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NONLINEAR PHENOMENA IN 
METALLIC CONTACTS 

I. O. Kulik 
Department of Physics, Bilkent University 
Ankaro 06533, Turkey 

Abstract We review and extend theoretical approaches to nonlinear and nonequi­
librium effects in metallic microcontacts ranging in their dimension from 
the atomic to macroscopic sizes. Atomic contacts are shown to quantize 
their conductance in units of 2e2/h provided the charge redistributes 
near the constriction to establish the maximal electron transmittivity 
through the orifice. Ballistic semiclassical contacts are treated both 
from the Landauer point of view and from the Boltzmann transport 
theory. The J-V nonlinearity in contacts is related to the inelastic 
scattering near the narrowest part of the constriction and permits for 
spectroscopic investigation of phonons in solids (the point-contact spec­
troscopy).The effects of phonon emission and reabsorption in contacts 
are taken into consideration. Phonon relaxation is shown to determine 
the frequency dependence of the nonlinear contact conductivity. Ther­
mal contacts develop specific nonequilibrium states with hot spots in the 
center of metallic constriction whose temperature is much in excess of 
the ambient contact temperature and is uniquely related to voltage. 

1. INTRODUCTION 
It is the aim of this paper to present a coherent approach to linear 

and nonlinear, as well as to equilibrium and nonequilibrium, phenom­
ena in metallic contacts of diameter ranging from the atomic size to 
macroscopic size. Our understanding of these properties arises from the 
works of Landauer [1], Sharvin [2], Yanson [3], Holland groups [4, 5], and 
others [6], etc. Unlike tunneling junctions, direct metallic constrictions 
(or links) develop a number of peculiarities of which we mention the 
following. 
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(1) Conductance of contact scales with the quantum of conductance 

2e2 
Go = h = 1/12.9kO (1.1) 

in such a way that minimal conductance reaches a value Go before the 
contact breaks to the tunneling-type junction with a much smaller or 
zero conductance, and is even quantized in units of Go = R;l in a proper 
arrangement. In particular, this happens if contact size or shape is 
varied by applying a gate voltage to change the electron concentration (in 
semiconducting constrictions), or contacting electrodes are pulled away 
to increase the length (and possibly the contacting area), in metallic 
contacts. The typical dependence of the contact conductance on the 
pulling strength [7] is presented in Fig. 1.1. 
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Figure 1.1 Conductance of sodium contact at 4.2 K as a function of stretch [7]. 
Measurements have been performed by pressing two pieces of metal and then pulling 
them away from one another with a piezoelectric sensor. Reproduced by permission 
from Ref. [7]. 

(2) The electron How in a constriction is a regular quantum process 
(a kind of ''nondemolition measurement") while the energy dissipation 
takes place away from its narrowest part. Because of this, the shot 
noise in direct metallic constriction reduces compared to its value in the 
tunneling junction of similar resistance [8] 

d 
Bv f"V 2eV Ry (1.2) 

where Bv is the shot noise power and l the phase-breaking electron mean 
free path assumed to be larger than the contact diameter d. Reduced 
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shot noise in a metallic contacts was first observed in an experiment in 
1984 [9] (see Fig. 1.2). (Further works are reviewed in [10].) 

1 

Figure 1.2 Current noise in aNa micro contact at T = 1.7 K [9]. Contact was 
produced by shortening a tunneling barrier between two metallic electrodes with an 
electric shock creating a small metallic bridge between the electrodes. Taken from 
Ref. [9]. 

(3) The superconducting properties of contacts with direct metallic 
conductivity are controlled by the Andreev reflection [11]. In short nar­
row constrictions (d «e where e is a superconductingcoherence length), 
the current-phase relation is nonsinusoidal [12] 

J() G1ft:::.· cP anh t:::. cos ~ 
cP = -Slll-t 

e 2 2T 
(1.3) 

unlike in the tunneling Josephson junctions, and larger in magnitude 
than the critical Josephson current at same conductance. 

(4) Nonlinearity in the contact conductance arises due to inelastic 
processes of electron-phonon interaction (EPI) in the narrowest part of 
constriction where the drift velocity of electrons approaches the velocity 
of acoustic waves. The derivative of current with respect to voltage is 
proportional to the density of phonon states (and also to the frequency 
dependent matrix element of EPI) 

dG 
dV(V) ~ F(w)lw=ev/1i. (1.4) 

thus providing for the spectroscopy of phonons with micro contacts [3, 4]. 
An example of the nonlinear current-voltage characteristics of microcon­
tact [14] is shown in Fig. 1.3. Metallic contacts survive quite large volt­
age biases (say, eV '" 100 m V) at which a small region of metal near the 
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orifice enters into the extreme nonequilibrium, nonthermal state super­
imposed over the background of the cold lattice. 
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Figure 1.3 Point-contact spectrum of EPI in Ag needle-anvil contact at 1.6 K [14]. 
Second derivative of the J - V characteristics was recorded by measuring the ampli­
tude of the second harmonic, V2, of the oscillating voltage versus the d.c. voltage on 
the contact, V. Taken from Ref. [28]. 

(5) In plastically deformed contacts, phonons emitted due to electron 
scattering reabsorb near the orifice. Since phonon relaxation rate is much 
slower than the electron relaxation, the nonlinear electron conductivity 
shows a dispersion at characteristics frequencies [15, 16] 

(1.5) 

(6) Larger-size contacts, d ~ 100 llID, enter the non-ballistic regime 
of current transport in which hot spot is formed near the orifice with a 
high temperature uniquely related to voltage [17] 

kBT = 3.63eV (1.6) 

resulting in a strong nonlinearity of its J(V) dependence and the tran­
sistor effect [18]. 

The theoretical description of contacts divide them into three cate­
gories: 

• Atomic contacts with the size of the order of few atoms. The 
mechanism of conduction is described as hopping between atomic 
sites similar to tight-binding approximation in the theory of solids. 
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• Ballistic micro contacts, those of size larger than the atomic size 
but smaller than the mean free path of electrons 

a¢:.d¢:.1 (1.7) 

Such contacts are treated in a semiclassical approximation using trans­
port theories such as the Boltzmann kinetic equations. 

• Thermal contacts (d» I) developing, due to a current concentra­
tion, "hot spots" of small size in a very cold steady state environ­
ment. 

2. ATOMIC CONTACTS 
The model of contact [19] assumes regular arrangement of atoms in 

its narrowest part in the form of two cone-shaped surfaces contacting 
over a plate with Nt atoms (and possibly making a bridge of length of L 
atoms), and connected through N, leads to the thermal reservoirs speci­
fied with their respective temperatures (1i), voltages ('Vi) and phases of 
the order parameter (!Pi) (in case when the contact is formed between 
superconducting electrodes). Schematic presentation of contact is given 
in Fig. 1.4a. 

1. 
'wi 
f1 

Figure 1.4 Models of the atomic contact with N = 26, Nt = 2, and Nz = 5 (a), and 
ofthe atomic link with N = 9, Nz = 5 (b). 
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Perfect contact geometry assumes that the number of leads, Nz, is 
much larger than the product of the number of the transition channels 
Nt to the number of conduction channels N c• By the latter we mean, 
for example s, Pz, PY' Pz, etc. electronic bands, or their hybridized bands. 
The channels are presented with their respective hopping amplitudes 
(transfer matrix elements) ts and the positions of band centers cs, s = 
1, ... , Nc• The Hamiltonian of the junction is 

(1.8) 

where 

H"od = -t ~. (j;, a;!'.On+l,. + ~ at. C •• ) + h.c. 

-t E (j;, b~.b,.+l,. + ~ bt.CN-k+1,.) + h.c. (1.9) 

The atoms in the central part of contact are numbered from 1 to N (the 
electron creation operators at atom sites are et, i = 1, ... , N, s = 1, ... , Nc 
connected to the left and right leads with the creation operators atk' 
k = 1, ... ,N" and btk' k = N - Nz + 1, ... ,N, respectively). We assume 
that electrons arrive to the contact through the leads from the left reser­
voir independently from one another, and are transmitted to the right 
reservoir after passing the contact with the transit amplitudes tks,k's" 
Then, according to Landauer [1] and Imry [20] the contact conductance 
at T = 0 may be expressed as 

N, Nt! 

G = Go L L It ks,k's,1 2• (1.10) 
k,k'=ls,s'=l 

Calculation shows the dependence of the conductance on the occupation 
level (the Fermi energy J.L) in metals. Typical dependences G(J.L) are pre­
sented in Figs. 1.5 and 1.6. They show that the conductance, although 
in its magnitude of the order of the conductance quantum, is not exactly 
equal to or multiple of Go. The non-monotonic behavior of conductance 
versus energy is an inevitable consequence of the scattering concept, and 
follows as a result of quantum reflection at the contact boundary. 

Maximal conductance is proportional to the number of conducting 
channels Nc and also to the number of contacting points (the "transition 
channels") Nt in the narrowest part of metallic connection 

(1.11) 
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Figure 1.5 Examples of the calculated conductance versus Fermi energy dependences 
in the atomic contacts with t = t" = -1 and e" = O. Upper left panel: 2d contact 
with Nt = 1, Nc = 1, Nz = 5, N = 29, L = O. Upper right panel: 2d contact with 
Nt = 2, Nc = 1, Nz = 5, N = 26, L = O. Lower left panel: 3d contact with Nt = 3, 
Nc = 1, N z = 30, N = 57, L = O. Lower right panel: 3d contact with Nt = 3, Nc = 1, 
Nz = 30, N = 81, and the channel between the tips of length L = 8. 

Conductance is independent of the number of the "lead channels" N, 
provided that N, is larger than NcNt • These are the conclusions derived 
from the ''rigid'' model of the contact which assumes that the electron 
distribution in the contact area is not subject to variations due to prox­
imity with the bulk electrodes. There is a reason, however, to believe 
that such variations may take effect. 

Consider in particular the contact in the form of a link presented in 
Fig. l.4b. Conductance G(p.) displays sharp peaks (Fig. 1.6) which 
correspond to the transmittance resonances at the discrete levels in the 
link. Similar resonances also appear in G(U) dependence where U is 
the energy shift added to the atoms at the inner sites. If we allow for 
charge to accumulate in the link, or to deplete from the atoms in the 
inner block, the Fermi level in the link will level off with one of such 
resonances with the result that the transmissivity between the left and 
right electrodes substantially increases which in turn will lower the total 
system energy. The spontaneous accumulation (depletion) of charge 
at the link is therefore energetically favorable. We may assume that 
contact may automatically adjust its Fermi level by accreting (or losing) 
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Figure 1.6 Conductance of atomic link with parameters t = t. = -1, N = 9, Nc = 1 
(see Fig. l.4b). Upper panels correspond to NI = 3 (left panel) and Nz = 30 (right 
panel), and show the dependence of conductance on the Fermi energy I' (in units 
of Itl). Lower panels correspond to same values of NI, and show the dependence of 
conductance on the energy shift added to atoms in the link, U (in units of It!) at 
I' = o. 

some charge from bulk metals. Of course, this will cost some energy of 
charging the link, of the order of e2 I d, which however is less than the 
energy gain due to increased transmissivity (of order of t) provided that 
d» a and assuming that It I '" e2 la. 

This is opposite to the Coulomb blockade situation [21] characteristic 
of weakly coupled granules to the banks (It I ¢: e2 la) in which, because 
of small Itl, the metallic cohesion energy between the granule and the 
massive electrode is insignificant. We conclude therefore on the possibil­
ity of explaining the exact quantization of conductance in contacts which 
is often found in an experiment, in terms of the self-charging effect of 
atoms in constriction. 

3. BALLISTIC MICROCONTACTS 
Contacts with the size of the contact area d much larger than the 

interatomic spacing can be treated semiclassically by introducing the 
distribution of electrons in the momentum and coordinate space f (p, r) 
and solving for f (p, r) from the Boltzmann equation. Sharvin [2] as-
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Figure 1. 7 Sketch of contact in the 
form of an orifice in the nontrans­
parent screen. 1) electron trajec­
tory piercing through the orifice, 2) 
trajectory reflecting from the screen. 
At the fixed direction of the elec­
tron momentum p, probability of 
electron transition between the two 
boxes is equal to the ratio between 
surface of the orifice and the surface 
of screen. 

smned that contact conductance in this case is independent of the mean 
free path and may be estimated as 

fi2 ne2 fi2 
G ~ a- '" -- (1.12) 

I PF 
where a is the bulk conductivity and 1 the mean free path of electron. 
Since product al is independent of the mean free path, so the full con­
ductance will be. The calculation of the Sharvin conductance can be 
achieved with the help of the Landauer formula (1.1O), or by using di­
rectly the Boltzmann approach [13]. 

In the Landauer language, we may assmne that the probability of 
electron traversing the impenetrable screen through the circular orifice 
of surface S in it (Fig. 1.7) is equal to the ratio of S to the total surface 
of the screen So, 

(1.13) 

Summation over the states of electron in a box is semiclassically equiva­
lent to integration over dPxdpy with a factor L xL y/{21rh)2 where Lx, Ly 
are transverse dimensions of the quantization box, thus giving for the 
conductance 

G = 2e2 ~ r LxLydPxdpy = 2e2 N1.. (1.14) 
h So Jp~+p~<p~ {21rh)2 h 

where N 1.. is defined as the number of transverse channels corresponding 
to the contact area S: 

N1.. = ~;. (1.15) 

This is the nmnber of states at the Fermi energy per cross sectional area 
S. The expression (1.14) clearly complies with the Sharvin conductance 
(1.12). In the alternative derivation of contact conductance using the 
Boltzmann approach [13], we calculate the current at the orifice as 

f d3p 
J = 2eS f{p)vz {21rh)3 (1.16) 
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where 1 is the distribution function at z = 0, by using the expression 
for the latter 

I(p) = 10 (Ep - e: Sgnvz ). (1.17) 

Such form is an immediate consequence of the energy conservation on 
the ballistic electron trajectory entering the orifice from the left box 
(z = -(0) in case when the velocity of the electron at orifice is positive 
(vz > 0), or from the right box (z = +(0) if the velocity is negative (vz < 
0). 10 is an equilibrium Fermi distribution 10 (E) = l/[exp (c -p,)/T+ 1], 
V is the voltage difference between metals. Left box and the right box are 
the two "thermal reservoirs" since at any point inside the box, except at 
the immediate vicinity of the contact (Irl rv d), distribution of electrons is 
the equilibrium one. The electrons with z-component of velocity Vz > 0 
at z = 0 are in equilibrium at z = -00 where the maximal energy of 
Fermi distribution equals to EF + eV/2 whereas the electrons having z­
component of velocity Vz < 0 at z = 0, arrive from z = +00 where the 
maximal energy is EF - eV/2. Expanding 1 in Eq. (1.16) in powers of 
e V / E F, we receive at V -+ 0 the current at the orifice 

(1.18) 

with the conductance 

(1.19) 

SF is the surface of the Fermi sphere 41rp~. This formula is equivalent 
to the Landauer expression, Eq. (1.14). 

According to the derivation presented, distribution of electrons at the 
orifice consists ot two electron "beams" moving in opposite directions 
with maximal energies at the truncated Fermi surface equal to EF±eV/2 
(see Fig. 1.8a). 

At any point r away from the orifice, the truncated Fermi surface has 
same energy shift between two parts, e V, but the parts are inequivalent 
in size. The electron distribution at point r equals to 

I(p, r) = lo[cp + e¢(r) sgnvz] (1.20) 

where ¢(r) is the electrostatic potential at point r, and O(r) is a solid 
angle showing orifice from point r. By requiring that charge density 
remains unchanged (the condition of the local neutrality) at any point 
r, we find the potential distribution 

V [ O(r)] ¢(r) ="2 1 - 41r sgnz. (1.21 ) 
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Figure 1.8 Distribution of electrons at the contact surface (a), and at point r outside 
the surface (a). fl(r) is a solid angle at which the orifice is seen from r. Fermi surface 
at each point is truncated along the line which is an image of the orifice to the Fermi 
sphere. The energy difference between two parts of truncated Fermi surface equals at 
each point to e V . 

which along z axis becomes 

v z 
¢(z) ="2 JZ2 +rP/4 (1.22) 

The voltage continuously changes from -V /2 to V /2 at distances from 
the orifice of the order of its diameter d which is much smaller than 
the mean free path of electron l. Within the distances of order d near 
the orifice, a strongly nonequilibrium stationary state exists as long as a 
current is supplied through the contact. Since energy is conserved along 
the electron trajectory, Joule heat is not released inside the contact and 
is transferred to the lattice only at distances of order 1 much away from 
the orifice. 

The Landauer calculation directly relates conductance G to the num­
ber of conducting channels inside the contact, N 1.. It was then ar­
gued [22] that if the number of transverse channels changes discretely 
at the increasing contact diameter, so the conductance will do, i.e. G 
will be an integer multiple of the conductance quantum 2e2 / h. It was 
assumed that in a smooth contact continuously changing its diameter 
from infinity to d in the narrowest part, discrete channels will open one 
by one thus resulting in a conductance quantization G = nGo. 

These considerations do not apply directly to the atomic contacts. 
Subsequent microscopic calculation of the waveguide modes in a finite­
size contact of various geometry [23]- [26] showed oscillatory behavior (see 
Fig. 1.9) as a function of occupation, which however to our knowledge 
have been never observed. We suggest that the self-focusing behavior 
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Figure 1.9 Conductance of ballis­
tic contact in a form of cylinder of 
length L such that kFL = 40, as 
a function of the parameter kFd/2. 
Taken from Ref. [27]. 

of electron concentration near the contact "throat" discussed in page 9 
may instead be relevant to the observed discrete G values. 

4. INELASTIC SCATTERING AND J-V 
NONLINEARITY IN SEMICLASSICAL 
CONTACTS 
According to Landauer or Boltzmann theory of ballistic contact con­

ductance, its J - V dependence is linear up to biases of the order of Fermi 
energy. Introduction of the inelastic scattering of electrons on phonons 
results in the nonlinearity of the current-voltage characteristics at en­
ergy of the order of typical phonon energies [6]. This nonlinearity serves 
as a tool of the phonon spectroscopy in metals [3, 4, 28, 29, 30] since the 
nonlinear dependence is directly related to the density of phonon states 
at voltage bias equal to phonon energy, 

eV=nw. (1.23) 

To find the nonlinear correction to the contact current, we need to cal­
culate JP from the Boltzmann equation 

8Jp 8cp 8Jp _ 84> 8Jp -1 {f N.} 
at + 8p 8r e 8r 8p - e-ph p, q (1.24) 

and to find the phonon distribution N q from 

8Nq 8wq 8Nq m + 8q 8r = Iph-e{Nq , Jp) (1.25) 

where Ie-ph and Iph-e are the electron-phonon and phonon-electron col­
lision integrals 

Ie-ph = L Wq {[Jp+q{1- Jp){Nq + 1) - Jp{1- Jp+q)Nq]c5{cp+q - cp - wq) 
q 
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+[Jp_q(l - fp)Nq - fp(l - fp_q)(Nq + l)]d"(ep_q - ep + wq)} (1.26) 

and 

I ph- e = 2Wq l.:[Jp+q(l- fp)(Nq + 1) - fp(l- fp+q)Nq]c5(ep+q - ep - wq) 
p 

(1.27) 
Wq = (21r1i)IMqI2 where Mq is the matrix element of electron-phonon 
interaction. 

To find the nonlinear correction to current, we solve Eqs. (1.24) and 
(1.25) to first order in the collision integral which are in effect the first 
corrections in the ballistic small parameters d/Ie-ph and d/lph-e where 
Ie-ph and Iph-e are the electron-phonon and phonon-electron mean free 
paths, respectively. In the nonequilibrium state, the mean free paths are 
defined as 

1 21r Iowm 2 
I (T) = - (2Nw + 1 + Je+w - fc-w)a (w)F(w)dw (1.28) 
e-ph e, VF 0 

and 
1 41r 2 

I (T) = -N(eF)wa (w) 
ph-e W, VF 

(1.29) 

where N (e) and F (w) are the electron and phonon densities of states, and 
a 2 (w) is the square of the matrix element of electron-phonon interaction 
averaged over the Fermi surface. The product 

g(w) = a 2(w)F(w) (1.30) 

is known as a function of electron-phonon interaction (the Eliashberg 
function) and is defined as 

( - 1 fd~d~' fd~ 9 w) - (2 )3 --, Wp _ p ,c5(w - wp _ p ')/ -
1r Vp Vp Vp 

(1.31) 

(integration is running over the Fermi surface, vp = 18ep/8p1 is electron 
velocity at e = eF). At T = 0 and at energy equal to the Debye energy, 
mean free paths can be estimated as 

VF 
Ie-ph f"V Iph-e f"V -;-­

/\wv 

where A is a dimensionless electron-phonon coupling constant 

1000 dw 
A = 2 g(w)-. 

o w 

(1.32) 

(1.33) 

Typically, A f"V 0.1-1 in most metals, therefore both the electron-phonon 
and the phonon-electron mean free paths are of order of 10 -100 nm at 
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e tv nwn, whereas the electron-phonon and phonon-electron scattering 
frequencies differ by 3 order of magnitude: 

-1 1013-1 Te- ph tv S, -1 1010-1 Tph-e tv S. (1.34) 

Solving Eq. (1.24) perturbatively to first order in d/le-ph, we receive for 
the correction to the distribution function an expression 

a/o 10 /1 = e~l -a + Ie-ph(P(t) , r(t))dt 
ep -00 

(1.35) 

where ~1 is a correction to the electrostatic potential. p(t) and r(t) are 
the momentum and the coordinate at electron trajectory at time t. At 
eV « eF, the trajectory is a straight line arriving at time t = 0 to 
point r from -00 or from +00 at t = -00, depending on the direction 
of the electron velocity v. The potential can be found from the electro­
neutrality < /1 >= O. The first order correction to the current 

j j d3p 
J1 = 2e dxdy h3 vz/1(p,r). (1.36) 

is received finally in the form [6, 30] 

2eOell roo ( )jdSp jdSpl (') ( ) 
J1=- (211")6 10 dwL w,eV,T Vp v~ K V,v Wp_p'd W-Wp_pl 

(1.37) 
where 

(W - e)(ee/T -1) 
L(w, e, T) = M(w, e) - M(w, -e), M(w, e) = [1 _ e(e-w)/T](eW/T _ 1) 

(1.38) 
where Oell = d3/3 is an effective volume near the orifice in which 
nonequilibrium phonons are emitted by "hot" electrons. Backscatter­
ing of electrons is the cause of such emission and serves to the decrease 
the of electron current. 

At fixed phonon frequency, J - V curve changes its slope at eV = nw 
(Fig. 1.10), while the second derivative of J with respect to V acquires a 
negative peak. For the continuous distribution of phonons on frequency, 
F(w), the derivative of conductance with respect to voltage takes form 

G-1 dG = _ 8ed roo () (W - eV) dw 
dV 3nVF 10 9c w X T T 

(1.39) 

at finite temperature T, and 

G-1dG = _ 8ed (V) 
dV 3nvF 9c e 

(1.40) 
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Figure 1.10 J - V characteristics (a) 
and its second derivative (b) for a con­
tact with fixed phonon frequency w. 

Figure 1.11 Temperature broadening of 
the phonon spectrum. The linewidth at 
the half height equals to 5.44. 

at T = O. X(x) is the temperature broadening function (Fig. 1.11) 

X(x) = ::2 (ex ~ 1) (1.41) 

and gc(w) is the transport function of electron-phonon interaction 

( ) _ 1 ! dSp dSpl ,) ! dSp ( gc w - (2 )3 --, K(v, v Wp_p/O(W - Wp_p/)/ - 1.42) 
7r vp vp vp 

which differs from the Eliashberg function (1.31) in a an additional form 
factor, the so called K-factor, K(v, v'), taking into consideration the 
kinematic restrictions on electron scattering at the orifice. In the case 
of circular orifice 

K( ') = 4lvzvz/ lO( -VZVZI) 
v, v 1" I . VzV - VzV 

(1.43) 

where O(x) is a step function, O(x) = 1 at x = 0 and O(x) = 0 at x < O. 
The function K(v, v') is singular at v' = -v (for the reverse scatter­

ing) but since the singularity is an integrable one, it does not much affect 
the shape of gc(w) as compared to the isotropic EPI function g(w) (men­
tion that K in Eq. (1.43) is normalized to unity, < K >FS= 1). For a 
spherical Fermi surface with the matrix element of EPI depending only 
on the transfer momentum q = p' - p, the important is the dependence 
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of K on the scattering angle 0 

q = Ip' - pi = 2PF Sin~, (1.44) 

and on the angle, between the direction of q and the normal n to metal 
surface 

, = arccos(q, n). 

The integration over the other angles gives 

2 l1r /2 sin2 f!. cos2 , - cos2 f!. sin2 , cos2 cP 
K(O ,) = -- 2 2 dcp 

, 11" sinO CPO (cos2 cP + cos2 , sin2 cP )1/2 
(1.45) 

where CPo = arccos(tan V tan,)O(f - 0/2) (in Fig. 1.12 we present a 3d 
plot of K(O,,)). Some authors (see [31]) further integrate Kover, to 
receive 

- 1( 0) K(O) = 2" 1 - tanO . (1.46) 

The singularity mentioned above is at 0 = 11". 

8 

6 

Figure 1.12 3d plot of K-factor K(B,'Y) in a circular orifice. 

The above results have been generalized to the models of contact of 
various geometry (the orifice, the channel, etc.) [32] and to scattering 
conditions concerning elastic (impurity) scattering [33]. Such scattering 
in itself does not lead to the nonlinearity of the J(V) but decreases the 
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phonon nonlinear part of ,p J I dV2 as compared to the perfect ballistic 
regime. In a diffusive contact, 

(1.47) 

scattering by phonons can be calculated as an effect proportional to 
(lid) 1/2 lie-ph, where Ii is the elastic (impurity) scattering length of elec­
tron. The nonlinear part of J{V) can in a diffusive contact be presented 
in the same form as in a ballistic contact, with an appropriate K-factor. 
In Table. 1.1, K-factors are listed for some contact geometries. 

Table 1.1 K-fa.ctors of contacts with various geometries. d is the diameter of the 
orifice or cylindrical channel, L is the length of the channel. n is a unit vector in the 
direction of electron velocity v, Ii is the elastic mean free path of electron, I" is the 
inelastic (electron-phonon) mean free path. 

Contact geometry 

Orifice in clean metal 
Orifice in dirty metal 
Clean channel 
Dirty channel 

K-factor 

4Inzn~18{- nzn~)/lnzn'- n~nl 
3[{n-L- n' -L)2 + 2{nz- n~)2]/8 

28{-nzn~) 
3{nz- n~)2 12 

Parameters 

d« Ii 
Ii « d « Jlils 
L»d 

d, Ii « L « Jlils 

Another example of inelastic scattering is associated with the local­
ized lattice defects, the so called two-level systems (TLS) [34, 35]. The 
general treatment of inelastic scattering by TLS is similar to that of 
phonons, except that the population of TLS is strongly eV- dependent 
and in itself contribute to the lineshape of the point-contact spectrum. 
Fig. 1.1 shows this nonsymmetric lineshape of the TLS's point-contact 
spectra at various temperatures. 

Figure 1.13 Two-level-system 
point-contact spectrum lineshape 
at TjEo = 0.1 (line 1) and at 
TjEo = 0.5 (line 2). Taken from 
Ref. [34]. 
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5. PHONON TRAPPING AND RELAXATION 
Inelastic events of electron-phonon interaction result in the phonon 

emission from the narrowest part of the contact. Since the phonon mean 
free path is much larger than the contact dimension, the phonons leave 
the contact and release their energy away from the nonequilibrium part 
of the junction. In plastically deformed constrictions, however, phonons 
can be scattered back and reabsorbed near the orifice. The nonequilib­
rium phonon gas with an effective temperature T* much larger than the 
ambient temperature T is then formed near the region of nonequilibrium 
electrons. 

The nonequilibrium phonons increase the electron scattering near the 
orifice and produce an additional nonlinearity in the J - V curve, in par­
ticular the nonzero value of a? J / dV2 at voltage larger than the maximal 
phonon energy. Such background point-contact spectroscopy signals 
are often observed in micro contacts of the needle-anvil geometry [36]. 

The second derivative of the J - V characteristics of micro contact in 
the phonon reabsorption regime can be presented in the form [15] 

_ldG Sed 
G dV = - 31ivF [gc{eV) + B{eV)] (1.4S) 

where the background part, B{eV), is presented as 

a? { roo g{w)dw } 
B{e) = 2 dt;2 e Jo ef'JIT* _ 1 . (1.49) 

The effective temperature of the nonequilibrium phonons T* is found 
from the equation of energy balance 

Ioev 1000 g{w)w2dw 
(eV - w)g{w)wdw = 2 IT* 

o 0 eW -1 
(1.50) 

in which the function g{w) differs from the conventional contact EPI 
function g{w) with an additional factor O{ -Pzpi) corresponding to in­
tegration over the half of the Fermi sphere. As an approximation, we 
assume then that g{w) tV (1/2)g{w). By introducing a factor 'TJ such that 

we receive 

rev roo g{w)w2dw 
Jo {eV - w)g{w)wdw = 7] Jo ef'JIT* _ 1 

T* tV eV/7] 

(1.51) 

(1.52) 

with 7] tV 4. At the bias energy e V much above the phonon spectrum, 
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.v._V 

Figure 1.14 Point-contact spec­
trum of Zn contact [35] (line 1) 
decomposed into its spectral part 
(line 2) and to the background 
contribution (dashed line) [14]. 

eV» nWD, Eq. (1.49) gives 

41000 dw 20X B(oo) = - g(w)- = -. 
'f/ 0 w 'f/ 

(1.53) 

oX is the EPI coupling parameter, Eq. (1.33). 
The Fig. 1.14 shows, as an example, the point contact spectrum 

(the derivative -G-1dGjdV(V)) of a dirty Zn contact with a rela­
tively large background [37], together with the EPI interaction func­
tion gc(w) received by inverting the integral equation (l.4S). The latter 
have the unexpected property, namely, the strong frequency dependence 
with respect to frequency of current modulation used in the PC spec­
troscopy measurements [2S]. The origin of frequency dependence is re­
lated to relaxation of nonequilibrium phonons. Trapped phonons have 
relaxation frequency of the order of the phonon-electron relaxation rate 
vph f'J T;;h~e f'J lOWS-I. Trapping and desorbing of phonons is a rel­
atively slow process as compared to the characteristic electron-phonon 
relaxation frequencies ve-ph f'J 1013S-1 . 

Inelastic part of the current with trapped phonons is presented as 

Sed roo [w+ev w-eV ] 
Jl(V) = 3nvF G(O) Jo dwg(w) e(w+eV)/T -1 - e(w-eV)/T -1 -2eVN(w) 

(1.54) 
where the last term takes into account the effect of trapped phonons. 
At zero ambient temperature, the phonon distribution takes the simple 
form 

eV-w 
N w = ( )O(eV-w) 

'f/ w+wo 
(1.55) 

where Wo is the phonon escape frequency introduced in [15]. The last 
term in Eq. (1.54) (a PC background) is shown to depend on frequency 
of the external signal applied to the contact, V = Vo + VI cos wt, as 

2 2TT2 1000 7-2 (v) d < J1 >= - e VI 'f/ G(O) g(v) _ ph-e v (1.56) 
nVF 0 Tph2_e(V) + w2 V 
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Figure 1.15 Point-contact spectra 
of eu contact [15] measured at fre­
quency /=3 kHz (line 1) and at fre­
quency /=80 GHz (line 2). Taken 
from Ref. [15]. 

and shows the decrease above the cutoff We of the order of the phonon­
electron relaxation rate Vph-e [16] (Fig. 1.15). 

6. THERMAL ,CONTACTS AND HOT SPOTS 

In a thermal contact, electron and phonon mean free paths are smaller 
than the contact diameter d. Therefore, the lattice and electrons stay 
in equilibrium between themselves, but the temperature of this local 
equilibrium T{r) is much higher than the ambient temperature of the 
environment. The distributions of temperature and electrostatic poten­
tial ¢(r) are found from the equation of the energy balance 

-divq + jE = 0, q = -/'i,\lT, j = aE (1.57) 

where the local thermal conductivity /'i, = /'i,{T{r)) and electrical conduc­
tivity a = a{T{r)). Equations (1.57) are solved in a circular orifice with 
transformation to the oblate spheroidal coordinates (a = d/2) 

Eqs. (1.57) reduce to 

div{a\l¢) = 0, 

x = asinucoshvcoscp 
y = asinucoshvsincp 

z = acosusinhv. 
(1.58) 

(1.59) 

Assuming further the applicability of the Wiedemann-Franz law relating 
/'i, to a, 

/'i, 1f2k2 _= __ B 

aT 3e2 
(1.60) 
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and solving Eq. (1.59) in spheroidal coordinates, we receive potential 
and temperature distributions with no adjustable parameters 

¢(r) = ~ (-1 + ~ arctanev ) , (1.61 ) 

v v'3 [ (4 ) 2]1/2 T(r) = e 21f 1- 1- ;:arctaneV (1.62) 

The temperature To at the contact center, v = 0, is related to the applied 
voltage according to formula 

21f 
eV = ...j3kBTo = 3.63 kBTo (1.63) 

and is very much larger than the temperature in bulk. 
Current-voltage relationship is strongly nonlinear and takes universal 

form 

r1 
( evv'3 ) J(V) = G(O)V 10 ared ~J1- x 2 dx (1.64) 

where G(O) is a linear conductance G(V -+ 0) and ared(T) is the reduced 
conductivity ared(T) = a(T)ja(O). The current-carrying state in the 
thermal contact is of some interest, in particular with respect to possible 
application as a fast nonlinear switch or transistor [18, 38]. 
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