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Abstract. The Dicke model is examined in the limit of large number of atoms and lor
large number of excitations. Superfluous instabilities arising from the rotating wave ap­
proximation is examined and counterrotating terms are shown to be crucial for the correct
dynamical evolution in these limits .

1. Introduetion

In this article we will briefly introduce the main results of the problem of interaction of
an atomic cluster with "p" atoms with a single mode resonant radiation field in the limit
when p and/or the total number of excitations n is large . The principal assumption in this
model is that the atom is considered with only two energy levels interacting via photon
exchange. The principle reason is that besides the well-observed energy-momentum con­
servation in the observation time scales , atomic dipole transition between different energy
levels are restricted by certain selection rules conserving the total angular momentum and
parity due to the vector nature of the interaction. At the zero 'th order the atom field
interaction is resonant and is described by a two-level transition. The transition between
these two levels takes place by the absorption or emission of a single light quantum with
an energy exactly matching the energy difference of the two levels in question. The corr ec­
tions to zero'th order approximation come from the spontaneous radiative pro cesses and
Lamb shift, atomic thermal collisions, recoiling effects and Doppler shift. The spontaneous
radiative corrections produce a shift Su]» '" T/T '" 1O-3eV where T '" 10-15 S is a typical
period of the radiation field and T '" 10-12 S is a typical lifetime for atomic energy scales.
These corrections can grow as the number of energy levels in the atom gets larger neverthe­
less it can still be considered as a perturbative correctionj l]. The nonrelativistic Doppler
shift in the frequency of radiation for a gas of particles of mass M and temperature T
is given in natural units by ov/v = 7.1610-7 (T /M )1/2. For a typical example of sodium
atom at room temperature one finds Sv]» ~ 10-13 which produces a negligible effect.
Under more drastic Doppler shifts the Doppler-free spectroscopy can achieve resolutions
approaching 1 part in 1011 which practically eliminates this effect.

It is clear that the zero 'th order approximation is sufficient for most simple atoms
except for pure quantum radiative processes , experimental techniques are available to
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suppress higher order effects by shifting them to negligible scales. We will not dwell on
the details of the physical justification of two level systems longer and recommend to the
reader a good survey by Allen and Eberly[2]. We will now briefly describe our model.

2. The Dicke Model

The simplifications made by the two level atom and a single field mode certainly pays back .
In 1954 Dicke introduced a model to study the collective emission-absorption properties
of a cluster of two-level atoms[3] . The major additional assumption in this model is that
the linear size (i.e. V 1/ 3 where V describes the volume occupied) of the cluster is much
smaller than the wavelenght >. of the emitted and absorbed radiation. Since Vl/3 ~ >. the
cluster-field coupling can be treated as a point-like interaction and all atoms within the
cluster interact in phase with the same field strenght. This corresponds to the so called
equivalent mode approximation and the atomic cluster is then composed of p two-level
indistinguishable dipoles which interact via exchange of quantum of radiation. Each atom
is then represented by the complete set of "spin=1/2" dipole operators,

(1)

Here IU)j and Id)j describe the electron states in the excited and ground states of the j'th
atom respectively as shown in Fig. (1) below. Eq.'s(l) can be shown easily to satisfy the

IU~ Iu>.
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Figure 1. Two atoms in a Dicke cluster. Arrows indicate the exchange of photons.

SU(2) commutation relations ,

[i } - ) i}+)] =
I , J

[i } ±) l}z)] =
I , J
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T '& Ut,] ·

(2)

Since dipoles at each atom are assumed not to couple by direct overlap of the electron
wavefunctions localized at each atom1 , the total number of electrons Nj at each atom in
the cluster is separately conserved which is related to the total spin L; where,

and (3)

1 CoUective effects in a model which inherently has the feature of electron hopping between localized
atomic orbitals is an interesting and realistic model in certain cases. This extention will be studied in a
separate publication .
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In the model we study each atom contains only one transition electron. An arbitrary
microscopic state I£)c of the cluster is then represented by,

(4)

where £Zj = ± 1/2 (j = 1, ... , n) is the eigenvalue of Lj. If the linear size of the clust er
is much smaller than the wavelenght of the dipole radiation we can apply the equivalent
mode approximation. The whole cluster can then can be considered as a compound dipole
with collective dipole operators ,

(5)

which also respect similar commutation relations ala Eq.'s (2) as,

[L,L\] = 2£z,
[£±, £zl = =f£± .

(6)

The algebra represented by these commutation relations permits us to find the macroscopic
state of the cluster as linear superpositions of the microscopic ones in Eq.'s (4). Here one
is tempted to adopt that the conserved quantum number under the action of the collective
operators is the total number of atoms (or electrons) in the cluster fl . The total cluster
spin t: is then described by,

n

fI= L Ni,
;=1

and (7)

Let's adopt Eq.'s (7) temporarily and examine an arbitrary macroscopic state 1£ m)n as a
linear superposition of /j)n as

n

1£ m)n =E cJn) Ij)n
j=l

with

(8)
where Ij)n describes a microscopic configuration and is nothing but Eq. (4) with j atoms
in the up (i.e. +1/2) and n - j atoms in the down (i.e. -1/2) spin configuration. A typical
microscopic state is then,

n-j
~I +,+, ... ,+j -,-, .. .,-)

'-----v-----'
j

(9)

where Pj describes any permutation over j up and n-j down spins. From Eq.'s( ..) and (..)
it is appealing to say that -p/2 ~ m = j - n/2 ~ p/2 and £ = p/2. Although everything
seems quite straightforward so far there is a subtlety involved such that the natural limit
to the total spin £ is given by the total number of atoms hence £max = p/2. However, in
the most general case £ is a degree of freedom of the system and it is the natural limit
for m such that -£ ~ m ~ £ and the total number of excited atoms under most general



124 T. HAKiOGLU

initial conditions may be less than the total number of atoms in the cluster. Another way
of approach is that the total cluster spin f is obtained by adding individual spins f j = 1/2
and therefore it is allowed to change between p/2 and its minimum value, viz. f = 1/2
for odd total number atoms or f = 0 for even number of atoms. The value of f is then
fixed at the preparation of the initial macroscopic state and is a measure of cooperation
between the atoms in their contribution to the radiative properties of the whole. Therefore
in general we have 0 ::; f ::; p/2. In this case only those states with -f +p/2 ::; j ::; f +p/2
actively participate in the cooperative effects. Such states can in principle be uniquely
determined in the initial state by proper choice of initial number of photons as well as the
coefficients Cj in Eq. (8) .

Moreover the Dicke Hamiltonian is totally symmetric with respect to the exchange of
indices of different atomic dipoles. This implies that the symmetrical or anti-symmetrical
initial states never mix in their time evolution. Specific choice for the cooperation number
can lead to distinct cooperative quantum effects of radiation. The reader can consult to
a vast number of literature in this field of which only a few are listed in the references
below[L, 2,3,4] . Our specific aim in this section is to briefly investigate the most general
case of arbitrary p, f as well as total number of excitations n.

In this general case on has -f ::; m ::; f with f ::; p/2 . Hence the non-vanishing matrix
elements of the collective dipole operators for the arbitrary macroscopic state in Eq. (8)
are given as (dropping the index n from the Ifm) states),

(f ml£z Ifm) = j - p/2

(lm+ 11£+ Ifm) = J(f - j +p!2) (f+ j - p/2 + 1)

(lm - 11£-lfm) = J(f + j - p/2) (f - j +p/2 + 1)

(10)

We will use If m) as the natural basis in the description of the atomic component of the
generalized Dicke state.

The full Hamiltonian for the coupled cluster-single mode radiation state is given by,

(11)

where w is the frequency of the radiation, ( is the difference between the upper and lower
atomic energy levels. Usually one considers w =(+/::;. with /::;. I- 0 describing the detuning
from the exact resonance condition (i.e. /::;. = 0).

2.1. GENERAL SOLUTION

The exact analytic solution of the Hamiltonian does not exist for an arbitrary number
of atoms p and/or arbitrary number of excitations n in a closed form. The solution for
arbitrary number of atoms with n = 1 has been given by Cummings and Dorri[5] and
Seke[6] a more general solution under the same conditions but including the retardation
effects of the emitted radiation from each atom was considered earlier by Milonni and
Knight[7]. For p = 1,2 and arbitrary n the exact solution is presented by Buzek[8]. The
solution of this simplified model is strong geometry dependent results. For arbitrary p
number of atoms initially with n = 1 the radiation properties of the cluster can be varied
from a superradiant (constructive interference) to subradiant (destructive interference).
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The case for 3 :S p, n involves collective phenomena which are not present for the
simple case when p and/or n are equal to one or two. A general pertubative approach for
the 3 :S P, n was formulated by Kozierowsky et al.[9]. Here we will examine the general p
and n case primarily focusing on the qualitative aspects of the time evolution arising from
the complexity of the eigen solutions.

In the Hamiltonian (11) the operator corresponding to the total number of excitations

, t ' p
N = Ii Ii + .cz + ­

2
(12)

since [N, ill = 0 and the eigenvalue n is an integral of motion. Since [£2 , ill = 0 the
cooperation number I. is also a good quantum number. We can restrict our attention onto
a finite dimensional subspace of the Hilbert space corresponding to a given n . A typical
state can then be represented at a particular instant by r photons, n - r atoms in the
excited energy and p - n + r atoms in the ground state energy level. Since p is fixed and
n is determined by the initial conditions, depending on the I. values in question there
are certain restrictions on possible values that r can take. The conditions Iml :S I. with
I. :S p/2 imply -I. + n - p/2 :S r :S I. + n - p/2 hence the total number of states r can
take is 21. + 1. A dynamical state is then given in terms of combinations of In - r}c 0lr}f
satisfying the above restrictions where the subscripts c and f denote the cluster and the
field respectively. In order to find the matrix elements of the Hamiltonian, we thus need
to replace m =j - p/2 in Eq.'s(10) by m = n - r - p/2 and,

tz, = VTTI V£ + n - r - p/2)(£ - n + r + p/2 + 1)

(m - 110 (r + llillr) 01m} = 'YVr

(m + 110 (r - llillr) 01m} = 'YVr-l where
(13)

with rmin :S r :S Tmo» and I. :S p/2 .

The equations above represent the generalized case for arbitrary p and n. Here Trna» and
rmin determine the maximum allowable range for a given I.,nand p. In the most general
case,

r m ax = I.+ n - p/2 and . _ { -I. + n - p/2, and I. :S n - p/2 ;
rm m

- 0 otherwise.
(14)

At this point we analyze several distinct situations. Since rmin ~ 0 and r m ax :S n the
number of possibilities for certain values of nand p can be classified in n < p, P < nand
n = p as indicated in Table.I below.
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Tmin = 0 Tmin = 0 forced bound n<p
and f = p/2 unphysical p<n
Tm ax = n Tmin =0 natural bound n=p

Tmin = 0
{ Tmin=O natural it n>p/2j

n<p" forced if n<p/2 .
and f < p/2 unphysical p<n

Trna» < n unphysical n=p

Tmin > 0 unphysical n<p
and f = p/2 allowed p<n

Trno» =n unphysical n=p

Tmin > 0
{ allowed It n>p/2j

n<p
unphysical if n<p/2 .

and e< p/2 allowed p<n

Tm ax < n allowed n=p

Table 1.

It is crucial to remember that Dicke's superradiance condition f = p/2, m = 0 can be
met initially within all the physically realizable parts (a) and (c) of Table. 1. Dicke's
subradiance can be realized within parts (b) and (c) if in the initial state Trnaa: = n - p/2
which implies the f = 0, m = 0 singlet. The preparation of initial conditions in such a
way that the time evolution will be dominated by superradiant or subradiant states is a
difficult experimental task . First experiment on superradiant systems was performed in
1973 by Skribanowitz et al.[10] and that for subradiant states has been done in 1985 by
Crubellier et al. and Pavolini et al.Il l]. A good account on experimental realization of the
required symmetry properties for partial (full) observation of superradianca/subradiance
has been given in the former reference.

A different approach to sub radiance has been suggested by Cummings[5] considering
the spatial distribution of the atoms in the "equivalent mode" cluster for arbitrary p
as well as number of initial field modes when only one atom is initially excited. The
underlying principle behin subradiance, whether it is prepared by a particular initial state
or by randomly distributing atoms in the cluster is based on the principle of destructive
interference. The very commonly studied case of p atoms and n = 1 with field initially
in the vacuum state corresponds to the case a in Table. 1 with n < p and n = p. In this
category, Cummings and Dorri[5] studied the evolution of an asymmetric initial state and
for instance Seke[6] examined the symmetric case. The original Jaynes-Cummings model
corresponds the case p = 1 and arbitrary number of initial photons Tin > P and hence
n > p. The photon number range is therefore given by n - p ~ T ~ n. This is contained in
case (c) in Table. 1 with f = p/2 and hence f = 1/2. Buzekls]also studied the consequences
of the spatial distribution of atoms in the spatially extended cluster (i.e. linear size of the
cluster is compatible with the wavelenght of the single resonant field) . He considered the
case of p = 2 with m = 1 or m = 2 initially with an arbitrary number of photons in the
initial field state. Here for the number of initial photons 2 < Tin hence 2 < n2 and thus
n - 2 ~ T ~ n which can be found within case (c) in Table. 1. Since in Buzek's calculation
f = p/2 and thus only f = 1 is allowed. He also examined the case where the initial field
is in a coherent state again with p =2. For this case each Fock component with a specific
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number of photons (i.e. r) can be studied independently. Nevertheless , since for each such
component it is true that n-p::; r::; n we still have the case (c) corresponding to f. = p/2
yielding f. = 1 for p < n. For those components with n < p or n = pease (c) is unphysical
and thus we must have case a but still with f. =1.

Recently Kozierowski et al.[9] considered systems with three and more excited atoms
in the initial state for arbitrary p. In such systems with n ;:: 3 super structures modulating
the zero 'th order collapses and revivals appear arising from the non-equidistant eigenvalue
distribution. In their exact results Kozierowski et al. considered the case with n = 3 with
arbitrary p also using symmetric wavefuntions with 0 ::; r ::; n. Again , this corresponds to
the case (a) in Table. 1 with f. = p/2.

Hence we can see that, for symmetric initial states, or for all cases when r m ax = n
the cooperation number"does not need to be mentioned since in this case it is directly
implied that f. = p/2. For f. = p/2 Eq.'s (13) can be seen to reduce into a relatively more
conventional form via2

(15)

.We can then write the Hamiltonian in Eq. (11) as

(16)

We will now rescale the matrix coefficients so that, is implicitly unity. The resulting
matrix to be diagonalized is given by,

(

_ € - ~mmax

v T m 1n

o

o

VTm;n 0
-€ - ~ (mmax - 1) vTm;n+1

VT m i n+l

o

0 ...

-€ - ~ (mmin +1)

o )
o
o

vT m a %

-€ - ~mmin

(17)
where mmax = n - p/2 - rmin and mmin = n - p/2 - r m ax. Denoting the eigenvalues by
£(s) and eigenvectors by "p)(s) where 1 :s: s :s: n + 1 is the eigenvalue index, we have for
n = 1 and arbitrary p,

t [(p - 1) ~ - J~2 +4 v5 ] ~ 1.")2= (A2+4 VS)1/210) _ ( 4v5 )1/211))
'f' A2+8vo A2+8 v5

(18)
where Va = J(f.+ 1- pj2)(f.+ pj2). For p = 1 and n arbitrary we have the case (c) in
Table. (1). The eigenvalues and eigenvectors are

~

~

!"ph = (VI - A2 1n - 1)+ A !n))

!"ph = (A In - 1) - Vf=A2ln))
(19)

2Eq. (15) is more appropriate and simple for the case n :s p. For the opposite case its symmetric

equivalent with vr = VT + 1 J(p - T) (n - p + T+ 1) with 0 :s T :s p and T = r + (p - n) is more
appropriate to use . In this case there are p + 1 eigenvalues as opposed to n + 1 in the former case.
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where A = (1 + sin O' )/v'2 with sin o = 1f/.)6,.2 /4 +n. For p = 2 and n arbitrary we can
have £ = lor £ = O. For th e form er n - 2 ::; r ::; n and we have th e case (c) in Table. (1).
Wh ereas for t he lat ter (i.e. £ = 0) we have only one allowed photon number r = n - 1 and
this implies full radiation trapping for th e antisymmetric initi al st ate 1£= 0 m = 0). For
6,. :f. 0 the eigenvalues and eigenvectors are not as simply expr essed as in the 6,. = 0 case .
The eigenvalues and eigenvect ors are, for £ = 1,

lO l = U + v,

lO2 = U cos ep + v cos 2ep ,

lO l = U cos 2ep + v cos ep ,

where u and v are such that ,

:::} l1/Ih = Ao In - 2) +Al In- 1) + A21n)

:::} l1/Ih = Bo In - 2) +B1 In- 1) + B 2 1n)

:::} l1/Ih = Co In - 2) +C1 In - 1) +C21 n)

(20)

u = {6,. + .)6,.2+ (4n - 2 + 6,.2 )3 f/3

u = {6,._.)6,. 2+ (4n- 2+6,.2)3f/
3

with cosep = - v/(2u) and

A 1 =
<~ _62 A - _ y2n -2 A A - --.YE A

<?-62+<1 (4n-2)+26 , 0- <1 - 6 1 , 2 - <1+ 6 1

B1=
« 2)2-62 B = _ y 2n-2 B B2 = - 0i B 1« 2)L62+<2 (4n-2)+26 , o <2+ 6 1 <2-

C1 = -B1 , Co = Bo , C2 = B2

(21)

(22)

where Ir) = In- r) a0 Ir )f . For £ = 0 we have a zero mode with
11/10) = 1£= Om = 0) = t (l + -) -1- +) ) 0 In - 1). For n < p th e photon number
is bounded by 0 ::; r ::; 2 and thus we have the case (a) wit h £ = p/2. Wh ereas for
p < n t he photo n number range is 1 ::; r ::; 2 and t his again indicates t hat £ = p/2 which
corresponds t o t he case (c). The corresponding eigenvalues and eigenvectors are ob t ained
from t he symmet ric case by interchanging n and p in Eq.' s (21) and (22).

We can also briefly mention th e results for n = 3 and n = 4 for arbit ra ry p. The n = 3
case wit h arbit rary p was solved by Kozierowski[9] using symmetric init ial stat es. For p
and n being small and primarily less than two the eigenfrequencies are commensurate
and the time dependence of the fluctuating observables are given by regular oscillations.
St ar ting from 3 ::; n or 3 ::; p the eigenfrequencies become incommensurat e as illustrated
ab ove. This is reflected on th e time dependence of t he at omic population inversion and
incommensu rate overtones of the eigenfrequencies manifest themselves in t he appearance
of superim posed modulat ions on t he envelope func tion .

2.1.1. Commensurate versus Incommensurate regimes
If a number of frequencies lOU) where f ::; (n + 1) are incommensu ra te then for a set of
int egers S l , S2, • . • , Sn t he frequency sum

(23)
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can not have a non- trivial solution except 81 = 82 = . .. = 8 n = O. This condition can be
expressed equivalently by stating that there is at least one frequen cy E(J) of which ratio to
all other frequencies is an irrational number. The representation of a dynamical observable
G(t) in the frequency spectrum

(24)

can display irregular behaviour since

g(w) = L (25)

where in each summation -00 < s, < 00 (i = 1,2, . .. ,n). By investigating the Ig(w)1
one can determine the nature (i.e . periodic, quasi-periodic, irregular) of its phase space
attractor. In Fig . (2) below the ratio of the smaller eigenfrequencies to the larg est one is
plotted for fixed values of n ranging from 3 to 100 with respect to increasing values of p
for n S p and for b. = O. The commensurability of the frequenci es is not guaranteed at
all parameter values although in the limit 1 ~ pin the ratio of the frequencies approach
to rational numbers . The opposite case with pin ~ 1 is symmetric since it can always be
mapped into an equivalent 1 ~ pin case by a simple shift in the photon number (see the
footnote on page 9). Therefore, the strongest incommensuration in Fig. (2) corresponds to
n = p. Continuous detuning from resonance is a controlled nevertheless nontrivial way of

242\1) 221816
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Figure 2. The ratio of th e smaller eigenvalues to the largest one (i.e. l\?,~/l:::;%) as n :S p varies . a) n = 5
and from bottom to top j = 5 and j = 3; b) n = 15 and from bottom to top j = 15,13,11 , 9.7 ,5 ,3 ; c)
n = 60 and from bottom to top j = 53, 33, 13, 3; d) n =100 and from bottom to top j = 97,87,75,35,13 ,3 .

observing incommensuration. Non-zero detuning slightly softens the eigenfrequencies and
increases their non-linear dependence on nand p. Strong nonlinearity is observed when
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nand p are close to each other. The increase in the allowed ran ge for photon number
r m ax - r m in =2 £+ 1 also increases the effect .

Incommensurate frequ encies are easily established for a number of parameter values .
For instance for n = 3 and n = 4 at ~ = 0 we list a few cases for which one obtains
irrat ional values for the frequency ratios out of many other possible ones ''

nIp I 1O(1) /1O(3) nlp l 1O(1) /1O(3)

3
1

31 4
1

61

3
1

4
1

4
1

7
1

4
1

4
1

4
1

8
1

4
1 51

4
1

9
1

Table. 2

Perhaps a more illustrat ive quant ity to examine is t he time evolution of t he various mo­
ments of the ph oton number m(J;)(t) = ((iit ii)k) as the dynamical observable replacing
the role of 9(t) in Eq. (24).

Here there is a competition between various ti me scales involved. If the eigenfrequencies
I b I d n ,p < n,p < n,p < n ,p < n,p ith [ ] t i the i tare a e e as lO[n/2+1] _ 1O[n/2l _ lO[n/2_1] ... _ 102 _ 1O1 WI X rep resen mg e m eger

part of "x", the smallest finite period is given by

T n ,p ­
1 -

2 /( n ,p n ,p )
7l" 1O1 - 1O[n/2+1] , if

if

n is odd

n is even
(26)

with the main difference arising from t he fact that for n =even one eigenvalue is always
zero yielding an infinite per iod. On the other the difference between the two smallest
eigenfrequencies determine t he period of revivals in the atomic population inversion and
corresponds to t he smallest beat frequency. Th e revival period is given by,

T
(2) _ 2 / ( ([n/ 2)) _ ([n/Hl)) )
n ,p - 7l" lOn ,p lOn,p ,

T
(2) _ 2 / ( (n /2) _ n/2 -1)
n ,p - 7l" lOn,p lOn,p ,

if

if

n is odd

n is even

(27)

because of t he same reason as above. Comparison of t he time scales in (26) an d (27) is
crucial t o un derstand t he dynamical time correlations in m(k)(t) . In Fig . (3) below, we

. h . t: n/Tn n r • I A ' Tnn/Tn n dexamme t e ratio l ' 2 ' lor vanous n va ues. s n increases l' 2 ' ten s to zero .
In the case of arbit rary n < p t he same qualitative behaviour is observed.

3 For the n = 3 and n = 4 cases the frequency ratios can be repr esented as J:~: :1c where a, b, care

positive integers. It can be shown that if c does not divide a2 and b2 t he frequency ratio is an irrational
number. Such condition is satisfied when c itself or its divide nts are prime numb ers .
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1

0.8
-l:::t\l •_l:::
~ 0.6
<,
-l:::.-l •
_l::: 0.4
~

0.2

5 10

n

15 20 25

Figure 3. Here the open and solid triangles indicate n = p = odd , and n = p = even respectively for
.c. = o. The open and solid rectangles indicate the same for .c. = 0.3.

We can now examine the moments m(kl(t) and their correlations. The time correlations

within a single revival (i.e. T~~J $ t $ T~~J) and those spanning a time interval large

enough to intercorrelate more than one revivals (i.e. T~~J $ T~~J $ t exhibit qualitatively
different behaviour. In the Fig.'s(4) and (5) below m(kJ(t) for k = 1,2,4,6 are plotted.
Fig.'s (4.a,b,c,d) and Fig.'s (4.e,f,g,h) represent n = p = 9 and n =6 , p = 9 respectively.
For the former the time dependence of all moments are irregular. The period of the envelope
for the latter can be estimated using Kozierowski's perturbative result as[9],

811" 3 / 2
TR = 15 (p - n/2 + 0.5) =:: 28 (28)

which are within ten percent of the numerical calculations (for clarity two full periods
are shown in the figure). In Fig.'s (5.a,b ,c,d) and Fig.'s (5.e,f,g,h) below n = p = 40 and
n = 20 , p = 40 are plotted. The same trend continues here and the time dependence of
the n = p case is erratic whereas collective collapses and revivals are observed for the n =
p = 40 case. The revival period can be estimated from Eq. (28) above as TR =:: 156 which
aga in underestimates the revival period by about ten percent. An interesting observation
here is that during the short collapse period of the mean photon number there are strong
fluctuations in the number of photons as visible in the higher moments m(kl(t) with k > 1
(also note the scale change as k increases). In Fig .'s (6) we numerically confirm for ~ =
0.3 the effect of non-zero detuning driving the system into a strong incommensuration .
Fig. (6.a,b ,c,d) represents n =p = 40, whereas Fig . (6.e ,f,g,h) represents n = 20 , p = 40.

3. Physical limitations in the large n limit

The exact solution of the eigen system in Eq.'s (16) and (17) has not been found in a
closed analytic form. The eigenvalues of the full Hamiltonian are always symmetrically
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•

distributed around the central value w n as E)n) = w n ± (~) . This is a strong signal
t hat one should examine the large nand/or p limit with extra care . The behaviour of

t he (~) 's as nand/or p increase can be examined using the recursi ve properties of t he
det erminant. It has been shown previously[12] that t he properties of eigensolutions of
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such simple Hamiltonians as (16 ) can be studied by orthogonal polinomials[13] . The model

predi ct s that dll grow much faster th an w n eventually leading to negative energies. This
is an ar t ifac t of the non-unitarity of the model in (16) arising from the assumpt ion that t he
counterrotating terms ar e neligible. For instance the largest eigenvalue can be est imat ed
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by the inequality[12, 13, 14],

(29)
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the left hand side of the inequality can be computed from Eq. (15) which gives an approx­
imate critical size for the cluster below which the rotating wave approximation can be
used. Using (29), this critical size Pc for the Hamiltonian in (16) is given by Pc = 3 w - 2
such t hat p ~ Pc is required to secure the validity of the presented solution based on the
rotating wave approximation. The formal solution including the counter rotating te rms
yields a unitary S-matrix but the solution itself can not be given in a simple form[15].

Th e counter rotating terms in the Hamiltonian are represented by H' = l' (iit £+ +
ii£_) . The first order perturbative correction to the energy eigenvalues vanish. The second
order correction can be calculated from"

i,n !( i'n'IH'li nW
£2 = '" "" " "/ /LJ l in l in

i' ,n' f o - f O

i ::; (n + 1) j es (n' + 1) (30)

where only n' = n±2 contribute. Here it is important to know the full interaction strenght
since the eigenvalues no more globally scale with the first power of the coupling constant
1'. Eq . (30) is shown below for n = p = 20 and for ~ = 0 and for ~ = 0.3 respectively. In
the next table n = p = 10 for the same ~ values are given (note that the second order
corrections are given in units of 1').

The second order correction ~,n is consistently opposite in sign to the zero 'th order
eigenvalue ~,n. The importance of this result is in the fact that corrections tend to con­
fine the spreading eigenvalues for increasing nand/or p. Th e net effect is to correct the
sup erfluous instability beyond the critical region p '" Pc by pushing it to larger values.
Additional details about the instability will be presented elsewhere[14].

·Since [il' ,N']~ 0 different n's are mixed. In the Eq. (29) f~·n indicates th e j 'th order correction to th e
i 'th eigenvalue of the unperturbed Hamiltonian (16) with a fixed n ,
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J
d,n ~,nh j d,n ~,nh0 0

1 74.60 -268.59 1 78.66 -243.07

2 65.52 -226.38 2 69.40 -200.56

3 56.76 -187.74 3 60.44 -161.82

4 48.34 -152.61 4 51.79 -126.95

5 40.26 -120.93 5 43.44 -96.12

6 32.56 ~92 .64 6 35.43 -69.35

7 25.24 -67.71 7 27.79 -46.46

8 18.34 -46.12 8 20.57 -27.12

9 11.86 -27.85 9 13.81 -10.85

10 5.79 -12.77 10 7.52 -3.13

11 0.0 0.0 11 1.62 -1.50

12 -74.60 268.59 12 -4.12 1.22

13 -65.52 226.38 13 -10.01 42.05

14 -56.76 187.74 14 -16.21 63.38

15 -48.34 152.61 15 -22.78 88.69

16 -40.26 120.93 16 -29.75 116.91

17 -32.56 92.64 17 -37.14 147.32

18 -25.24 67.71 18 -44.95 180.06

19 -18.34 46.12 19 -53.15 215.72

20 -11.86 27.85 20 -61.72 254.76

21 -5.79 1 12.77 21 -70.63 297.35

~ = 0
~ = 0.3

Table 3. Corrections to the eigenenergies for n = p = 20.
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j d ,n I ~,n7 j d,n ~,nh0 0

1 39.72 I-71.41 1 41.59 -64.53

2 31.43 I -53.48 2 33.12 -45.58

3 23.35 I -37.82 3 24.81 -29.55

4 15.46 I -24.04 4 16.64 -15.97

5 7.69 I -11.65 5 8.64 -1.53

6 0.0 1 0.0 6 0.84 -0.82

7 -7.69 I 11.65 7 -6.77 14.19

8 -15.46 I 24.04 8 -14.30 28.69

9 -23.35 I37.82 9 -21.91 44.03

10 -31.43 I53.48 10 -29.77 60.10

11 -39.72 I71.41 11 -37.90 77.78

.6. = 0 .6. = 0.3

Table 3. Corrections to the eigenenergies for n = p = 10
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