
Computer Network Intrusion Detection Using
Sequential LSTM Neural Networks Autoencoders

Ali H. Mirza and Selin Cosan
Department of Electrical and Electronics Engineering

Bilkent University, Ankara 06800, Turkey
{mirza,cosan}@ee.bilkent.edu.tr

Abstract—In this paper, we introduce a sequential autoencoder
framework using long short term memory (LSTM) neural net-
work for computer network intrusion detection. We exploit the
dimensionality reduction and feature extraction property of the
autoencoder framework to efficiently carry out the reconstruction
process. Furthermore, we use the LSTM networks to handle the
sequential nature of the computer network data. We assign a
threshold value based on cross-validation in order to classify
whether the incoming network data sequence is anomalous or
not. Moreover, the proposed framework can work on both fixed
and variable length data sequence and works efficiently for
unforeseen and unpredictable network attacks. We then also
use the unsupervised version of the LSTM, GRU, Bi-LSTM and
Neural Networks. Through a comprehensive set of experiments,
we demonstrate that our proposed sequential intrusion detection
framework performs well and is dynamic, robust and scalable.

Keywords. Intrusion detection, LSTM, autoencoders, unsuper-

vised learning, sequential data.

I. INTRODUCTION

A. Preliminaries

Anomaly detection is of pivotal interest in the field of

network intrusion detection [1], medical diagnosis [2], fraud

detection [3] etc. The basic assumption is that a huge amount

of normal data originates from a particular distribution but

unknown. Whereas, few unlikely and rare observations, i.e.,

anomalies, originate from different unknown distributions [4].

In some domains like network intrusion detection, anomaly

detection is of prime importance. This is because, a single

malicious attack, i.e., an anomaly is sufficient enough to

override the system and may cause severe damage [5]. For

example, an unusual and out of the routine traffic in a computer

network depicts the presence of a network attack.

Intrusion detection is a branch of computer network security

that aims to automatically and efficiently detect the computer

network attacks [6]. Intrusion detection promises the confiden-

tiality and integrity of a system [1]. The origin of the computer

network attack can be local as well as remote [7]. Various

levels of security help in protection against the computer

network attacks. According to [8], computer network security

is a cyclic process involving three steps namely; prevention,

detection and recovery. The computer attack data is sequential

in nature and is of variable length. Moreover, in an online

setting, we do not know beforehand whether the incoming

data is malicious or not. Hence, the learning framework is

unsupervised [9] for the network data in this case.

In this paper, we propose a sequential autoencoder frame-

work using Deep Neural Networks (DNNs) [10]. However,

the DNNs can provide only limited performance in modelling

time series and processing temporal data [11]. As a result,

recurrent neural networks (RNNs) [12] are introduced, which

not only handle the temporal data but also handle the time

dependencies in the data. In order to cope and handle the

variable length data sequence, RNNs are used to first convert

the variable length data to fixed length data. Autoencoders [13]

work on the fixed length data sequence in an unsupervised

framework and detect subtle anomalies in the data. The

use of sequential autoencoders is two-fold. First, it helps

in reducing the dimension of the input data [14]. Second,

autoencoders work as a feature extraction block that extracts

the useful and more reliable features out of the data. Although,

regular autoencoder can work on sequential data by fixing

the data size, usually by padding all sequences with zero

vectors to the length of the longest sequence [13]-[14]. In

contrast, recurrent auto encoders can compress variable length

sequences into fixed length representations [15]. Moreover,

recurrent networks reuse their weight matrix for all time steps.

Therefore, they can generalize dependencies between nearby

frames to other positions in the sequence. As a special case of

the RNNs, we use sequential long short-term memory (LSTM)

autoencoders.

B. Related Work

Artificial Neural Networks (ANNs) are used in the design

of intrusion detection system (IDS) [16] employing efficient

backpropagation. Support Vector Machines (SVM) [17], Self-

Organized Maps (SOM) [18] and Random Forests[19] are used

as efficient classifiers to perform network intrusion detection.

Such classifiers suffer from the deficiency that they require

a fixed length data sequence to work on [17]-[19]. A lot of

work is done under the supervised as well as a semi-supervised

framework [20]. Work on data set like NSL-KDD [21] is

under the umbrella of the supervised and semi-supervised

framework. While, in real-time, this is not such a scenario.

Recently, long short term memory (LSTM) neural networks

allow serendipitous discovery of important long and short-term

features in time series. [22] made use of an LSTM autoencoder

to reconstruct video frames. LSTM and CRF autoencoders are978-1-5386-1501-0/18/$31.00 c© 2018 IEEE

LSTM

Encoder

LSTM

Encoder

LSTM

Encoder

Pooling Layer (Mean, Max, Last)

LSTM

Decoder

LSTM

Decoder

LSTM

Decoder

Fig. 1. Detailed description of the LSTM Sequential Autoencoder Model
using the output of pooling layer, i.e., hi as the input to all the stages of
LSTM-decoder part.

similar in that they are both sequential variants of the standard

autoencoder [23].

C. Contributions

Our main contributions are as follows:

• We developed an online sequential unsupervised frame-

work for network intrusion detection using LSTM-

autoencoders.

• The proposed framework is dynamic and scalable as it

works on both fixed as well as variable length network

data sequences.

• The proposed framework works efficiently as a feature

extractor and also make use of the past information in

order to make correct decisions.

II. PROBLEM DESCRIPTION

In this paper, all vectors are column vectors and denoted

by boldface lower case letters. Matrices are represented by

boldface upper case letters. For a vector u, |u| is the ℓ1-norm

and uT is the ordinary transpose. For a vector xt, xt,i and

xti are the ith element and the ith column of the vector xt,

respectively. Similarly, for a matrix W , wij is the ith row and

jth column entry. We observe the input data sequence

X1,X2, . . . ,Xn,

denoted by {Xt}
n
t=1, where n represents the total number of

observations. Here, for each observation Xt, we have Xt =
[xt1 , . . . ,xti , . . . ,xtnt

], xti ∈ R
d, t = 1, . . . , n, where nt ∈

Z
+ is the length of the individual input sequence and may

vary for each input sequence.

We use the RNN to process the variable length input, such

as Xt, to extract the sequential natured information from the

data. For each Xt, the framework for the generic RNN for

the ith column of Xt is given as follows [12]:

hti = κ(Wxti +Rh(t−1)i),

where hti ∈ R
m is the state vector and xti ∈ R

d is the

input vector for i = 1, . . . , nt. The RNN coefficient weight

matrices are R ∈ R
m×m and W ∈ R

m×d. The function κ(·)
is commonly set to tanh(·) and apply pointwise to vectors.

Now that we have the formulation of the RNN network, we

extract the sequential information by driving each column of

Xt to the encoder part of the RNN network. For each Xt,

the output is given by

hti = κencφ (xti ,h(t−1)i), (1)

where hti is the output of the ith RNN-encoder unit and φ

is the parameter set of the RNN-encoder part. After whole

of the sequence is passed through the RNN-encoder, we get

{hti}
ni

i=1. We then perform three types of pooling operation

on {hti}
ni

i=1, i.e., mean, max and last pooling. The mean, last

and max pooling operations are computed as follows:

hi =

∑ni

j=1 htj

ni
(2)

hi = ht,ni
(3)

hi = max
j

{hti}
ni

i=1, (4)

where j is the index for the number of rows of hti . After the

pooling operation, we pass hi to the RNN-decoder part which

reconstructs the input as follows:

ĥti = κdecψ (hi, ĥ(t−1)i) (5)

x̂ti = ρ(ĥti), (6)

where {x̂ti}
ni

i=1 is the reconstructed input and ψ is the param-

eter set for RNN-decoder part. The function ρ(·) is commonly

set to tanh(·) and apply pointwise to vectors. After we retrieve

the reconstructed input, we evaluate the mean square loss,

i.e.,
∑ni

i=1||xti − x̂ti ||
2 and update the corresponding LSTM-

encoder and decoder parameters accordingly.

As a special case of the RNNs, we use the LSTM neural

network with only one hidden layer defined as follows [24]:

c̃t = g
(

W (c̃)xt +R(c̃)ht−1 + b(c̃)
)

(7)

it = σ
(

W (i)xt +R(i)ht−1 + b(i)
)

(8)

f t = σ
(

W (f)xt +R(f)ht−1 + b(f)
)

(9)

ct = D
(i)
t c̃t +D

(f)
t ct−1 (10)

ot = σ
(

W (o)xt +R(o)ht−1 + b(o)
)

(11)

ht = D
(o)
t l(ct), (12)

where ct ∈ R
m is the state vector, xt ∈ R

p is the input vector

and ht ∈ R
m is the output vector. Here, it, f t and ot are the

input, forget and output gates, respectively. In (10) and (12),

D
(i)
t = diag(it), D

(f)
t = diag(f t) and D

(o)
t = diag(ot).

The functions g(·) and l(·) apply to vectors pointwise and

commonly set to tanh(·). Similarly, the sigmoid function σ(·)
applies pointwise to the vector elements. The weight matrices

are set to appropriate dimensions.

Remark 1: The RNN Autoencoder framework discussed

in (1)-(6) also applies on the LSTM neural network defined

in (7)-(12). The detailed description of the sequential LSTM

autoencoder framework is shown in Fig. 1. The encoder and

decoder equations for the LSTM network modifies as follows:

hti = κencφ (xti , cti−1
) (13)

ĥti = κdecψ (hi, ĥti−1
, ĉti−1

) (14)

x̂ti = ρ(ĥti), (15)

where hi is the LSTM state vector obtained after pooling

operation as mentioned in (2)-(4).

A. Error Function and Threshold

During the reconstruction phase in the sequential LSTM

autoencoder, there is an error associated with the recon-

structed input. The reconstruction error for sequence Xi =
[xt1 , . . . ,xtni

] is given as follows:

Error(i) =

ni
∑

i=1

||xti − x̂ti ||
2, (16)

where Error(i) is the reconstruction error for sequence Xi.

Based on this error measure, we update the corresponding

weights of encoder and decoder part of the LSTM-autoencoder

framework.

Remark 2: For normal data sequences, the value of re-

construction error is less than the reconstruction error for

anomalous data sequence. As a result, in order to classify the

data as an anomaly, we assign a threshold value τ . The value

of τ is critical, as it is directly related to the accuracy of

the system. Table 1, shows the best achievable f1-score for a

particular threshold value τ.

III. EXPERIMENTS

In this section, we demonstrate the performance of our

proposed algorithm using intrusion detection evaluation data

set (ISCX IDS 2012) [25]. Network payloads are captured

for seven days. There are around 1.8 millions of connections

for FTP, SMTP, HTTP, SSH, IMAP, and POP3. Around five

percent of connections are labelled as an anomaly. These

anomalies come from a diverse set of multi-stage attacks.

Some connections do not have packet payloads at the source

or/and destination ports. Since packet payloads are used as

input in our systems, we disregard the connections without

payloads at both ports, regarding anomaly occurrence rate

must remain almost the same after this operation.

Each network payload, captured at both source and desti-

nation ports, is regarded as sequential character-based input.

The payloads are used in hexadecimal format, so we have a

total of 64 characters to be considered as our vocabulary. By

using one hot encoding, characters are converted to numerical

features resulting in 64-dimensional vectors.

Fig. 2. ROC curves for the proposed sequential LSTM autoencoders along
with several unsupervised algorithms for network intrusion detection.

We randomly split the data set into training and test sets

with percentage 90 and 10, respectively. Among the training

set, 20k of connections are chosen randomly to be used in

our experiments. For all the splits, anomaly occurrence rate

remains the same. As our training method, Adam [26] is

employed with default parameters presented in the original

work. The objective function is mean squared error. Batch

size is chosen as 64. All the LSTM autoencoders have a

unit size of 64 at both encoder and decoder layers. Sigmoid

activation is used at the output layer. For all the experiments,

20k of data is split into training and test sets with size 16000

and 4000, respectively. The training set is further split into

training and validation sets with 80/20 ratio. First, we compare

various systems with the proposed LSTM autoencoders as

shown in Fig. 2. We also added more layers in the proposed

algorithm, i.e., 2 layers each in encoder and decoder part, and

call it Deep Auto-LSTM networks. For the case of the RNNs,

the LSTM network, the GRU network, and the bidirectional

LSTM networks all with one layer is applied separately with

linear regression at the end. In addition, feed-forward neural

networks with one layer are trained with the SGD algorithm

[27]. We use the validation set to obtain the receiver operating

characteristics (ROC) and choose the threshold τ correspond-

ing to the best AUC score. Then, the test set is evaluated with

the fixed threshold τ and f1 scores are evaluated as shown

in Table. I. The receiver operating characteristics with the

corresponding AUC scores for the proposed sequential LSTM

autoencoders and other unsupervised algorithms is shown in

Fig. 2.

We carry out all the experiments using 5-fold cross-

validation. We show the ROC curve for one of the experiments

for the LSTM autoencoder with mean pooling in Fig. 3. The

ROC and AUC scores for all the folds are shown in Fig. 3.

The average AUC score is 0.96 with a standard deviation of

0.01.

Fig. 3. 5-fold cross-validation ROC curve for LSTM Autoencoder with Mean
Pooling.

TABLE I
PERFORMANCE METRICS TABLE SHOWING THE THRESHOLD, F1-SCORE

AND AUC SCORE VALUES FOR THE SEQUENTIAL LSTM AUTOENCODERS

AND OTHER UNSUPERVISED ALGORITHMS.

Unsupervised Learning

Algorithms
Threshold f1-score AUC Score

LSTM 0.008 0.8409 0.9519

GRU 0.006 0.8102 0.9478
Bi-LSTM 0.008 0.8461 0.9512

NN1 - 1 layer 0.008 0.8352 0.9499
LSTM Autoencoder

with Last Pooling
0.076 0.8409 0.9507

LSTM Autoencoder

with Max Pooling
0.076 0.8538 0.9512

LSTM Autoencoder

with Mean Pooling
0.079 0.8072 0.9471

Deep Auto LSTM 0.076 0.8538 0.9512

IV. CONCLUSION

In this paper, we propose a sequential LSTM autoencoder

for executing computer network intrusion detection in an

unsupervised manner. We introduced three types of pooling

layer in the proposed algorithm. We select a suitable threshold

value that helps in achieving the best possible f1-score for

our proposed algorithm. We validate the performance of our

proposed algorithm on the ISCX IDS 2012 data set. We also

carry out unsupervised network intrusion detection on the

LSTM, GRU, Bi-LSTM and feed-forward neural networks.

Through an extensive set of experiments, we demonstrate that

our proposed algorithm manages to achieve best f1 and AUC

score. Out of the proposed algorithms, the LSTM autoencoder

with max pooling and Deep Auto LSTM networks showed the

best f1-score.

REFERENCES

[1] A. Patcha and J.-M. Park, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” Computer

networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[2] W.-K. Wong, A. W. Moore, G. F. Cooper, and M. M. Wagner, “Bayesian
network anomaly pattern detection for disease outbreaks,” in Proceed-

ings of the 20th International Conference on Machine Learning (ICML-

03), pp. 808–815, 2003.
[3] T. Fawcett and F. Provost, “Activity monitoring: Noticing interesting

changes in behavior,” in Proceedings of the fifth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pp. 53–62,
ACM, 1999.

[4] M. Markou and S. Singh, “Novelty detection: a reviewpart 1: statistical
approaches,” Signal processing, vol. 83, no. 12, pp. 2481–2497, 2003.

[5] J. P. Anderson, “Computer security threat monitoring and surveillance,”
Technical Report, James P. Anderson Company, 1980.

[6] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on

software engineering, no. 2, pp. 222–232, 1987.
[7] S. J. Stolfo, S. M. Bellovin, S. Hershkop, A. D. Keromytis, S. Sinclair,

and S. W. Smith, Insider attack and cyber security: beyond the hacker,
vol. 39. Springer Science & Business Media, 2008.

[8] C. Shields, “Machine learning and data mining for computer security,
chapter an introduction to information assurance,” Springer, 2005.

[9] K. Leung and C. Leckie, “Unsupervised anomaly detection in network
intrusion detection using clusters,” in Proceedings of the Twenty-eighth

Australasian conference on Computer Science-Volume 38, pp. 333–342,
Australian Computer Society, Inc., 2005.

[10] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[11] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural

networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2017.
[12] L. Medsker and L. Jain, “Recurrent neural networks,” Design and

Applications, vol. 5, 2001.
[13] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with

nonlinear dimensionality reduction,” in Proceedings of the MLSDA 2014

2nd Workshop on Machine Learning for Sensory Data Analysis, p. 4,
ACM, 2014.

[14] V. Kustikova and P. Druzhkov, “A survey of deep learning methods
and software for image classification and object detection,” OGRW2014,
vol. 5, 2014.

[15] O. Fabius and J. R. van Amersfoort, “Variational recurrent auto-
encoders,” arXiv preprint arXiv:1412.6581, 2014.

[16] H. Debar, M. Becker, and D. Siboni, “A neural network component
for an intrusion detection system,” in Research in Security and Pri-

vacy, 1992. Proceedings., 1992 IEEE Computer Society Symposium on,
pp. 240–250, IEEE, 1992.

[17] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., “A practical guide to support
vector classification,” 2003.

[18] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1-
3, pp. 1–6, 1998.

[19] A. Liaw, M. Wiener, et al., “Classification and regression by random-
forest,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[20] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Semi-
supervised network traffic classification,” in ACM SIGMETRICS Perfor-

mance Evaluation Review, vol. 35, pp. 369–370, ACM, 2007.
[21] S. Revathi and A. Malathi, “A detailed analysis on nsl-kdd dataset

using various machine learning techniques for intrusion detection,”
International Journal of Engineering Research and Technology. ESRSA

Publications, 2013.
[22] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learn-

ing of video representations using lstms,” in International conference on

machine learning, pp. 843–852, 2015.
[23] W. Ammar, C. Dyer, and N. A. Smith, “Conditional random field

autoencoders for unsupervised structured prediction,” in Advances in

Neural Information Processing Systems, pp. 3311–3319, 2014.
[24] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward

developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010, pp. 177–186, Springer,
2010.

