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1. Introduction 

A dense electron-hole plasma forming in a semiconductor under intense 
laser excitation comprises an interesting many-body system. Because of 
the exchange effects and the screening of the Coulomb interaction, the 
single-particle properties are renormalized. A notable phenomenon is the 
band-gap renormalization as a function of the plasma density which is im­
portant to determine the emission wavelength of coherent emitters as being 
used in semiconductors.[!] As a substantial amount of carrier population 
may be induced by optical excitation, the renormalized band gap can affect 
the excitation process in turn and lead to optical nonlinearities. In this pa­
per we investigate the density dependence of the band-gap renormalization 
(BGR) in quasi-one-dimensional (QlD) photoexcited semiconductors. Un­
der high optical excitation-the band gap for 2D and bulk systems is found 
to decrease with increasing plasma density due to exchange-correlation ef­
fects. The observed band gaps are typically renormalized by "' 20 me V 
within the range of plasma densities of interest which arise chiefly from the 
conduction band electrons and valence band holes. In the QlD structures 
based on the confinement of electrons and holes, the electron-hole plasma is 
quantized in two transverse directions, thus the charge carriers essentially 
move only in the longitudinal direction. Recent progress in the fabrication 
techniques such as molecular-beam epitaxy (MBE) and lithographic de­
position have made possible the realization of such quasi-one-dimensional 
systems.[2] Band-gap renormalization as well as various optical properties 
of the QlD electron-hole systems have been studied[3, 4, 5, 6, 7] similar to 
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the bulk (3D) and quantum-well (2D) semiconductors[8, 9, 10, 11] where 
generally good agreement with the corresponding measurements[12] exist. 

Our main motivation comes from the recent experiments of Cingolani 
et al.[13, 14] in which they investigated the carrier density dependence of 
a quasi-one-dimensional electron-hole plasma confined in GaAs quantum 
wires using luminescence spectra. Comparing the band-gap data with the 
available calculations, Cingolani et al.[13] pointed out the need for a more 
realistic calculation. Density dependence of the BGR in QlD systems was 
first considered by Benner and Haug[3] within the quasi-static approxi­
mation as previously employed for 2D and 3D systems.[8, 9, 10, 11] In a 
detailed study that appeared recently Hu and Das Sarma[4] also calcu­
lated the BGR, neglecting the hole population and considering an electron 
plasma confined in the lowest conduction subband only. The results of Hu 
and Das Sarma[4] are rather close to the experimental data.[13] 

In this study our aim is to calculate the BGR using a statically screened 
approximation which is based on the RPA. We employ the temperature de­
pendent, static, RPA dielectric function and address the question of validity 
of using the plasmon-pole approximation to it. We investigate the temper­
ature dependence of the BGR at various electron-hole plasma densities and 
quantum well widths. We also discuss the effects of electron-phonon inter­
actions. 

The rest of this paper is organized as follows. In the next section we 
give a brief outline of the static screening approximation ( quasi-static ap­
proximation). In Section III we present our results for the BGR in QlD 
electron-hole plasmas and compare them with the experiments. Finally, we 
conclude with a brief summary of our main results. 

2. Theory 

For the QlD system we consider a square-well of width a with infinite bar­
riers. It may be built from a Q2D quantum-well (grown in the z-direction) 
by introducing an additional lateral confinement. We assume that effec­
tive mass approximation holds and for GaAs take me = 0.067m, and 
mh = 0.2m, where m is the bare electron mass. Note that we have chosen 
the hole effective mass to reproduce on average the dispersion of the four 
topmost lD subbands to conform with the experimental analysis of Ref. 13. 
The effective Coulomb interaction between the charge carriers is given by[4] 

2e2 11 
[ 

3 
] V(q)=- dxK0(qax) (1-x)[2+cos(21rx)]+-. sin(21rx) , (1) 

Eo o 21r 

in which J( 0( x) is the zeroth-order modified Bessel function of the sec­
ond kind, and Eo is the lattice dielectric constant. Due to the presence of 
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an electron-hole plasma, assumed to be in equilibrium, the bare Coulomb 
interaction is screened. The equilibrium assumption is justified since the 
laser pulse durations are typically much longer than the relaxation times of 
the semiconductor structures under study. Defining the statically screened 
Coulomb interaction as Vs(q) = V(q)/c(q), we consider the dielectric func­
tion in the random-phase-approximation (RPA) 

E:(q) = l _ 2V(q) L fi(k) - fi(k + q)
. , 

i,k €i(k) - €i(k + q) + 1,17 
(2) 

where the index i = e,h, and Ei(k) = n2k2/2mi are the bare single-particle 
energies. In most previous studies, the dielectric function E:(q) was further 
simplified by the plasmon-pole approximation. Here we use the full static 
RPA at finite temperature without resorting to any approximations and 
discuss in the following section the validity of the plasmon-pole approxima­
tion. 

Assuming a homogeneously distributed electron-hole plasma in thermal 
equilibrium the electron and hole distribution functions are written as 

(3) 

where {3 = 1/kBT and µ? are the inverse carrier temperature and (un­
renormalized) chemical potential of the different species, respectively. The 
plasma density N determines µ? through the normalization condition N = 
2 L-k fi(k ). 

Adopting the quasi-static approximation[8, 9] which amounts to ne­
glecting the recoil effects relative to the plasma frequency in the full fre­
quency dependent expressions, we decompose[8, 9] the electron and hole 
self-energies into screened exchange (sx) and Coulomb hole (Ch) terms: 
Ei(k) = Eix(k) + Efh , where 

Eix(k) = - L Vs(k - k')fi(k'), 
k' 

and Efh 
= ! LWs(k') - V(k')]. (4) 2 k' 

The above set of equations may be derived[8] from the dynamical self-energy 
expressions by neglecting all recoil energies· with respect to the plasma 
frequency. As in the case of 2D and 3D calculations[8, 9, 10, 11] we assume 
that the BGR results from rigid bandshifts; i.e., the self-energies depend 
only weakly on wave vector k. The band-gap renormalization is then given 
by 

(5) 



182 

namely the electron a.nd hole self-en�rgies ca.lcula.ted a.t the respective ba.nd 
edges. Within the sa.me spirit, we ca.lcula.te the renormalized total chemical 
potential of the electron-hole plasma. using 

(6) 

in which kp = rr N /2 is the Fermi wa.ve vector. The self-energy pa.rt in the 
a.hove expression is a.lso ea.lied the excha.nge-correla.tion contribution µxc to 
the chemical potential. 

3. Results and discussions 

In Fig. 1 we show the results of our ca.lcula.tion for the BGR (indicated by 
the solid curve) a.s a. function of the electron-hole plasma. density N. In or­
der to ma.ke a. ready comparison with the experimental results of Cingola.ni 
et al.[13] (shown by full circles), we ha.ve eva.lua.ted !1E9 for a. quantum 
wire of width a = 500 A, a.t T = 100 K. The investiga.ted[13] quantum wires 
were fabricated by plasma. etching from quantum-well structures with la.t­
era.l widths of 600 ± 50 A. The experimental da.ta. ha.ve been collected over 
a. whole set of spectra a.t various carrier temperatures. As we shall demon­
strate below the BGR is not very sensitive to the temperature and we obtain 
rather good agreement with the experimental results. The zero-temperature 
calculation of Hu and Das Sa.rma.[4] a.lso represents well the Cingola.ni et 
al.[13] da.ta., rendering the insensitivity of !1E9 to temperature in the range 
of densities reported. The agreement between our calculated results a.nd 
the experiment a.ppea.rs to be rather good. However, we caution tha.t the 
experimental da.ta. points[13] were extracted from the observed lumines­
cence spectra. by assuming a. free-carrier model. Our ca.lcula.tions indicate 
the importance of Coulomb effects. Thus a. more refined line-shape analysis 
would be required to render the comparison more meaningful. To assess 
the relative importance of the various contributions to !1E9 we display in 
Fig. 2 the screened-exchange ( dashed line) a.nd Coulomb hole ( dotted line) 
parts of the self-energy. It is observed tha.t the Ch term dominates for low 
densities (N ::; 3 x 10 5 cm-1) but the total 11E9 is ma.inly determined by 
the sx term at high densities. This situation is somewhat different tha.n the 
ca.se in 2D systems, where the Ch term a.pproxima.tes the ba.nd-gap renor­
ma.liza.tion satisfactorily for the relevant density regime.[15] On the other 
ha.nd, a. recent work[6] on InGa.As/InP quantum wires made use of the un­
screened exchange energy (Ha.rtree-Fock) only to account for the subband 
renorma.lizations. 

The dotted curve in Fig.1 gives the BGR calculated within the pla.smon­
pole approximation to the dielectric function using the same parameters. In 
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Figure 1. The calculated band-gap renormalization D.E
9 

as a function of the elec­
tron-hole pair density. Full circles are the experimental results from Ref.13. Solid and 
dotted lines are calculated with the full RPA dielectric function and the plasmon-pole 
approximation to it, respectively. 
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Figure 2. The sx ( dashed line) and Ch ( dotted line) contributions to the total band-gap 
renormalization (solid line) for a= 500 A wide quantum wire at T = 100 K. 
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the plasmon-pole approximation the static dielectric function is expressed 
as[3] 

w
2 

t:(q) = 1+ Nq2 P(r._)' 
/},I<, 

+ 2µ, 

(7) 

where the plasmon frequency for the QlD system is w; = (N / µ)V(q), and 
the screening parameter is K = Li 8N/8µ?. Here µ-1 = m; 1 + m·;:1 is 
the reduced mass. This is essentially the approach taken by Benner and 
Haug[3], where they use a parabolic confinement potential. The plasmon­
pole approximation consists of ignoring the weight of single-particle excita­
tions and assuming that all the weight of the dynamic susceptibility Xo(q,w) 
is at an effective plasmon energy W

p
. It correctly describes the static and 

long wavelength limits of the full RPA expression. Most BGR calculations 
[c.f. Refs. 8,9,10, and 11] are performed in the plasmon-pole approximation 
and its justification is rarely addressed. Das Sarma et al.[16] have found sig­
nificant deviations of the plasmon-pole approximation from the full RPA 
results in quantum wells. The qualitative similarity of dotted and solid 
curves in Fig. 1 demonstrates the applicability of plasmon-pole approxima­
tion in QlD systems in contrast to Q2D systems as found by Das Sarma et 
al.[16] We have calculated the t:( q) within the temperature dependent RPA 
and the plasmon-pole approximation and found that they are quite similar. 
The RPA calculation is performed using Eq. (2) at a finite temperature, 
since the thermal electron and hole distribution functions Ji( k) are used. 
The temperature dependence of t:( q) in the plasm on-pole approximation 
comes from the screening parameter "'· Our calculations indicate that the 
plasmon-pole approximation becomes better for large T. 

In Fig. 3 we show the temperature dependence of the band-gap renor­
malization /j,_E

9 
in the QlD electron system. The solid lines indicate BGR 

for a system at N = 105 cm-1 with a= 100A (lower curve) and a= 500A 
(upper curve). The dotted lines are for N = 106 cm -l with a = 100 A 
(lower curve) and a =  500A (upper curve). The results shown in Fig. 3 
were calculated using the full RPA dielectric function at finite tempera­
ture, but we found that plasmon-pole approximation also works quite well. 
Hu and Das Sarma[4] have also investigated the temperature dependence 
of the BGR within the leading-order dynamical screening approximation 
( GW approximation). Our statically screened approximation yields quali­
tatively similar results suggesting dynamical screening is not significant in 
the range of plasma densities of experimental interest. 

We have evaluated the renormalized chemical potential of the electron­
hole plasma including the exchange-correlation contribution as set out in 
the previous section. The total chemical potential µT of the QlD electron­
hole system with well width a = 600 A, for kBT = 8 and 16 me V as 



El -

0 

-20 

-40 

-60 
0 

--- .... - - .. --- ----- -- - - - - ----- - - - - - - - -------

100 200 
T (K) 

300 

185 

Figure 3. The temperature dependence of the band-gap renormalization for N = 105 

(solid lines) and N = 106 cm- 1 (dotted lines). The upper and lower curves are for a= 500 
and a = 100 A wide quantum-well wires. 

a function of the plasma density is in qualitative agreement[5] with the 
experimental results of Cingolani et al.[13] obtained for similar parame­
ters [c.f. Fig. 4 of Ref. 13]. We found that there is a quantitative disagree­
ment with the experiment especially for large densities, which may be at­
tributed to the subband effects. Our calculations provide some indication 
about the rigid bandshift assumption. Using Eq. (6), we have calculated 
the exchange-correlation part of the chemical potential with both E(k = 0) 
and E( k = kF) and found no notable difference which suggests that the 
bandshifts occur rigidly. Figure 4 exhibits the band-gap renormalization at 
the band-edge (k = 0) and at kF, for quantum-wire widths a= 500A (solid 
line) and a = 1000 A ( dashed line). 

There seems to be a discrepancy in the band-gap renormalization be­
tween theory and experiment at high densities for Q2D structures. The ori­
gin of this general disagreement is not well understood. Several attempts 
to improve the theory, particularly the multisubband population case, did 
not change the qualitative behavior of the BGR. To explore the existence 
of similar behavior it would be interesting to perform experiments in Q1D 
structures at higher densities. 

We now discuss the effects beyond the RPA, the local-field corrections 
to the BGR in quantum wires. Writing the dielectric function as t:(q) = 
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Figure 4. The total self-energy calculated at k = kF and at the band-edge (k = 0) as 
a function of the plasma density (we scale the density using the effective Bohr radius 
a:a = foh2 / µe2 in terms of the reduced massµ and dielectric constant fa). The solid and 
dotted curves indicate a = 500 A and a = 1000 A wide quantum-wires. 

1-V(q)II(q)[l-G(q)], where G(q) is the static local-field factor and II(q) is 
the static polarizability, we may account for the vertex corrections to II( q) 
in the mean-field sense. Recently, Schuster, Ell and Haug[l 7] considered 
finite-temperature vertex corrections in the form of second-order exchange 
contribution to the self-energy in 2D and 3D electron-hole plasmas. We 
use the equivalent of Hubbard approximation for G(q) in one-dimension to 
obtain[18] 

(8) 

The physical nature of the Hubbard approximation is such that it takes 
exchange into account and corresponds to using the Pauli hole in the cal­
culation of the local field correction between the particles of the same kind. 
Coulomb correlations are omitted. In this simple form, the static local-field 
factor G(q) is temperature independent. Fig. 5 shows the BGR for quan­
tum wires of various lateral widths at T = 100 K with and without the 
local field corrections. The solid curves are calculated with the local field 
correction whereas the dotted curves give the RPA (G(q) = 0). We ob­
serve that within the simple Hubbard approximation to G(q), the BGR 
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Figure 5. Effects of local-field corrections on the band-gap renormalization as a function 
of the plasma density at T = 100 K. Dotted and solid lines are calculated with and without 
local-field corrections, respectively. 

deviates from the RPA result as the quantum-well width decreases. The 
difference in BGR with and without G( q) is more appreciable for lower 
densities. We argue that in general RPA is a good approximation for high 
densities, but requires modifications for low densities. In order to assess a 
reliable measure of corrections beyond RPA, better approximations to the 
local field factor G(q) are needed. Returning to the issue of discrepancy in 
the calculated b..E

9 
and measurements for high densities in Q2D systems, 

it seems unlikely that improvements of RPA could yield satisfactory agree­
ment. Elaborate calculations of Schuster et al.[17] give an indication in this 
direction. Clearly, more experimental measurements of the type reported 
by Cingolani et al.[13, 14] covering a wide range of plasma densities are 
necessary to resolve these questions. 

As pointed out earlier, the band-gap renormalization accounts for the 
optical nonlinearities in the photoexcited semiconductor structures. The 
theoretical description of these phenomena in Q2D and 3D systems has been 
reviewed by Haug and Schmitt-Rink.[19] It would be interesting to examine 
the nonlinear optical properties of Q1D electron-hole systems using a simi­
lar approach. It is also possible to investigate the effects of electron-phonon 
interaction on the band-gap renormalization. Electron-phonon contribution 
to the BGR in Q1D systems were calculated by Giiven and Tanatar[20] 
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within pert:urbation theory and variational approaches. Recently, Dan and 
Bechstedt[21] treated the carrier-carrier and carrier-phonon interactions on 
an equal footing to calculate the phonon effects in QlD systems. These 
calculations indicate the importance of the contribution of phonons to the 
BGR and their density dependence. The BGR due to carrier-carrier interac­
tions increases with plasma density, whereas the carrier-phonon interactions 
tend to decrease tl.E

9 
at high densities.[20 , 21] 

For the QlD electron system we have used the model developed by 
Hu and Das Sarma[4] which introduces an additional confinement to an 
infinite square-well. There are various other models of the quantum-well 
wire structures using parabolic confining potentials, geometrical reduction 
of dimensionality. The general trends obtained here for the plasma density 
and temperature dependence should be valid irrespective of the details of 
the model chosen. 

Although we have carried out our numerical calculations for the ma­
terial parameters of GaAs, the same formalism may be applied to other 
semiconductor structures such as InAs, GaSb, AlAs, etc. It would be desir­
able to have experimental results of the BGR for different QlD semicon­
ductor materials to compare with theoretical calculations. In 2D and 3D, 
a somewhat universal dependence of tl.E

9 
on plasma density is established 

largely independent of the band structure details. Whether a similar gen­
eral behavior exists in QlD electron-hole systems would be settled as more 
photoluminescence experiments become available. 

4. Summary 

We have found that the static plasmon-pole approximation to the dielectric 
function yields very close results to the full RPA expression. The temper­
ature dependence of the BGR is weak for densities N rv 10 6 cm-1• Local­
field corrections employed within the Hubbard approximation decreases the 
BGR at low densities especially when the lateral width of the quantum wire 
is small. The calculated renormalized chemical potential of the electron-hole 
plasma qualitatively differs from the measurement which may be attributed 
to the subband effects. 

Extension of our calculations to cases where more than one subband 
is populated would be interesting for comparison with future experiments. 
It was recently found by Ryan and Reinecke[22] that in Q2D systems the 
intersubband interactions make significant contribution to the band-gap 
renormalization. More experimental results are needed in quantum wires 
to discuss fully the various aspects of BGR. Given the importance of the 
Coulomb interaction, it would be useful to analyze the experimental results 
with more refined line-shape models. 
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