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Wide-field interferometric microscopy is a highly sensitive, label-free, and low-cost biosensing imaging technique
capable of visualizing individual biological nanoparticles such as viral pathogens and exosomes. However, further
resolution enhancement is necessary to increase detection and classification accuracy of subdiffraction-limited
nanoparticles. In this study, we propose a deep-learning approach, based on coupled deep autoencoders, to
improve resolution of images of L-shaped nanostructures. During training, our method utilizes microscope image
patches and their corresponding manual truth image patches in order to learn the transformation between them.
Following training, the designed network reconstructs denoised and resolution-enhanced image patches for

unseen input.  © 2018 Optical Society of America

OCIS codes: (180.3170) Interference microscopy; (100.3010) Image reconstruction techniques; (100.6640) Superresolution;

(100.4996) Pattern recognition, neural networks.
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1. INTRODUCTION

Microscopy has been important for visualizing biological par-
ticles since the invention of the optical microscope in the
seventeenth century [1]. Optical microscopy in the visible
spectrtum has become a ubiquitous and indispensable tool
for biological research [2,3]. However, conventional far-field
light-scattering microscopy suffers from resolution limitations
due to diffraction and visibility contrast for imaging low
refractive index biological micro- and nanoparticles. Several
techniques, such as fluorescence microscopy [4], interference
reflection microscopy [5], and phase contrast microscopy [6],
have been proposed for improving contrast [7]. Sensitive wide-
field optical detection of nanoparticles has recently been
demonstrated using aspheric liquid nanolenses enhancing the
contrast [8]. In fluorescence microscopy, the diffraction limit
can be surpassed. A variety of techniques have been developed
such as stimulated emission depletion microscopy [9], stochas-
tic optical reconstruction microscopy [10], photo-activated
localization microscopy [11,12], and spatially structured illu-
mination microscopy (SSIM) [13]. In contrast, conventional

1559-128X/18/102545-08 Journal © 2018 Optical Society of America

light-scattering microscopy cannot benefit from nonlinearities
exploited for resolution enhancement.

Deconvolution is a well-known post-processing technique
in microscopy to improve resolution independent of contrast
mechanisms. It is achieved by reversing the effects of convolu-
tion on a recorded image. This method is beneficial in improv-
ing resolution of different kinds of microscope images such as
interference images [14], fluorescence images [15], and 3D
images [16]. One of the several deconvolution types is the blind
deconvolution in which the deconvolution is performed with-
out prior knowledge of the point-spread function [17-20].
There are also other methods such as dictionary-based image
reconstruction for resolution enhancement [21].

The interference reflection microscopy takes advantage of
interference between the optical scattering signals from the
object and a reference reflection that is maximized by adjusting
the phase condition to improve the contrast naturally. Despite
getting an improvement in contrast, it is stll subject to
optical deterioration due to the diffraction and background
noise. Wide-field interference microscopy is one of the several
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techniques of the interference reflection microscopy. In this
technique, the signal scattered from nanoparticles interferes
with the signal reflected from a specified substrate. The mea-
sured interference signal can be maximized by adjusting the
optical path difference [22-25]. The common path wide-field
interferometric microscopy may be a solution for early diagno-
sis and prognosis because it is cost-efficient and has a relatively
simple setup [23].

Recently, deep-learning-based methods have gained signifi-
cant attention due to their success in computer vision applica-
tions such as visual object classification, object detection, and
face recognition [26]. Deep-learning-based models have been
effective in extracting the intrinsic (low-dimensional and yet
descriptive) information and representations of natural images
[27]. Also, these models have started to attract attention in
wide-field microscopy [28].

An autoencoder (AE) is a deep-learning-based model that is
composed of an encoder and a decoder. The encoder part uses
image patches (i.e., small pieces of an image) as input and dis-
covers intrinsic representations of them. Then, in the decoder
part, intrinsic representations are used for reconstructing the
input image patches [27]. AEs have been employed in many
super-resolution methods in image processing because of their
success in capturing details in high-resolution images [29-31].
They have also been applied to biotechnological studies
[32-34]. Recently, Zeng et al. [29] introduced a coupled deep
autoencoder (CDA) model, which uses two deep AEs and
learns nonlinear mapping between the intrinsic representations
of these deep AEs. Low- and high-resolution image patches
(LRs and HRs) are provided to obtain the intrinsic represen-
tations of image patches by using deep AEs. Then, a nonlinear
mapping is estimated between the intrinsic representations by
taking advantage of the backpropagation algorithm [35]. After
the initialization and nonlinear mapping, LRs pass through the
overall network to minimize the mean squared error (MSE)
[Eq. (8)] between HRs and network outputs for LRs in a finite
number of iterations. The network is optimized by the help
of the backpropagation algorithm. This operation is called
training of a network. After training, the performance of the
network is evaluated by using LRs and HRs, which are previ-
ously unseen by the network.

In this study, for the resolution enhancement of the wide-
field interferometric microscopy, we propose to use a method
based on CDAs. Wide-field microscope images are cropped to
obtain image patches with a single L-shaped nanostructure.
These small raw image patches (RPs) are taken as LRs in
CDA. Then, manual truth image patches (MTPs) are generated
artificially by using the corresponding raw image patches and
the scanning electron microscope (SEM) images. SEM images
of L-shaped nanostructures are given in the Appendix A. MTPs
are taken as HRs in CDA. Pairs of RPs and MTPs are used
for training. After training, new raw images from interference-
enhanced wide-field microscope are passed through the net-
work in order to test the proposed method. By applying the
proposed method, the resolution of the wide-field interferomet-
ric microscopy is improved, as compared with a reference
method that involves standard denoising and blind deconvolu-
tion algorithms.

The rest of this paper is organized as follows. Interference-
enhanced wide-field microscopy samples containing L-shaped
nanostructures and CDAs are presented in Section 2. In
Section 3, resolution improvement and denoising performances
of the proposed method and the reference method are pro-
vided. In Section 4, we summarize the results and conclude
with final remarks.

2. RESOLUTION ENHANCEMENT OF WIDE-
FIELD INTERFEROMETRIC MICROSCOPY BY
COUPLED DEEP AUTOENCODERS

A. Wide-Field Interferometric Microscopy
The wide-field interferometric microscope is a low-cost, easy-
to-implement, and yet sensitive device that has a large field of
view [24]. This microscope utilizes the interference between
the scattered light from the nanoparticles and the reflected light
from the layered substrate surface for imaging [22].

The scattered signal (£,) interferes with the reflected signal
(E,) and propagates through a photodetector. The photodetec-
tor measures the interference signal intensity, which is defined as

I |Ex + Er|2 & |Es|2 + |Er|2 - 2|E:||Er| COS(em.). (1)

In Eq. (1), by adjusting the phase difference between £, and
E, (0,,), the measured intensity signal can be maximized. In our
experiments, an SiO, layer, thermally grown on an Si substrate
surface, is used. By modulating the thickness of the SiO, layer,
0, can be optimized to ameliorate the interference signal [22].

As a spatially low coherent illumination source, a light emit-
ting diode (LED) is used instead of a coherent light source (a
laser), to prevent undesired interferometric fringes in the detec-
tor plane [36]. As depicted in Fig. 1(a), we employ a Kohler
illumination, where the illumination source is imaged to the
back focal plane of the microscope using a 2:1 4-f system with
achromatic doublet lenses. Because the LED and back focal
plane of the objective are conjugate planes, each point of
the light source in the back focal plane produces a plane wave
at an incident angle defined by its position in the x—y plane.
Thus, this configuration accomplishes a source-free uniform
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Fig. 1. (a) Schematics of the wide-field interferometric microscope.
(b) Image containing 500 nm wide L-shaped SiO, nanostructures.
(c) Raw image patch containing a single L-shaped nanostructure.
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illumination of the object of interest. Therefore, we decided to
use an LED source operating at 530 nm. After the illumination,
light passes through a diffuser and a bandpass filter. Then, light
is directed to a 30 mm lens in order to provide uniform illu-
mination. For a condenser, we use a 60 mm lens. After the
condenser, a 50/50 beam splitter is used. Using this configu-
ration, Kohler-type wide-field illumination is accomplished for
uniform excitation of the nanoparticles and minimization of
the artifacts due to the LED. Then, a 50x microscope objective
with NA = 0.8 and a 200 mm tube lens is used to capture
the interference images of the nanoparticles on the CCD
camera [24].

B. Preparation of Nanoparticle Sample

In order to test the wide-field interferometric microscope, a
sample consisting of L-shaped nanostructures are used. The
sample contains L-shaped nanostructures that have different
sizes; while heights are kept constant at 1000 nm, the widths
of the L shapes are varied from 100 nm to 1000 nm.

The sample was imprinted onto a silicon substrate. The first
step of the fabrication was the formation of the SiO, layer over
the sample by a plasma-enhanced vapor deposition coating. A
Samco PD-220 NL system was utilized for this process. The
coating thickness was 100 nm. Afterward, nanostructures were
fabricated by using electron beam lithography (EBL) technol-
ogy. A Raith eLINE system was used for this fabrication.
Hydrogen silsesquioxane (HSQ, XR-1541 from Dow Corning)
was chosen as a resist material because it transforms into SiO,
after electron beam exposure [37]. Therefore, it acted not only
as the medium for patterning but also as the material for the
desired nanostructures. Another advantage was the reduced
writing times, as it was better to use a negative resist for the
time efficiency under this process plan. HSQ was diluted to
3% in methyl isobutyl ketone and spin-coated with a spin cycle
0f 1000 rpm to obtain a thickness of 50 nm. After spin-coating,
the sample was baked for 5 min at a temperature of 150°C on a
hot plate. HSQ film thickness was confirmed to be 50 nm with
the measurements taken in a Filmetrics F20 reflectometer

m Resolution Encoding

/

Nonlinear
Mapping

s -~
| G : (g —mnsy l(‘ ] :
'@ N (2 L
| R I \ ) | |
| 4 ¢ I A y I 3 y I | N I
@ » = I ! w1
el L ) | Y ¥ Tl
Lo | & | | & | Lo
. | 3 | | "'./' | .
I SR l}. L
I I b ! L
P N R N P
I < pe— q )
| @ | | | |, 0 [ o |
| Lo o [
| /£ o - | \ A | £ |
[ ) Ne—— ~—— ( ]
A A R A
N it N——

system. A conductive polymer (aquaSAVE, Mitsubishi Rayon)
was spin-coated on top of the HSQ layer to avoid charging.

In the EBL process, we worked with a voltage of 30 kV, with
an aperture of 20 mm. The write field area was 100 pm?.
Exposure dose ranged from 150 pC/cm? to 300 pC/cm?
for different exposure patterns. Development was carried out
by using a tetramethylammonium hydroxide-based solution
(MEF-322 from Rohm and Haas) for 35 s, and deionized water
was used as a stopper. A Zeiss GeminiSEM 300 SEM was used
for the inspection of the fabricated sample (see Section 5 for
Appendix A). A sample image captured by the microscope is
presented in Fig. 1(b). A single image patch contains a single
L-shaped nanostructure, as shown in Fig. 1(c).

C. Coupled Deep Autoencoders for Single Image
Super-Resolution

For resolution enhancement of the wide-field interferometric
microscope, we used the CDA method on the microscope
image patches. The CDA algorithm can be used for various
kinds of images. This algorithm has initialization, nonlinear
mapping, and final training steps in order to reconstruct reso-
lution-enhanced single images (see Fig. 2). At the initialization
stage, LRs and HRs are used to initialize two distinct deep AEs.
The intrinsic representations are formulated by

I = f(Wx; + b)), (2

I = f(Wsy, + by). ®)

The decoding processes of these two AEs can be
described by

Y, = f(WiL] +b3), @

x; = f(W{I} + b)), (5)

where y; and x; are output and input image patch vectors (HRs
and LRs vectors) in given sets Y = [y}, y, ....yy] and
X =[x}, Xy, ...,xy], respectively. Moreover, y;, and X, are
reconstructed output and input image patch vectors in given
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Fig. 2. CDA architecture for resolution enhancement of a raw image patch containing a single L-shaped nanostructure.
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sets Y = [§1, 95 .. Pyl and X = [&}, %y, ..., Ry ], respectively.
Ié and IhH are intrinsic layer representations of LRs and HRs,
respectively. (W1, W3) and (W, W3) denote weight matrices
of encoding and decoding networks of AEs, respectively. Also,
(b;, bs) and (b}, b}) represent the bias terms of the encoding
and decoding parts of AEs. The function f'(-) is the sigmoid

activation function and can be obtained by

A )

After initialization of deep AEs, intrinsic representations of
LRs and HRs (I4, I}7) are used to learn the nonlinear mapping
between each other by taking advantage of the nonlinear trans-
formation ability of neural networks [26,29]. This mapping can
be described by

(6)

I = f(W3IL +b)). (7)
At the final training step, the complete network is optimized
with the help of the backpropagation algorithm [35]. The
backpropagation algorithm calculates the gradients of a loss
function with respect to the weights of the neural network.
It uses the conjugate gradient optimization procedure to reduce
the reconstruction error (minimizing the loss) [38]. The con-
jugate gradient optimization is an iterative method that is used
to solve a symmetric, positive definite matrix [39]. As a loss
function, the network uses the MSE loss function to improve
the network parameters. MSE loss function is calculated as

loss = _[ly; ~%ilI" (8)

3. RESULTS

For the construction of CDA, we used the dimensionality re-
duction toolbox [40]. The wide-field interference microscope
images are cropped to obtain a data set, consisting of 29-pixel-
x-29-pixel-sized RPs of different L-shaped nanostructures, as
shown in Fig. 1(c). Furthermore, to enlarge the data set and
increase its diversity, RPs are rotated and translated arbitrarily.
Moreover, the translated and rotated data set contains synthetic
MTPs of corresponding RPs. This data set is separated into
three splits: a training split consisting of 80% of the data, a
validation split consisting of 10% of the data, and a testing split
that contains the rest. 254,000 pairs of RPs and MTPs were
used for training the neural network. The testing split contains
the remaining 31,000 pairs of RPs and MTDs. After learning
the parameters of the network by using the training and vali-
dation splits, the test split is used for verifying the enhancement
in resolution and image quality.

Convergence criteria for final training was used to stop
iterations. MSEs of the previous 100 iterations are averaged
for each iteration. When averaged MSEs of the corresponding
iteration and the preceding iteration become equivalent, the
training is complete. After 1158 iterations, for the generated
data set, MSE for the training split and for the validation split
converged to 0.0299 and 0.0319, respectively (see Fig. 3).

For the performance evaluation, the proposed method based
on the designed CDA network was compared with another
technique involving a denoising and blind deconvolution
algorithm. A generic moving average filter was used for
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denoising. As a blind deconvolution method, an iterative blind
deconvolution algorithm proposed by Biggs and Andrews was
used [41-44].

FWHM values of the output images for both methods were
compared in order to demonstrate the improvements in reso-
lution. Then, the SSIM [45] and the peak signal-to-noise ratio
(PSNR) of the images were calculated because they allow a
quantitative comparison of the denoising and deblurring per-
formances of the proposed method. Moreover, contrast of the
images is calculated and compared for both methods.

Five raw images of L-shaped nanostructures with widths vary-
ing from 100 to 900 nm were randomly chosen among 31,000
test raw images [see Fig. 4(a)]. The output images of the denois-
ing filter are shown for the raw images in Fig. 4(b). For the
reference method, which successively performs denoising and
blind deconvolution, we obtain the output images shown in
Fig. 4(c). These raw images, which are unseen by the network
previously, were passed through the trained network. Then,
the corresponding outputs are presented in Fig. 4(d).

Denoised  Den. + Blind. Recon. Manual Truth
100nm [ ‘ S H
— — —
500 nm 500 nm 500 nm
o 2 = . =
o ‘ n E
o | “ . n n

(a) (b) (c) (d) (e)
Fig. 4. Images of different methods with widths varying from 100
to 900 nm L-shaped nanostructures. (a) Raw image. (b) Output image
of denoising method. (c) Output image of denoising and blind decon-
volution method. (d) Reconstructed output image by the proposed
method. (¢) Manual truth.
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We compare the performances of these methods by calcu-
lating SSIM and PSNR values by quantifying the similarity of
outputs and the manual truth images of L-shaped nanostruc-
tures shown in Fig. 4(c). SSIMs and PSNRs of each 31,000
output images of the proposed method and of the reference
method are computed by taking the manual truth images as
the desired perfect images. Then, average SSIM and PSNR val-
ues are calculated. As explained in Table 1, the reconstructed
images have a 655% average SSIM improvement with respect
to the raw images. Moreover, by using the proposed method,
average PSNR is increased by 8.57 db. Results in Table 1 show
the denoising and deblurring performance of our method based
on a CDA network.

Although the average SSIM and average PSNR results
explain the denoising and deblurring performances of the pro-
posed method, for observing the resolution enhancement, the
FWHM estimations are also compared. The microscope setup
has a FWHM of 404 nm, and the thickness of L-shaped nano-
structures was approximately 30 nm. Because the thickness is
smaller than the FWHM value of the microscope, horizontal
line profiles taken across the heights of the L-shapes from
raw images can be considered as a line profile of the point-spread
function of the microscope. Therefore, the line profiles of the
output L-shaped images for each method were used to estimate
the approximate new FWHM values after applying the methods.

In Fig. 5, the line profiles and Gaussian fitted curves from
the output images of different methods are shown. In Fig. 5
from (a) to (d), the resolution improvement of different meth-
ods can be observed. For comparison, the line profile of the
manual truth image is shown in Fig. 5(¢). Due to the quanti-
zation and alignment errors in the manual truth data set gen-
eration, we can observe a shift in the line profile of the manual
truth [Fig. 5(e)] with respect to the true position of the nano-
particles. The quantization and alignment errors are different
and small for each element in the data set, but the proposed
method neutralizes these errors and gives more accurate line
profiles [Fig. 5(d)]. In Table 2, we have the best resolution en-
hancement performance for our methods based on the CDA
network. While the resolutions of raw images were improved
by the denoising and blind deconvolution-based method by
25%, our method, based on the CDA network, gives an im-
provement of 44.5%. Raw images of L-shaped nanostructures
had FWHM values of 487 nm. The FWHM values of the raw
images were different than the microscope FWHM value
because the LED source, used for the excitation, has a broad
bandwidth and lower beam quality than the monochromatic
laser sources.

Moreover, by using 11,000 test images, average contrasts of
the output images of the methods are tabulated in Table 3. We

Table 1. SSIM and PSNR Performance of the Proposed
and the Reference Method on 31,000 Test Images

Image Patches Average SSIM  Average PSNR (db)

Raw 0.0528 8.5365
Denoised 0.0913 10.6071
Denoised + Deconvolved 0.1186 12.2942
Reconstruction (proposed) 0.3988 17.1017
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Fig. 5. Line profiles and Gaussian fitted curves from output images
of different techniques. (a) Raw image. (b) Output image of denoising.
(c) Output image of denoising and blind deconvolution method.
(d) Reconstructed image by the proposed method. (¢) Manual truth.
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Table 2. FWHM Values of the Output Images of a 700 nm
Wide L-Shaped Nanostructure for Several Methods

Images FWHM (nm)
Raw 487.34
Denoised 474.81
Denoised + Deconvolved 366.75
Reconstruction (proposed) 270.51

Table 3. Contrast Improvement of the Proposed and
Reference Methods on 11,000 Test Images

Images Avg. Contrast
Raw 0.31
Denoised 0.19
Denoised + Deconvolved 0.39
Reconstruction (proposed) 65.29

calculated the contrast in two steps. First, the background mean
of the image is subtracted from the peak image value. Then, the
difference is normalized by the background mean. In Table 3,
the reconstructed images have the highest contrast values. Note
that the contrast of the manual truth images is infinite because
the intensity level of the background is zero. That means the
proposed method improves not only the resolution and the
PSNR but also the contrast of the wide-field interferometric
microscope images.

4. CONCLUSION

This study demonstrated the resolution enhancement of the
interferometric wide-field microscopy with the CDA network.
The CDA network was trained with raw and manual truth
image patches. Then, the performance of the network was
evaluated by using raw images that are not present in the train-
ing set. The reconstructed image patches and the outputs of
other methods are given in Fig. 4. The proposed method
was compared with a reference method involving denoising
and blind deconvolution algorithms. In terms of deblurring
and denoising performance, the proposed method reports
the highest average SSIM and average PSNR values. In terms
of the resolution enhancement, the performance of the pro-
posed method, as measured by FWHM values, is also shown
to be superior. Therefore, we can state that the proposed
method outperforms the other methods.

To conclude, our novel approach utilizing wide-field inter-
ferometric microscopy and CDA is advantageous for biotech-
nology applications because it can be used for not only the
wide-field interferometric microscope but also for other types
of microscopes. Moreover, the method can provide faster,
cheaper, and more accurate early diagnosis and prognosis with
its sensitive and high-resolution measurement capabilities.

APPENDIX A

SEM images of different L-shaped nanostructures are shown in
Figs. 6-9. Please note that the widths of the nanoparticles from
the SEM images are lower than the desired widths mentioned

H2 = 958.4 nm

H V1 = 28.19 nm

H1 = 29.85 nm

& v2 =160.8nm

200 nm EHT = 10.00kV Signal A = InLens Time :15:5402 Gun Vacuum = 1.926-009 mbar q mikronano
Mag= 16490KX  Dete 6Dec2016  System Vacuum = 1.686-006 mbar

Fig. 6. SEM image of 200 nm width L-shaped nanostructures.
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Fig. 7. SEM image of 300 nm width L-shaped nanostructures.
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Fig. 8. SEM image of 600 nm width L-shaped nanostructures.
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Fig. 9. SEM image of 800 nm width L-shaped nanostructures.

in the captions of the figures due to the imperfections in prepa-
ration of the nanoparticle sample. The desired widths are
assumed to be 100, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000 nm. We map the intermediate values to the closest
quantized widths we desired. This assumption is important for
MTP generation because 1 pixel corresponds to 51 nm in RPs,
and the size of RPs is 29 pixels x 29 pixels.
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