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Synonyms

Acoustic separation; Acoustophoresis; Position

manipulation of particles by ultrasonic fields;

Ultrasonic particle separation

Definition

Microscale acoustofluidics defines the use of ultra-

sonic waves onto a fluid inside a microchannel.

The acoustic waves are imposed on the fluid

through excitation of the microchannel walls

with an actuator. Acoustofluidics inmicrochannels

is commonly used for moving and manipulating

microparticles in a microchannel.

Overview

Separation of cells has several applications in med-

icine. In apheresis applications, certain types of

cells in blood are separated from the remaining

cells such as in leukapheresis, plateletpheresis,

erythrocytapheresis, and plasmapheresis. The gen-

eral methods used for separation of cell types are

filtration which relies on separation due to size

differences and the use of centrifugation which is

separation through density differences. In order to

prevent clogging of the filter, the filter is rinsed

with a fluid flowing at a high flow rate. The gener-

ated shear forces clean the filter; however, it may

also damage or activate certain properties of the

cells (such as clotting due to platelet activation).

Similar shear forces are generated in centrifugation
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methods as well. Use of acoustophoresis relies on

difference in physical and acoustic properties of

cells (such as speed of sound, density, and size),

and it does not generate high shear forces; hence

the viability of cells is not affected. Therefore the

use of ultrasonic standing waves is a candidate

technology that may replace filtration and centrifu-

gation cell separation methods in the future.

Microparticles can be manipulated within

a microchannel by acoustic waves imposed on

the fluid through excitation of the microchannel

walls with an actuator. The microparticles in the

channel are moved across the cross section by

acoustic radiation force which has a varying mag-

nitude throughout the cross section of the channel.

The distribution of the acoustic radiation force is

determined by the acoustic mode shape present in

the microchannel. The acoustic radiation force

acts on the particle in such a way that the micro-

particles are moved to the nodal points of the

acoustic mode shape. Therefore, the microparticle

in a microchannel can be moved to nodal points of

the acoustic mode shape which enables manipu-

lating the positions of the microparticles. Acoustic

radiation force magnitude also depends on den-

sity, size, and the acoustic properties of the micro-

particles. The differences of microparticles in

these properties result in different forces on each

cell which in return determine their location at the

channel cross section at a certain time. Therefore,

over time the microparticles end up at different

locations along the cross section of the channel

which results in separation of microparticles. The

upside of this method is that it does not cause high

shear stresses on the cells and the Joule heating

problem of the electrical methods does not exist

for ultrasonic separation process. Unlike electro-

kinetic, magnetic, and optical methods, acoustic

retardation force is effective along the entire chan-

nel where the ultrasonic waves are present rather

than a confined region. This aspect is an advantage

for high-throughput applications.

Basic Methodology

In this part, mathematical modeling of the acous-

tic radiation force acting on particles in a

microchannel is presented. The solution methods

for determining the generated radiation force and

determining the particle response are introduced.

The starting equations for acoustics problems

are the continuity equation and the Navier-Stokes

equations for compressible medium. The conti-

nuity equation for compressible medium is as

follows:

@r
@t

¼ �∇: rvð Þ

where r is the density of the medium and v is the

acoustic velocity of the particles. The Navier-

Stokes equation of compressible medium is as

follows (body forces are neglected):

r
@v

@t
¼ �∇pþ �∇2vþ m∇ ∇:vð Þ þ r v∇ð Þv

where p is the pressure and m is a constant related

to viscosity of the fluid. In acoustics rather than

the absolute value of density and the pressure,

small variations (due to acoustic waves) of den-

sity and pressure from the mean values are impor-

tant. These small variations are assumed to be

harmonic in nature:

p ¼ p0 þ p1 and r ¼ r0 þ r1

where p1 and r1 are small harmonic perturbations

around the absolute static values of pressure and

density (p0 and r0). If the purpose is to find the

fluctuations in pressure and density due to acous-

tic waves, one can substitute the pressure and

density equations above into continuity and

Navier-Stokes equations and solve for acoustic

parameters. However, in the calculation of radia-

tion forces, it is required to integrate the pressure

value around one cycle of perturbation. Since

perturbations are harmonic, the integration

around one cycle results in zero acoustic radia-

tion force. Therefore, for the evaluation of har-

monic forces, using first-order perturbations are

not sufficient. Therefore, second-order variations

are taken into account where the pressure and

density variations are given as
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p ¼ p0 þ p1 þ p2, r
¼ r0 þ r1 þ r2 and v ¼ v1 þ v2

If the above two equations are substituted in the

continuity and Navier-Stokes equations and

inviscid flow is assumed, after several steps of

derivations, time-averaged second-order varia-

tion is given as follows [1]:

p2h i ¼ 1

2r0c2a
p21
	 
� 1

2
r0 jv1j2
	 


In the above equation <�> denotes time average

over one cycle of acoustic excitation. If the inte-

gral of the pressure is taken around a spherical

region and the momentum flux term is added, the

radiated force due to acoustic field onto a particle

in the acoustic field becomes

Frad ¼
ð
@O

1

2r0c2a
p21
	 
�1

2
r0 v1j jh i

� 

nþr 0 n:v1ð Þv1h i

� �
da

where @O is the area over the sphere and “a”

is radius of the sphere. In order to evaluate

the values of the above radiated force expres-

sion, one needs to evaluate this integral on the

surface boundaries of each particle in the field.

In order to estimate the radiated acoustic force

expression, one can employ different methodol-

ogies. Here, three of these methods will be

discussed.

The performance of a separation process can

be assessed by using a computational model. To

illustrate this, the performance of the device

proposed by Petersson et al. [2] will be assessed

with the current computational models. On the

aforementioned setup, separation of polystyrene

beads with three different diameters was aimed

(diameters of 3, 7, and 10 m). Particles are

released from inlets 1 and 2 with uniform distri-

bution along the cross sections of the inlets.

After the inlets merge on to the main channel,

the main channel continues for 30 mm, and

the separated particles exit through outlets 1, 2,

and 3 according to their sizes (10 mm exits from

outlet 1, 7 mm diameter exits from outlet

2, and 3 mm exits from outlet 3). The ultrasonic

excitation was applied only to 20 mm portion of

the 30 mm channel by means of a piezoelectric

actuator.

In order to solve this problem as well as acous-

tic field calculation, flow field calculations should

be performed so that the fluid velocities are

known at each location in the channel. Velocity

field data is calculated from CFD solution with

inlet and outlet flow rates as the input to the CFD

model. The flow velocities in x, y, and

z directions for each location in the channel are

the output from the CFD model. These velocities

are then fed into acoustic field models. The

assumptions in the model are that the fluid flow

is not affected from the particles and that there is

no interaction between particles. The width of the

channel is 370 m and the depth of the channel is

125 m (towards the plane of the paper); hence it is

assumed that the acoustic field is uniform along

the depth of the channel. Under these assump-

tions using the acoustic domain solution, the

forces on each particle are evaluated. The first

approach described below is estimation of the

ultrasonic radiation forces using an analytical

approach.

Simulation of Particle Trajectory-Analytical

Approach

The integral equation for radiated force can be

evaluated for a spherical particle with the

assumptions that the combination of scattered

and the incident field around the particle can be

represented by assuming the particle as both

a monopole and a dipole acoustical source. The

radiated field due to these sources and a standing

acoustic wave in a rectangular channel is derived

as below:

Frad
y ¼ 4pa2 kað ÞEacF sin 2kyð Þ

F ¼ rp þ 2=3 rp � r0
� �

2rp þ r0
� r0c

2
a

3rpc2p

where F is the acoustophoretic contrast factor,

Eac is the acoustic energy density, and ka= 2pa/l
is the size to wavelength ratio.

Balancing the viscous Stokes drag force

(Fy
drag) with acoustophoretic force (Fy

rad) results
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6p�a
dy

dt
¼ 4pa2 kað ÞEacF sin 2kyð Þ

y tð Þ ¼ 1

k
arctan tan ky 0ð Þ½ 	exp 4F

9
kað Þ2 Eac

�
t

� 
� �

Velocity field data is taken from CFD solution

and used for calculating path of particles and

determining which outlet they exit through. It is

assumed that there are no interaction between

particles, no distortion in the acoustic field, and

no velocity in the z direction.

Channel geometry is based on study of

Petersson et al. [2]; in that study, three different

groups of microscale beads are separated. Micro-

scale beads have 3, 7, and 10 mm diameter and

5 %, 10 %, and 15 % standard distributions in

diameter, respectively. Channel geometry in

Fig. 1 is used for modeling.

Figure 2 shows the microparticles after being

released from the inlet before going into the

channel where ultrasonic waves are applied.

Red points represent nominally 10 m particles;

blue, nominally 7 m particles; and green, 3 m
particles. Figure 2 shows that initially all the

beads are in mixed state. After passing through

the separation channel and being exposed to

ultrasonic waves for 20 mm, it can be seen from

Fig. 3 that the majority of the red particles are

passing through outlet 1, and blue beads and the

green particles are going away from the first

outlet towards second and third outlets. Figure 3

shows that majority of the green particles are

close to the wall which would have them end up

in outlet three, whereas the blue particles are at

a location which is closer to outlet two. The

results of the simulation were percentages of

particles, and their corresponding outlets will be

presented in the next section.

Analytical method is faster than finite element

method and reasonably accurate. Also, it can

solve too many particles and give more accurate

results for models that contain distributions.

However, it is only applicable to uniform rect-

angular cross-shaped channels. For high-

concentrated particle solutions, analytical

method may give inaccurate results because dis-

tortion in acoustic field would affect the results.

Simulation of Particle Trajectory-Finite

Element Approach

Finite element method can be used to simulate the

ultrasonic radiation force on the particle and to

simulate how particle moves inside the channel

Microscale Acoustofluidics, Fig. 1 Channel geometry

Microscale Acoustofluidics, Fig. 2 Junction of inlets

1, 2, and 3
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under this ultrasonic radiation force. Initially, the

channel geometry is drawn, and the CFD analysis

should be completed with the flow rates from

each inlet and outlet as the input to the CFD

analysis. Once the CFD analysis is completed,

the next step is to start the beads at random

locations of the inlet and simulate the flow of

the beads using the velocity components com-

puted from the CFD analysis. Once the beads

reach the region where ultrasonic excitation

exists, the field created by the wall movement is

calculated using a finite element program, and the

acoustic pressure distribution is calculated. The

solution in the acoustic domain is only performed

at the location where the piezoelectric material is

located. It can be seen in Fig. 4 that the ultrasonic

excitation does not propagate towards the other

parts of the channel but rather is local to region

where piezoelectric material excites the channel

(the region shown in color).

The ultrasonic radiation force exerted on the

particle is calculated at each time step through

evaluation of integral equation for radiated force.

It should be noted that the acoustic pressure and

velocities are calculated using the finite element

code. These solved values of acoustic velocity

and acoustic pressure is substituted in the integral

equation. At each time step, velocities imparted

on the particle due to fluid motion are also taken

into account through CFD analysis. Therefore, at

each time step (which is around 0.5–5 ms), the

new location of the particle is calculated and the

particle is moved. At the new time step, geometry

with the new particle location is meshed and

solved again. Once the particle leaves the region

where the ultrasonic waves are active, then CFD

analysis determines the path of the particles.

Like the analytical approach, particle diame-

ters have a random (normal) distribution, and

starting locations of the beads have uniform

Microscale
Acoustofluidics,
Fig. 3 End of main

channel

Microscale Acoustofluidics, Fig. 4 Acoustic pressure distribution in the channel because of piezoelectric excitation

on the wall
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distributions. One of the main challenges of the

finite element model approach is the computa-

tional time required for the analysis. The geome-

try (Fig. 1) is composed of a long narrow channel

where a small particle is in the channel. Due to

small size of the bead (3–10 m), there is a need for
small mesh size around the particle; however, the

length of the channel is three orders of magnitude

larger than the particle. This causes difficulty in

meshing. Figure 5 shows a particle just before it

left the ultrasonically excited region. It can be

observed that the region around the particle is

extremely densely meshed, and as the particle

moves, this densely meshed region moves with

it. Therefore, the method of boundary element

analysis has clear advantages since the inside of

the domain need not to be meshed.

For the simulation of particle trajectory, with

the presence of the particles is a computationally

expensive process, since the particles are moving

within a microchannel, which requires remeshing

of the computational domain. One alternative

approach could be the implementation of bound-

ary element method (BEM). BEM has a unique

advantage over the conventional PDE solution

procedures as the meshes are generated only on

the boundaries of the computational domain.

Therefore, the motion of the particles within the

microchannel requires the movement of the

meshes located on the particle.

Key Research Findings

There are host of studies that use ultrasonic waves

in cell/particle manipulation and separation.

However, most of these studies are application

oriented, and the numerical modeling efforts for

this method are rather limited.

Experimental Study Findings

Particle/cell manipulation aims to position the

particles/cells at a certain location inside the

channel. The purpose is not necessarily to sepa-

rate these cells but to control their location. Con-

trolling the location of cells is particularly

important for cell washing and cell concentration

purposes. A common target in these studies is to

position the cells in the pressure node locations.

In several studies, the particles are positioned at

pressure node locations successfully [3]. In

a rather recent study, Glynne-Jones et al. [4]

were able to position the microparticles to any

location in the microchannel cross section by

feeding a mode-switched signal to the piezoelec-

tric element.

The positioning of cells in a microchannel is

also studied. Several studies were able to move

living cells to pressure nodes using ultrasonic

waves. Saccharomyces cerevisiae and

Escherichia coli (E. coli) cells are positioned to

nodal locations [5]. In the study of Kapishnikov

et al. [6], the blood cells from rabbits are sepa-

rated from the blood plasma by positioning the

cells in the pressure nodal location.

As the method started to mature, there have

been more studies that aimed at separating the

particles of different sizes or densities from each

other as well as different types of cells from each

other. The studies with particles aim at separating

particles of different diameters from each other.

In the study of Petersson et al. [2] microparticles

Microscale Acoustofluidics, Fig. 5 The meshed region where ultrasonic waves are present
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with diameters 2, 5, 8, and 10 m were separated

from each other. Also, in the study of Adam and

Soh [7], an ultrasonic separation channel was

designed that works with the principle of

a band-pass filter. This setup successfully sepa-

rated the beads 1, 3, 5, and 10 m from each other.

The ultimate target of this research field is to

be able to separate living cells from each other. In

study of Petersson et al. [8], the lipid particles

were tried to separate from erythrocytes. Also the

same group tried to separate human blood cells

from each other (red blood cells, white blood

cells, and platelets) [2]. In other studies, different

types of cell separations were targeted such as

human sperm from egg cells [9].

From the findings of these studies, it is clear

that position manipulation of cells and particles is

successfully performed in microchannels. The

separation of particles according their sizes is

successfully performed in several studies as

well. However, there are some difficulties when

it comes to separation of cells from each other. If

the cells are acoustically very different, the

results seem to be more successful, but if the

size, density, and speed of sound variations in

a single-cell group are rather large, this poses

a challenge for the separation process. The results

can be improved if the sensitivity of the perfor-

mance to the important parameters of ultrasonic

separation is better understood. An effective way

to understand these sensitivities may be by

numerical modeling of the ultrasonic separation

process. For the rest of the section, some results

and findings of the ultrasonic separation process

will be provided.

Numerical Study Findings

For the system given in Fig. 1 using the analytical

and finite element approaches, the performance

of the system is evaluated. The methodologies

used for these two methods are explained in the

previous section. The results of these two simu-

lation approaches will be compared to experi-

mental results given in the work of Petersson

et al. [2]. The simulation system is the replica of

their experimental study performed with 3, 7, and

10 m beads. The results of the experimental study

are adopted from work of Petersson et al. [2] and

given in Fig. 6. The experimental results show

successful separation of 10 m particles and 3 m
particles, and 7 m particles seem to mostly end up

at the targeted outlet of 2. However, there is

significant population of 7 m beads at the

unintended outlets of 1 and 3 (30 %). The results

of the ultrasonic separation simulations using the

analytical methods show similar estimations of

separation as shown in Fig. 7. The main differ-

ence with the experiments is in the 3 m particle

results. The simulations show very successful

separation of 3 m beads; however, in the experi-

ment, only 80 % of the 3 m beads ended up in the

targeted outlet of 3.

Figure 8 shows that the results for the finite

element simulations are also similar and the

results for separation performance of 3 m particles
are better than the experimental results. On the

other hand, the other estimations for the bead

locations are accurate, and the general trends of

separation performance are successfully cap-

tured. Therefore, it seems that the simulation

tools can be used effectively to estimate the

response of the ultrasonic separation system.

These numerical modeling tools give possibility

to numerically try and optimize the sizes and the

low rates of the separation systems before exper-

imental tests.

The differences between the analytical model

and the finite element model results are not sig-

nificant, and in terms of computation time and the

initial setup of the numerical model, the analyti-

cal method has clear advantages. However, there

are certain cases where finite element modeling

may have advantages over the analytical model-

ing method. If the concentrations of the beads are

so high that the acoustic field inside the channel is

significantly changed by the particles, then this

change in the acoustic field can only be captured

by the finite element model. Also if the channel

shape is not rectangular or it has a varying cross

section over the length again, the finite element

modeling is more advantages to be used com-

pared to analytical method.

Another observation coming from the simula-

tion is as follows: the positions of the particles at

the beginning of main channel determine which

channel they exit through. If a 7 mm bead enters
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the channel close to channel’s center and 10 mm
bead enters close to wall, 7 mm bead can exit

through outlet 1, while 10 mm bead can exit

through outlet 2. This means that flow character-

istics affect performance as much as acoustic

characteristics. Velocity of the particle deter-

mines time period the particle is exposed to

acoustic force. For example, if a particle is close

to the top or bottomwalls of the channel, it travels

further in the transverse direction than an identi-

cal particle in the middle of the channel.

Future Directions for Research

Acoustophoresis needs to be a process so robust

and efficient that it can be used as an alternative

safe (causing less shear on cells), economical,

and fast (label-free) cell separation method for

diagnostics and therapeutic medical applications.

In order to increase the robustness of ultrasonic

separation process, it is important that parameters

that improve the performance are well under-

stood and optimized. Numerical simulations

Microscale
Acoustofluidics,
Fig. 6 Bar plot of

experimental data

Microscale
Acoustofluidics,
Fig. 7 Bar plot of

analytical modeling results
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may serve as an efficient tool for this purpose.

Accurate simulations are important to improve

the performance of ultrasonic separation process,

but accurate simulations generally mean high

computation times (high mesh density and small

time steps). In order to improve computation

times, boundary element modeling approach can

serve as an important tool. It does not suffer from

domain meshing and does not have the limita-

tions of analytical simulation methods (spherical

geometry, rectangular geometry, etc.). Therefore,

studies that model the acoustophoresis process

with boundary element method is a future direc-

tion of research that needs to be explored.

One important parameter for successful simu-

lation of acoustophoresis is to know acoustical

properties of microparticles that are being frac-

tionated. This is especially important if the acous-

tical properties (such as density, speed of sound,

and compressibility) of microparticles are not

known beforehand. Therefore, there is a need

for a fast and reliable method that would identify

the acoustic properties of the cells/particles that

are aimed to be fractionated. Also during the

simulations, it has been observed that parameters

other than acoustical parameters play an impor-

tant role in the performance of separation pro-

cess. Fluid domain-related parameters affect the

separation process. The simulations show that

depending on the particle starting position in the

channel cross section, same particle under same

ultrasonic field can end up in different outlets of

the channel. Random parameter such as starting

position in the cross section should be prevented

from affecting the performance of the separation

process. One possible way is to manipulate the

positions of the particles/cells before they are

separated according to their sizes. In other

words, particles and cells are positioned to the

pressure node locations which would prevent the

variability of starting position. Once they all are

at the predetermined position, then another fre-

quency and a secondary piezoelectric material

can be used for separation of these aligned cells/

particles. This approach should result in more

robust separation performance.

Another possible approach for future studies

might be hybridization of the method with other

cell separation methods. One good potential

might be hybridization of dielectrophoretic

method and acoustophoretic method. Dielectro-

phoresis is chosen for hybridization since this

method is extensively studied and its separation

performance can be improved by keeping the

distance between the cells and the electrode

(s) consistently close. In that sense, the position-

ing of cell can be achieved by positioning the

cells towards a pressure node. As an example,

Microscale
Acoustofluidics,
Fig. 8 Bar plot of finite

element modeling results
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the separation of living cells from dead cells can

be achieved by dielectrophoresis [10], and its

performance can be improved by using

acoustophoresis if the cells are positioned at cer-

tain location across the cross section. This

approach can give the selectivity, robustness,

and the throughput required from a cell separa-

tion device.

Using acoustophoretic methods in medical

devices for therapies is possible if the throughput

of acoustophoretic devices is increased. The most

obvious methods for increasing throughput are to

increase the flow rates or increase the number of

separation channels. Due to several reasons, it is

not possible to increase the flow rates orders of

magnitudes (due to pressure drops across

microchannel, excessive shear, etc.). However, it

is possible to designmultiple channels where there

would be tens or hundreds of separation channel

working in parallel. This parallel multiple designs

will increase the throughput but significant

amount of design and manufacturing effort is

required to make it work. The important factors

to look out for are manufacturability of this mul-

tiple channel design, excitation of all the channels

with ultrasonic field, and fluid routing architecture

formultiple channel design. However, if the above

challenges are overcome, it would be an important

step for a commercial diagnostic and therapeutic

cell separation medical device that works with the

principle of acoustophoresis.

Cross-References

▶Boundary-Element Method in Microfluidics

▶Cell Sorting

▶Lab-on-a-Chip Devices for Particle and Cell

Separation
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