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Abstract— Multiarmed bandits (MABs) model sequential
decision-making problems, in which a learner sequentially
chooses arms with unknown reward distributions in order to
maximize its cumulative reward. Most of the prior works on
MAB assume that the reward distributions of each arm are
independent. But in a wide variety of decision problems—
from drug dosage to dynamic pricing—the expected rewards of
different arms are correlated, so that selecting one arm provides
information about the expected rewards of other arms as well.
We propose and analyze a class of models of such decision
problems, which we call global bandits (GB). In the case in
which rewards of all arms are deterministic functions of a single
unknown parameter, we construct a greedy policy that achieves
bounded regret, with a bound that depends on the single true
parameter of the problem. Hence, this policy selects suboptimal
arms only finitely many times with probability one. For this case,
we also obtain a bound on regret that is independent of the true
parameter; this bound is sublinear, with an exponent that depends
on the informativeness of the arms. We also propose a variant
of the greedy policy that achieves Õ(

√
T) worst case and O(1)

parameter-dependent regret. Finally, we perform experiments on
dynamic pricing and show that the proposed algorithms achieve
significant gains with respect to the well-known benchmarks.

Index Terms— Bounded regret, informative arms, multiarmed
bandits (MABs), online learning, regret analysis.

I. INTRODUCTION

MULTIARMED bandits (MABs) provide powerful mod-
els and algorithms for sequential decision-making prob-

lems in which the expected reward of each arm (action) is
unknown. The goal in MAB problems is to design online
learning algorithms that maximize the total reward, which
turns out to be equivalent to minimizing the regret, where the
regret is defined as the difference between the total expected
reward obtained by an oracle that always selects the best arm
based on complete knowledge of arm reward distributions,
and that of the learner, who does not know the expected arm
rewards beforehand. Classical K -armed MAB [1] does not
impose any dependence between the expected arm rewards.
But in a wide variety of decision problems—from drug dosage
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to dynamic pricing—the expected rewards of different arms
are correlated, so that selecting one arm provides information
about the expected rewards of other arms as well. In this
paper, we propose and analyze such an MAB model, which
we call GB.

In GB, the expected reward of each arm is a function
of a single global parameter. It is assumed that the learner
knows these functions but does not know the true value of
the parameter. For this problem, we propose a greedy policy,
which constructs an estimate of the global parameter by
taking a weighted average of parameter estimates computed
separately from the reward observations of each arm. Then,
we show that this policy achieves bounded regret, where the
bound depends on the value of the parameter. This implies that
the greedy policy learns the optimal arm, i.e., the arm with
the highest expected reward, in finite time. We also obtain
a worst case (parameter independent) bound on the regret of
the greedy policy. We show that this bound is sublinear in
time and its time exponent depends on the informativeness of
the arms, which is a measure of the strength of correlation
between expected arm rewards.

GBs encompass the model studied in [2], in which it is
assumed that the expected reward of each arm is a linear
function of a single global parameter. This is a special case of
the more general model we consider in this paper, in which the
expected reward of each arm is a Hölder continuous, possibly
nonlinear function of a single global parameter. On the tech-
nical side, nonlinear expected reward functions significantly
complicate the learning problem. When the expected reward
functions are linear, then the information one can infer about
the expected reward of arm X by an additional single sample
of the reward from arm Y is independent of the history of pre-
vious samples from arm Y .1 However, if reward functions are
nonlinear, then the additional information that can be inferred
about the expected reward of arm X by a single sample of the
reward from arm Y is biased. Therefore, the previous samples
from arm X and arm Y need to be incorporated to ensure that
this bias asymptotically converges to 0.

Many applications can be formalized as GBs. Exam-
ples include: 1) clinical trials involving similar drugs
(e.g., drugs with a similar chemical composition) or treatments
that may have similar effects on the patients and 2) dynamic
pricing with the objective of maximizing revenue over a finite
time horizon.

1The additional information about the expected reward of arm X that can
be inferred from obtaining sample reward r from arm Y is the same as the
additional information about the expected reward of arm X that could be
inferred from obtaining the sample reward L(r) from arm X itself, where L
is a linear function that depends only on the reward functions themselves.
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Example 1: Let yt be the dosage level of the drug for patient
t and xt be the response of patient t . The relationship between
the drug dosage and patient response is modeled in [3] as
xt = M(yt ; θ∗) + �t , where M(·) is the response function,
θ∗ is the slope if the function is linear or the elasticity if the
function is exponential or logistic, and �t is i.i.d. zero-mean
noise. For this model, θ∗ becomes the global parameter and
the set of drug dosage levels becomes the set of arms.

Example 2: In dynamic pricing, an agent sequentially selects
a price from a finite set of prices P with the objective
of maximizing its revenue over a finite time horizon [4].
At instance t , the agent first selects a price pt ∈ P and then
observes the amount of sales at time t , which is denoted by
S(pt ; θ∗). We have S(pt ; θ∗) = F(pt ; θ∗) + �t , where F(.)
is the modulating function, θ∗ is the market size, and �t is
the noise term with zero mean. The modulating function is
equal to the purchase probability of an item of price pt given
the market size θ∗. Examples of commonly used modulating
functions can be found in [5]. The revenue is then given by
R(pt ; θ∗) = pt F(pt; θ∗) + pt�t . In this example, the market
size is the unknown global parameter which needs to be
learned online by setting prices and observing the related
revenues. In Section IX, we illustrate the use of methods
proposed in this paper on this dynamic pricing example.

In addition to the above examples, GBs can also be applied
in any setting in which the parameters of a system that depends
on the rewards in a nonlinear way need to be estimated in order
to learn the optimal arms. At this point, it is important to note
that our work differs from the existing works on nonlinear
parameter estimation [6]–[8], because its focus is to maximize
the total reward by using the estimates of the parameter to
decide which arms to select.

The remainder of this paper is organized as follows.
Contribution and the key results are summarized in Section II.
Related work is discussed in Section III. Problem formula-
tion is given in Section IV. A greedy policy is proposed
in Section V and its regret is analyzed in Section VI.
An improved algorithm that combines the greedy policy with
an upper confidence bound policy is proposed in Section VII.
Learning under time-varying global parameter is considered
in Section VIII. Numerical results are given in Section IX,
followed by the concluding remarks given in Section X.
All proofs are given in the Appendix.

II. CONTRIBUTION AND KEY RESULTS

This paper is an extended version of [9], adding the fol-
lowing contributions. First, it provides two new theoretical
results on weighted-arm greedy policy (WAGP): mean-squared
convergence of the estimated global parameter and a lower
bound on the regret. Second, it provides two new algorithms:
1) Best of UCB and WAGP (BUW) that switches between
the UCB1 and WAGP in order to achieve optimal parameter-
dependent and worst case regrets and 2) nonstationary WAGP
that tracks the time-varying global parameter to take optimal
actions. Third, it provides an illustration of the use of the pro-
posed algorithms on the dynamic pricing example. In addition,
this paper has extended introduction and related work sections,

and includes proofs of all theorems. Our main contributions
can be summarized as follows.

1) We propose a nonlinear parametric model for MABs,
which we refer to as GBs, and a greedy policy, referred
to as WAGP, which achieves bounded regret.

2) We define the concept of informativeness, which mea-
sures how well one can estimate the expected reward of
an arm by using rewards observed from the other arms,
and then, prove a sublinear in time worst case regret
bound for WAGP that depends on the informativeness.

3) We also propose another learning algorithm called the
BUW, which fuses the decisions of the UCB1 [10] and
WAGP in order to achieve Õ(

√
T )2 worst case and O(1)

parameter-dependent regrets.
4) We study a nonstationary version of GB, where the

global parameter slowly changes over time. For this
case, we prove a bound on the time-averaged regret that
depends on the speed of change of the global parameter.

5) We simulate our algorithms on a synthetic dynamic
pricing data set and show that they beat other state-of-
the-art MAB algorithms.

III. RELATED WORK

There is a wide strand of literature on MABs including
finite-armed stochastic MAB [1], [10]–[12], the Bayesian
MAB [13]–[17], contextual MAB [18]–[20], and distributed
MAB [21]–[23]. Depending on the extent of informativeness
of the arms, MABs can be categorized into three: noninfor-
mative, group informative, and globally informative MABs.

A. Noninformative MAB

We call an MAB as noninformative if the reward obser-
vations of any arm do not reveal any information about the
rewards of the other arms. Examples of noninformative MABs
include finite-armed stochastic [1], [10] and nonstochastic [24]
MABs. Lower bounds derived for these settings point out to
the impossibility of bounded regret.

B. Group-Informative MAB

We call an MAB as group-informative if the reward observa-
tions from an arm provides information about a group of other
arms. Examples include linear contextual bandits [25], [26],
multidimensional linear bandits [27]–[31]. and combinatorial
bandits [32], [33]. In these works, the regret is sublinear in
time and in the number of arms. For example, [27] assumes
a reward structure that is linear in an unknown parameter and
shows a regret bound that scales linearly with the dimension
of the parameter. It is not possible to achieve bounded regret
in any of the above settings, since multiple arms are required
to be selected at least logarithmically many times in order to
learn the unknown parameters.

Another related work [34] studies a setting that interpolates
between the bandit (partial feedback) and experts (full feed-
back) settings. In this setting, the decision maker obtains not

2O(·) is the Big O notation and Õ(·) is the same as O(·) except it hides
terms that have polylogarithmic growth.
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TABLE I

COMPARISON WITH RELATED WORKS. γ ≤ 1 REPRESENTS THE INFORMATIVENESS, WHICH IS GIVEN IN DEFINITION 1

only the reward of the selected arm but also an unbiased
estimate of the rewards of a subset of the other arms, where
this subset is determined by a graph. This is not possible in
our setting due to the nonlinear reward structure and bandit
feedback.

C. Globally Informative MAB

We call a MAB problem as globally informative if the
reward observations from an arm provide information about
the rewards of all the arms [2], [35]. GB belongs to the
class of globally informative MAB and includes the linearly
parametrized MAB [2] as a subclass. Hence, our results reduce
to the results of [2] for the special case when expected arm
rewards are linear in the parameter.

A related work that falls into this setting is [36], in which
the authors prove regret bounds that depend on the learner’s
uncertainty about the optimal arm. This uncertainty depends
on the learner’s prior knowledge and prior observations, and
affect the constant factors that contribute to the O(

√
T ) regret

bound. Whereas, in our problem formulation, we show that
the strong dependence of the arms through a global parameter
results in bounded parameter-dependent and a sublinear worst
case regrets.

Table I summarizes our model and theoretical results, and
compares them with the existing literature in the parametric
MAB models. Although GB is more general than the model
in [2], both WAGP and BUW achieve bounded parameter-
dependent regret, and BUW is able to achieve the same worst
case regret as the policy in [2]. On the other hand, although
the linear MAB models are more general than GB, it is not
possible to achieve bounded regret in these models.

IV. PROBLEM FORMULATION

A. Arms, Reward Functions, and Informativeness

There are K arms indexed by the set K := {1, . . . , K }.
The global parameter is denoted by θ∗, which belongs to
the parameter set � that is taken to be the unit interval for
simplicity of exposition. The random variable Xk,t denotes the
reward of arm k at time t . Xk,t is drawn independently from
a distribution νk(θ∗) with support Xk ⊆ [0, 1]. The expected
reward of arm k is a Hölder continuous, invertible function
of θ∗, which is given by μk(θ∗) := Eνk(θ∗)[Xk,t ], where Eν[·]
denotes the expectation taken with respect to distribution ν.
This is formalized in the following assumption.

Assumption 1: We assume the following:
1) For each k ∈ K and θ, θ � ∈ � there exists D1,k > 0 and

1 < γ1,k , such that

|μk(θ) − μk(θ
�)| ≥ D1,k |θ − θ �|γ1,k .

2) For each k ∈ K and θ, θ � ∈ � there exists D2,k > 0 and
0 < γ2,k ≤ 1, such that

|μk(θ) − μk(θ
�)| ≤ D2,k |θ − θ �|γ2,k .

The first assumption ensures that the reward functions
are monotonic and the second assumption, which is also
known Hölder continuity, ensures that the reward functions
are smooth. These assumptions imply that the reward functions
are invertible and the inverse reward functions are also Hölder
continuous. Moreover, they generalize the model proposed in
[2], and allow us to model real-world scenarios described
in Examples 1 and 2, and propose algorithms that achieve
bounded regret.

Some examples of the reward functions that satisfy Assump-
tion 1 are: 1) exponential functions, such as μk(θ) =
a exp(bθ), where a > 0; 2) linear and piecewise linear
functions; and 3) sublinear and superlinear functions in θ ,
which are invertible in �, such as μk(θ) = aθγ , where γ > 0
and � = [0, 1].

Proposition 1: Define μ
k

= minθ∈� μk(θ) and μk =
maxθ∈� μk(θ). Under Assumption 1, the following are true:
1) for all k ∈ K, μk(·) is invertible and 2) for all k ∈ K and
x, x � ∈ [μ

k
, μk]:
∣
∣μ−1

k (x) − μ−1
k (x �)

∣
∣ ≤ D̄1,k |x − x �|γ̄1,k

where γ̄1,k = (1/γ1,k) and D̄1,k = (1/D1,k)
(1/γ1,k).

Invertibility of the reward functions allows us to use the
rewards obtained from an arm to estimate the expected rewards
of other arms. Let γ̄1 and γ2 be the minimum exponents
and D̄1, D2 be the maximum constants, that is

γ̄1 = min
k∈K

γ̄1,k, γ2 = min
k∈K

γ2,k

D̄1 = max
k∈K

D̄1,k, D2 = max
k∈K

D2,k .

Definition 1: The informativeness of arm k is defined as
γk := γ̄1,kγ2,k . The informativeness of the GB instance is
defined as γ := γ̄1γ2.

The informativeness of arm k measures the extent of infor-
mation that can be obtained about the expected rewards of
other arms from the rewards observed from arm k. As we
will show later, when the informativeness is high, one can
form better estimates of the expected rewards of other arms
by using the rewards observed from arm k.

B. Definition of the Regret

The learner knows μk(·) for all k ∈ K but does not know θ∗.
At each time t , it selects one of the arms, denoted by It ,



ATAN et al.: GB 5801

and receives the random reward X It ,t . The learner’s goal is to
maximize its cumulative reward up to any time T .

Let μ∗(θ) := maxk∈K μk(θ) be the maximum expected
reward and K∗(θ) := {k ∈ K : μk(θ) = μ∗(θ)} be the optimal
set of arms for parameter θ . In addition, let k∗(θ) denote
an arm that is optimal for parameter θ . We refer the policy
that selects one of the arms in K∗(θ∗) as the oracle policy.
The learner incurs a regret (loss) at each time it deviates from
the oracle policy. We define the one-step regret at time t as the
difference between the expected reward of the oracle policy
and the learner, which is given by rt (θ∗) := μ∗(θ∗)−μIt (θ∗).

Based on this, the cumulative regret of the learner by time T
(also referred to as the regret hereafter) is defined as

Reg(θ∗, T ) := E

[
T
∑

t=1

rt (θ∗)
]

.

Maximizing the reward is equivalent to minimizing the
regret. In the seminal work by Lai and Robbins [3], it is
shown that the regret becomes infinite as T grows for
the classical K -armed bandit problem. On the other hand,
limT →∞ Reg(θ∗, T ) < ∞ will imply that the learner deviates
from the oracle policy only finitely many times. In Section V,
we prove that this holds for GB.

V. WEIGHTED-ARM GREEDY POLICY

In this section, we propose a greedy policy called WAGP.
The pseudocode of WAGP is given in Algorithm 1. The WAGP
consists of two phases: arm selection phase and parameter
update phase.

Algorithm 1 WAGP
1: Inputs: μk(·) for each arm k
2: Initialization: wk(0) = 0, θ̂k,0 = 0, X̂k,0 = 0, Nk (0) = 0

for all k ∈ K, t = 1
3: while t > 0 do
4: if t = 1 then
5: Select arm I1 uniformly at random from K
6: else
7: Select arm It ∈ arg maxk∈K μk(θ̂t−1) (break ties

randomly)
8: end if
9: X̂k,t = X̂k,t−1 for all k ∈ K \ It

10: X̂ It ,t = NIt (t−1)X̂ It ,t−1+X It ,t
NIt (t−1)+1

11: θ̂k,t = arg minθ∈� |μk(θ) − X̂k,t | for all k ∈ K
12: NIt (t) = NIt (t − 1) + 1
13: Nk(t) = Nk (t − 1) for all k ∈ K \ It

14: wk(t) = Nk(t)/t for all k ∈ K
15: θ̂t = ∑K

k=1 wk(t)θ̂k,t

16: end while

Let Nk(t) denote the number of times arm k is selected
until time t , X̂k,t denote the reward estimate, θ̂k,t denote the
global parameter estimate, and wk(t) denote the weight of arm
k at time t . Initially, all the counters and estimates are set to
zero. In the arm selection phase at time t > 1, the WAGP
selects the arm with the highest estimated expected reward:

It ∈ arg maxk∈K μk(θ̂t−1), where θ̂t−1 is the estimate of the
global parameter calculated at the end of time t − 1.3,4

In the parameter update phase, the WAGP updates:
1) the estimated reward of selected arm It , denoted by X̂ It ,t ;
2) the global parameter estimate of the selected arm It , denoted

by θ̂It ,t ; 3) the global parameter estimate θ̂t ; and 4) the
counters Nk(t). The reward of estimate of arm It is updated as

X̂ It ,t = NIt (t − 1)X̂ It ,t−1 + X It ,t

NIt (t − 1) + 1
.

The reward estimates of the other arms are not updated. The
WAGP constructs estimates of the global parameter from the
rewards of all the arms and combines their estimates using a
weighted sum. The WAGP updates θ̂It ,t of arm It in a way that

minimizes the distance between X̂ It ,t and μIt (θ), i.e., θ̂It ,t =
arg minθ∈� |μIt (θ) − X̂ It ,t |. Then, the WAGP sets the global
parameter estimate as θ̂t = ∑K

k=1 wk(t)θ̂k,t , where wk(t) =
Nk(t)/t . Hence, the WAGP gives more weights to the arms
with more reward observations since the confidence on their
estimates are higher.

VI. REGRET ANALYSIS OF THE WAGP

A. Preliminaries for the Regret Analysis

In this section, we define the tools that will be used in
deriving the regret bounds for the WAGP. Consider any arm
k ∈ K. Its optimality region is defined as

�k := {θ ∈ � : k ∈ K∗(θ)}.
Note that �k can be written as union of intervals in each of
which arm k is optimal. Each such interval is called optimality
interval. Clearly, we have

⋃

k∈K �k = �. If �k = ∅ for an
arm k, this implies that there exists no global parameter value
for which arm k is optimal. Since there exists an arm k� such
that μk� (θ) > μk(θ) for any θ ∈ � for an arm with �k = ∅,
the greedy policy will discard arm k after t = 1. Therefore,
without loss of generality, we assume that �k �= ∅ for all
k ∈ K. The suboptimality gap of arm k ∈ K given global
parameter θ∗ ∈ � is defined as δk(θ∗) := μ∗(θ∗)−μk(θ∗). The
minimum suboptimality gap given global parameter θ∗ ∈ � is
defined as δmin(θ∗) := mink∈K\K∗(θ∗) δk(θ∗).

Let �sub(θ∗) be the suboptimality region of the global
parameter θ∗, which is defined as the subset of the parameter
space in which none of the arms in K∗(θ∗) is optimal, that is

�sub(θ∗) := � \
⋃

k�∈K∗(θ∗)
�k� .

We will show that as time proceeds, the global parameter
estimate will converge to θ∗. However, if θ∗ lies close to
�sub(θ∗), the global parameter estimate may fall into the
suboptimality region for a large number of times, thereby
resulting in a large regret. In order to bound the expected
number of times this happens, we define the suboptimality
distance as the smallest distance between the global parameter
and the suboptimality region.

3The ties are broken randomly.
4For t = 1, the WAGP selects a random arm since there is no prior reward

observation that can be used to estimate θ∗.
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Fig. 1. Illustration of the minimum suboptimality gap and the suboptimality
distance.

TABLE II

FREQUENTLY USED NOTATIONS IN REGRET ANALYSIS

Definition 2: For a given global parameter θ∗, the subopti-
mality distance is defined as

�min(θ∗) :=
{

infθ �∈�sub(θ∗) |θ∗ − θ �| if �sub(θ∗) �= ∅
1 if �sub(θ∗) = ∅.

From the definition of the suboptimality distance, it is
evident that the proposed policy always selects an optimal arm
in K∗(θ∗) when θ̂t is within �min(θ∗) of θ∗. For notational
brevity, we also use �∗ := �min(θ∗) and δ∗ := δmin(θ∗).
An illustration of the suboptimality gap and the suboptimality
distance is given in Fig. 1 for the case with three arms
and reward functions μ1(θ) = 1 − √

θ , μ2(θ) = 0.8θ , and
μ3(θ) = θ2, θ ∈ [0, 1].

The notations frequently used in the regret analysis are
highlighted in Table II.

B. Worst Case Regret Bounds for the WAGP

First, we show that parameter estimate of the WAGP con-
verges in the mean-squared sense.

Theorem 1: Under Assumption 1, the global parameter esti-
mate of the WAGP converges to true value of global parameter
in mean-squared sense, i.e., limt→∞ E[|θ̂t − θ∗|2] = 0.

The following theorem bounds the expected one-step regret
of the WAGP.

Theorem 2: Under Assumption 1, we have for WAGP
E[rt (θ∗)] ≤ O(t−(γ /2)).

Theorem 2 proves that the expected one-step regret of the
WAGP converges to zero.5 This is a worst case bound in the
sense that it holds for any θ∗. Using this result, we derive the
following worst case regret bound for the WAGP.

Theorem 3: Under Assumption 1, the worst case regret of
WAGP is

sup
θ∗∈�

Reg(θ∗, T ) ≤ O(

K
γ
2 T 1− γ

2
)

.

Note that the worst case regret bound is sublinear both in
the time horizon T and the number of arms K . Moreover,
it depends on the informativeness γ . When the reward func-
tions are linear or piecewise linear, we have γ = 1, which is
an extreme case of our model; hence, the worst case regret is
O(

√
T ), which matches with: 1) the worst case regret bound

of the standard MAB algorithms in which a linear estimator
is used [38] and 2) the bounds obtained for the linearly
parametrized bandits [2].

C. Parameter-Dependent Regret Bounds for the WAGP

In this section, we bound the parameter-dependent regret
of the WAGP. First, we introduce several constants that will
appear in the regret bound.

Definition 3: C1(�∗) is the smallest integer τ such that
τ ≥ (D̄1 K/�∗)(2/γ̄1)(log(τ )/2) and C2(�∗) is the smallest
integer τ such that τ ≥ (D̄1 K/�∗)(2/γ̄1) log(τ ).

Closed-form expressions for these constants can be obtained
in terms of the glog function [39], for which the following
equivalence holds: y = glog(x) if and only if x = (exp(y)/y).
Then, we have

C1(�∗) =
⎡

⎢
⎢
⎢

1

2

(
D̄1 K

�∗

) 2
γ̄1

glog

⎛

⎝
1

2

(
D̄1 K

�∗

) 2
γ̄1

⎞

⎠

⎤

⎥
⎥
⎥

C2(�∗) =
⎡

⎢
⎢
⎢

(
D̄1 K

�∗

) 2
γ̄1

glog

⎛

⎝

(
D̄1 K

�∗

) 2
γ̄1

⎞

⎠

⎤

⎥
⎥
⎥

.

Next, we define the expected regret incurred between time
steps T1 and T2 given θ∗ as Rθ∗(T1, T2) := ∑T2

t=T1
E[rt (θ∗)].

The following theorem bounds the parameter-dependent regret
of the WAGP.

Theorem 4: Under Assumption 1, the regret of the WAGP
is bounded as follows.

1) For 1 ≤ T < C1(�∗), the regret grows sublinearly in
time, that is

Rθ∗(1, T ) ≤ S1 + S2T 1− γ
2

where S1 and S2 are constants that are independent of
the global parameter θ∗, whose exact forms are given in
Appendix F.

5The asymptotic notation is only used for a succinct representation to hide
the constants and highlight the time dependence. This bound holds not just
asymptotically but for any finite t .
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2) For C1(�∗) ≤ T < C2(�∗), the regret grows logarith-
mically in time, that is

Rθ∗(C1(�∗), T ) ≤ 1 + 2K log

(
T

C1(�∗)

)

.

3) For T ≥ C2(�∗), the growth of the regret is bounded,
that is

Rθ∗(C2(�∗), T ) ≤ K
π2

3
.

Thus, we have limT →∞ Reg(θ∗, T ) < ∞, i.e., Reg
(θ∗, T ) = O(1).

Theorem 4 shows that the regret is inversely proportional
to the suboptimality distance �∗, which depends on θ∗.
The regret bound contains three regimes of growth: initially,
the regret grows sublinearly until time threshold C1(�∗). After
this, it grows logarithmically until time threshold C2(�∗).
Finally, the growth of the regret is bounded after time threshold
C2(�∗). In addition, since lim�∗→0 C1(�∗) = ∞, in the worst
case, the bound given in Theorem 4 reduces to the one given
in Theorem 3. It is also possible to calculate a Bayesian risk
bound for the WAGP by assuming a prior over the global
parameter space. This risk bound is given to be O(log T ),
when γ = 1 and O(T 1−γ ) when γ < 1 (see [9]).

Theorem 5: The sequence of arms selected by the WAGP
converges to the optimal arm almost surely, i.e., limt→∞ It

∈ K∗(θ∗) with probability 1.
Theorem 5 implies that a suboptimal arm is selected by the

WAGP only finitely many times. This is the major difference
between GB and the classical MAB [1], [10], [36], in which
every arm needs to be selected infinitely many times asymp-
totically by any good learning algorithm.

Remark 1: Assumption 1 ensures that the parameter-
dependent regret is bounded. When this assumption is relaxed,
bounded regret may not be achieved, and the best possible
regret becomes logarithmic in time. For instance, consider
the case when the reward functions are constant over the
global parameter space, i.e., μk(θ∗) = mk for all θ∗ ∈ [0, 1],
where mk is a constant. This makes the reward functions
noninvertible. In this case, the learner cannot use the rewards
obtained from the other arms when estimating the rewards
of arm k. Thus, it needs to learn mk of each arm separately,
which results in logarithmic in time regret when a policy, such
as UCB1 [10], is used. This issue still exists even when there
are only finitely many possible solutions to μk(θ∗) = x for
some x , in which case some of the arms should be selected
at least logarithmically many times to rule out the incorrect
global parameters.

D. Lower Bound on the Worst Case Regret

Theorem 3 shows that the worst case regret of the WAGP
is O(T 1− γ

2 ), which implies that the regret decreases with γ .
In this section, we give lower bounds on the parameter-
dependent and the worst case regrets.

Theorem 6: For T ≥ 8 and any policy, the parameter-
dependent regret is lower bounded by �(1) and the worst
case regret is lower bounded by �(

√
T ).

Fig. 2. Operation of the nonstationary WAGP.

The above-mentioned theorem raises a natural question:
can we achieve both Õ(

√
T ) worst case regret (such as the

UCB-based MAB algorithms [10]) and bounded parameter-
dependent regret by using a combination of UCB and
WAGP policies? We answer this question in the affirmative
in Section VII.

VII. BEST OF THE UCB AND THE WAGP

In this section, we propose the BUW, which combines
the UCB1 and the WAGP to achieve bounded parameter-
dependent and O(

√
T ) worst case regrets. In the worst case,

the WAGP achieves O(T 1−γ /2) regret, which is weaker than
Õ(

√
T ) worst case regret of UCB1. On the other hand,

the WAGP achieves bounded parameter-dependent regret,
whereas UCB1 achieves a logarithmic parameter-dependent
regret. In this section, we propose an algorithm which com-
bines these two algorithms and achieves both Õ(

√
T ) worst

case regret and bounded parameter-dependent regret.
The main idea for such an algorithm follows from

Theorem 4. Recall that Theorem 4 shows that the WAGP
achieves O(T 1−γ /2) regret when 1 < T < C1(�∗). If the
BUW could follow the recommendations of UCB1 when
T < C1(�∗) and the recommendations of the WAGP when
T ≥ C1(�∗), then it will achieve a worst case regret bound
of Õ(

√
T ) and bounded parameter-dependent regret. The

problem with this approach is that the suboptimality distance
�∗ is unknown a priori. We can solve this problem by using a
data-dependent estimate �̃t , where �∗ > �̃t holds with high
probability. The data-dependent estimate �̃t is given as

�̃t = �̂t − D̄1 K

(
log t

t

) γ̄1
2

where

�̂t = �min(θ̂t ) =
{

infθ �∈�sub(θ̂t )
|θ̂t − θ �| if �sub(θ̂t ) �= ∅

1 if �sub(θ̂t ) = ∅.

The pseudocode for the BUW is given in Fig. 2. The regret
bounds for the BUW are given in Theorem 7.

Theorem 7: Under Assumption 1, the worst case regret of
the BUW is bounded as follows:

sup
θ∗∈�

Reg(θ∗, T ) ≤ Õ(
√

K T ).

Under Assumption 1, the parameter-dependent regret of the
BUW is bounded as follows.
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Algorithm 2 BUW
Inputs: T , μk(·) for each arm k.
Initialization: Select each arm once for t = 1, 2, . . . , K ,
compute θ̂k,K , Nk(K ), μ̂k , X̂k,K for all k ∈ K, and θ̂K ,
�̂K , �̃K , t = K + 1

1: while t ≥ K + 1 do
2: if t < C2

(

max
(

0, �̃t−1

))

then

3: It ∈ arg maxk∈K X̂k,t−1 +
√

2 log(t−1)
Nk (t−1)

4: else
5: It ∈ arg maxk∈K μk(θ̂t−1)
6: end if
7: Update X̂ It ,t , Nk(t), wk(t), θ̂k,t , θ̂t as in the WAGP
8: Solve

�̂t =
{

infθ �∈�sub(θ̂t )
|θ̂t − θ �| if �sub(θ̂t ) �= ∅

1 if �sub(θ̂t ) = ∅

9: �̃t = �̂t − D̄1 K
(

log t
t

) γ̄1
2

10: end while

1) For 1 ≤ T < C2(�∗/3), the regret grows logarithmi-
cally in time, that is

Rθ∗(1, T ) ≤
⎡

⎣8
∑

k:μk<μ∗

log T

δk

⎤

⎦ + K (1 + π2).

2) For T ≥ C2(�∗/3), the growth of the regret is bounded,
that is

Rθ∗(C2(�∗/3), T ) ≤ Kπ2.

The BUW achieves the lower bound given in Theorem 6,
that is, O(1) parameter-dependent regret and Õ(

√
T ) worst

case regret.

VIII. EXTENSION: LEARNING UNDER

TIME-VARYING GLOBAL PARAMETER

In this section, we consider the case when the global
parameter slowly changes over time.

A. Time-Varying Global Parameter

We denote the global parameter at time t as θ t∗. The reward
of arm k at time t , i.e., Xk,t , is drawn independently from the
distribution νk(θ

t∗), where E[Xk,t ] = μk(θ
t∗). In order to bound

the regret, we impose a restriction on the speed of change
of the global parameter which is formalized in the following
assumption.

Assumption 2: For any t and t �, we have

∣
∣θ t∗ − θ t �∗

∣
∣ ≤

∣
∣
∣
∣

t

τ
− t �

τ

∣
∣
∣
∣

where τ > 0 controls the speed of the change.
In the static global parameter model, we were able to bound

the parameter-dependent regret with a finite constant number
(independent of time horizon T ) and the worst-case regret
with a sublinear function of time. However, when the global

Fig. 3. Comparison of UCB1, UE, and the WAGP for dynamic pricing
example on 10 000 samples.

parameter is changing, it is not possible to obtain these bounds.
Therefore, we focus on the average regret, which is given as

Regave(T ) := 1

T
E

[
T
∑

t=1

μ∗(θ t∗
) −

T
∑

t=1

μIt

(

θ t∗
)

]

.

The WAGP needs to be modified to handle the nonstationary
global parameter since the optimal arms K∗(θ t∗) may change
over time.

B. Description and Regret of the Nonstationary WAGP

The nonstationary WAGP uses only a recent past window
of reward observations when estimating the global parame-
ter [40]. By choosing the window length appropriately, we can
balance the regret due to the variation of the global parameter
over time given in Assumption 2 and the sample size within
the window. The nonstationary WAGP groups the time steps
into rounds ρ = 1, 2, . . ., each having a fixed length of
2τh , where τh is called half window length. The key point
in the modified algorithm is to keep separate counters for
each round and estimate the global parameter in a round
based only on observations that are made within the particular
window of each round. Each round ρ is further divided into
two subrounds. The first subround is called passive subround,
whereas the second one is called the active subround. The first
round, ρ = 0, is an exception where it is both an active and
a passive subround.

A different instance of the modified WAGP is run in each
round. Let WAGPρ be the running instance of the modified
WAGP at round ρ. The arm selected at time t is based on
WAGPρ if time t is in the active subround of round ρ. Let
Nk,ρ (t) and X̂k,ρ,t be the number of times arm k is chosen and
the estimate of the arm k at round ρ at time t , respectively.
At the beginning of each round ρ, the estimates and counters
of that round are set to zero, i.e., Nk,ρ (2τh(ρ − 1)) = 0 and
X̂k,ρ,2τh (ρ−1) = 0. However, due to the subround structure,
the learner can use the observations from the passive subround
of a round when choosing actions in the active subround of a
round.
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Fig. 4. Performance of the modified WAGP for a nonstationary global parameter. (a) Tracking performance of modified WAGP. (b) Expected regret of
modified WAGP.

Similar to static parameter case, the WAGP selects the
arm with the highest estimated reward. Let θ̂k,ρ,t denote the
parameter estimate from arm k at round ρ at time t , which is
given as arg minθ∈� |μk(θ) − X̂k,ρ,t |.

The global parameter estimate at round ρ is then given by

θ̂ρ,t = ∑K
k=1 wk,ρ(t)θ̂k,ρ,t , where wk,ρ(t) = Nk,ρ (t)/(t −

2τh(ρ−1)). The arm with the highest reward estimate at round
ρ is selected, i.e., It = arg maxk∈K μk(θ̂ρ,t−1)

Theorem 8: Under Assumptions 1 and 2, when the half
window length of the nonstationary WAGP is set to
τh = τ (γ2)/((γ2+0.5))�, the average regret is Regave(T ) ≤
O(τ (−γ γ2)/((2γ2+1))).

Theorem 8 shows that the average regret is bounded by a
decreasing function of τ and informativeness. This is expected,
since the greedy policy is able to track the changes in
the parameter when the drift is slow. Note that the track-
ing performance of nonstationary WAGP depends on the
informativeness, because it is directly related to learning rate
of the global parameter.

IX. ILLUSTRATIVE RESULTS: DYNAMIC

PRICING EXAMPLE

To the best of our knowledge, there are currently no public
benchmarks to test bandit algorithms on real world data.
This is because the real world data does not contain the
rewards of the arms that are not selected in the real time—the
counterfactuals. Hence, bandit algorithms are generally tested
on synthetic data sets [2], [35], [37].

A. Synthetic Dynamic Pricing Data

We perform experiments on synthetic data inspired by the
dynamic pricing example formulated in Section I. We assume
that the expected sales Sp,t at time t under price p are of the
form E[Sp,t ] = (1 − pθ∗)2, where θ∗ characterizes the market
size, and is set to 0.4. Note that this is the linear-power demand
model used in [5] and [41]. The expected revenue is E[Rp,t ] =
p(1 − pθ∗)2. Note that the reward function is μp = μp(θ∗) =
p(1 − pθ∗)2 for this problem instance. We generate random

rewards of each price p at each time t by drawing randomly
from a beta distribution with parameters 1 and (1 − μp)/μp ,
i.e., Rp,t ∼ Beta(1, (1 − μp)/μp), and hence, E[Rp,t ] = μp .
We set the arms to be {0.4, 0.45, . . . , 0.95} so K = 12.

B. Results

1) Experiment 1 (Comparison): We compare our algorithm
with two different benchmarks: UCB1 [10] and uncertainty
ellipsoid (UE) [28]. UCB1 treats each arm independently and
learn their expected rewards by exploration. UE is proposed for
linearly parametrized reward structure with high-dimensional
parameter space. In our setting, UE can be used by setting
an arm vector u p = [p, p2, p3] in order to fit a polynomial
with order 3 for the expected rewards. We generate rewards
according to the above-mentioned setting and average the
results over 100 iterations. Fig. 3 shows that the WAGP
significantly outperforms UCB1 by exploiting the correlations
between the arms. The significant performance advantage
obtained by the WAGP as compared to UCB1 is due to the fact
that the WAGP is able to focus on good arms early on whereas
UCB1 learns each arm separately. The WAGP selects arm 10
(the best arm) at 81.7% of time, arm 9 (the second best arm)
at 16.4% of time, and the rest of the arms at 1.9% of time.
UE outperforms UCB1 by using (some of) the correlations
between the arms, however, fails to achieve the performance
of the WAGP. The reason is that the WAGP learns about the
parameter by selecting any of the arms, however, UE needs to
select three linearly independent arms in order to learn about
the parameter.

2) Experiment 2 (Effect of the Suboptimality Distance):
Table III shows the regret of the WAGP for different θ∗ and
hence different �∗. From this, it can be seen that the regret
of the WAGP is indeed decreasing with the suboptimality
distance as predicted by Theorem 4.

3) Experiment 3 (Nonstationary Parameter): In this section,
we show the performance of the proposed methods for a
nonstationary setting. The expected revenue for price p at time
t is given by E[Rp,t ] = p(1− pθ t∗)2. We assume that θ∗

1 = 0.5
and θ t∗ = θ t−1∗ + Yt/τ , where Yt is a random variable with
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TABLE III

REGRET OF THE WAGP FOR DIFFERENT VALUES
OF θ∗ ON 10 000 SAMPLES

TABLE IV

REGRETS OF WAGP, UCB1, AND UE ON 10 000
SAMPLES FOR DIFFERENT λ VALUES

Pr(Yt = 1) = 0.6 and Pr(Yt = −1) = 0.4 and τ > 0. Hence

∣
∣θ t∗ − θ t �∗

∣
∣ ≤

∣
∣
∣
∣

t

τ
− t �

τ

∣
∣
∣
∣

with probability 1 for all t, t � ≥ 1.
Fig. 4 illustrates the performance of the nonstationary

WAGP for the nonstationary dynamic pricing example. We use
τ = 1000 to illustrate the tracking performance of the modified
WAGP in Fig. 4(a). Note that τh = 100 for this example.
The reward observations used to estimate parameter changes
for t = 200, 300 . . . , 900. This results in some jumps in the
estimate at these times as seen from Fig. 4(a). From this figure,
it can be seen that our modified WAGP is able to track the
nonstationary global parameter and the slope of the regret is
decreasing function of τ as predicted by Theorem 8.

4) Experiment 4 (Nonideal Model): We show the per-
formance of the WAGP when the revenue of the price p
deviates from the expected revenue from the model due
to unobserved/unmeasured covariates or unexpected events.
Let Rp,t ∼ Beta(1, (1 − μ̃p(θ∗))/μ̃p(θ∗)), where μ̃p(θ∗) =
μp(θ∗)+ bp and bp ∼ Uniform[−λ, λ] denotes the shift from
the model due to some unobserved covariates. Table IV shows
the regret for different values of λ averaged over 100 different
iterations, where the model is regenerated in each iteration.
As seen from the table, the WAGP outperforms UCB1 and UE
algorithms by exploiting (nonideal) structure in the model.

X. CONCLUSION

In this paper, we introduce a new class of MAB problems
called GB. This general class encompasses the previously
introduced linearly parametrized bandits as a special case.
We proved that the regret of the GB has three regimes, which
we had characterized for the regret bound, and showed that
the parameter-dependent regret is bounded, i.e., it is asymp-
totically finite. In addition to this, we also proved a worst-case
regret bound, which grows sublinearly over time, where the
rate of growth depends on the informativeness of the arms.
Future work includes extension of global informativeness to
group informativeness, and a foresighted MAB, where the arm
selection is based on a foresighted policy that explores the
arms according to their level of informativeness rather than
the greedy policy.

APPENDIX

A. Preliminaries

In all the proofs given below, let w(t) := (w1(t), . . . ,
wK (t)) be the vector of weights and N(t) := (N1(t), . . . ,
Nk(t)) be the vector of counters at time t . We have w(t) =
N(t)/t . Since N(t) depends on the history, they are both
random variables that depend on the sequence of obtained
rewards.

B. Proof of Proposition 1

The following arguments hold.
1) Let k and θ �= θ � be arbitrary. Then, by Assumption 1

|μk(θ) − μk(θ
�)| ≥ D1,k|θ − θ �|γ1,k > 0

and hence μk(θ) �= μk(θ
�).

2) Suppose x = μk(θ) and x � = μk(θ
�) for some arbitrary

θ and θ �. Then, by Assumption 1

|x − x �| ≥ D1,k |μ−1
k (x) − μ−1

k (x �)|γ1,k .

C. Preliminary Results

Lemma 1: For the WAGP the following relation between
θ̂t and θ∗ holds with probability one: |θ̂t − θ∗| ≤
∑K

k=1 wk(t)D̄1|X̂k,t − μk(θ∗)|γ̄1 .
Proof: Before deriving a bound of gap between the global

parameter estimate and true global parameter at time t , we let
μ̃−1

k (x) = arg minθ∈� |μk(θ) − x |. By monotonicity of μk(·)
and Proposition 1, we have |μ̃−1

k (x)−μ̃−1
k (x �)| ≤ D̄1|x −x �|γ̄1 .

Then

|θ∗ − θ̂t | =
∣
∣
∣
∣
∣

K
∑

k=1

wk(t)θ̂k,t − θ∗

∣
∣
∣
∣
∣
=

K
∑

k=1

wk(t)|θ∗ − θ̂k,t |

≤
K
∑

k=1

wk(t)
∣
∣μ̃−1

k (X̂k,t ) − μ̃−1
k (μ̃k(θ∗))

∣
∣

≤
K
∑

k=1

wk(t)D̄1|X̂k,t − μk(θ∗)|γ̄1

where we need to look at the following two cases for the first
inequality. The first case is X̂k,t ∈ Xk where the statement
immediately follows. The second case is X̂k,t /∈ Xk , where
the global parameter estimator θ̂k,t is either 0 or 1. �

Lemma 2: The one-step regret of the WAGP is bounded by
rt (θ∗) = μ∗(θ∗)−μIt (θ∗) ≤ 2D2|θ∗ − θ̂t−1|γ2 with probability
one, for t ≥ 2.

Proof: Note that It ∈ arg maxk∈K μk(θ̂t−1). Therefore,
we have

μIt (θ̂t−1) − μk∗(θ∗)(θ̂t−1) ≥ 0. (1)

Since μ∗(θ∗) = μk∗(θ∗)(θ∗), we have

μ∗(θ∗) − μIt (θ∗)
= μk∗(θ∗)(θ∗) − μIt (θ∗)
≤ μk∗(θ∗)(θ∗) − μIt (θ∗) + μIt (θ̂t−1) − μk∗(θ∗)(θ̂t−1)

= μk∗(θ∗)(θ∗) − μk∗(θ∗)(θ̂t−1) + μIt (θ̂t−1) − μIt (θ∗)
≤ 2D2|θ∗ − θ̂t−1|γ2
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where the first inequality follows from (1) and the second
inequality follows from Assumption 1. �

Let Gθ∗,θ̂t
(x) := {|θ∗−θ̂t | > x} be the event that the distance

between the global parameter estimate and its true value
exceeds x . Similarly, let Fk

θ∗,θ̂t
(x) := {|X̂k,t −μk(θ∗)| > x} be

the event that the distance between the sample mean reward
estimate of arm k and the true expected reward of arm k
exceeds x .

Lemma 3: For WAGP, we have

Gθ∗,θ̂t
(x) ⊆

K
⋃

k=1

Fk
θ∗,θ̂t

((
x

D̄1wk(t)K

) 1
γ̄1

)

with probability one, for t ≥ 2.
Proof: Observe that

{|θ∗ − θ̂t | ≤ x}

⊇
{

K
∑

k=1

wk(t)D̄1|X̂k,t − μk(θ∗)|γ̄1 ≤ x

}

⊇
K
⋂

k=1

{

|X̂k,t − μk(θ∗)| ≤
(

x

wk(t)D̄1 K

)1/γ̄1
}

where the first inequality follows from Lemma 1. Then

{|θ∗ − θ̂t | > x}

⊆
K
⋃

k=1

{

|X̂k,t − μk(θ∗)| >

(
x

wk(t)D̄1 K

)1/γ̄1
}

.

�

D. Proof of Theorem 1

Using Lemma 1, the mean-squared error can be bounded as

E[|θ∗ − θ̂t |2]

≤ E

⎡

⎣

(
K
∑

k=1

D̄1wk(t)|X̂k,t − μk(θ∗)|γ̄1

)2⎤

⎦

≤ K D̄2
1

K
∑

k=1

E[w2
k (t)|X̂k,t − μk(θ∗)|2γ̄1] (2)

where the inequality follows from the fact that (
∑K

k=1 ak)
2 ≤

K
∑K

k=1 a2
k for any ak > 0. Then

E[|θ∗ − θ̂t |2]

≤ K D̄2
1E

[
K
∑

k=1

w2
k (t)E

[

|X̂k,t − μk(θ∗)|2γ̄1|w(t)
]
]

≤ K D̄2
1E

[
K
∑

k=1

w2
k (t)

∫ ∞

x=0
Pr(|X̂k,t −μk(θ∗)|2γ̄1 ≥ x |w(t))dx

]

(3)

where the second inequality follows from the fundamen-
tal theorem of expectation. Then, we can bound inner

expectation as
∫ ∞

x=0
Pr(|X̂k,t − μk(θ∗)|2γ̄1 ≥ x |w(t))dx

≤
∫ ∞

x=0
2 exp

( − x
1
γ̄1 Nk(t)

)

dx .

= 2γ̄1�(γ̄1)Nk(t)
−γ̄1

where �(·) is gamma function. Then, we have

E[|θ∗ − θ̂t |2] ≤ 2 K γ̄1 D̄2
1�(γ̄1)E

[
K∑

k=1

Nk(t)2−γ̄1

t2

]

≤ 2K γ̄1 D̄2
1�(γ̄1)t

−γ̄1

where the last inequality follows from the fact that E[∑K
k=1

N2−γ̄1
k (t)/t2] ≤ t−γ̄1 for any Nk (t), since

∑K
k=1 Nk(t) = t

and γ̄1 ≤ 1.

E. Proof of Theorem 2

By Lemma 2 and Jensen’s inequality, we have

E[rt+1(θ∗)] ≤ 2D2E[|θ∗ − θ̂t |]γ2 . (4)

Also by Lemma 1 and Jensen’s inequality, we have

E[|θ∗ − θ̂t |]

≤ D̄1E

[
K
∑

k=1

wk(t)E[|X̂k,t − μk(θ∗)| |w(t)]γ̄1

]

(5)

where E[·|·] denotes the conditional expectation. Using
Hoeffding’s inequality, we have for each k ∈ K

E[|X̂k,t − μk(θ∗)| |w(t)]
=

∫ 1

x=0
Pr(|X̂k,t − μk(θ∗)| > x |w(t))dx

≤
∫ ∞

x=0
2 exp(−2x2 Nk(t)) dx ≤

√
π

2Nk(t)
. (6)

Combining (5) and (6), we get

E[|θ∗ − θ̂t |] ≤ D̄1
(

π
2

) γ̄1
2 1

t
γ̄1
2

E

[
∑K

k=1 wk(t)1− γ̄1
2

]

. (7)

Since wk(t) ≤ 1 for all k ∈ K, and
∑K

k=1 wk(t) = 1 for

any possible w(t), we have E[∑K
k=1 wk(t)1−(γ̄1/2)] ≤ K (γ̄1/2).

Then, combining (4) and (7), we have

E[rt+1(θ∗)] ≤ 2D̄γ2
1 D2

π

2

γ̄1γ2
2

K
γ̄1γ2

2
1

t
γ̄1γ2

2

.

F. Proof of Theorem 3

This bound is a consequence of Theorem 2 and the inequal-
ity given in bound, where for γ > 0 and γ �= 1,

∑T
t=1 1/tγ ≤

1 + (T 1−γ −1)
1−γ , that is

Reg(θ∗, T ) ≤ 2 + 2D̄γ2
1 D2

π
2

γ1γ2
2 K

γ̄1γ2
2

1 − γ̄1γ2
2

T 1− γ̄1γ2
2 .
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G. Proof of Theorem 4

We need to bound the probability of the event that
It �∈ K∗(θ∗). Since at time t + 1, the arm with the highest
μk(θ̂t ) is selected by the WAGP, θ̂t should lie in � \ �k∗(θ∗)
for a suboptimal arm to be selected. Therefore, we can write

{It+1 �∈ K∗(θ∗)} = {θ̂t ∈ � \ �k∗(θ∗)} ⊆ Gθ∗,θ̂t
(�∗). (8)

By Lemma 3 and (8), we have

Pr(It+1 �∈ K∗(θ∗))

≤
K
∑

k=1

E

[

E

[

I

(

Fk
θ∗,θ̂t

((
�∗

wk(t)D̄1 K

) 1
γ̄1

))

|N(t)

]]

≤
K
∑

k=1

2E

[

exp

(

−2

(
�∗

wk(t)D̄1 K

) 2
γ̄1

wk(t)t

)]

≤ 2K exp

(

−2

(
�∗

D̄1 K

) 2
γ̄1

t

)

(9)

where I(·) is an indicator function which is 1 if the statement
is correct and 0 otherwise, the first inequality follows from a
union bound, the second inequality is obtained by using the
Chernoff–Hoeffding bound, and the last inequality is obtained
by using Lemma 4. We have Pr(It+1 �∈ K∗(θ∗)) ≤ 1/t for
t > C1(�∗) and Pr(It+1 �∈ K∗(θ∗)) ≤ 1/t2 for t > C2(�∗).
The bound in the first regime is the result of Theorem 3.
The bounds in the second and third regimes are obtained by
summing the probability given in (9) from C1(�∗) to T and
C2(�∗) to T , respectively.

H. Proof of Theorem 5

Let (�,F , P) denote probability space, where � is the
sample set and F is the σ -algebra that the probability measure
P is defined on. Let ω ∈ � denote a sample path. We will
prove that there exists event N ∈ F , such that P(N) = 0
and if ω ∈ Nc , then limt→∞ It (ω) ∈ K∗(θ∗). Define the event
Et := {It �= k∗(θ∗)}. We show in the proof of Theorem 4 that
∑T

t=1 P(Et ) < ∞. By Borel–Cantelli lemma, we have

Pr(Et infinitely often) = Pr(lim sup
t→∞

Et ) = 0.

Define N := lim supt→∞ Et , where Pr(N) = 0. We have

Nc = lim inf
t→∞ Ec

t

where Pr(Nc) = 1−Pr(N) = 1, which means that It ∈ K∗(θ∗)
for all but a finite number of t .

I. Proof of Theorem 6

Consider a problem instance with two arms with reward
functions μ1(θ) = θγ and μ2(θ) = 1 − θγ , where γ is an
odd positive integer and rewards are Bernoulli distributed with
X1,t ∼ Ber(μ1(θ)) and X2,t ∼ Ber(μ2(θ)). Then, optimality

regions are �1 = [2− 1
γ , 1] and �2 = [0, 2− 1

γ ]. Note that
γ2 = 1 and γ1 = 1/γ for this case. We can show that

|μk(θ) − μk(θ
�)| ≤ D2|θ − θ �|

|μ−1
k (x) − μ−1

k (x �)| ≤ D̄1|x − x �|1/γ .

Let θ∗ = 2− 1
γ . Consider the following two cases with θ∗

1 =
θ∗ + � and θ∗

2 = θ∗ − �. The optimal arm is 1 in the first
case and 2 in the second case. In the first case, one step loss
due to choosing arm 2 is lower bounded by

(θ∗ + �)γ − (1 − (θ∗ + �)γ )

= 2(θ∗ + �)γ − 1

= 2((θ∗)γ +
(

γ

1

)

(θ∗)γ−1� +
(

γ

2

)

(θ∗)γ−2�2 + . . .) − 1

≥ 2γ 2
1−γ
γ �.

Similarly, in the second case, the loss due to choosing arm 1
is 2γ 2(1−γ /γ )� + ∑γ

i=2

(γ
i

)

(θ∗)(γ−i)(−�)i . Let A1(�) =
2γ 2(1−γ /γ )� + ∑γ

i=2

(γ
i

)

(θ∗)(γ−i)(−�)i .
Define two processes ν1 = Ber(μ1(θ

∗ + �)) ⊗ Ber
(μ2(θ

∗ + �)) and ν2 = Ber(μ1(θ
∗ − �)) ⊗ Ber(μ2(θ

∗ − �)),
where x ⊗ y denotes the product distribution of x and y. Let
Prν denote the probability associated with distribution ν. Then,
the following holds:
Reg(θ∗ + �, T ) + Reg(θ∗ − �, T )

≥ A1(�)

T
∑

t=1

(

Prν⊗t
1

(It = 2) + Prν⊗t
2

(It = 1)
)

(10)

where ν⊗t is the t times product distribution of ν. Using well-
known lower bounding techniques for the minimax risk of
hypothesis testing [42], we have

Reg(θ∗ + �, T ) + Reg(θ∗ − �, T ) (11)

≥ A1(�)

T
∑

t=1

exp
( − KL

(

ν⊗t
1 , ν⊗t

2

))

(12)

where

KL(ν⊗t
1 , ν⊗t

2 ) = t (KL(Ber(μ1(θ
∗ + �)), Ber(μ1(θ

∗ − �))

+KL(Ber(μ2(θ
∗ + �)), Ber(μ2(θ

∗ − �))). (13)

Define A2 = (1 − exp(−4 D2
2�2 T /(θ∗ − �)γ (1 − (θ∗ −

�)γ )))(θ∗−�)γ (1−(θ∗−�)γ ). By using the fact KL(p, q) ≤
((p − q)2/q(1 − q)) [43], we can further bound (12) by

Reg(θ∗ + �, T ) + Reg(θ∗ − �, T )

≥ A1(�)

T
∑

t=1

exp

(

− 4D2t�2

(θ∗ − �)γ (1 − (θ∗ − �)γ )

)

≥ A1(�)
A2

4D2�2

where A2 ∈ (0, 1) for any � ∈ (0, max(θ∗, 1 − θ∗)). Hence,
the lower bound for the parameter-dependent regret is �(1).
In order to show the lower bound for the worst case regret,
observe that

Reg(θ∗ + �, T ) + Reg(θ∗ − �, T )

≥ 2γ 2
1−γ
γ A2

4D2�
+

γ
∑

i=2

(
γ

i

)

(−�)i−2(θ∗)γ−i .

By choosing � = 1/
√

T , we can show that for a large T ,
A2 = 0.25(1−exp(−16 D2

2)). Hence, worst case lower bound
is �(

√
T ).
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J. Proof of Theorem 7

Without loss of generality, we assume that a unique arm is
optimal for θ̂t and θ∗. First, we show that |θ̂t −θ∗| = � implies

|�̂t − �∗| ≤ �. There are four possible cases for �̂t .

1) θ∗ and θ̂t lie in the same optimality interval of the
optimal arm, and �∗ and �̂t are computed with respect
to the same endpoint of that interval.

2) θ∗ and θ̂t lie in the same optimality interval, and �∗ and
�̂t are computed with respect to the different endpoints
of that interval.

3) θ∗ and θ̂t lie in adjacent optimality intervals.
4) θ∗ and θ̂t lie in nonadjacent optimality intervals.

In the first case, |θ̂t − θ∗| = |�̂t − �∗| = �. In the second
case, �̂t cannot be larger than �∗ + �, since in that case, θ̂t

would be computed with respect to the same endpoint of that
interval. Similarly, �̂t cannot be smaller than �∗ − �, since
in that case, θ∗ would be computed with respect to the same
endpoint of that interval. In the third and fourth cases, since
|θ̂t −θ∗| = �, �̂t ≤ �−�∗, and, hence, the difference between
�̂t and �∗ is smaller than �.

Second, we show that |�̂t − �∗| < D̄1(2 K log t/t)γ̄1/2

holds with high probability

Pr

⎛

⎝|�̂t − �∗| ≥ D̄1

(
K log t

t

) γ̄1
2

⎞

⎠

≤ Pr

⎛

⎝|θ̂t − θ∗| ≥ D̄1

(
K log t

t

) γ̄1
2

⎞

⎠

≤
K∑

k=1

2E

⎡

⎢
⎢
⎢
⎣

exp

⎛

⎜
⎜
⎜
⎝
−2

⎛

⎜
⎜
⎝

D̄1 K
(

log t
t

) γ̄1
2

D̄1 Kwk(t)

⎞

⎟
⎟
⎠

2
γ̄1

Nk(t)

⎞

⎟
⎟
⎟
⎠

| Nk (t)

⎤

⎥
⎥
⎥
⎦

≤
K
∑

k=1

2E
[

exp
( − 2wk(t)

1− 2
γ̄1 log t

)∣
∣wk(t)

]

≤ 2K t−2 (14)

where the second inequality follows from Lemma 3 and
Chernoff–Hoeffding inequality and third inequality by
Lemma 4. Then, at time t , with probability at least 1−2 K t−2,
the following holds:

�∗ − 2D̄1 K

(
log t

t

) γ̄1
2 ≤ �̃t . (15)

Also, note that if t ≥ C2(�∗/3), then
2D̄1 K (log t/t)(γ̄1/2) ≤ (2�∗/3). Thus, for t ≥ C2(�∗/3),
we have �∗/3 ≤ �̃t . Note that the BUW follows UCB1 only
when t < C2(�̃t ). From the above, we know that
C2(�̃t ) ≤ C2(�∗/3) when t ≥ C2(�∗/3) with probability
at least 1 − 2 K t−2. This implies that the BUW follows
the WAGP with probability at least 1 − 2 K t−2 when
t ≥ C2(�∗/3).

We also know from Theorem 4 that the WAGP selects an
optimal action with probability at least 1 − 1/t2 when t >
C2(�∗). Since C2(�∗/3) > C2(�∗), when the BUW follows

the WAGP, it will select an optimal action with probability at
least 1 − 1/t2 when t > C2(�∗/3).

Let I g
t denote the action that selected by algorithm

g ∈ {BUW, WAGP, UCB1}, r g
t (θ∗) = E[μ∗(θ∗) − μI g

t
(θ∗)]

denote the one-step regret, and Rg
θ∗(T1, T2) denote the cumu-

lative regret incurred by algorithm g from T1 to T2. Then,
when T < C2(�∗/3), the regret of the BUW can be written
as

RBUW
θ∗ (1, T ) ≤

T
∑

t=1

rUCB1
t (θ∗) + 2 K t−2

≤ RUCB1
θ∗ (1, T ) + 2 Kπ2

3
.

Moreover, when T ≥ C2(�∗/3), we have

RBUW
θ∗ (C2(�∗/3), T )

≤
T
∑

t=C2(�∗/3)

rWAGP
t (θ∗) + 2 K t−2

≤ RWAGP
θ∗ (C2(�∗/3), T ) + 2 Kπ2

3
.

This concludes the parameter-dependent regret bound.
The worst case bound can be proven by replacing δk =

μ∗ − μk = 1/
√

T K log T for all k �∈ K∗(θ∗) for the regret
bound given above.

K. Proof of Theorem 8

When the round is clear from the context, we use θ̂t to
represent θ̂ρ,t . By Lemma 2 and Jensen’s inequality, we have

E
[

rt+1(θ
t+1∗ )

] ≤ 2D2E
[∣
∣θ t+1∗ − θ̂t

∣
∣
]γ2 (16)

where θ̂t = (
∑K

k=1 Nk,ρ (t)μ̃−1
k (X̂k,ρ,t )/τρ(t)) and

∑K
k=1 Nk,ρ (t) = τρ(t). Then, by using Lemma 1, we have

E
[∣
∣θ̂t − θ t+1∗

∣
∣
]

≤
∑K

k=1 D̄1E
[

Nk,ρ (t)E
[∣
∣X̂k,ρ,t − μk

(

θ t+1∗
)∣
∣|Nk,ρ (t)

]γ̄1
]

τρ(t)
.

Let Sτh
k,ρ,t be the set of times that arm k is chosen in round ρ

by time t , that is

Sτh
k,ρ,t = {t � ≤ t : It � = k, 2(ρ − 1)τh < t � ≤ 2ρτh}.

Clearly, |Sτh
k,ρ,t | = Nk,ρ (t). We have

X̂k,ρ,t =
∑

t �∈Sτh
k,ρ,t

Xk,t �

Nk,ρ (t)

where E[Xk,t � ] = μk(θ
t �∗ ) for all t � ∈ Sτh

k,ρ,t . Define a random

variable X̃k,t � = Xk,t � − μk(θ
t �∗ ) for all t � ∈ Sτh

k,ρ,t , k ∈ K,

and ρ. Observe that {X̃k,t � }t �∈Sτh
k,ρ,t

is a random sequence with

E[X̃k,t � ] = 0 and X̃k,t � ∈ [−1, 1] almost surely for all k ∈ K
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and ρ. Then

E
[∣
∣X̂k,ρ,t − μk(θ

t+1∗ )
∣
∣|Nk,ρ (t)

]

≤ E

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

t �∈Sτh
k,ρ,t

(

Xk,t � − μk
(

θ t �∗
))

Nk,ρ (t)

∣
∣
∣
∣
∣
∣

⎤

⎦

+
∑

t �∈Sτh
k,ρ,t

∣
∣μk

(

θ t �∗
) − μk

(

θ t+1∗
)∣
∣

Nk,ρ (t)

≤ E

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

t �∈Sτh
k,ρ,t

X̃k,t �

Nk,ρ (t)

∣
∣
∣
∣
∣
∣

⎤

⎦ +
∑

t �∈Sτh
k,ρ,t

2D2
∣
∣θ t �∗ − θ t+1∗

∣
∣
γ2

Nk,ρ (t)

where for any t � ∈ Sk,ρ,t , k ∈ K, and ρ

E
[∣
∣

∑

t �∈Sτh
k,ρ,t

X̃k,t �

Nk,ρ (t)

∣
∣
]

=
∫ ∞

x=0
Pr

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

t �∈Sτh
k,ρ,t

X̃k,t �

Nk,ρ (t)

∣
∣
∣
∣
∣
∣

> x

⎞

⎠ dx

≤
∫ ∞

x=0
2 exp(−x2 Nk,ρ (t)) dx =

√
π

Nk,ρ (t)
(17)

where the inequality follows from the Chernoff–Hoeffding
bound and:

∣
∣θ t+1∗ − θ t �∗

∣
∣ ≤ (2τh/τ) (18)

since for all t , t � in the same round |t − t �| ≤ 2τh . Then,
using (17) and (18), the expected gap between θ t+1∗ and θ̂t

can be bounded as

E
[∣
∣θ t+1∗ − θ̂t

∣
∣
]

≤

∑K
k=1 D̄1E

[

Nk,ρ (t)

(∣
∣
∣
∣

√
π

Nk,ρ (t) + 2 D2

(
2τh
τ

)γ2
∣
∣
∣
∣

)γ̄1
]

τρ(t)

≤

∑K
k=1 D̄1E

[

Nk,ρ (t)
(

π
Nk,ρ (t)

) γ̄1
2

]

τρ(t)

+
∑K

k=1 D̄12Dγ̄1
2 (2τh/τ)γ2γ̄1 Nk,ρ (t)

τρ(t)

≤ D̄1
(

(π K )
γ̄1
2 τρ(t)−

γ̄1
2 + 2Dγ̄1

2 (2τh/τ)γ̄1γ2
)

≤ D̄1
(

(π K )
γ̄1
2 τ

− γ̄1
2

h + 2Dγ̄1
2 (2τh/τ)γ̄1γ2

)

where the second inequality follows from the fact that
(a + b)γ ≤ aγ + bγ for a, b > 0 and 0 < γ ≤ 1,
the third inequality is due to the worst case selection process,
i.e., Nk,ρ (t) = τρ(t)/K for all k ∈ K, where τρ(t)/K is
assumed to be an integer without loss of generality, and
the fourth inequality follows from the fact that τρ(t) ≥ τh .
By choosing τh = τ�b, we get the optimal b = (γ2/0.5 + γ2).
Then, cumulative regret at time T can be bounded as

Regave(T )

≤ τ
− γ2

0.5+γ2 +
(

2D2 D̄γ2
1 [(π K )

γ̄1
2 + 2Dγ̄1

2 ]
)γ2

τ
− γ 2

2 γ̄1
1+2γ2

which concludes the proof.

L. Auxiliary Lemma

Lemma 4: For γ < 0, δ > 0, the following bound holds
for any wk with 0 ≤ wk ≤ 1 and

∑K
k=1 wk = 1:

K∑

k=1

exp(−δw
γ
k ) ≤ K exp(−δ).

Proof: Let kmax = arg maxk wk . Then

max
wk :∑K

k=1 wk=1, 0≤wk≤1

K∑

k=1

exp
(−δw

γ
k

)

= max
wk :∑K

k=1 wk=1, 0≤wk≤1
exp

(

log

(
K∑

k=1

exp
(−δw

γ
k

)

))

≤ max
wk :∑K

k=1 wk=1, 0≤wk≤1
exp

(

max
k∈K

(−δw
γ
k

) + log K

)

≤ K max
wk :∑K

k=1 wk=1, 0≤wk≤1
exp

(

−δw
γ
kmax

)

≤ K exp(−δ).

�
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