillation are found in many electric measurements on mesoscopic rings (see
[5] and refererences therein). The temperature, size, and purity dependence of resistance
oscillation are similar to those of a persistent current. Typical magnitude of conductance
variation is of order of €2/h. An example of R(®) dependence is shown in Fig.4.

In a loop configuration shown in Fig.3(b), an additional electric field was applied [13]
perpendicular to the direction of the transport current (the “control gate” of “quantum
mechanical transistor”) resulting in the shift of oscillation pattern of Fig.4 proportional
to the gate voltage. The possible explanation of the experiment may be in considering
various classical paths of electron within the ring (Fig.5).

In the dirty (“diffusive”) regime leiqs: < L, various local loops of electron trajectory
may be formed inside the ring. These loops change their energy in a random way when
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Figure 4. Resistance oscillation in the loop of gold. (a)Loop configuration; (b)R vs H dependence;
(c)Fourier transform of R(H) showing maximum at flux quantum periodicity. From Ref.[5].

magnetic lux ® changes, causing the electron redistribution between the loops and, as
a result, the shift in the oscillation pattern R(®). The effect is reduced in magnitude
because of screening of electric field inside the metal. Quite large voltages on the control
gate (vg ~ 1V) are required to see the substantial shift in the interference pattern R(®),
consistent with this reduction.

U

Figure 5. Random network of local loops inside the disordered conductor. Changing of magnetic field
causes electron redistribution between the loops.

5. Quantum interference in high frequency field

We now turn to another configuration of the Aharonov-Bohm experiment with mesoscopic
rings [14]. Suppose that nanoscale loop encloses an optical fiber with the high frequency
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field pumped through it (Fig.6). If the static magnetic field Hg,. is simultaneously applied
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Figure 6. (a)The mesoscopic loop (L) enclosing an optical fiber. In the T'Eo; mode, the magnetic field
H,. is aligned parallel to external field Hg. and to fiber axis.
(b)Schematic of weakly coupled loop with weak links at points A, B coupled to thermal reservoirs Ry, Rz.

along the fiber axis, resistance of the loop will periodically change not only with the static
flux ® = H;..S but also with the amplitude of a.c. power in the fiber. Most strong effect is
expected in the T'Ep; mode of the fiber in which magnetic field H,, has component along
the fiber axis (Fig.7). We assume that loop is “weakly connected”, i.e. has narrow regions

Figure 7. Field configuration in the T'Ep; mode of optical fiber. Solid lines are lines of force of magnetic
field, dotted lines the lines of force of electric field.

A, B such that an a.c. field is concentrating near the latter. The size of the loop should
be smaller than few wavelengths of optical field to ensure that total a.c. flux within the
loop is not equal to zero.

The generic Hamiltonian corresponding to the setup of Fig.6(b) can be represented in the



Persistent Current and Persistent Charge in Nanostructures 53

form
H=—-1 Z(a:an-{-l + 0} bry1) + Hint,
Hip = —tia] bnle - taat b, ,€%2 + h.c. (22)

where the first term accounts for the hopping along two independent chains (a,, b, are
the electron annihilation operators in the chains), whereas the second one ascribes the
interaction between the chains. The lower chain is connected to two thermal reservoirs Ry,
R, for measurement of the resistance variation with the a.c. and d.c. fields.

Hopping amplitudes between the chains are modulated in phase due to static and alter-
nating fields according to t;e'® with

a; = a? + A;sin(wt + 6;). (23)
The phase difference o — @9 is controlled by a static flux
2r g
o o=l g /BdS, o= (24)
@o [

whereas the time-dependent parts relate to an a.c. power in fiber.

Solution of Hamiltonian (22) can be achieved by perturbation over ¢y, ¢; in the frequency
domain fiw > 4|tp| in which inelastic transitions corresponding to change in energy nhiw
are forbidden. Hamiltonian (22) does not have unperturbed states outside the bandwidth
of the one-dimensional metal 4[to).

Employing the identity

1z sin "2 Z J (Z)ezmp

n=-—0oo

where J,,(z) are Bessel functions of order n, we can decompose H;y; into the Fourier series

znt Z Hg(:t) znwt

n=—oo0
(25)
with
HT) = ;60 0,(A1)af boy — 263 J,(A)ar by, . (26)
Coupling between the plane-wave states of the unperturbed Hamiltonian
Ye =Y e*af|0), =) e*"bt|0) (27)
n n

results in transition between the chains with probability

Wk o dar) = [(Gerl HO )/ lve] (28)

where subscript “+” refers to transition ¥y — ¢_p and “-” to tramsition ¢ — P_;.
Since momentum |k| is conserved at transition, we may introduce kinetic equations for the
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populations f{k of electrons with momenta & and —k in the lower chain, and similarly fzi
in the upper chain. Taking into account symmetry between the transitions 1y — ¢4, and
br — ir We receive

Yo o Wolz (1~ 1)~ W (= YA Wols (L= )+ W (L= ),
+
Vi o Wl (= 1) = Wolf (L= )+ Wi (L= £ + Wolt (1= ) (29)

in the upper chain, and

d - -
Do = Qe Wofr (1= ) = Wa ST (1= )+ Woly (L= F) A Wa 5 (1 £7),
+
B WO ) = Wolt (L= )+ W7 (L= )+ Wof (L £) (30)

in the lower chain where @)+ is the influx of electrons from the reservoirs

Qs = (s~ e £ 5)), (31)

and fo(e) = (exp(B(e — u)) + 1)7! is the equilibrium Fermi distribution.
In a steady-state, df /dt = 0, Eq.(29) gives

fz_ - W0f1 +W—f1 , f2+ - W0f1 + W+f1 ) (32)
Wo+W_ Wo+ W4
In the lower chain, solution of Eq.(30) at small W’s gives
fT = foler — eV/2) + [Wofy + Wi fy — (Wo+ Wi foler — eV/2)]/ vk,
¥ foler + eV/2) + [Wofy + W_f5 — (Wo + W_)fo(ek + eV/2)}/|vk]. (33)
The current flowing between the reservoirs is
g dk
— + _ 22
7= [Tl - )5 ED

After simple manipulation we receive

[k W(k) W(-k) eV eV
7= ], 5 Ol e * Wy W e~ )~ Ao (59

2 2
where
W(k‘) = t% J02(A1) + t%Jg(Ag) + 2t1t2J0(A1)J0(A2) COS(OZ + 2Nk') (36)

Conductance of the system G = dJ/dV is represented as Gg + G1 where G is the inter-
ference term proportional to ;|2
X2 Xo [T Xo[X4(k) + X_(k)] + X (k)X _(k) dk

2hT  Jo [Xo+ X4+ (k)][Xo+ X_(k)]  |vk|cosh®(ex — p)/2T"

Gy = (37)
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In this expression
Xs(k) = A+ Bcos(a+ skL), s=-1,0,+1
A =12J2(A) + 12J2(As), B = 2t1taJo(A1)Jo(42), t = /13 +13. (38)

where I = 2Na is the total length of the ring.

Conductance of the ring is a function of both static magnetic flux ®4. and the amplitude
of an a.c. fleld A, = const - /P where P is an optical power in a fiber.

The dependence G(®4.) is similar to oscillations of static resistance discussed in Sect.4.
The dependence G(P) shown in Fig.8 is similar to the amplitude oscillation in the a.c.
Josephson effect in superconductors [15,16]. The temperature variation of both oscillation

0.8

(G-G,)G,

Pm, arb. units

Figure 8. d.c. conductance of the loop as a function of an a.c. power. Solid line corresponds to A; = Aa,
the dashed line to A1 = 0.5A,.

dependences is somewhat different from the temperature dependence of the amplitude of
static oscillations. Formerly, the oscillation resulted from the ® dependence of the electron
states (6). Integration with respect to k eliminated the oscillating component. In case of an
a.c. interference, the transition probability (a coefficient before fi — f;” in Eq. (35)) does
not vanish after the integration with respect to k. Therefore the oscillation will have a non-
exponential small amplitude at temperature larger than the level spacing Ae = hvp/L.

6. Other Aharonov-Bohm effects

In recent years, there has been an interest in extension of the Aharonov-Bohm effects to
systems other than metals [17,18], to solid cylinders [19,20] and antidots [21], to unho-
mogeneous magnetic fields with radial [22] or azimuthal [23] components. Aharonov and
Casher [24] have considered the interaction of electron spin with electrically charged rods.
The effect results in the shift of AB oscillation. Being quite small, Aharonov-Casher effect
is enhanced in semiconductors with strong spin-orbit coupling and small effective mass of
electrons [25]. Actually, such effects are nothing else than the manifestation of spin-orbit
interaction. [26] which shifts the R(®) dependence but do not reveal the full period of
oscillation like in conventional (static) AB experiment. Interaction of particle spin with
electrically charged body is can be considered in context of “Berry phase” in quantum
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mechanics [27]. These and similar AB effects are reviewed in a paper [28].
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