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Abstract Stochastic processes with semi-Markov switches (or in semi-Markov en­
vironment) and general Switching processes are considered. In case of 
asymptotically ergodic environment functional Averaging Principle and 
Diffusion Approximation types theorems for trajectory of the process 
are proved. In case of asymptotically consolidated environment a con­
vergence to a solution of a differential or stochastic differential equation 
with Markov switches is studied. Applications to the analysis of random 
movements with fast semi-Markov switches and semi-Markov queueing 
systems in case of heavy traffic conditions are considered. 
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1. INTRODUCTION 
In various models appearing at study of complex stochastic systems 

such as state-dependent queueing systems and networks, information 
and computer systems, production and manufacturing systems, etc., we 
come to a necessity to consider systems working in different scales of 
time (slow and fast) and such that their local transition characteristics 
can be dependent on a current value of some another stochastic process 
(external random environment, discrete interference of chance, stochas-

77 

J. Janssen et al. (eds.), Semi-Markov Models and Applications
© Kluwer Academic Publishers 1999



78 

tic failures and switches or in general some functional on a trajectory of 
a system). 

An operation of a wide range of these systems can be described in 
terms of so called Switching Stochastic Processes and in particular in 
terms of processes with semi-Markov switches. 

The main property of a Switching Process (SP) is that the character 
of its operation varies spontaneously (switches) at certain epochs of time 
which can be random functionals of a previous trajectory. 

SP's appear at study of queueing systems and networks, branching 
and migration processes in a random environment, at the analysis of 
stochastic dynamical systems with random perturbations, random move­
ments and other various applications. 

Taking into account a high dimension and a complex structure, exact 
analytic solutions for these processes can be obtained only for special 
rare cases, and methods of a direct stochastic simulation work usually 
slow and do not give a possibility of parametric investigation of a system. 
Therefore asymptotic methods play the basic role at the investigation 
and approximate analytic modelling. 

Different asymptotic: approaches for various classes of complex stochas­
tic systems are considered in books of Buslenko et al. (1973), Kovalenko 
(1980), Anisimov et all. (1987), Basharin et al. (1989), and papers of 
Harrison (1995), Harrison and Williams (1996), Mandelbaum and Pats 
(1998). 

In the paper we give a general description of SP's, consider some 
important subclasses of SP's paying the main attention to processes 
with semi-Markov switches (PSMS), investigate results of Averaging 
Principle (AP) and Diffusion approximation (DA) types and consider 
models of asymptotic decreasing dimension and consolidation of the state 
space for PSMS. 

Applications to the analysis of random movement and state-dependent 
queueing models in semi-Markov environment in cases when the states 
of the environment can be asymptotically averaged or the environment 
allows an asymptotic consolidation of its state space are considered. 

2. SWITCHING STOCHASTIC PROCESSES 
2.1 PRELIMINARY REMARKS 

SF's are described as two-component processes (x(t), «(t)) , t ~ 0, 
with the property existing a sequence of epochs tl < t2 < ... such that 
on each interval [tk' tk+l), x(t) = X(tk) and the behavior of the process 
((t) depends on the value (X(tk)' ((tk)) only. The epochs tk are switching 
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times and x(t) is the discrete switching component (see Anisimov, 1977, 
1978, 1988a). 

SP's can be described in terms of constructive characteristics and 
they are very suitable in analyzing and asymptotic investigation of com­
plex stochastic systems with "rare" and ''fast'' switches (Anisimov, 1978, 
1988a, 1994-1996). 

We mention that switching times may be determined by external fac­
tors (for instance, in the case when a system is operating in some random 
environment) and also by inner and interconnected factors. In general 
switching times may be some random functionals of the previous trajec­
tory of the system. 

According to A.N. Kolmogorov, SP's are the special class of random 
processes with discrete interference of chance or processes with discrete 
component. A wide range of processes with discrete component have 
been studied by different authors: Markov processes homogeneous on the 
2nd component (Ezov and Skorokhod, 1969), processes with independent 
increments and semi-Markov switches (Anisimov, 1973, 1978), piecewise 
Markov aggregates (Buslenko et. al., 1973), Markov processes with semi­
Markov interference of chance (Gikhman and Skorokhod, 1973), and 
Markov and semi-Markov evolutions (Griego and Hersh, 1969; Hersh, 
1974; Kertz, 1978ab; Kurtz, 1972, 1973; Papanicolaou and Hersh, 1972; 
Pinsky, 1975; Korolyuk and Swishchuk, 1986, 1994). 

Law of Large Numbers and CLT for special classes of random evolu­
tions were proved by many authors (Griego and Hersh, 1969; Hersh and 
Papanicolaou, 1972; Kurtz, 1973, Kertz, 1978ab; Pinsky, 1975; Anisi­
mov, 1973; Korolyuk and Turbin, 1978; Watkins, 1984; Korolyuk and 
Swishchuk, 1986,1994). These results are mostly devoted to the analysis 
of processes with independent increments in a Markov or semi-Markov 
environment. 

Limit theorems for general scheme of SP's were studied in the author's 
papers in the following directions. 

Theorems about convergence of a one SP to another are proved in 
the class of SP's when the number of switches does not tend to infinity 
( "rare" switches) (see Anisimov, 1978, 1988ab). As in usual a limiting SP 
has a more simple structure and depends on less number of parameters, 
these results give us the possibility to decrease dimension asymptotically 
and consolidate in some sense the state space of SP. 

On the base of these results the theory of asymptotic consolidation 
(merging) of state space and decreasing dimension for Markov and semi­
Markov processes (homogeneous as well as non-homogeneous in time) 
was constructed (Anisimov, 1973, 1988a). 
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Asymptotic consolidation of states in particular means the following. 
Suppose that some Markov process (MP) or semi-Markov process (SMP) 
has transition probabilities of different orders and its state space can be 
divided to regions such that transition probabilities between them are 
small in some sense and the states in each region asymptotically commu­
nicate. Then under rather general conditions additive functionals on the 
process can be weakly approximated by processes with independent in­
crements in Markov or semi-Markov environment with number of states 
equals to the number of regions. 

Several results devoted to the asymptotic analysis of integral func­
tionals and flows of rare events on trajectories of SMP's operating in 
different scales of time are obtained in (Anisimov, 1973, 1977, 1978a). 
Applications to the asymptotic analysis of queueing models and multi­
processor computer systems in conditions of fast service can be found in 
Anisimov (1988a, 1996a), Anisimov et al. (1987), Anisimov and Sztrik 
(1989), Sztrik and Kouvatsos (1991). 

The next direction of the investigations devoted to the case of fast 
switches (number of switches tends to infinity). In that case, if the in­
crements on each switching interval are small, it is reasonable to expect 
taking into account the recurrent character of an operation of the pro­
cess, that under some general conditions a process trajectory converges 
to a solution of some ordinary differential equation - Averaging Princi­
ple (AP), and the normed deviation weakly converges to some diffusion 
process - Diffusion Approximation (DA). Results of this type for dif­
ferent subclasses of SP's were proved by Anisimov (1992, 1994, 1995), 
Anisimov and Aliev (1990). 

Applications of these results to study an asymptotic behaviour of char­
acteristics for Markov queueing systems and networks under transient 
conditions and with la,rge number of calls were investigated by Anisimov 
(1992, 1995, 1996a), Anisimov and Lebedev (1992). 

Now we consider a description of some important classes of SP's such 
as Recurrent Processes of a Semi-Markov type, Processes with Semi­
Markov Switches and give a general description of SP's. 

2.2 RECURRENT PROCESSES OF A 
SEMI-MARKOV TYPE 

Let :h = ((~k(a), 7'k(a)) , a E nr }, k 2: 0, be jointly independent fam­
ilies of random variables with values in nr x [0,00) and So be independent 
of Fk, k 2: 0 random variable in nr. We assume the measurability in a 
of variables introduced concerning O"-algebra BRr. Denote 
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and put 

(5.2) 

Then a process S(t) forms a Recurrent Process of a Semi-Markov type 
(RPSM) (see Anisimov, 1992, Anisimov and Aliev, 1990). 
In the homogeneous case (distributions of families :Fk do not depend 
on the parameter k) the process S(t) is a homogeneous SMP. If also 
distributions of families :Fk do not depend on the parameter a, epochs 
tk, k ~ 0 form a recurrent flow and S(t) is a generalized renewal process. 
If variables Tk(a) have exponential distributions, the process S(t) is a 
MP. 

2.3 RECURRENT PROCESS OF A 
SEMI-MARKOV TYPE WITH 
ADDITIONAL MARKOV SWITCHES 

Let :Fk = {(~k(X, a), Tk(X, a)), x E X, a E n.r}, k ~ 0 be jointly inde­
pendent families of random variables with values in 'R,r x [0, (0), and let 
Xl, I ~ 0 be a MP, independent of :Fk, k ~ 0, with values in X, (xo, So) 
be an initial value. We assume here and further the measurability in the 
pair (x, a) of variables introduced concerning u-algebra Bx X BRr and 
put 

to = 0, tk+1 = tk + Tk(Xk, Sk), Sk+1 = Sk + ~k(Xk' Sk), k ~ 0, (5.3) 

S(t) = Sk, x(t) = Xk as tk ~ t < tk+1! t ~ O. (5.4) 

Then the process (x(t), S(t)) forms a RPSM with additional Markov 
switches. We assume that RPSM is regular, i.e. the component x(t) 
has a finite number of jumps on each finite interval with probability one. 
If the distributions of variables Tk(X, a) do not depend on parameters 
(a, k), then the process x(t) is a SMP. 

2.4 GENERAL CASE OF RPSM 
Let:Fk = {(~k(x,a),Tk(x,a),.Bk(x,a)),x E X,a E 'R,r},k ~ 0 be 

jointly independent families of random variables with values in 'R,r x 
[0, (0) X X, X be some measurable space, (xo, So) be an initial value. 
We put 
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S(t) = Sk, X(t) = Xk as tk ~ t < tk+1! t 2 o. (5.6) 

Then the pair (x(t): S(t)), t 2 0 forms a general RPSM. We mention 
that in this case we have feedback between both components x(t) and 
S(t). In particular, when distributions of the variables f3k(X, 0:') do not 
depend on the parameter 0:', the sequence Xk forms a MP and we obtain 
the previous case of RPSM with Markov switches. 

2.5 PROCESSES WITH SEMI-MARKOV 
SWITCHES 

Now we consider an operation of some random process in a semi­
Markov environment. Let :Fk = {(k(t, x, 0:'), t 2 0, x E X,O:' E nr }, k 2 
o be jointly independent parametric families of random processes, where 
(k(t, x, 0:') at each fixed k, x, 0:' be a random process with trajectories in 
Skorokhod space 1)~, and let x(t), t 2 0 be a right-continuous SMP 
in X independent of :Fk, k 2 0, So be an initial value. Denote by 
o = to < tl < ... the epochs of sequential jumps for x(·), Xk = 
X(tk), k 2 o. We construct a process with semi-Markov switches (or 
in a semi-Markov environment) as follows: put Sk+1 = Sk + ~k, where 
~k = (k(Tk, Xk, Sk), Tk = tk+1 - tk, and denote 

Then a two-component process (x(t), ((t)), t 2 0 is called a Process 
with Semi-Markov Switches (PSMS). Let us introduce also an imbedded 
process 

(5.8) 

Then two-component process (x(t), S(t)) forms a RPSM with additional 
Markov switches. 

Suppose that {((t, x), t 2 O} is a family of MP and ((t, x, 0:') de­
notes the process ((t, x) with initial value 0:'. In that case the process 
(x(t), ((t)) forms a Markov random evolution (when the process x(t) 
is MP) or semi-Markov one (when the process x(t) is SMP) (see Hersh, 
1974; Kurtz, 1973; Kertz, 1978b; Pinsky, 1975; Korolyuk and Swishchuk, 
1994). 

2.6 SWITCHING PROCESSES 
Now we give a general construction of a Switching Process (SP). Let 
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be jointly independent parametric families where (k(t, x, a) at each fixed 
k, x, a be a random process in Skorokhod space 1Joc/ and Tk(X, a), f3k(X, a) 
be possibly dependent on (kh x, a) random variables, Tk(-) > 0, f3k(-) E 
X. Let also (xo, So) be independent of Fk, k ~ 0, initial value. We put 

to = 0, tk+1 = tk + Tk(Xk, Sk), Sk+1 = Sk + ~k(Xk' Sk), 

Xk+1 = f3k(Xk, Sk), k ~ 0, 

where ~k(X, a) = (k(Tk(X, a), x, a), and set 

(5.9) 

((t) = Sk + (k(t - tk, Xk, Sk), x(t) = Xk, as tk::; t < tk+b t ~ o. 
(5.10) 

Then a two-component process (x(t), ((t)), t ~ 0 is called a SP (see 
Anisimov, 1977, 1978). In concrete applications the component x(·) 
usually means some random environment, and S (.) means the trajectory 
of the system. We also mention that the general construction of a SP 
allows the dependence (feedback) between both components x(·) and 
S(·). 

2.7 EXAMPLES OF SWITCHING 
PROCESSES 

Now we consider some models of SP's as examples. 

PH with semi-Markov switches. Let x(t), t ~ 0 be a SMP with 
state space X and let independent of it and jointly independent families 
of homogeneous processes with independent increments (PI!) {~k(t, x), 
t ~ 0, x EX}, k ~ 0 and random variables {{k(X), x EX}, k ~ 1 
with values in nr be given. Suppose for simplicity that distributions of 
variables introduced do not depend on the index k. 

We construct a two-component process (x(t), ((t)), t ~ 0 with values 
in (X, nr) as follows. Let (xo, (0) be some initial value. Denote the 
epochs of sequential jumps for x(t) by 0 = to < tl < t2 and let Xk = 
X(tk), k ~ 0 be the embedded MP. Then we put ((0) = (0 and 

((t) = ((tk) + ~k(t, Xk) - ~k(tk' Xk), tk::; t < tk+l, 

((tk+d = ((tk+1 - 0) + i(k+1) (Xk+1), k ~ o. 
By the construction on the :fixed trajectory of x(t) the process ((t) is 
operating like a non-homogeneous process with independent increments 
and with additional jumps in the epochs tk, k > 0 of the sizes ik(Xk). It 
is called PIIwith semi-Markov switches (see Anisimov, 1973). 
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We remark that if the process x(·) is a MP, then the pair (x(t),((t)), 
t ~ 0 forms a P II with Markov switches (or MP homogeneous in the 2nd 
component (see Eiov and Skorokhod, 1969). 

In this way we can construct a Poisson process with semi-Markov 
switches. Let the family of non-negative functions >.(x), x E X and 
SMP x(t), t ~ 0 with values in X be given. Denote by II,\(.)(t) a Poisson 
process with instantaneous value of parameter >.(x(t)) at time t. Then 
a two-component process (x(t), II,\(o)(t)) , t ~ 0 is a PSMS. In particular 
if x(t) is a MP then the process II,\(-)(t) is a Markov modulated Poisson 
process. Processes of this type arise at study of input flows at queueing 
models in a random environment. 

Random movements with SMP switches. Let {v(i,a),aE Rr}, 
i = 1,2, ... ,m be a family of continuous vector-valued functions in R r , 

and x(t), t ~ 0 be a SMP with finite number of states X = {I, 2, ... , d}. 
We put (k(t, i, a) = tv(i, a), t ~ 0, i = 1, d. Denote by 0 = to < 
tl < ... times of sequential jumps for x(t), Xk = X(tk). Then PSMS 
(x(t), ((t)) , t ~ 0 constructed by the family of processes {(k(t, i, a), t ~ 
0, 1, m} and switching times tk, k ~ 0 forms a random movement in Rr 

with semi-Markov switches. If we denote v(t) = max{k : k ~ 0, tk < 
t}, (k = ((tk), then: 

v(t)-l 
((t) = ((0) + :E (tk+l - tk)V(Xk, (k) + (t - tv(t»)v(xv(t), (/I(t»)· 

k=O 

Dynamical systems in semi-Markov environment. Let {f(x, a), 
a ERr}, x E X be a family of deterministic functions with values in 
R r , rk = h'k(X, a), x E X, a ERr}, k ~ 0, be jointly independent 
families of random variables with values in R r and x(t), t ~ 0 be a SMP 
in X independent of introduced families rk. Put Xk = X(tk) and denote 
by 0 = to < tl < ... sequential times of jumps for the process x(t). We 
introduce the process ((t) as follows: ((0) = (0 and 

d((t) = f(Xk, ((t))dt, tk $ t < tk+l, 

((tk+l + 0) = ((tk+l - 0) + ')'k(Xk, ((tk+l - 0)), k ~ O. 

Then the process ((t) forms a dynamical system with semi-Markov 
switches. 

Stochastic differential equations with semi-Markov switches. 
Let {c(x, a), b(x, a), x E X, a E R} be deterministic vector and matrix­
valued functions of dimensions rand r x r respectively, w(t), t ~ 0 be a 
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standard Wiener process in 'R,r and let x(t), t ~ 0 be a SMPindependent 
of w(·). We introduce the process ((t) as a solution of the following 
stochastic differential equation : 

((0) = (01 d((t) = c(x(t), ((t))dt + b(x(t), ((t))dw(t), 

where at each x E X the coefficients c(x, a) and b(x, a) satisfy the 
conditions of the existence and uniqueness theorem. Then the pair 
(x(t), ((t)), t ~ 0 forms a PSMS. It is also possible to describe a feed­
back between components. Another example can be Markov continuous 
time space-dependent branching processes (see Anisimov, 1996b). 

Switching state-dependent queueing models. A class of SP's 
gives a possibility to describe various classes of stochastic queueing mod­
els such as state-dependent queueing systems and networks SMQ/MQ/ 
m/oo, MSM,Q/MsM,Q/l/k, (MSM,Q/MsM,Q/mi/kiY, with batch Mar­
kov or semi-Markov input, finite number of nodes, different types of calls, 
impatient calls and possibly of a random size (volume of information or 
necessary job), batch state-dependent service, which are switched by 
some external semi-Markov environment and current values of queues, 
also retrial queueing models, etc. 
For these models switching times are usually times of any changes in the 
system (Markov models), times of jumps of the environment (in case of 
external semi-Markov environment), times of exit from some regions for 
the process generated by queue, waiting times, etc. 

3. AVERAGING PRINCIPLE AND 
DIFFUSION APPROXIMATION 
FOR RPSM 

We study limit theorems for RPSM in the triangular scheme for the 
case of fast switches. This means that we consider the process on the 
interval [0, nT], n -7 00 and characteristics of the process depend on 
the parameter n in such a way that the number of switches on each 
interval rna, nb], 0 < a < b < T tends, by probability, to infinity. Then, 
under natural assumptions, the normed trajectory of Sn(nt) uniformly 
converges by probability to some function which is the solution of an 
ordinary differential equation, and normed difference between trajec­
tory and this solution weakly converges in Skorokhod space 'DT to some 
diffusion process. 

Let us consider AP and DA type theorems for simple RPSM, because 
these results have various applications in queueing models (see Anisimov, 
1995, 1996aj Anisimov and Lebedev, 1992). 
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Let for each n = 1,2, ... :Fnk = {(€nk(a)) , Tnk(a)) , a E nr}, k ~ 
o be jointly independent families of random variables taking values in 
nr x [0,00), with distributions do not depend on index k, and let SnO 

be independent of :Fnk, k ~ 0 initial value in nr. Put 

tno = 0, tnk+1 = tnk + Tnk(Snk), Snk+1 = Snk + €nk(Snk) , k ~ 0, 
(5.11) 

Sn(t) == Snk as tnk ~ t < tnk+1' t ~ o. 
Assume that there exist functions mn (a) = ET nl (na), bn (a) = E€nl (na). 

Theorem 1 (Averaging principle) 
Suppose that for any N > 0 

lim lim sup sup {ETnl (na)X(Tn l (na) > L) + Elenl(na)lx(lenl(na)1 > L)}= 0, 
L-+oo n-+oo lal<N 

(5.12) 

as max(lall, la21) < N, 

Imn(at} - mn(a2)1 + Ibn(al) - bn(a2)1 < CNlal - a21 + an(N), 
(5.13) 

where CN are some bounded constants, an(N) -t 0 uniformly in lall < 
N,la21 < N, and there exist functions m(a) > 0, b(a) and a proper 
random variable So such that as n -t 00, n-ISno~So, and for any 
a E nr 

Then 

where 

sup In-ISn(nt) - s(t)I~O, 
09:5T 

(5.14) 

(5.15) 

s(O) = So, ds(t) = m(s(t))-lb(s(t))dt, (5.16) 

and T is any positive number such that y( +00) > T with probability one, 
where 

y(t) = lot m(l](u))du, (5.17) 

(5.18) 
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(it is supposed that a solution of equation (5.18) exists on each interval 
and is unique). 

Now we consider a convergence of the process 1n(t) = n-1/2(Sn(nt)­
ns(t)), t E [0, T] to some diffusion process. Denote 

bn(a) = mn(a)-lbn(a), b(a) = m(a)-lb(a), 

Pn(a) = enl(na) - bn(a) - b(a)(Tnl(na) - mn(a)), 

qn(a, z) = vn(bn(a + Jnz) - b(a)), D~(a) = EPn(a)Pn(a)* 

(we denote the conjugate vector by the symbol *). 

Theorem 2 (Diffusion approximation) 
Let conditions (5.19)-(5.14) be satisfied where in (5.19) ..j7ian(N) --t 0, 
there exist continuous vector-valued function q(a, z) and matrix-valued 
function D2(a) such that in any domain lal < N Iq(a, z)1 < CN(1+lzl), 
and uniformly in lal < N at each fixed z 

vn(bn(a + n-1/2z) - b(a)) --t q(a, z), (5.19) 

1n(0)~10' and for any N > 0 

lim limsup sup {ET~da)X(Tnl(a) > L) + Elenl(a)12x(lenl(a)1 > L)} = o. 
L-+oo n-+oo lol<Nn 

(5.21) 

Then the sequence of the processes 1n(t) J-converges on any interval 
[0, T} such that y( +00) > T to the diffusion process 1(t) which satisfies 
the following stochastic differential equation solution of which exists and 
is unique: 1(0) = 10, 

d1(t) = q(s(t), 1(t))dt + D(s(t))m(s(t))-1/2dw(t), (5.22) 

where s(·) satisfies equation (5.16) (J-convergence denotes a weak con­
vergence of measures in Skorokhod space DT.) 

Proof of Theorems 1, 2. Let us introduce sequences Tfnk = n-1Snk, 
Ynk = n-1tnk, k ~ 0 and processes Tfn(u) = Tfnk, y(u) = Ynk as n-1k :::; 
U < n-1(k + 1),1.1 ~ O. Put vn(t) = min{k : k > 0, tnk+! > nt}, 
ILn(t) = inf{u : u > 0, Yn(u) > t}. By definition, Yn(n-1vn(t)) :::; t < 
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Yn(n-1Yn(t) + 1)) and JLn(t) = n-1(vn(t)+1). As far as Sn(nt) = Snlln(t), 
we have a representation 

n-1Sn(nt) = 77n(n-1Yn(t)) = 77n(JLn(t) -lin). 

Thus, RPSM n-1Sn(nt) is constructed as a superposition of two pro­
cesses: 77n(t) and JLn(t). First we'll study the behaviour of the processes 
77n(t) and Yn(t), then JLn(t) and their superposition. According to (5.11), 
we can write the relations 77nk+l = 77nk + n-1bn(77nk) + <pnk, Ynk+l = 
Ynk + n-1mn(77nk) + 'if;nk, k ~ 0, where <Pnk = n-1(enk(n77nk) - bn(77nk)) , 
tPnk = n-1(Tnk(n77nk) - mn(77nk)). 

Sequences <Pnk and 'if;nk, k ~ 0 are martingale differences with respect 
to the sequence of O"-algebras O"nk generated by variables {77ni, i $ k}. 
Assume that condition (5.12) holds uniformly in a E 'R,r. Then, using 
the result of Grigelionis (1973), it's not difficult to prove that for any 

t > 0, m3.Xm~nt I Ek=O <Pnk I ~O. Further applying results of Gikhman 
and Skorokhod (1978) and using relation (5.14) we obtain 

sup l77n(U) -77(u)I~O, sup IYn(u) - y(u)I~O (5.23) 
u~t u~t 

(see (5.17){5.18)). As far as m(a) > 0, the process y(t) increases strictly 
monotonically. Thus, the process y-1(t) = JL(t) exists for such t that 
y(+oo) > t with probability one, is continuous and 

p 
sup IJLn(u) - JL(u)l~O. 
u9 

(5.24) 

Using the result of Billingsley (1977) about U-convergence of a su­
perposition of random functions and relation (5.23), we obtain (5.15). 

Finally, we remark that Pr{ sUPu9Is(t)1 > N }~O as N --t 00. Thus 

it is sufficient to check all conditions in each bounded region lal $ N. 
Theorem 1 is proved. 

Further denote Vnk = "Yn(Ynk), Snk = S(Ynk)' k ~ 0, and suppose for 
simplicity that So is a nonrandom variable. As far as relation (5.15) 
holds, the trajectory 77nk , k = 0,1, ... , nT belongs to some bounded 
region with probability close to one. Thus, it is enough to check all 
conditions only in each bounded region. We have by the construction 

Vnk+l = Vnk + n-1/2 (enk(n77nk) - n(Snk+l - Snk»). 

Using Lagrange formula and relation (5.11), we obtain that 

Snk+l - Snk = n-1b(snk)Tnk + c5~~ = n-1b(snk)mn(77nk) + c5~~ + c5~~, 
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where ~ k = ~ k(n'Tl k) 18(1)1 < Cn-2T2 and EI8(2)1 2 < Cn-2 n n'm, nk - nk nk - . 
After transformation we obtain that 

-1 ( ) (- )+ -1/2 +d3) Vnk+1 = Vnk + n mn TJnk qn Snk, Vnk n ank unk' (5.25) 

where ank = ~nk(nTJnk) - bn(TJnk) - b(Snk)(Tnk - mn(TJnk)), EI8~~12 ~ 
n-3/ 2C. It is not difficult to prove that maxk~nT 1 E:=o 8~~)1~0. If n --+ 

00, kin --+ t and Vnk = z, then according to Theorem 1 TJn,[ntj~TJ(t), 
and Sn,[ntj --+ s(y(t)) = TJ(JL(y(t))) = TJ(t). It means that a coefficient at 
lin in the right-hand side of (5.25) tends in probability to the value 
m(TJ(t))q(TJ(t), z). Further, E[ankITJnk] = 0, E[anka~dTJnk = a] --+ 
D(a)2 and, according to (5.21) variables lankl 2 are uniformly integrable 
in each bounded region. Let us introduce a random process vn(t) = Vnk 
as kin ~ u < (k + l)ln, u ~ O. Then from representation (5.25) and 
results of Gikhman and Skorokhod (1975), it follows that the sequence of 
processes vn(u) J-converges on the interval [0, T] to a diffusion process 
v(u) satisfying the following stochastic differential equation: v(O) = ,0, 

dv(u) = m(TJ(u))q(TJ(u) , v(u))du+ D(1J(u))dw(u). (5.26) 

We remark that at ~tnk ~ t < ~tnk+1 

11-
Is(t) - s( -tnk)1 ~ -Tnk sup Ib(s(u))l. 

n n l.tnk<U<l.tnk+l n --n 

Thus as JLn(T) < JL(T) + £, 

1 1 
sup I,n(t) - vn(JLn(t) - -)1 ~ ~CT max Tnk, (5.27) 
O$t~T n V n k~n(j.L(T)+e) 

where CT = sUPu$I.l(T)+e Ib(s(u))I. It is not so hard to prove (see Anisi­

mov, 1995) that for any C > 0 maxk~nc n-1/2Tnk~0. Finally, we 
obtain that 

sup I,n(t) - vn(JLn(t) - 1/n)l-!+ O. 
O$t~T 

But the sequence of processes vn(JLn(t) -lin) J-converges to the process 
v(JL(t)) = ,(t). As far as JL' (t) = m(s(t))-1, we calculate the stochastic 
differential for process ,(t) using the formula dW(JL(t)) "" JJL'(t)dw(t) 
and obtain equation (5.22). Theorem 2 is proved. 

In conclusion of this section let us consider an important case when 
process Sn(t) is a homogeneous MP. Suppose that Sn(t) is a regular 
step-wise process and there exist intensities of transition probabilities 
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qn(a, A), a E n r, A E Bn., a =J A such that qn(a) = qn(a, nr\{a}) < 00 
for any a E nr. We introduce independent families of random vari­
ables {enk(a) , a E nr},k ~ 0 and {Tnk(a),a E R},k ~ 0 with values in 
n r and [0,00) respectively and such that Tnk(na) has exponential distri-

bution with parameter qn(a) and Pr{ enk(na) E A} = qn(a)-lqn(a, A+ 
a),a =J A, where A+o: = {z: z-a E A}. It is clear that RPSM which 
is defined by families ((nk(a), Tnk(a)) is equivalent to our MP Sn(t). 
Denote mn(a) = qn(a)-l, D;(a) = Eenl (na)enl (na)* and keep other 
notations. 

Corollary 1 If conditions of Theorems 1, 2 hold, then the relation 
{5.15} takes place and the sequence of processes 'Yn(t) weakly converges 
to the diffusion process 'Y(t) satisfying equation {5.22}. 

We remark that in this case conditions (5.12) and (5.21) for variables 
Tnl(a) are automatic~lly satisfied. 

4. PROCESSES WITH SEMI-MARKOV 
SWITCHES 

Consider now AP and DA type theorems for PSMS. Let for each 
n > 0, Fnk = {(nk(t,x,a), t ~ 0, x E X, a E n r}, k ~ 0 be 
jointly independent families of random processes in D~, xn(t), t 2: 0 
be a SMP in X independent of Fnk, SnO be an initial value. Let also 
o = tno < tnl < ... be the epochs of sequential jumps of xn(-), Xnk = 
Xn(tnk), k ~ o. We construct a PSMS according to formula (5.7): put 
Snk+! = Snk +enk, where enk = (nk(Tnk, Xnk, Snk), Tnk = tnk+! - tnk, 
and denote 

Then the process (xn(t), (n(t)), t ~ 0 is a PSMS. 
At first we study an AP for the switched component (nO. Consider 

for simplicity a homogeneous case (distributions of processes (nk(·) do 
not depend on the index k ~ 0). Let Tn(X) be a sojourn time in the 
state x for SMP xn(-). Denote for each x E X, a E n r 

en(X, a) = (nl (Tn (X), x, a), gn(x, a) = sup I(nl (t, x, a)l. 
t<Tn(X) 
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4.1 ASYMPTOTICALLY MIXING 
ENVIRONMENT 

Suppose that MP Xnk, k ;~ 0 has at each n ~ 0 a stationary measure 
1rn(A), A E Bx and denote mn(x) = E Tn(X), bn(x, a) = E~n(x, na), 

mn = L mn(x)1rn(dx), bn(a) = L bn(x,a) 1rn(dx), 

an(k) = sup IP {Xni E A, Xni+k E B}-P {Xni E A} P {Xni+k E B}I. 
A,BE8x,i~0 

Theorem 3 Suppose that n- l Sno~So, there exists a sequence of in­
tegers rn such that 

foranyN>O,£>O 

n-Irn -+ 0, sup an(k) -+ 0, 
k~rn 

(5.29) 

lim sup supnP{n-Ign(x, a) > €} = 0, (5.30) 
n-+oo lol<N x 

lim limsup sup SUp{ETnl (x)x(-rnl (x) > L) + E l€nl(x,na)lx(I€(x,na)1 > L)} = 0, 
L-+oo n-+oo lal<N z 

for any x as max(lall, la21) < N Ibn(x, al) - bn(x, a2)1 < CNlal -
a21 + an(N), where CN are some constants, an(N) -+ 0 uniformly on 
lall < N, la21 < N, also there exists a function b(a) and a constant m 
such that for any a E n r bn(a) -+ b(a), mn -+ m > o. Then for any 
T>O 

(5.31) 

where 

s(O) = so, ds(t) = m-Ib(s(t)) dt (5.32) 

(it is supposed that a solution of the equation (5.32) exists on each in­
terval and is unique). 

Remark 1 Condition (5.29) covers also more general situations than 
only the case when the process Xnk is ergodic in the limit. For instance 
a state space can form n-S-set (see Anisimov, 1973, 1996a). 

Consider a DA for the sequence of processes in(t) = n-I/2 ((n(nt) -
ns(t)). Introduce a uniformly strong mixing coefficient for the process 
Xnk: lPn(r) = SUPx,y,A IP{xnr E A/xno = x}-P{xnr E A/xno = y}l, r > 
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O. Put bn(a) = bn(a)m;t, b(a) = b(a)m-t, Pnk(X, a) = ~nk(X, na) -
bn(x, a) - b(a)(Tnk(X) - mn(x)), Dn(x, a)2 = Epnl (x, a)Pnl(X, a)*, and 
1'n(x, a) = bn(x, a) - bn(a) - b(a)(mn(x) - mn). 

Theorem 4 Suppose that 1'n(O)~1'O, there exist fixed r > 0 and q E 
[0,1) such that <f'n(r) ~ q, n > 0, conditions of Theorem 3 hold where 
vnan(N) -t 0, and for any N > 0 the following conditions are satisfied: 

lim sup sup nP{n- I / 2gn (x, a) > e}= 0, 'Ve > OJ (5.33) 
n-+oo lal<N x 

lim lim sup sup{ETnl(X?X(Tnl(X) > L)+EI~nl(x,naWX(/~nl(x,na)1 > L)} = OJ 
L-+oo n-+oo lal<N " 

IDn(x, al)2-Dn(X, a2)21 ~ GNlal-a21+an (N), as max(latl, la21) < N, 
where an(N) -t 0 uniformly in lall < N, la21 < N; 
there exist continuous vector-valued function q( a, z) and matrix-valued 
functions D(a) and B(a) such that in any domain lal < N Iq(a, z)1 < 
GN(1 + Izl), uniformly in lal < N at each fixed z 

vn(bn(a + n- I / 2z) - b(a)) -t q(a, z)j 

at any a E nm 
,,( 2 2 

Dn(a)"' = Jx Dn(x, a) lI'n(dx) -t D(a) , 

Bil ) (a)2 + B~?)(a)2 + (Bi2)(a)*)2 -t B(a)2, 

where Bil ) (a)2 = Ix 1'n(X, ahn(X, a)*lI'n(dx), and 

Bi2)(a)2 = L E1'n(xno, ahn(Xnk, a)*, (5.34) 
k~l 

where P {xnO E A} = lI'n(A), A E Bx. Then the sequence of processes 
1'n(t) J-converges to the diffusion process 1'(t) : 1'(0) = 1'0, 

d1'(t) = q(s(t),1'(t)) dt+ m-~(D(s(t))2 + B(s(t))2)~dw(t), (5.35) 

where w(t) is a standard Wiener process in n r and the solution of {5.35} 
exists and is unique. 

The proof of Theorems 3, 4 follows the same scheme as the proof of 
Theorems 1, 2 and uses the results about the convergence of stochastic 
recurrent sequences in Markov environment to solutions of stochastic 
differential equations (see Anisimov and Yarachkovskiy, 1986). More 
details can be found in Anisimov (1994). 
These results also can be extended on non-homogeneous in time models 
(see Anisimov, 1995). 
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4.2 ASYMPTOTICALLY CONSOLIDATED 
ENVIRONMENT 

Now we consider the case when condition (5.29) is not true. It 
means that states of the environment do not asymptotically commu­
nicate. Suppose for simplicity that MP Xnk has a finite state space 
X = {I, 2, ... ,d}. We keep the previous notations. Let the following 
representation holds: 

(5.36) 

and also one-step transition probabilities Pn (i, I) = Pr {Xnl = 1/ XnO = i} 
are represented in the form 

(5.37) 

where lim sUPn-l-oo maxi,dhn(i, 1)1 < C, and for any j E Y p~O)(i, 1) == 
Oat i E Xj, 1 ¢ Xj. 

For each j E Y denote by x~2, k ~ 0 an auxiliary MP with state space 

Xj and transition probabilities p~O){i, 1), i,1 E Xj. Suppose that at each 

j the process x~2 satisfies condition (5.29) and denote by 1r!!)(i) , i E Xj 
its stationary distribution. Further for any j E Y, m E Y, j =I m we put 

)..n(j,m) = :L 1r!!)(i) :L hn(i,/), 
iEXj lEXm 

Suppose that there exist values A(j, m), m(j) and continuous functions 
b(j, a) such that for any a E 'R,r, j, m E Y, j =I m 

An(j, m) -+ A(j, m), mn(j) -+ m(j) > 0, bn(j, a) -+ b(j, a). 

Denote by y(t, jo) a MP with values in Y, intensities of transition prob­
abilities A(j, m)/m(j), j, mE Y,j =I m and the initial value jo. Denote 
also by z(t, jo, so) a solution of differential equation: z(O, jo, so) = so, 

dz{t,jo, so) = m(y(t,jo))-l b(y(t,jo),z(t,jo,so))dt. (5.38) 

Let us introduce a consolidated process xn(t) = j as xn(t) E Xj, t ~ o. 

Theorem 5 Suppose that at our assumptions Pr{xn(O) E Xjo) -+ 1 as 
n -+ 00, relations (5.36),(5.37) are true and corresponding conditions of 
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regularity for variables rn(·),~nO,gnO given in Theorem 3 hold. Then 
the sequence of processes (xn(t),n-1(n(t)) J-converges on each interval 
[O,T] to the process (y(t,jo),z(t,jo, so)). 

The proof is based on limit theorems for SP's in the case of rare switches 
(see Anisimov, 1978, 1988ab). The main steps are as follows. The pro­
cess (xn(t), n-1(n(t) is represented as a SP for which switching times are 
the times of sequential. jumps between regions Xj. Then on the interval 
between two jumps the process n-1(n(t) behaves as a process in asymp­
totically quasi-ergodic Markov environment and on the base of results of 
Theorem 3 it converges to a solution of differential equation with coeffi­
cients averaged by stationary measure in corresponding region. Further 
an interval of time between two sequential switches asymptotically has 
an exponential distribution with parameter which is obtained by aver­
aging in stationary measure of normed transition probabilities from a 
region (see Anisimov, 1973, 1988a). Thus the limiting process can be 
described as a solution of a differential equation with Markov switches. 
In the case that bo(j, n) == 0, it is also possible to prove a DA for (n(t). 
We mention that in this case a class of limiting processes belongs to the 
class of dynamical systems or diffusion processes with Markov switches 
(see section 2.7). 

5. APPLICATIONS 
5.1 RANDOM MOVEMENTS 

Consider AP and DA for a random movement with semi-Markov 
switches described in the section 2.7. Suppose that sojourn times of 
SMP x(t) depend on parameter n in such a way that rn(i) = n-1r(i). 
Assume that 2nd moments exist and denote Er(i) = m(i), Varr(i) = 
0"2 ( i), i = 1, d. 

1) At first consider an ergodic case. Suppose that the embedded MP 
Xk doesn't depend on parameter n and is irreducible. Denote by 7rj, i = 
1, d its stationary distribution. Let m = "L.f=l m(i)7rj > 0, b(n) = 
"L.t=l v(i, a)m(i)7ri. At stationary conditions (P {xo = i} = 7rj, i = 1, d) 
we denote B(2) (a)2 = L:k>l E m(xO)m(xk)( v(xo, a)-m-1b(a»)(v(xk, a)­
m-1b(a»*, B(a)2 = I:~~7rim(i)2(v(i, a)-m-1b(a»)(v(i, a)-m-1b(a»*+ 
B(2)(a)2 + (B(2)(a)*)2, D(a)2 = L.t=i 7rj(v(i, a) - m-1b(a»)(v(i, a) -
m-1b(a»*0"(i)2. 
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Statement 1 Let functions v(i, a) be locally Lipschitz and have no more 
than linear growth. Then for any T > 0, 

p 
sup I(n(t) - s(t) 1---+0, 

09$T 

where s(·) satisfies equation (5.32), and the sequence y'n((n(t)-s(t)) J­
converges to the diffusion process satisfying equation (5.35) with q(a, z) = 
m-1b'(a)z. 

The proof directly follows from the results of Theorems 3, 4. 

2) Further suppose that the embedded MP also depends on the param­
eter n in such a way that conditions (5.36),(5.37) hold. For simplicity 
suppose that each region Xj forms in a limit one essential class. Let 

x~) be an auxiliary MP in Xj with limiting transition probabilities and 
stationary distribution 7r{j)(i), i E Xj. At any) E Y denote 

m(j) = L m(i)7rU)(i), b(j, a) = L v(i, a)m(i)7r{j)(i). (5.39) 

Let y(t,)o) be the MP introduced in Theorem 5. 

Statement 2 Suppose that at our assumptions Pr(xn(O) E Xjo) -+ 1 
as n -+ 00, at any) E Y, m(j) > 0 and functions b(j, a) are locally 
Lipschitz and have no more than linear growth. Then the sequence (n{t) 
J-converges on each interval [0, T] to the process z(t, )0, so) (see (5.38)). 

3) Consider now the case when in (5.39) b(j, a) == o. For each region Xj 

put D(j)2 = L:iEXj v(i, O)v(:i, 0)*a(i)27rU)(i), 13(1)(j)2 = L:iEXj m(i)2 x 

v(i, O)v(i, O)*7rU)(i), in stationary conditions (Pr(x~) = i) = 7rU)(i), i E 
Xj) define 

13(2)(j)2 = L E m(x~))m(x~))v(x~j), O)v(x~), 0)*, 
k~l 

and denote C(j)2 = D(j)2 + 13(1) (j)2 + 13(2) (j)2 + (13(2) (j)*)2. 

Statement 3 At conditions of Statement 2 the sequence y'n(n(t) J­
converges to the process ,(t, )0, so) which can be represented as follows: 

,(t, )0, so) = lt fn(y(t, )0))-1/2 C(y(t, )0)) dw(t). 

This is the Wiener process with Markov switches. 
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5.2 SEMI-MARKOV STATE-DEPENDENT 
QUEUEING MODELS 

The results obtained can be effectively applied to the analysis of over­
loading state-dependent semi-Markov queueing models. Consider as an 
example a queueing system SM/MsM,Q/1/oo. Let x(t), t ~ 0 be a 
SMP with values in X. Denote by r(x) a sojourn time in the state x. 
Let non-negative function J.L(x, a), x E X, a ~ 0, be given. There is 
one server and infinitely many places for waiting. At first consider the 
model when calls enter the system one at a time at the epochs of jumps 
tl < t2 < ... of the process x(t). Put Xk = X(tk+O). If a call enters the 
system at time tk and the number of calls in the system becomes equal to 
Q, then the intensity of service on the interval [tk, tk+d is J.L(Xk, n-1Q). 
After service the call leaves the system. Let QnO be an initial number of 
calls, and Qn (t) be a number of calls in the system at time t. 

1) At first consider the case when the embedded MP Xk, k ~ 0 doesn't 
depend on parameter n and is uniformly ergodic with stationary mea­
sure 1r(A), A E Bx. We put m(x) = Er(x), m = Ix m(x)1r(dx), 
c(a) = Ix J.L(X, a)m(x)1r(dx), b(a) = (1 - c(a»m-l, g(x, a) = 1 -
m(x)(l- c(a) + J.L(X, a)m)m-l, G(a) = c'(a), d2(x) = Varr(x), d2 = 
Ix d2(x)1r(dx), el (a) = Ix J.L2(x, a)d2(x)1r(dx), e2(a) = Ix J.L(X, a)d2(x) 
1r(dx) and D2(a) = c(a)+el(a)+2(1-c(a»m-1e2(a)+(1-c(a»2m-2d2. 

Statement 4 Suppose that m > 0, the function J.L(x, a) is locally Lips­
chitz with respect to a uniformly in x EX, the function c( a) has no more 
then linear growth and n-lQn(O)~So > O. Then the relation (5.31) 
holds with (n(nt) = Qn(nt), where ds(t) = m-1(1- c(s(t»dt, s(O) = so, 
and T is any positive value such that s(t) > 0, t E [0, T]. Suppose in 
addition that variables r(x)2 are uniformly integmble, the function c(a) 
is continuously differentiable, n-1/2(Qn(0) - so)~'o, and 

00 

B2(a) = E(g(xo, a)2 + 2 L: g(xo, a)g(xk, a»), 
k=l 

where P {xo E A} = 7:" (A), A E B x . Then the sequence of processes 
,n(t) = n-1/2(Qn(nt) - ns(t» J-converges on the interval [0, T] to the 
diffusion process ,(t) : ,(0) = ,0, 

d,(t) = -m-1G(s(t»)J(t)dt+ m-1/ 2 (D2(s(t» + B2(s(t»)1/2dw(t). 

Proof. At first we represent a queue in the system as a PSMS. In 
our case epochs tk are switching times and variable ~nk(X, na) can be 
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represented in a form : ~nl(X, na) = 1- IIJ.L(x,CI')(r(x)), where II.\(t) is a 
Poisson process with parameter >... It is easy to see that E6 (x, na) = 1-
J-l(x, a)m(x) and using result of Theorem 3 it is not difficult to obtain AP. 
Further we can simply calculate another characteristics and obtain DA 
using result of Theorem 4. We mention also that the process of changing 
queue is monotone on each interval [tk, tk+1). Thus U-convergence of 
embedded RPSMto a limit process automatically implies U-convergence 
of PSMS that is conditions (5.30), (5.33) are automatically satisfied. 
This finally proves Statement 4. 

We remark that condition s(t) > 0, t E [0, T] is in fact a heavy traffic 
condition. For instance it is always true if c(a) < 1, a> o. 

2) Now suppose that the embedded MP Xk, k ~ 0 also depends on pa­
rameter n in such a way that conditions (5.36), (5.37) hold. For simplic­
ity we consider the case of a finite state space X. Suppose that each re­
gion Xj forms in a limit one essential class and denote by 1l"(j)(i), i E Xj 
its stationary distribution. At any j E Y denote 

m(j) = L m(i)1l"(j)(i), c(j, a) = L J-l(i, a)m(i)1l"(j)(i). (5.40) 

Let y(t,jo) be a MP introduced in Theorem 5. 

Statement 5 If at our assumptions Pr(xn(O) E Xjo) -t 1 as n -t 00, 

at any j E Y m(j) > 0 and functions qj, a) are locally Lipschitz 
and have no more than linear growth, then the sequence n-1Qn(nt) 
J -converges on the interval [0, T] to the process q(t, jo, so) such that 
q(O, jo, so) = So and 

dq(t, jo, so) = m(y(t, jo))-l (1 - c{y(t, jo), q(t, jo, so)) )dt, 

and T is any positive value such that q(t, jo, so) > 0 for all t E [0, T] 
with probability one. 

5.3 MARKOV MODELS WITH 
SEMI-MARKOV SWITCHES 

Consider now a queueing system MSM,Q/MsM,Q/1/00. Let x(t), t ~ 
o be a SMPwith values in X = {1, 2, ... ,d} and sojourn times r(i). Let 
the family of non-negative functions {>"(i, a), J-l(i, a), a ~ O}, i E X 
be given. There is one server and infinitely many places for waiting. 
The instantaneous rates of input flow and service depend on the state of 
x(.), value of the queue and parameter n in the following way: if at time 
t, x(t) = i and Qn(t) = Q, then an input rate is >"(i, n-1Q) and service 
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rate is J.1(i, n-1Q). Calls enter the system one at a time. We mention 
that here times tk are also switching times but at these times we have 
no additional jumps of input flow and finishing service. 

1) At first consider the case when the embedded MP Xk, k ~ 0 doesn't 
depend on parameter n and is irreducible with stationary distribution 
1ri, i EX. We keep the previous notations for values m( i) and m and 
put b(a) = L:i('\(i, a) - J.1(i, a»m(i)1ri. 

Statement 6 Suppose that functions A(i, a), J.1(i, a) are locally Lips­
chitz with respect to a, m > 0, the function b(a) has no more then 
linear growth and n-JlQn(O)~so > O. Then the relation (5.31) holds 
with (n(nt) = Qn(nt), where T is any positive value such that s(t) > 0 
on the interval [0, T]. 

2) Now suppose that the embedded MP Xk, k ~ 0 also depends on 
parameter n in such a way that conditions (5.36), (5.37) hold. Suppose 
that each region Xj forms in a limit one essential class and denote by 
1rU) (i), i E Xj its stationary distribution. At any j E Y denote fii(j) = 

L:iEXj m(i)1rU)(i), b(j, a) = L:iEXj (A(i, a) - J.1(i, a))m(i) 1rU)(i). Let 
y(t, jo) be a MP introduced in Theorem 5. 

Statement 7 If at our assumptions conditions of Statement 5 are valid 
(also for functions A(i~1 a»), then the sequence n-1Qn(nt) J-converges 
on the interval [0, T] to the process q(t, jo, so) such that q(O, jo, so) = So 
and 

dq(t,jo, so) = fii(y(t, jo)) -lb(y(t, jo), q(t, jo, so) )dt. 

Using the same technique we can apply these results to retrial queues 
and queueing networks (SM/MsM,Q/1/ooY, (MSM,Q/MsM,Q/1/ooY of 
a semi-Markov type with input and service depending on the state of 
some SMP and current values of queues in the nodes, different types of 
customers, impatient customers, etc. 

Some non-Markov queueing models GQ/MQ/1/oo, SMQ/MQ/1/oo 
and (GQ/MQ/1/ooY are considered in (Anisimov, 1992, 1995, 1996a). 

Another direction of applications can be branching processes and dy­
namical systems with stochastic perturbations. For near-critical branch­
ing processes with semi-Markov switches and large number of particles 
an AP is proved by Anisimov (1996b), and for dynamical systems with 
quick semi-Markov perturbations AP and DA are given in (Anisimov, 
1994, 1995). 
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