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Nonuniformly Sampled Data Processing
Using LSTM Networks
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Abstract— We investigate classification and regression for
nonuniformly sampled variable length sequential data and intro-
duce a novel long short-term memory (LSTM) architecture.
In particular, we extend the classical LSTM network with
additional time gates, which incorporate the time information
as a nonlinear scaling factor on the conventional gates. We also
provide forward-pass and backward-pass update equations for
the proposed LSTM architecture. We show that our approach
is superior to the classical LSTM architecture when there is
correlation between time samples. In our experiments, we achieve
significant performance gains with respect to the classical LSTM
and phased-LSTM architectures. In this sense, the proposed
LSTM architecture is highly appealing for the applications
involving nonuniformly sampled sequential data.

Index Terms— Classification, long short-term memory
(LSTM), nonuniform sampling, recurrent neural networks
(RNNs), regression, supervised learning.

I. INTRODUCTION

A. Preliminaries

WE STUDY classification and regression of nonuni-
formly sampled variable length data sequences, where

we sequentially receive a nonuniformly sampled data sequence
and estimate an unknown desired signal related to this
sequence. In the classical data processing applications, data
sequences are usually assumed to be uniformly sampled, and
however, this is not the case in many real-life applications.
For example, nonuniform sampling is used in many medical
imaging applications [1], measurements in astronomy due to
day and night conditions [2], and financial data [3], where
the stock market values are redetermined by each transaction.
Although nonuniformly sampled data frequently arises in
these problems, there exist a few studies on nonuniformly
sampled sequential data processing in neural networks [4], [5],
machine learning [6], and signal processing literatures [7], [8].
Nonlinear approaches are usually used in these studies since
linear approaches are usually incapable of capturing highly
complex underlying structures [9]. Here, we study classifi-
cation and regression problems particularly for nonuniformly
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sampled variable length data sequences in a supervised frame-
work. We sequentially receive a data sequence with the cor-
responding desired data or signal, and we find a nonlinear
relation between them.

Even though there exist several nonlinear modeling
approaches to process the sequential data [9], [10], neural-
network-based methods are more practical in general because
of their capability of modeling highly nonlinear and com-
plex underlying relations [11]. Especially, recurrent neural
networks (RNNs) are employed to process the sequential
data since they are able to identify sequential patterns and
learn temporal behavior, thanks to their internal memory
exploiting past information. Although simple RNNs improve
the performance in sequential processing tasks, they fail to
capture long-term dependences due to vanishing and exploding
gradient problems [12]. The long short-term memory (LSTM)
networks are introduced as a special class of the RNNs to
remedy these vanishing and exploding gradient problems and
capture the long-term dependences [12]. The LSTM networks
provide performance gains with their gating mechanisms,
which control the amount of the information entering the
network and the past information stored in the memory [11].

Even though the classical LSTM networks have satisfactory
performance in the applications using uniformly sampled
sequential data, they usually perform poorly in the case of
nonuniformly sampled data [5], [13]. To circumvent this
issue, one can convert nonuniformly sampled data to uni-
formly sampled data by employing a preprocessing technique
(see [13], [14]). However, such approaches result in computa-
tional load and provide restricted performance [15].

In this paper, we resolve these problems by introducing a
sequential nonlinear learning algorithm based on the LSTM
network, which is extended with additional gates incorporating
the time information. Our structure provides additional time-
dependent control while keeping the computational load in the
same level. Through extensive set of simulations, we demon-
strate significant performance improvements compared with
the state-of-the-art architectures in several different regression
and classification tasks.

B. Prior Art and Comparisons

RNN-based learning methods are extensively used in
processing sequential data and modeling time series [16]–[18].
Especially, complex RNNs, e.g., LSTM networks, have a
satisfactory performance, thanks to their memory capabilities

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8528-058X


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

to exploit past information and gating mechanism to control
the flow of the information entering the network. However, this
performance of the LSTM networks depends on how the data
are sampled, i.e., uniform or nonuniform sampling, existence
of missing samples, and time intervals between the samples
change the performance of the network [5]. In [19] and [20],
which provide VLSI RNNs with continuous-time dynamical
systems approaches, the authors state their networks that
require uniformly sampled data and have limitations in the case
of nonuniformly sampled data. Moreover, in [21] and [22],
it has been shown that the size of the time intervals between
samples are important and convey significant information
for many sequential data processing tasks, such as rhythm
detection and motor control.

Among few proposed solutions for processing nonuniformly
sampled sequential data, [13] and [14] first convert nonuni-
formly sampled data to uniformly sampled data by windowing
and averaging the samples on the large intervals. Then, they
process this uniformly sampled data using the LSTM network.
In this setup, they still feed the LSTM network with uni-
formly sampled data, which is obtained after preprocessing the
nonuniformly sampled data. These windowing and averaging
operations cause information loss in data entering the LSTM
network. As an example, this preprocessing may cause failure
in the corresponding tasks, where the aim is to detect whether
a value is greater than a certain threshold or not, since
averaging smooths the peaks. Furthermore, they also lose the
time information contained in the sampling intervals instead
of incorporating this information to the network. On the
contrary, our LSTM network uses the whole sequence to
generate the output; therefore, it exploits all information in the
sequence. In addition, it also incorporates the time information
to capture the relationship between the underlying model and
the sampling times.

The sampling time information should be used in the
network to enhance the performance in the applications using
nonuniformly sampled data [5]. One can add the time intervals
between consecutive data samples to the input vectors as
another feature [5]. However, extending the input vector by
the time differences contributes only as an additive term with
a constant linear scaling, deeming this approach as insufficient
to model the effect of nonuniform sampling as we demonstrate
in this paper. On the contrary, in our LSTM architecture,
the time differences appear as an adaptive nonlinear scaling
factor on the conventional gates of the classical LSTM archi-
tecture, which sufficiently model the effect of the nonuniform
sampling.

Neil et al. [5] provide a new LSTM architecture, namely,
the phased-LSTM (PLSTM) architecture, which basically
learns a periodic sampler function and responds to only a
small portion of the input sequence, which is sampled by this
function. The sampler function is described by three parame-
ters: period, shift, and on-ratio. In each period, the network is
updated by only the samples corresponding to its open phase,
where on-ratio is a ratio of open phase to the period and
shift is the initial time of the open phase. Processing only
a small portion of the data accelerates the learning process
and provides capability to work on nonuniformly sampled data

by incorporating the time information. Although the PLSTM
network performs better compared with the classical LSTM
network in the classification tasks using nonuniformly sampled
data, our approach has two significant contributions over this.
First, an important amount of information is lost since the
PLSTM architecture processes only a small percentage of
the data sequence corresponding to its open phase, where
we use the whole sequence. Second, the PLSTM network
generates the output only at the end of the sequence; therefore,
in the vanilla form, it can only be used for the sequential
data processing tasks requiring only one output for the whole
sequence. On the other hand, our LSTM architecture can
generate the output at each time step as well as the end of
the sequence, and hence, it can also be employed in the tasks,
such as time series prediction and online regression.

We emphasize that the conventional LSTM-based meth-
ods [5], [11], [13], [14] are inadequate to process nonuni-
formly sampled sequential data since they suffer from cer-
tain restrictions, such as loss in the information exploited
by the network. Furthermore, [13] and [14] lose the time
information in the preprocessing step due to windowing and
averaging operations instead of incorporating it. Reference [5]
has restricted application areas since it can generate output
only at the end of the sequence. In this paper, we employ a
novel LSTM network, which is extended with additional time
gates, for classification and sequential regression tasks. These
time gates incorporate the time information into the network as
an adaptive nonlinear scaling factor on the conventional gates.
Since we use the whole data sequence, there is no loss in the
incoming information unlike [5], [13], and [14]. Moreover,
our LSTM architecture can generate output at each time step
unlike PLSTM, and hence, it has a wide range of application
areas from sequence labeling to online regression.

C. Contributions

Our contributions are as follows.

1) We introduce a novel LSTM network architecture
for processing nonuniformly sampled sequential data,
where, for the first time, in the literature, we incorporate
the time information as a nonlinear scaling factor using
additional time gates.

2) We show that the sampling intervals have a scaling
effect on the conventional gates of the classical LSTM
architecture. To show this, we first model nonuniform
sampling with the missing input case and then extend it
to the arbitrary nonuniform sampling case.

3) Our architecture can generate output at each time step
as well as at the end of the input sequence unlike the
PLSTM network. Therefore, our LSTM architecture has
a wide range of application areas from online regression
to sequence labeling.

4) Our architecture contains the classical LSTM network
and simplifies to it when the time intervals do not carry
any information related to the underlying model.

5) Our LSTM architecture enables us to use the whole data
sequence without any loss in the information entering to
the LSTM network unlike [5], [13], and [14].
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6) We achieve this substantial performance improvement
with the same order of computational complexity with
the vanilla LSTM network. The computational cost due
to the time gates is only linear in the number of hidden
neurons in the LSTM network.

7) Through extensive set of experiments involving syn-
thetic and real data sets, we demonstrate significant
performance gains achieved by our algorithm for both
regression and classification problems.

D. Organization of this Paper

The organization of this paper as follows. We formally
define our problem setting in Section II. In Section III, we first
provide the derivations for the effect of the time information
on the conventional gates and then introduce our LSTM
architecture. In Section IV, we compare the performance of our
architecture with respect to the state-of-the-art architectures.
This paper concludes with several remarks in Section V.

II. PROBLEM DESCRIPTION

In this paper, all vectors are column vectors and denoted by
boldface lowercase letters. For a vector x, ||x|| = √

xT x is the
�2-norm, where xT is the ordinary transpose. 〈·, ·〉 represents
the outer product of two vectors, i.e., 〈x1, x2〉 = x1xT

2 .
Vector sequences are denoted by boldface uppercase letters,
e.g., x. x(i) represents the ith vector sequence in the data set
{x(1), . . . , x(N)}, where N is the number of vector sequences
in the set. X is the space of variable length vector sequences,
i.e., x(i) ∈ X . x(i) = [x(i)

t1 , . . . , x(i)
tni

] are the ordered sequence

of vectors with length ni , where x(i)
tk stands for the vector of

x(i) at time tk , and k is the time index. x j and xtk, j represent
the j th elements in the vector x and xtk , respectively. 1n ∈ R

n

stands for the vector, where all elements equal to 1. Wi,{ j,k}
represents the element of the matrix W i in j th row and kth
column.

We study nonlinear regression and classification of nonuni-
formly sampled sequential data. We observe variable length
vector sequences x(i) = [x(i)

t1 , . . . , x(i)
tni

] ∈ X , x(i)
tk ∈ R

m . The

corresponding desired signal is given by d(i)
tk ∈ R in regression

and d(i)
ni ∈ {1, . . . , C} for classification, where C is the number

of classes. Our goal is to estimate d(i)
tk by

d̂(i)
tk = ftk

(
x(i)

t1 , . . . , x(i)
tk

)

where ftk (·) is a possibly time-varying and adaptive nonlinear
function at time step tk . For the input vector x(i)

tk , we suffer

the loss l(d(i)
tk , d̂(i)

tk ), and the loss for the vector sequence
x(i) is the average of individual losses, which is denoted
by L(i) = (1/ni )

∑ni
k=1 l(d(i)

tk , d̂(i)
tk ). The total performance of

the network is evaluated by the mean of the losses over all
sequences

L = 1

N

N∑

i=1

L(i). (1)

Since the data are nonuniformly sampled, the sampling times
of the input vectors xtk are not regular, i.e., the time intervals

between the consecutive input vectors, xtk and xtk+1 , may vary,
and we denote these sampling intervals by �tk values

�tk � tk+1 − tk .

As an example, in target tracking and position estimation
application with a camera system [23], we sequentially receive
position vectors of a target xtk and estimate its distance from
a certain point p in the next position by d̂tk . Here, the desired
signal is given by dtk = ‖xtk+1 − p‖ and under squared error
loss l(dtk , d̂tk ) = (dtk −d̂tk )

2. In the case of occlusions or when
the camera misses frames, we do not receive position vectors
and time intervals between consecutively received position
vectors change, which corresponds to nonuniform sampling.

We use RNNs to process the sequential data. A generic
RNN is given by [24]

htk = f (Wh xtk + Rh htk−1)

ytk = g(Ry htk ) (2)

where xtk ∈ R
m is the input vector, htk ∈ R

q is the state
vector, and ytk ∈ R

p is the output at time tk . W h ∈ R
q×m ,

Rh ∈ R
q×q , and Ry ∈ R

p×q are the weight matrices. f (·) and
g(·) are pointwise nonlinear functions. We drop the sample
index i to simplify the notation.

We focus on a special kind of the RNNs, the LSTM net-
works without the peephole connections. The LSTM network
is described by the following equations [25]:

ztk = g(W z xtk + Rz ytk−1
) (3)

i tk = σ(W i xtk + Ri ytk−1
) (4)

f tk = σ(W f xtk + R f ytk−1
) (5)

otk = σ(Woxtk + Ro ytk−1
) (6)

ctk = i tk � ztk + f tk � ctk−1 (7)

ytk = otk � h(ctk ) (8)

where xtk ∈ R
m is the input vector, ctk ∈ R

q is the state vector,
and ytk ∈ R

q is the output vector at time tk . ztk is the block
input and i tk , f tk , and otk are the input, forget, and output
gates, respectively. Nonlinear activation functions g(·), h(·),
and σ(·) apply the pointwise operations. tanh(·) is commonly
used for g(·) and h(·) functions, and σ(·) is the sigmoid
function, i.e., σ(x) = (1/(1 + e−x)). � is the elementwise
(Hadamard) product and operates on the two vectors of the
same size. W z , W i , W f , Wo ∈ R

q×m are the input weight
matrices and Rz , Ri , R f , Ro ∈ R

q×q are the recurrent weight
matrices. With the abuse of notation, we incorporate the bias
weights, bz , bi , b f , bo ∈ R

q , into the input weight matrices
and denote them by W θ = [Wθ ; bθ ], θ ∈ {z, i, f, o}, where
xtk = [xtk ; 1]. For the regression problem, we generate the
estimate d̂tk as

d̂tk = wT
tk ytk

where wtk ∈ R
q is the final regression coefficients, which can

be trained in an online or batch manner depending on the
application.

For the classification problem, we focus on the sequence
classification, i.e., we have only one desired signal d(i) for
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Fig. 1. Detailed schematic of the classification architecture. Note that the
index i is dropped in order to simplify the notation.

each vector sequence x(i). As shown in Fig. 1, our final
decision d̂(i) is given by

d̂(i) = max
j

softmax(W ỹ(i)) j

where W ∈ R
c×q is the weight matrix, c is the number of

classes, and ỹ(i) is the combination of the LSTM network
outputs, y(i)

t1 , . . . , y(i)
tni

. To obtain ỹ(i), we may use three
different pooling methods: mean, max, and last pooling as

ỹ(i)
mean = 1

ni

ni∑

k=1

y(i)
tk

ỹ(i)
max j

= max
k

(
y(i)

tk, j

)

ỹ(i)
last = y(i)

tni
.

In Section III, we introduce a novel LSTM architecture
working on nonuniformly sampled data and also provide its
forward-pass and backward-pass update formulas.

III. NOVEL LSTM ARCHITECTURE

We need to incorporate the time information into the LSTM
network to enhance the performance [5]. For this purpose, one
can directly append the sampling intervals, �tk values, to the
input vector, i.e., x̃tk = [xtk ; �tk]. However, in this solution,
�tk is incorporated as an additional feature, and its effect is
only additive to the weighted sum of the other features, e.g.,
as multiplied by W̃ x̃tk , where W̃ ∈ R

q×(m+1) is the extended
weight matrix. For example, the input gate i tk is calculated by

i tk = σ(W̃ i x̃tk + Ri ytk−1
) (9)

instead of (4), where the W i xtk term changes as W̃ i x̃tk . In that
case, the only difference between (9) and (4) is the additive
term of W̃i,{ j,m+1}�tk inside σ(·). In the following, we will
demonstrate that �tk should also have a scaling effect on the
conventional gates, i.e., the input, forget, and output gates.

To this end, in Section III-A, we first consider a special
case of nonuniform sampling, where x(i) is uniformly sam-
pled; however, certain columns of x(i) are missing. We then
extend our approach to arbitrary nonuniform sampling case
in Section III-B.

A. Modeling Nonuniform Sampling With Missing Input Case

We make our derivations first for the RNN case for one-step
ahead prediction problem, i.e., the aim is to estimate the next
signal xtk+1 , where the current input is xtk . We first consider
the case when we have uniform sampling, i.e., tk+1 − tk = �
for all time steps, where � is some fixed time interval. In this
framework, we simply combine the RNN equations (2), and
then, the RNN model estimates the next sample as

x̂tk+1 = g(Ry f (Wh xtk + Rh htk−1)) = f̄ (xtk , htk−1) (10)

where f̄ (·) is a composite function, which includes f (·)
and g(·). Assume that xtk are the samples of an infinitely
differentiable continuous function of time, x. In this case, xtk+1

is calculated by the Taylor series expansion of x around xtk as

xtk+1 = xtk+� = xtk + �
∂xtk

∂ t
+ �2 ∂2xtk

∂ t2 + �3 ∂3xtk

∂ t3 + · · ·.
(11)

We now model the nonuniform sampling case with missing
instances, i.e., any �tk is an integer multiple of the fixed
time interval �. For example, if the next input xtk+1 is not
missing, then the time interval �tk = �. Similarly, if xtk+1

is missing, but we have xtk+2 , then �tk = 2�. Assume that
xtk−1 and xtk+1 are available, while xtk is missing from our
data sequence. In this case, we cannot directly apply the same
Taylor series expansion in (11) to calculate xtk+1 since the data
xtk are missing. However, we have an estimate x̂tk , which is
obtained by the model in (10) using the input xtk−1 . Therefore,
we estimate xtk+1 by using x̂tk instead of xtk in (11) as

xtk+1≈
∞∑

n=0

�n ∂n x̂tk

∂ tn
= x̂tk +�

∂ x̂tk

∂ t
+�2 ∂2 x̂tk

∂ t2 +�3 ∂3 x̂tk

∂ t3 +· · · .

(12)

We next substitute x̂tk with f̄ (xtk−1 , htk−2) by using (10) to
yield

x̂tk+1 = f̄ (xtk−1 , htk−2) + �

1!
∂ f̄ (xtk−1 , htk−2)

∂ t

+�2

2!
∂2 f̄ (xtk−1 , htk−2)

∂ t2 + · · · . (13)

We write (13) in the vector form as

x̂tk+1, j =
[

1
�

1!
�2

2!
�3

3! . . .

]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f̄ (xtk−1 , htk−2) j

f̄ ′(xtk−1 , htk−2) j

f̄ ′′(xtk−1 , htk−2) j

f̄ ′′′(xtk−1 , htk−2) j
...

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(14)

where f̄ ′(·) represents the derivative with respect to t and
similarly for the other derivative terms. We approximate this
equation as

x̂tk+1 ≈ f�(�) � fx,h(xtk−1 , htk−2) (15)

where f�(·) is a nonlinear function of �, whereas fx,h(·)
represents a nonlinear function of xtk−1 and htk−2 . Note that
both f�(·) and fx,h(·) return vectors as their outputs in the
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length of xtk . This derivation can be extended to any length
of missing instances, such as, for 2�, this yields

x̂tk+2 ≈ f�(2�) � fx,h(xtk−1 , htk−2). (16)

Hence, the time interval � has a nonlinear scaling effect
on fx,h(·). Note that in uniform sampling case, the classical
RNNs use only fx,h(·) to estimate the next sample, i.e., f̄ (·)
in (10), although the scaling effect of time interval still exists.
However, fx,h(·) is able to handle this scaling effect since �
and f�(�) values are constant.

In Section III-B, we focus on the arbitrary nonuniform
sampling case.

B. Arbitrary Nonuniform Sampling

In this section, we consider the arbitrary nonuniform sam-
pling, i.e., sampling without any constant sampling interval
and �tk is not an integer multiple of a fixed time interval �.
The Taylor series expansion for the missing data case is,
similarly, extended to arbitrary nonuniform sampling case for
the one-step ahead estimation problem, i.e.,

xtk+1 =
∞∑

n=0

�tk
n ∂n xtk

∂ tn

= xtk +�tk
∂xtk

∂ t
+ �t2

k
∂2xtk

∂ t2 + �t3
k
∂3xtk

∂ t3 + · · · . (17)

Similar derivations lead to

x̂tk+1 = f�(�tk) � fx,h(xtk , htk−1). (18)

In the nonuniform sampling case, f�(�tk) have unique scal-
ing effect on fx,h(·) at each time step since �tk differs.
Therefore, ignoring the time information in estimation process
results in a limited performance. Extending input vector with
time intervals makes only an additive contribution to the
fx,h(xtk , htk−1) term, which is insufficient to model the effect
of f�(�tk). To circumvent this issue, we introduce a new
RNN structure, particularly, an LSTM architecture, which
includes the effect of f�(�tk). The new LSTM architecture
is explained in Section III-C.

C. Time-Gated-LSTM Architecture

We present a novel LSTM architecture to incorporate
the time information into our estimation function as a
nonlinear scaling factor, i.e., it learns the time-dependent
scaling function f�(·). In the classical LSTM architecture,
fx,h(xtk , htk−1) is already modeled as σ(W xtk + R ytk−1

)
in the specialized gate structures as in (3)–(6). Therefore,
we focus on modeling f�(·). In accordance with (18), we can
straightforwardly incorporate the time information into the
LSTM architecture by altering (8) as

ytk = otk � h(ctk ) � f�(�tk). (19)

Here, we incorporate f�(�tk) to the LSTM architecture as a
scaling factor only on the output gate. Since the gate structures
in the LSTM architecture are specialized for different tasks,
such as forgetting the last state, their responses to the time
intervals need to be different. For example, when the input

Fig. 2. Detailed schematic of an LSTM block with additional time gates.
Note that xtk , ytk−1

, and �tk are multiplied with their weights, W (·) and
R(·), according to (3)–(5) and (20)–(23). Also corresponding biases b(·) are
added.

xtk arrives after a long time interval �tk , while the forget
gate needs to keep a small amount of the past state, the input
gate needs to incorporate more from the new input. To this
end, we decompose f�(�tk) into three different functions,
f (i)
� (�tk), f ( f )

� (�tk), and f (o)
� (�tk), and use these functions

on the conventional gates in order to allow them to give dif-
ferent responses depending on the time intervals. In particular,
we introduce new time gates to the LSTM network in order
to model the scaling effect of f�(·). This LSTM architecture
is named time-gated LSTM (TG-LSTM) in this paper.

We introduce three different time gates, which use sampling
intervals, �tk values, as their inputs, as shown in Fig. 2. The
first time gate is the input time gate and denoted by τ i

tk , and
the second time gate is the forget time gate and represented
by τ

f
tk . Similarly, the third time gate is the output time gate

and denoted by τ o
tk . Note that there is no time gate τ z

tk , since
i tk and ztk participate to the network as multiplied with each
other and only one time gate τ i

tk is sufficient to scale both.
The input gate i tk , forget gate f tk , and output gate otk are

multiplied by τ i
tk , τ

f
tk , and τ o

tk , respectively, as shown in Fig. 2.
In addition to (3)–(8), the forward-pass process of the new
LSTM architecture in Fig. 2 is modeled by the following set
of equations:

τ i
tk = u(Wτ i �tk) (20)

τ
f
tk = u(Wτ f �tk) (21)

ctk = i tk � ztk � τ i
tk + f tk � ctk−1 � τ

f
tk (22)

τ o
tk = u(Wτ o�tk) (23)

ytk = otk � τ o
tk � h(ctk ) (24)

where Wτ i , W τ f , and Wτ o ∈ R
q×nτ are the weight matrices

of the time gates τ i , τ f , and τ o, respectively. u(·) is the
pointwise nonlinearity, which is set to σ(·). �tk ∈ R

nτ is the
input for the time gates, and one can append different functions
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of �tk , such as (�tk)2 and (1/�tk) in addition to �tk . Here,
(20), (21), and (23) are added to the set of forward-pass
equations of the classical LSTM architecture, (22) and (24)
are replaced with (7) and (8), respectively.

D. Training of the New Model

For the training of the TG-LSTM architecture, we employ
the backpropagation through time algorithm to update the
weight matrices of our LSTM network, i.e., the input weight
matrices W z, W i , W f , Wo, Wτ i , Wτ f , and Wτ o and the
recurrent weight matrices Rz, Ri , R f , and Ro. To write the
update equations in a notationally simplified form, we first
define a new notation for the gates before the nonlinearity is
applied, e.g.,

ī tk = W i xtk + Ri ytk−1

τ̄ i
tk = Wτ i xtk

where ī tk ∈ R
q and τ̄ i

tk ∈ R
q are the sum terms before the

nonlinearity for the input gate and input time gate, respectively.
The terms for the other gates z̄tk , f̄ tk , ōtk , τ̄

f
tk , τ̄ o

tk ∈ R
q

have similar formulations. Then, we first calculate the local
gradients as follows:

δ ytk = ∂L

∂ytk
+ RT

z δztk+1 + RT
i δi tk+1

+RT
f δ f tk+1

+ RT
o δotk+1

δotk = δ ytk � h(ctk ) � τ o
tk � σ ′(ōtk )

δτ o
tk = δ ytk � h(ctk ) � otk � u′(τ̄ o

tk )

δctk = δ ytk � otk � τ o
tk � h′(ctk ) + f tk+1

� δctk+1

δ f tk = δctk � ctk−1 � τ
f
tk � σ ′( f̄ tk )

δτ
f
tk = δctk � ctk−1 � f tk � σ ′( ¯τ f

tk )

δi tk = δctk � ztk � τ tk � σ ′(ī tk )

δztk = δctk � i tk � τ tk � g′( z̄tk )

δτ i
tk = δctk � i tk � ztk � u′(τ̄ i

tk )

where δ ytk , δotk , δτ o
tk , δctk , δ f tk , δτ

f
tk δctk , δi tk , δztk ,

δτ i
tk ∈ R

q are the local gradients for corresponding nodes.
The gradients for the input and recurrent weight matrices are
calculated by

δWθ =
n∑

k=0

〈δθ tk xtk 〉

δRθ =
n−1∑

k=0

〈δθ tk+1 , ytk 〉

where θ ∈ {z, i, f, o}, and the gradient for weights of the time
gates are calculated by

δWτ∗ =
n∑

k=0

〈
δτ∗

tk �tk
〉

where ∗ ∈ {i, f, o} and �tk = [�tk; 1]. 〈·, ·〉 represents the
outer product of two vectors, i.e., 〈x1, x2〉 = x1xT

2 .
Remark 1: Our TG-LSTM architecture has additional time

gates on top of the vanilla LSTM architecture. One can

TABLE I

NUMBER OF MULTIPLICATION OPERATIONS IN THE FORWARD
PASS OF THE TG-LSTM, PLSTM, AND THE CLASSICAL

LSTM ARCHITECTURES FOR ONE TIME STEP. LSTM-1
IS THE NETWORK THAT TIME INTERVALS ARE NOT

USED. LSTM-2 REPRESENTS THE LSTM NETWORK,
WHERE THE TIME INTERVALS ARE ADDED TO

THE INPUT VECTOR AS ANOTHER FEATURE

remove any time gate by setting its all elements to 1, for
example, to close input time gate, τ i = 1q . In the worst
case, the time intervals have no correlation with the underlying
model, all time gates converge to 1q vector, and our TG-LSTM
architecture simplifies to the classical LSTM architecture.

Remark 2: The complexity of the new architecture is in
the same order of the complexity of the classical LSTM
architecture. In Table I, we provide the computational loads
in terms of the number of required multiplication operations
in the forward pass for the classical LSTM, PLSTM, and
TG-LSTM architectures. In Table I, LSTM-1 represents the
LSTM network in which the time intervals are not incorporated
to the input vector, i.e., the input vector is merely xtk . LSTM-2
is the network in which the input vectors are extended with
the time intervals between the samples as another feature,
i.e., x̃tk = [xtk ; �tk]. Four matrix vector multiplications for
the input, i.e., W xtk , four matrix vector multiplications for
the last hidden state, i.e., Rhtk−1 , and three vector–vector
multiplications between the gates, i.e., (7) and (8), are included
in the basic LSTM architecture, which need 4q2 + 4qm + 3q
multiplication operations. Since the LSTM-2 architecture has
an extended input vector, it has 4q(m + 1) multiplications
instead of 4qm from the W xtk terms. The PLSTM architecture
has additional scalar operations for the sampler functions, and
however, since we include only vectorial multiplications, it has
4q2+4qm+3q multiplication operations in one time step. The
TG-LSTM architecture has additional 3q multiplications due
to the multiplications of time gates with the conventional gates.

IV. SIMULATIONS

In this section, we illustrate the performance of the proposed
LSTM architecture under different scenarios with respect
to the state-of-the-art methods through several experiments.
In the first part, we focus on the regression problem for various
real-life data sets, such as kinematic [26], bank [27], and
pumadyn [28]. In the second part, we compare our method
with the LSTM structures on several different classification
tasks over real-life data sets, such as Pen-Based Recognition of
Handwritten Digits [29] and UJI Pen (Version 2) [29] data sets.

A. Regression Task

In this section, we evaluate the performances of the
TG-LSTM and the vanilla LSTM architectures for the
regression problem. The classical LSTM architecture uses the
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time intervals as another feature in the input vectors, i.e., the
LSTM-2 architecture defined in III-D. Therefore, for a data set
with the input size m, the classical LSTM architecture has the
input size m + 1. LSTM-windowing and averaging operations
(WA) represents the classical LSTM architecture in [13] and
[14], which uses windowing and averaging operations on the
data before entering the LSTM network. We train the networks
with the stochastic gradient descent (SGD) algorithm using the
constant learning rate.

We first consider a sine wave with frequency 10 Hz and
length n = 1000 for training and n = 500 for testing. The sam-
pling intervals �tk are drawn uniformly from the range [2, 10],
[5, 20], and [20, 50] ms for S1, S2, and S3 simulations, respec-
tively. Our aim is to predict the next sample xtk+1 . For this data,
the input is scalar xtk ∈ R, i.e., the input size m = 1, and the
output dtk ∈ R, where dtk = xtk+1 . For the parameter selection,
we perform a grid search on the number of hidden neurons and
learning rate in the intervals q = [3, 20] and η = [10−3, 10−6],
respectively. For the window size of the classical LSTM
architecture with the preprocessing method, we search on the
interval [(�max/2),�max], where �max equals to 10, 20, and
50 ms, respectively. We choose the parameters with fivefold
cross validation, and however, we only use the first and last
folds for validation to keep the sequential pattern of the data.
Otherwise, the sequence is corrupted, e.g., the last sample of
the first fold is followed by the first sample of the third fold
instead of the second fold. We choose the learning rate as
η = 10−4 for S1 and S2 simulations and η = 2 × 10−5

for S3 simulations. The number of hidden neurons is chosen
as q = 20 for all simulations. The window sizes for the
method using the windowing and averaging technique are 5,
20, and 50 ms for S1, S2, and S3, respectively. We initiate
the weights of the time gates of the TG-LSTM architecture
from the distribution N ((1/E[�tk]), 0.01) to start the time
gates in the smooth area of the sigmoid activation function and
prevent the gradients from diminishing due to multiplication.
Other weights are initiated from the distribution N (0, 0.01).

In Fig. 3, we demonstrate the regression performance of the
algorithms under different sampling interval ranges in terms
of the mean squared error on the test set per epoch. LSTM
represents the classical LSTM architecture in [5], which uses
the time intervals as another feature. LSTM-WA is the classical
LSTM architecture in [13] and [14], which uses windowing
and averaging operations on the data before entering the
LSTM network. In Fig. 3, one can see that the performance
improvement by the TG-LSTM architecture becomes more
evident for the larger time intervals. While all three architec-
tures achieve similar results in terms of the steady-state error
in S1 simulations, the performance difference between the
TG-LSTM architecture and the classical LSTM architecture
a using preprocessing technique significantly increases in
S2 simulations. Furthermore, in S3 simulations, we observe
a higher performance difference between the TG-LSTM and
classical LSTM architectures. Moreover, the TG-LSTM archi-
tecture outperforms the other architectures in terms of the
convergence rate in all cases.

Other than the sine wave, we compare the TG-LSTM and
classical LSTM architectures on the kinematic [26], bank [27],

Fig. 3. Regression performance of the TG-LSTM and LSTM networks on
the synthetic sine data set with different sampling intervals. The sampling
intervals �tk are drawn uniformly from the range [2, 10], [5, 20], and [20, 50]
ms for S1, S2, and S3 simulations, respectively. LSTM represents the classical
LSTM architecture in [5], which uses the time intervals as another feature.
LSTM-WA is the classical LSTM architecture in [13] and [14], which uses
windowing and averaging operations on the data before entering the LSTM
network.

Fig. 4. Regression performance of the TG-LSTM and LSTM networks on
the kinematic data set.

and pumadyn [28] data sets. The results for the LSTM-WA
method are not included due to comparatively much better
performances of the other methods. Each data set contains an
input vector sequence and the corresponding desired signals
for each time step. These data sets do not have separate
training and test sets; therefore, we split the sequences in each
data set, such that first 60% of the sequence is used for the
training and the following 40% is used for the test. Since the
data sets contain uniformly sampled sequences, we first need
to convert them to the nonuniformly sampled sequences. For
this purpose, we sequentially undersample the sequences based
on a probabilistic model. Assume that we have the uniformly
sampled input sequence x = [x1, . . . , xl ]. If we receive x j

from the original sequence as xtk , the next sample xtk+1 is
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chosen from the remaining sequence [x j+1, . . . , xl ] according
to the probabilistic model. In our simulations, we use

p(�tk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.4, if �tk = 1

0.4, if �tk = 2

0.2, if �tk = 3

0, otherwise

(25)

where p(�tk) is the probability mass function for the
time difference �tk = tk+1 − tk , e.g., P(xtk+1 = x j+1|
xtk = x j ) = 0.4 and P(x tk+1 = x j+3|xtk = x j ) = 0.2.
Using (25), we generate the nonuniformly sampled sequence
xnu = [xt1, . . . , xtn ], n < l, and use this sequence in our simu-
lations. Note that, there is no fine-tuning on the undersampling
function. We observed similar results with the probabilistic
models using different probability mass functions. For each
simulation, we used the same number of hidden neurons for
both the LSTM architectures and set q to the original input
size of the data set m. Note that, the input size for the classical
LSTM becomes m + 1 since we extend the input vector with
the time differences, i.e., LSTM-2 architecture. The real-life
datasets are as follows:

1) Kinematic data set is a simulation of 8-link all-revolute
robotic arm, where the aim is to predict the distance of
the effector from the target. The original input vector
size m = 8, and we set the number of hidden neurons
q = 8 for both LSTM and TG-LSTM networks. For
the SGD algorithm, we select the constant learning rate
η = 10−5 from the interval [10−6, 10−3] using the cross
validation.

2) Bank data set is generated by a simulator, which sim-
ulates the queues in banks. Our goal is to predict the
fraction of the customers leaving the bank due to long
queues. The input vector xtk ∈ R

32. We set the number
of hidden neurons q = 32 and the constant learning rate
η = 10−5 from the interval [10−6, 10−3].

3) Pumadyn data set is obtained from a simulation of
Unimation Puma 560 robotic arm, which simulates the
queues in banks. Our goal is to predict the angular
acceleration of one of the arms. For this data set,
the input vector size m = 32, and we set the number
of hidden neurons q = 32 for both the TG-LSTM and
LSTM networks. The constant learning rate is set as
η = 10−5 from the interval [10−6, 10−3].

In Figs. 4–6, we illustrate the regression performances of the
TG-LSTM and classical LSTM architectures in terms of mean
squared error per epoch for the kinematic, bank, and pumadyn
data sets, respectively. The TG-LSTM architecture has an out-
standingly faster convergence rate compared with the classical
LSTM architecture. In addition, the TG-LSTM architecture
significantly outperforms the classical LSTM architecture in
terms of the steady-state performance. These results show
that the time gates, which incorporate the time differences
as a nonlinear scaling factor, successfully model the effect of
the nonuniform sampling. Both faster convergence and better
steady-state performance are achieved by the TG-LSTM archi-
tecture. In these simulations, no decaying factor is used for
the learning rate of the SGD algorithm since the architectures

Fig. 5. Regression performance of the TG-LSTM and LSTM networks on
the bank data set.

Fig. 6. Regression performance of the TG-LSTM and LSTM networks on
the pumadyn data set.

are able to converge. In the tasks, which requires a decaying
factor for the convergence, the performance difference of
the TG-LSTM and classical LSTM architectures significantly
increases since our algorithm has a faster convergence rate.

B. Classification Task

In this section, we evaluate the performances of the
TG-LSTM, PLSTM [5], and classical LSTM architectures for
the classification tasks. For this task, we used the real-life
data sets Pen-Based Recognition of Handwritten Digits [29]
and UJI Pen (Version 2) [29]. For the SGD algorithm, we use
Adam optimizer [30] with the initial learning rate η = 10−3.

In the first experiment, we demonstrate the classification
performance of the LSTM architecture on the Pen-Based
Recognition of Handwritten Digits [29] data set. This data set
contains handwritten digits from 44 different writers, where
each writer draws 250 digits. These digits are drawn on
a 500 × 500 tablet and uniformly sampled with 100 ms.
We nonuniformly undersample these uniform samples by
using (25). The input vector xtk = [x, y]T , where x and y
are the coordinates, and the desired signal dtk ∈ {0, . . . , 9}.
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Fig. 7. Classification performances based on (a) categorical cross-entropy error (b) accuracy on the Pen-Based Recognition of Handwritten Digits [29]
data set.

Fig. 8. Classification performances based on (a) categorical cross-entropy error (b) accuracy on the UJI Pen (Version 2) [29] data set.

For the parameter selection, we use fivefold cross validation
and set the number of the hidden neurons q = 100, which
is selected from the set {10, 25, 50, 100}. For the PLSTM
architecture, all three parameters, i.e., the period, shift, and
on-ratio, are set as trainable to employ the network with full
capacity. In Fig. 7, we illustrate the cross-entropy loss and
the accuracy plots for the architectures with three different
pooling methods. We observe from Fig. 7 that the TG-LSTM
architecture outperforms both the PLSTM and classical LSTM
architectures. In particular, the TG-LSTM architecture using
the last pooling method significantly improves the performance
for both the convergence rate and the steady-state accuracy,
which shows that the time gates in our method successfully
model the effect of the nonuniform sampling.

We also compare the performance of the architectures on
the relatively more difficult data set, UJI Pen (Version 2) [29].
This data set is created by the same method with the Pen-Based
Recognition of Handwritten Digits [29] data set. Although
there are many other characters in the data set, we used only
uppercase and lowercase letters in the English alphabet and

the digits. The input vector xtk = [x, y]T , where x and y
are the coordinates, and the desired signal dtk ∈ {a, . . . ,
z, A, . . . , Z , 1, . . . , 9}, where we consider the digit “0” and the
uppercase letter "O" as the same label. In this setup, we have
61 different labels; therefore, this a relatively difficult data set.
For all architectures, we set the number of the hidden neurons
q = 100, which is selected from the set {10, 25, 50, 100} by
fivefold cross validation. For the PLSTM architecture, all three
parameters are trainable as in the first experiment. In Fig. 8,
we illustrate the performance of the architectures in terms of
the categorical cross-entropy error and accuracy, respectively.
We observe that the TG-LSTM architecture with the max and
last pooling methods significantly improve the performance.
Since the data set is more difficult with 61 different classes,
the performance increase is more observable in this simulation.

V. CONCLUSION

We studied nonlinear classification and regression problems
on variable length nonuniformly sampled sequential data in
a batch setting and introduced a novel LSTM architecture,
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namely, TG-LSTM. In the TG-LSTM architecture, we incor-
porate the sampling time information to enhance the per-
formance for applications involving nonuniformly sampled
sequential data. In particular, the input, forget, and output
gates of the LSTM architecture are scaled by these time
gates using the sampling intervals. When the time intervals
do not convey information related to the underlying task, our
architecture simplifies to the vanilla LSTM architecture. The
TG-LSTM architecture has a wide range of application areas
since it can generate output at each time step as well as at
the end of the input sequence unlike the other state-of-the-art
methods. We achieve significant performance gains in various
applications, while our approach has nearly the same com-
putational complexity with the classical LSTM architecture.
In our simulations, covering several different classification and
regression tasks, we demonstrate significant performance gains
achieved by the introduced LSTM architecture with respect to
the conventional LSTM architectures [5], [11] over several
synthetic and real-life data sets.
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