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NON-DECAYING CURRENTS 
IN NORMAL METALS 

1. O. Kulik 
Department of Physics, Bukent University 
06533 Bilkent, Ankara, Turkey 

Abstract In a present paper, we review cases when stable, time-independent cur­
rents may flow in normal metals, both single-connected or multiple­
connected, in presence of magnetic field or the field of vector poten­
tial. These include the spatially oscillating currents in narrow metallic 
stripes originating due to Landau diamagnetism (the Landau persis­
tent currents), the currents in hollow normal-metal or semiconducting 
cylinders and rings induced by the Aharonov-Bohm flux threading the 
conducting loop (the Aharonov-Bohm persistent currents), and currents 
in hollow cylinders subject to radial flux and existing even in the absence 
of the longitudinal, or Aharonov-Bohm flux (the ''transverse'' persistent 
currents), as well as the non-decaying currents in axial magnetic field, 
modulated via the Berry phase effect by the transverse or azimuthal 
components of the field and oscillating as a function of the latter. 

1. INTRODUCTION 
It is commonly believed that current in a normal (nonsuperconducting) 
metal can only flow if the voltage is applied to the sample, and that cur­
rent transport is necessarily related to the Joule heat dissipation inside 
the sample. This is however a prejudice. To start with, the diamagnetic 
properties of metals (the Landau diamagnetism) can be explained by 
currents flowing around the sample near its surface, as was first demon­
strated by Teller [1] in his interpretation of the Landau theory [2]. The 
other case is the Aharonov-Bohm effect [3] in double connected metallic 
samples which produces currents created by the magnetic flux inside the 
sample orifice. It was long debated, especially by Byers and Yang [4] 
and by Bloch [5] whether stable currents may exist in the noninteract-
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ing electron gas without the off-diagonal long range order specific to 
superconductivity. Bloch, in particular, concluded that 

"Except for abnormally small radius and irrespective of the specific 
properties of the system one is thus led to the exclusion of stable flux 
trapping in a one dimensional ring" . 

The "small radius" corresponds to what we call now mesoscopic sam­
ple. In the latter, stable current and flux trapping is possible. It was 
first clearly stated by the author [6] that the non-decaying current DOES 
exist in a small metallic loop provided that scattering of electrons (both 
elastic and inelastic) is not too strong. In the paper [6] it was concluded 
that 

''The current state corresponds in this case to a minimum of the free 
energy, so that allowance for dissipation does not lead to its decay" . 

Later, Buttiker, Imry and Landauer [7] reached the same conclusion 
by considering Aharonov-Bohm current in a dirty ring, showing that 
the magnetic flux q> in a ring serves as a quasi-momentum if the ring 
is unwrapped into an effective periodic structure with a period equal 
to the ring circumference L. Therefore, the energy becomes a periodic 
function of q> with a period of a normal-metal flux quantum q>o = hc/e, 
and the current originates as a nonzero derivative J = -c8E/8q>. 

The purpose of the present paper is to review and extend the situ­
ations in which non-decaying ("persistent") current may exist in non­
superconductingmetals. The cases considered include the spatially oscil­
lating currents in narrow metallic stripes in a magnetic field responsible 
for the Landau diamagnetism (the Landau persistent currents), the cur­
rents driven by the Aharonov-Bohm flux in hollow metallic cylinders and 
rings (the Aharonov-Bohm persistent currents), and the non-decaying 
charge flow in hollow disordered cylinders subject to radial magnetic 
flux (the "transverse" persistent currents), as well as the non-decaying 
currents originating due to Berry's phase [8] effects for electron spins 
interacting with the radial and azimuthal magnetic fields in the ring. 
Part of the material presented can also be found in the review papers 
related to the Aharonov-Bohm effect in solids [9]-[15], etc. 

2. PERSISTENT CURRENT IN A LONG 
METALLIC STRIPE 
Consider a situation when magnetic field B is applied perpendicular 

to the surface of two-dimensional metallic stripe with electron density n 
and width d (Fig. 17.1). The sample will show the Landau effect; i.e., 
the dependence of its energy E on B and thus attaining the magnetic 
moment Mz = -8E/8B. We will assume that the width of the stripe 
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Figure 17.1 Sketch of a two-dimensional metallic stripe of width d in a perpendiculax 
magnetic field B. Arrows show the average current direction in the stripe. 

d is much smaller than the cyclotron radius TH = mVFc/eB which will 
allow to include the effect of magnetic field as a perturbation, and to find 
the current density from the Schrodinger equation expanded in powers 
of B. Neglecting the spin, Schrodinger equation reads 

_ n,2 f:P'I/J _ n,2 (.!.... _ ieBX) 2 'I/J = E'I/J. 
2m 8x2 2m 8y n,c 

In zero magnetic field, the eigenstates of Eq. 17.1 are 

1 . (2) 1/2 1m 
'I/J~k = Vt e1kY d sin ([(x + d/2) 

corresponding to energies 

n,2 
c~ = 2m (k2 + 'Jr2n2/Jl) . 

The perturbation Hamiltonian is 

where ko = eBd/n,c. To first order in B, it has matrix elements 

(Hr)mn = 2k~n,2 fol sin 'Jrn (~- ~) sin 'Jrm (~- ~) ~d~ = 

ifn- m is odd 
otherwise 

(17.1) 

(17.2) 

(17.3) 

(17.4) 
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It is then a straightforward to solve for the correction to the wave func­
tion and to the current. The current density is 

j(e) = -jo f rx> ("2+nLn~~/2nFT 1 
n=l i-co e F + 

[(c 1). 2 C 32K2 ~ nmOn- m ,2k+l. ""C· C] (175) 
x ." - '2 sm 1m." - ~ ~1 (n2 _ m 2 )3 sm 1r,~ sm 1rm." . 

where e = xld, jo = 2enko/m~ = 2e2Blmcd, and 1" = TillE where 
IlE = hp F I md is the distance between discrete energy levels in a ring 
at the Fermi energy. The dependence j(e) is calculated numerically and 
shown in Fig. 17.2 at various temperatures T. 
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Figure 17.2 Persistent current in a stripe at various temperatures. Panel 1: T = 0; 
panel 2: T = 0.15; panel 3: T = 0.45; panel 4: T = 0.9 where T is the temperature 
in units of the level spacing llE at the Fermi energy eF. The value of the electron 
concentration corresponds to the "Fermi number" nF defined according to eF = 
h2n}/2md2 and equal to nF = 10.9. 

First of all, our calculation shows that the current does exist. Since it 
corresponds to minimum of free energy (at given magnetic field) it does 
not decay in time, even if the scattering is included to the calculation. 
Integration of the current j(e) with a factor (e - 1/2) gives magnetic 
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moment M of the sample which in our case (in thin sample) proves to 
be temperature dependent, unlike in the standard Landau diamagnetism 
in bulk samples. 

The current will not vanish (but may decrease in amplitude) if scatter­
ing is included, in the same way as the Landau diamagnetism persists 
in dirty metals. This argument does not show need for any further 
justification of the persistent current. (We can find proof even on the 
experimental basis, referring to the innumerable papers studying the 
manifestations of the Landau diamagnetism, the De Haas - Van Alphen 
effect [16].) 

The current in a stripe shows periodic oscillation at low temperature 
with a spatial period 

21r 
A= -, Qo =2kF 

Qo 
(17.6) 

where kF is the Fermi momentum. These oscillations is nothing else than 
the known Friedel oscillation in a degenerate Fermi liquid [17]. At ele­
vated temperature, the amplitude of oscillation decreases in the middle 
of the sample, and current is pushed to the specimen edges. Mention that 
the amplitude of oscillation is much greater than the average current. 
At higher temperature, amplitude of oscillation follows the exponential 
law with a characteristic decay length 

(17.7) 

which reveals also in such phenomena as the Andreev reflection [18] from 
the normal metal backed to superconductor [19]. 

3. PERSISTENT CURRENTS IN METALLIC 
RINGS AND CYLINDERS 

3.1 Clean Rings 

In a one-dimensional metallic ring pierced by solenoid creating Aharonov­
Bohm flux q, = AcpL where Acp is the vector potential and L is the ring 
circumference (Fig. 17.3), the Schrodinger equation 

(17.8) 

has a solution 

(17.9) 
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Figure 17.3 One-dimensional me­
tallic ring in the field of vector po­
tential created by the solenoid pierc­
ing the ring. 

corresponding to electron energy 

",2 ( ~)2 
en = 2mR2 n- ~o (17.10) 

where ~o = he/ e is the flux quantum. 
The thermal averageP current in a ring is calculated as 

J-~ f: n-~/~o 
- mL2 n=-oo e[(n-4>/4>o)2 -n} ]/2nFT + 1 

(17.11) 

where we introduced 7 as a relative temperature 7 = T / IlE where IlE 
is the distance between two successive levels of the discrete spectrum 
(Eq. 17.10) at the energy equal to Fermi energy (eF = h2n'j../2mL2) 

(17.12) 

Straightforward calculation using the Poisson formula 

00 00 100 L fen) = L f(n)e21rinsdn 
n=-oo -00 -00 

gives the current as an oscillating function of flux with the period ~o 

eVF ~ 211"2 S7 • ( ~ ) 
J = 1I"L ~ sinh(211"2S7) COS(kFLs) sm 211"s ~o . (17.13) 

At low temperature, amplitude of oscillation is of the order 

(17.14) 

At higher temperature, only the lowest harmonic (s = 1) survives with 
an amplitude 

(17.15) 
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In a two-dimensional sample (thin hollow cylinder of radius R), per­
sistent current is proportional to the number of transverse conducting 
channels [6] 

(17.16) 

where NJ.. = L z kp/21r, whereas in the three-dimensional ring of cross 
section S = d1d2 it increases with the number of perpendicular channels 
N J.. = k'j,S / 41r as 

(17.17) 

3.2 Ring Interrupted By A Barrier 
Assume that one-dimensional ring is interrupted by a barrier Vo(x) 

where x is a coordinate along the ring, x = Rep such that 0 ~ x ~ L = 
21r R. The solution to the Schrodinger equation is of the form 

(17.18) 

where kl,2 = k ± eA/fic and k = .,j2mc/fi, with CI, C2 found from the 
boundary condition 

¢(O) = ¢(L) and - :~(¢'(O) - ¢'(L)] + V¢(O) = O. (17.19) 

The allowed energy values are found from the equation equivalent to the 
1d Kronig-Penney model 

cos kL + ~V sinkL = cos 21r~. 
fi k ~o 

(17.20) 

The wave function (Eq. 17.18), with the constriction implied by this 
equation, can be rewritten in the form 

. '" ( . /2 X . /2 L - X) ¢ = Cetay; e-U1 sin~L + eza sin~~ (17.21) 

where 

1 [ sin~ ]-! C =.,jL 1 + ~(cos~ - cos a) - cos ~cosa . (17.22) 

By introducing the dimensionless momentum ~ = IkIL, Eq. (17.20) is 
rewritten as 

sin~ 
cos~ + g-- = cos a 

~ 
(17.23) 
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where 9 = mVL/n? and a = 27rifl/iflo. Persistent current in the ring is 
found as an average of the current operator 3 = :: (t Ix - ~~) and equals 

. en " Kn sin Kn sin a 
J - --L....J 

- mL n 1 + sin II:n (COSn - cos a) - cos Kn cos a 
II:n 

(17.24) 

In case of no barrier (V = 0), the solutions of Eq. (17.23) are Kn = 
27rn + a, n = 0, ±1, ±2, ... which of course bring us back to the previous 
formula (Eq. 17.10). In the opposite limit of a strong barrier, 90 » 1 
(where 90 = 9/kpL = mV/h2kp I'V Vkp/cPi Vkp is an effective barrier 
height of a potential with an effective width !::l.x of the order of the Fermi 
wavelength 27r /kp) the solution to Eq. (17.23) is 

1 (-1) n cos a - 1 
Kn~7rn+- k L . 

90 p 
(17.25) 

We receive in this limit the formula for the persistent current 

(17.26) 

with the maximal amplitude 

(17.27) 

In the latter expression, we introduced an effective mean free path of 
electron in the ring 

D 
l~L--

1-D 
(17.28) 

where D is the barrier transmissivity D I'V 1/9~. It then follows from 
Eq. (17.27) that persistent current decreases with the transmissivity of 
the barrier slower than the normal-state conductance of the ring G I'V 

(ne2S/pp){l/L) does. 

3.3 Dirty Rings 

Elastic scattering of electrons decreases the amplitude of persistent 
current oscillation. The impurities can be viewed as barriers which in­
crease the effective length needed for electron to make a full round up of 
the ring and to interfere with the initial state. The interference between 
the initial and the final states showing the effect of the Aharonov-Bohm 
flux persists until the length becomes of the order of the localization 
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length ( '" IN1. in a bulk sample [20] where N1. = k~S1./47r is the num­
ber of transverse channels in a ring of cross section S 1.. In the diffusive 
regime, 

1« L« (, (17.29) 

conductance of the ring can be calculated as a scattering problem, by 
using the Landauer formula [21] (see also [10]) relating ring conductance 
G to the transmission amplitudes tafJ between the incoming and outgoing 
channels a and fJ 

2e2 
G = 1i::E ItafJl2. 

a.fJ 
(17.30) 

We therefore estimate the ring conductance as 

(17.31) 

where Go = 2e2 /h = 1/12.9kO is the quantum of conductance, i.e., Gis 
proportional to square of transmission amplitude. The Aharonov-Bohm 
effect, on the contrary, is expected to relate amplitude of the persistent 
current linearly to ItafJl, as was shown above in case of model problem 
with a a-functional barrier. Translated from the subsection 2, the value 
of persistent current is expected to be, by the order of magnitude 

'" eVF (£) 1/2 
Jmax L Go (17.32) 

We may expect that similar dependences may hold also for a diffusive 
ring. And indeed, the numeric simulation of the Aharonov-Bohm current 
in disordered ring seems to support this hypothesis. 

In Fig. 17.4, we show the mean free path dependence of the current 
amplitude at zero temperature, which was received by calculating the 
energy E of N electrons in a 3d ring of volume d1d2L with varying defect 
concentration, as function of vector potential A, and then calculating the 
current as a derivative dE / dA. Within the tight-binding approximation, 
the Hamiltonian of the model is 

(17.33) 
n m n 

where a = 27rif:!/Nif:!o is the phase difference between the near lattice 
sites along the ring circumference, a;t (an) the creation (annihilation) 
operators at site D, and m is the vector pointing from D to the nearest 
site. Potential at the site Vn = V~n is a random quantity depending 
on the value of ~n = 0, 1 where 1 is occurring with a probability c. 
This probability determines the impurity concentration and the electron 
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Figure 17,4 Persistent current amplitude J versus defect concentration c in a dis­
ordered ring (zigzag line) compared to the empirical J(c) dependence according to 
Eq. (17.31) (continuous line). The dependences have been received in the various runs 
of numeric experiment with different number of electrons Ne and gradually increasing 
concentration c. Panel 1: Ne = 25; panel 2: Ne = 35; panel 3: Ne = 45; panel 4: 
Ne = 50. The sample has a cross section of 4 X 4 sites and a perimeter length of 30 
sites. The "theoretical" curves have been received by estimating electron mean free 
path from the estimate I", alc where a is intersite spacing) and fitting the magnitude 
of the current at smaller concentration used (c = 0.05) to the "experimental" value 
at that concentration. 

mean free path I '" ale (a is the intersite distance taken as unity in our 
units). The limit V ~ 00 is equivalent to breaking of all connections of 
a site having en = 0 to its neighbors. 

The irregular curves in Fig. 17.4 represent the change in the magni­
tude of persistent current at addition of new defect sites (thus increasing 
e and decreasing l) whereas the smooth curves show the empirical law 
(17.32) with G estimated from Eq. (17.31) and corrected to the value of 
conductance at e = O. The above calculations are not fully convincing 
since the expected localization limit is almost equal to the ring length, 
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in our relatively small rings, and show disagreement with other theo­
ries [22] predicting smaller persistent currents. Mention however that 
some experimental data [23] in which persistent current, if have been 
properly estimated, was found to be larger than the value calculated 
on basis of Ref. [22]. Other experimental works [24, 25] show smaller 
oscillation amplitude. 

3.4 Weak Localization Effects 
Disordered metals show the effect of quantum interference in the 

Aharonov-Bohm field in an another way, as was first pointed out by 
Aronov, Altshuler and Spivak [26], and observed in an experiment of 
Sharvin and Sharvin [27]. The mesoscopic rings display oscillatory de­
pendence of their kinetic rather than thermodynamic properties on the 
flux piercing the ring, with the half of the Aharonov-Bohm period, hc/2e. 
The origin of these oscillations is in that the time-reversed paths of 
electrons traversing the ring circumference in the clockwise and in the 
counterclockwise directions interfere with one another giving rise to con­
ductance oscillations with the period equal to ifJo/2 

CT ~ sin (~: f Adl) ~ sin (41f !o) . (17.34) 

Extensive reviews on that subject are presented in Refs. [9, 11, 28]. 

4. FLUCTUATIONS OF PERSISTENT 
CURRENT 
Persistent current is not a macroscopic phenomenon like, e.g., super­

current in a ring. The amplitude of persistent current in a 1d ring is of 
the order of the current produced by a single electron orbiting the ring 
with a high velocity, that of the order of the Fermi velocity VF '" 108 

cm/s. This makes a current to be of a sizeable amplitude 

in a ring of radius R f'V 10-4 cm. More than that, unlike the super­
conducting currents, persistent current in mesoscopic loop is subject to 
quantum and thermal fluctuations. The average current equals to 

(17.35) 

where j is the current operator and Nn is the thermal average of the 
occupation probability of a quantum state n. The root mean square 
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(RMS) fluctuation of the current, (8}2)1/2, is found from the identity 

8]2 = (() - (}))2) = L (}2)nNn - (})~N; (17.36) 
n 

Consider a ring with a 8-barrier from Section 3.2. The average value of 
the current density j is given by Eq. (17.24), whereas the average value 
of pis 

( :'2) _ 0':)2 _ ( en ) 2 
J n - n - mL2 /'i,n· (17.37) 

In a ballistic ring, we receive 

(17.38) 

which gives 

(17.39) 

In a poorly connected ring (Vmax » £OF where Vmax = VkF is an ef­
fective height of the barrier) the average value of the persistent current 
becomes smaller than the RMS fluctuations of the current. The mo­
tion of electrons is then more like the "persistent drift" rather than the 
regular flow of charge similar to that in a superconducting metal. 

5. TRANSVERSE PERSISTENT CURRENT 
Persistent current in ring appears due to violation of the time-reversal 

symmetry created by the "longitudinal" flux directed along the ring sym­
metry axis. The nonzero rp-component of vector potential, A<p, deter­
mines the asymmetry between the clockwise and counterclockwise direc­
tions, and allows for the nonzero rp-component of the current. Assume 
however that in a double ring (Fig. 17.5a) the total longitudinal flux is 
zero but the radial flux (the one due to Br component of the field) is 
not. If the double-ring is asymmetric, the phase gradients in two rings 
will not be equal to one another which is equivalent to the appearance 
of an effective phase gradient in the rp-direction. The current in a sys­
tem (termed in [29] as the "transverse" persistent current), may then 
appear even if the longitudinal flux is zero. The experimental observa­
tion of persistent currents in strong transverse magnetic fields was also 
reported in Ref. [30]. 

Assume that hopping amplitudes tl, t2 in a double ring are not equal, 
and that the hopping amplitude tI2 couples the rings. Such model, in a 
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a b 

Figure 17.5 Sketch of a setup for observation of the Aharonov-Bohm effect in a strong 
perpendicular field. (a) Two coupled rings; (b) Hollow cylinder with walls traversed 
by the transverse flux 4>t created by magnetic field in the radial direction. Shown are 
lines of force of magnetic field around the cylinder. 

tight-binding approximation, is described by the Hamiltonian 

N 

H = - L (t1a~an+1ei(Q+,B) + t2b+ +n bn+1ei(a-,B) + tt2a~bn) + H.c. 
n=1 

(17.40) 
in which a stands for the longitudinal and (3 for the transverse flux 

Solving for the plane wave state 

N 

¢ = L eikn(Aa~ + Bb~)IO) 
n=1 

we receive the energy 

eklT = -t1 cos(k + a + (3) - t2 cos(k + a - (3) 

+aJ(t1 cos(k + a + (3) - t2 cos(k + a - (3)2 + t~2 
and then calculate the current 

1 [ ] -1 a J = -~ L L e(ckcr-t:)/T + 1 -eklT(a) 
Nn k 0'=-1 aa 

(17.41) 

(17.42) 

(17.43) 

which may be nonzero even if the longitudinal flux q, = O. Such "trans­
verse" currents appear if system is not central symmetric, e.g., when 
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tl =/:. t2. In a hollow dirty cylinder (Fig. 17.5b), asymmetry is caused 
by random distribution of impurities with the potential Vnm = Venm, 
0< enm < 1 

N M 
H = -t L L (a~man+1,mei[Q+.B(m-M/2)1 + a~man,m+l) + H.c. 

n=lm=l 

(17.44) 
nm 

where a is given by first Eq. (17.41) and fJ = 21riI!r/NM. 
Fig. 17.6 shows an example of persistent current versus transverse flux 

dependence in a cylindrical shell with 10 x 10 sites and varying ampli­
tude V of the impurity potential. The chaotic quasi-oscillatory behavior 
is hard to interpret quantitatively, it corresponds most probably to the 
flux quantization in the local "loops" formed by the impurity islands. 
The dependence, if properly inverted, may serve as an information on 
the inhomogeneous state in mesoscopic structure. 

0.05 

-; -0.05 

-0.15 '--___ --'--___ -.l. ____ -'--___ --' 

o 5 15 20 

Figure 17.6 Azimuthal current in a disordered cylindrical shell with 10 x 10 sites 
versus transverse flux through wall .pt at the zero Aharonov-Bohm flux .pI at various 
amplitudes ofthe disorder potential V. Line 1: V/t = 0; line 2: V/t = 0.05; line 3: 
V/t = 0.1; line 4: V/t = 0.15. The small but nonzero value of current at V = 0 is 
related to numeric procedure of calculating current as the derivative of energy with 
respect to flux and then putting flux .pI -+ O. 
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6. BERRY'S PHASE AND OSCILLATORY SPIN 
DYNAMICS IN MESOSCOPIC RINGS 
Aharonov-Bohm effect represents the first but not the last example 

of more general concept of quantal phase accumulated by electron in its 
motion in a slowly varying field which was considered by Berry [8] (see 
also [31]) in the context of molecular dynamics. When electron moves 
adiabatically (slower than the field changes) in the field of the vector 
potential, its wave function accumulates a phase 

e l r2 e /:l.cp = -1'1, Ad! = -1'1, Acp(82 - 8t} 
C rl C 

(17.45) 

where 81 and 82 are azimuthal angles of the initial and final locations 
r1 and r2 on a ring. This phase difference is the Aharonov-Bohm phase 
discussed in previous sections. Consider now the effect of magnetic field 
on the electron spin. Assume that magnetic field at any point of the ring 
makes fixed orientation with the local tangential vector on the contour 
(Fig. 17.7). The tangential component of the field, Bcp, can in principle 
be created by a current-carrying wire inserted to the ring. The radial 
component, B r , formally corresponds to the field produced by the line 
of magnetic monopoles inserted into the ring. In reality, such field can 
be created by a proper combination of solenoids around the ring, as was 
explained in Section 5 (see Fig. 17.6). 

J M 

~ 1,\ 1,\ 1,\ 
::8z I ::8z 
I I 

: : 
"- ? 
~ '::... Br 

Bcp 

a b 

Figure 17. 1 Sketch of the thought Berry-phase experiments with an azimuthal field 
created by a current-carrying wire piercing the ring (a), and radial field generated by 
the line of magnetic monopoles inside the ring (b). 

When electron is slowly rotating along the ring, its spin function will 
accumulate phase due to spinor transformation [32] 

exp [~in. iJ(82 - 81)] 
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where iJ is the Pauli matrix vector and n is the unit vector along the ro­
tation axis. With n being in the direction of the vector B, this produces 
a phase difference between the points (h, (h on the ring 

(17.46) 

where a is an angle between B and its projection onto the plane of the 
ring. Such effects which are additive to the topological effects of the 
Aharonov and Bohm, have been considered by Stem [33] and by Loss, 
Goldbart and Balatsky [34]. Actually, the condition for adiabaticity 
explains the origin of the effect rather is strictly required. The theory of 
the Berry's phase effects for electron spin, as well as the Aharonov-Bohm 
effects due to the orbital motion of electrons in a ring, will be presented 
below in a form which covers both the adiabatical (WHTO > 1) as well as 
nonadiabatical (WHTO::; 1) regimes where WH is the cyclotron frequency 
eB/mc and TO- 1 the frequency of electron rotation vF/L. 

Hamiltonian of particle in a ring including the Zeeman energy in the 
nonrelativistic approximation (the Pauli Hamiltonian), 

H = ~ (f> - ~A)2 - J.tB· iJ, 
2m c 

(17.47) 

is presented in a matrix form 

e-i(rp+'Y) ) (1 0 ) 
o + ell 0 -1 

(17.48) 
where co is the ring quantization energy, and e 1. and ell are the compo­
nents of the Zeeman energy e z = g J.t B B 

cO = 1i,2/2mR2, e1. = ez cos a, ell = ezsina. (17.49) 

'Y is the angle between the radial and azimuthal components of magnetic 
field'Y = arctan(Brp/Br). q, is the total flux comprising that from the z­
component of magnetic field and from the solenoid which can in principle 
be inserted into the ring. Eigenstates ofEq. (17.48) can easily be found 
if we present the wave function in the form 

(17.50) 

and write down the equations for Un, Vn 

2 . 
eo(n - q,/q,O) Un + e1.e-I'Yvn+1 + eliUn = W n , 

2 . 
eo(n - q,/q,O) Vn + e1.e-I'YUn_l - ellVn = eVn • 

(17.51) 
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Then we receive an equation 

[co(n - j)2 + cil - c + (Ct j)2 1 Un = 0 
C -co n+ - +clI 

(17.52) 

where f = ip/ipo, and the relation between Un and Vn+l 

Vn+1 = ( )2 Un· 
C -cO n - f +clI 

(17.53) 

The energy eigenvalues are 

c~ = ~(C1 + c2) ± ~J (c1 - c2)2 + 4c1 (17.54) 

where 
C1 = co(n - j)2 + clI' c2 = co(n + 1 _ j)2 - cil 

The current in the ring is found by differentiating the energy with respect 
to the Aharonov-Bohm flux ip (and putting the latter to zero if the total 
flux vanishes, due to possible compensation between the solenoid flux 
and the flux created by the Zeeman field, B z ) 

e 00 1 { [cnu(f) _ '] }-1 a 
J = -h" n~oou~1 exp T + 1 afcnu(f) . (17.55) 

Expression (17.55) can be easily evaluated. Skipping the corresponding 
lengthy formula, we show below the representative dependences of the 
persistent currents on the longitudinal flux ip and on the tilt angle a 

between the perpendicular field B..L = Jlif. + B~ and the Zeeman field 

BII · 
Fig. 17.8 shows the current as a function of flux in the ring ip in case 

when the ratio of the Zeeman energy cz to the distance between the 
discrete energy levels at the Fermi energy !:1E = 2nFcO equals to 5. 

!:1E is the representative energy scale for the Aharonov-Bohm effect 
whereas the projections of cZ to the ring plane and on the symmetry 
axis determine the spin-related Berry-phase energy scales C..L, cli. In 
case when a = 0 or a = 1r /2, the current vanishes at zero Aharonov­
Bohm flux, as was mentioned in [13]. Persistent current is an oscillating 
function of the Aharonov-Bohm flux at any value of a, it does not depend 
on the angle 'Y between the azimuthal and radial field components. The 
shift of position of the minima in J(f) dependences is in accord with 
the expected Berry phase shift from Eq. (17.46) 

!:1f = ~ sina. (17.56) 



276 I. O. Kulik 

20 20 

10 10 

!!i 
'c 
" 0 0 
~ 
-; 

-10 -10 
3 4 

-20 -20 
-0.5 0 0.5 -0.5 0 0.5 

<1>/<1>. cI>I<I>. 

Figure 17.8 Aharonov-Bohm current versus magnetic flux at various values of the 
Berry angle ex and the temperature T. Left panel: T = 0.02, right panel: T = 0.05. 
Line 1 in both panels corresponds to ex = 0, line 2 to ex = 7r /6, line 3 to ex = 7r /3 
and line 4 to ex = 7r /2. Electron concentration is chosen according to the value of 
parameter nF = 10.25. 

There remains a mystery on the ongm of persistent current at f = 
0, in particular this current shows the non-monotonic dependence on 
temperature with a maximum at low temperature. 

Fig. 17.9 shows the dependence of the persistent current on c 1. at fixed 
longitudinal flux. The oscillation displayed are the manifestation of an 
another effect, similar to the De Haas-Van Alphen effects in metals, and 
can be accounted for by the passage by the Zeeman-split Fermi energy 
through the set of quantized energy states in a ring in the vicinity of the 
Fermi energy. Since the energy of the states depends on <1>, persistent 
current is also an oscillating function of <1> with a period <1>0. 
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Figure 17.9 Aharonov-Bohm current versus the Zeeman splitting ez at temperature 
T = 0.2 (left panel) and T = 0.5 (right panel). In both panels, solid line corresponds 
to ex = 0, dotted line to ex = 7r /6, dashed line to ex = 7r /3 and dot-dashed line to 
ex = 7r/2. Parameter nF = 10.25. 
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The lillderstanding of phase coherence in mesoscopic specimens stim­
ulated search for various generalizations of the generic situation depicted 
with the Aharonov-Bohm phase. We mention some of those within the 
limits of our competence. 

The phase shift of the electron wave function can be produced by 
spin-orbit interaction [35] 

Hao = - 4;c2U. (p x V)V{r) = 4~~c2 (~a;) 1· U (17.57) 

where V{r) is an electrostatic potential. In case when V is created 
by a charged line with a linear charge density T inserted into the ring 
(Fig. 17.10a), the phase shift (known as the Aharonov-Casher effect [36]) 
becomes 

eT 
0= -(nt - nl). mc2 ... 

(17.58) 

The interaction Hamiltonian describing this effect, to be added to the 
Hamiltonian in Eq. (17.48), is 

(17.59) 

The phase shift is very small a compared to the Aharonov-Bohm shift 
(~cp)AB' 

V 9f.tB 
O/(~cp)AB '" ----::? x -. mt-- €p 

(17.60) 

Even for the semiconducting crystals with a large g-factors [37], 0 re­
mains much smaller than (~cp) AB. 

For the atomic potentials of randomly distributed spins, according 
to [38], Aharonov-Bohm persistent current shifts in phase as 

{17.61} 

Similar spin-orbit effects have been considered by a number of authors [39], 
etc. The Aharonov-Casher effect has been suggested for neutral particles 
such as atoms in liquid helium [40]. 

It was proposed [41, 42] and possibly, fOlilld in an experiment [43], 
that persistent current may exist in the nonmetallic materials such as 
Peierls insulators. 
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Figure 17.10 Possible geometrical and topological Aharonov-Bohm configurations: 
(a) Ring pierced by a charged dielectric line (Aharonov-Casher geometry); (b) Ro­
tating ring; (c) Ring in the Lense-Thirring field of a rotating massive body; (d) Ring 
enclosing an optical fiber transmitting the electromagnetic radiation through its ori­
fice. 

Geometrical phase may appear in a rotating metal (Fig. 17.1Ob), 
and even cause "persistent rotation" of the latter in the Aharonov­
Bohm field [44]. This is extremely weak effect requiring, for its o~ 
servation, temperatures in the range of J1.K even in nanoscopic samples 
(R ~ 10-6 cm). Even smaller are the effects of gravitational interaction 
with the rotating massive bodies (Fig. 17.1Oc) producing the Lense­
Thirring field [45] which results in the phase shift 

a rv _G_mc:-M~R_2 n 
nc2 

where G is gravitational constant, R is radius and M the mass (per unit 
length) of a cylinder rotating with an angular velocity n. The latter 
effect is certainly out of reach to any terrestrial experiment. 

The effects of time-dependent fluxes (Fig. 17.10d) have been consid­
ered by Aronov et al. [46] and by the author and Shumovsky [47]. The 
specific case of the so-called 2nd Aharonov-Bohm effect (the phase shift 
due to scalar potential) have been addressed in [13] and nominated as 
the "persistent charge", i.e., periodic in the VT charge accumulation on 
plates of a mesoscopic capacitor subject to voltage pulses of amplitude V 
and duration T. A specific effect of inelastic backscattering in a "clean" 
ring is shown to restore the Aharonov-Bohm oscillation otherwise sup­
pressed by a time varying magnetic flux [48, 49]. 

Strong coupling effects (Wigner crystallization [50]), Luttinger liquid 
[51]) make change to the amplitude of persistent current and its temper­
ature dependence, in comparison to noninteracting electrons. 

We mention also earlier works on flux quantization in bulk mesoscopic 
cylinders [52, 53, 54]. Due to surface electron states accumulating the 
Aharonov-Bohm phase in the same way as the rotating electrons in a 
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hollow cylinder do, magnetic moment of cylinder have been shown to 
oscillate in function of flux [52]. The oscillations are also seen in the lon­
gitudinal conductivity of Bi cylinders [53, 54]. These experiments have 
been the first demonstration of the quantum oscillations in mesoscopic 
specimens with the period of a single flux quantum he/e. 
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