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Abstract—In this paper, we derived the online additive updates
of gated recurrent unit (GRU) network by using fast fourier
transform-inverse fast fourier transform (FFT-IFFT) operator.
In the gating process of the GRU networks, we work in the
frequency domain and execute all the linear operations. For the
non-linear functions in the gating process, we first shift back to
the time domain and then apply non-linear GRU gating functions.
Furthermore, in order to reduce the computational complexity
and speed up the training process, we apply weight matrix
factorization (WMF) on the FFT-IFFT variant GRU network.
We then compute the online additive updates of the FFT-
WMF based GRU networks using stochastic gradient descent
(SGD) algorithm. We also used long short-term memory (LSTM)
networks in place of the GRU networks. Through an extensive
set of experiments, we illustrate that our proposed algorithm
achieves a significant increase in performance with a decrease in
computational complexity.
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I. INTRODUCTION

Online learning is of vital importance and is widely studied

in machine learning, adaptive signal processing and neural

network literature [1], [2], [3]. In most of the online learn-

ing applications, nonlinear models are preferred over linear

models because they are capable of modelling highly complex

structures [4]. On the other hand, these nonlinear approaches

suffer from overfitting problems, stability and convergence

issues [5], [6]. Deep neural networks (DNNs) are highly used

to model such nonlinear structures [7]. However, DNNs can

provide only limited performance in modelling time series

and processing temporal data [8]. As a result, recurrent neural

networks (RNNs) are introduced, which not only handle the

temporal data but also handle the time dependencies in the

data as well [9], [10].

After the neural network structure is fixed, there exists a

wide range of different methods to train the corresponding

parameters in an online manner. Most commonly, the first-

order gradient-based algorithms are used to train the param-

eters of the neural network. The Backpropagation Through

Time (BPTT) algorithm is most commonly used and is highly

efficient in computing gradients [10]. Training the parameters

of the RNN is a difficult task and is highly computationally

expensive [9]. For this purpose, the GRU and LSTM networks

are used [11]. These networks have a gating mechanism that

controls the flow of information and handles the long-term

data dependency. For the parameters of the GRU network, we

derive the SGD updates, i.e., also known as real-time recurrent

learning (RTRL) algorithm, to minimize the instantaneous

loss.

In this paper, we process the linear operation gating part

of the GRU network in the frequency domain. We convert

the time sequential information into the frequency domain

using discrete fourier transform (DFT) [12]. For the com-

putational ease, we use FFT in our simulations to speed up

the training process [13]. Once we process the linear part of

the individual gates of the GRU network, we convert back to

time domain using inverse discrete fourier transform (IDFT)

and then apply the non-linear part of the gating function.

These non-linear functions are commonly set to sigmoid or

tanh. Furthermore, we reduce the computational complexity

of the proposed algorithm by using WMF [14]. We split the

gating weight matrices of the GRU network into two smaller

dimensions (rank) sub-matrices and then apply the FFT-IFFT

operator on it. These smaller rank matrices essentially try to

approximate the original weight matrix [15]. This decrease in

the computational complexity is of supreme importance for

the cases where we have a very large data set with huge

dimensions. We then also derive the online additive updates

for both the cases, i.e., the GRU network with and without

the WMF. In section II, we describe the model and problem

description and derive the online updates for the proposed

algorithm. In section III, we illustrate the performance of the

proposed algorithm through an extensive set of experiments on

both the GRU and LSTM networks. In section IV, we provided

the concluding remarks.

II. PROBLEM DESCRIPTION

In this paper, all vectors are column vectors and denoted

by boldface lower case letters. Matrices are represented by

boldface upper case letters. For a vector u, |u| is the ℓ1-norm

and uT is the ordinary transpose. For a matrix W , wij is the

ith row and jth column entry.

For the regression framework, we receive input vectors

{xt}t≥1, xt ∈ R
d and {dt}t≥1, dt ∈ R sequentially. Our aim

is to estimate d̂t = pTt xt, where pt ∈ R
d. We then calculate

the loss ℓt(dt, d̂t) and update the corresponding parameters

of the regression model. In this paper, to estimate d̂t, besides

using present sample xt, we use both present and past samples,

i.e., {xt−j} for j = 1, . . . , ν, where ν corresponds to the978-1-5386-1501-0/18/$31.00 c© 2018 IEEE



index of the past sample till which we want to use. We use

recurrent neural networks (RNNs) to execute such a task. The

basic framework of a simple RNN is given as follows [9]:

ht = κ(Wxt +Rht−1) (1)

yt = ψ(ht), (2)

where xt ∈ R
d is the input vector, ht ∈ R

m is the RNN state

vector and yt ∈ R
m is the output vector. The functions κ(·)

and ψ(·) are commonly set to tanh(·) and applies pointwise

to vectors. The coefficient weight matrices W and R are set

to appropriate dimensions.

In this paper, we apply FFT-IFFT operation on the RNN

framework. Let F
(nk)
N and F

∗(nk)
N denote the Fourier and

inverse-Fourier matrices respectively where 0 ≤ n, k ≤ d− 1
and N is the length of the data sequence vector or row size

of the matrix to which it is applied. Let us define an FFT

operation function θF (a, b) as

θF (a, b) := (F
(nk)
N a)(F

(nk)
N b), (3)

where a and b can be a vector or a matrix. We apply the

FFT-IFFT operation on (1) as follows:

ht = κ
(

F ∗(nk)
m

(

θF (W ,xt) + θF (R,ht−1)
)

)

. (4)

As a special case of the RNNs, we use the GRU neural

networks [11] with one hidden layer with FFT-IFFT operation

defined as follows:

zt = σ
(

F ∗(nk)
m

(

θF (W
(z),xt) + θF (U

(z),ht−1)
)

)

rt = σ
(

F ∗(nk)
m

(

θF (W
(r),xt) + θF (U

(r),ht−1)
)

)

h̃t = g
(

F ∗(nk)
m

(

θF (W
(h),xt) + θF (U

(h),

θF (∆
(rt),ht−1))

)

)

ht = F
∗(nk)
m

(

θF (∆
(1−zt), h̃t) + θF (∆

(zt),ht−1)
)

, (5)

where xt ∈ R
d is the input vector and ht ∈ R

m is the

output vector. zt and rt are the reset and update gates

respectively. ∆(·) is a diagonal matrix and the coefficient

weight matrices, i.e., W (·) and U (·), are set to appropriate

dimensions. The functions σ(·) and g(·) are set to sigmoid

and tanh respectively and apply pointwise to vectors. The

FFT-IFFT operation on the GRU network is shown in Fig. 1.

A. Gradient Based Additive Updates

In this subsection, we derive the gradient based additive

updates of the GRU network parameters with one hidden layer

with FFT-IFFT operation. For the loss function ℓt(dt, d̂t) =
(dt − d̂t)

2, the stochastic gradient descent (SGD) update for

parameter τpq (pth row and qth column entry of τ ) is given

as follows:

τpq = τpq − η
∂ℓt

∂τpq
= τpq + 2(dt − d̂t)p

T
t

∂ht

∂τpq
(6)

where η is the learning rate.

For the GRU network defined in (5) and for τpq = w
(z)
pq ,

∂ht

∂τpq
is calculated as follows:

∂ht

∂w
(z)
pq

= F ∗(nk)
m

(

θF
(

∆(α), h̃t

)

+ θF
(

∆(1−zt),∆(γ)
)

+

θF
(

∆(ψ),ht−1

)

+ θF
(

∆(zt),β
(w(z)

pz )

t−1

)

)

(7)

∂zt

∂w
(z)
pq

= ∆

(

σ
′

(·)
)

(

F ∗(nk)
m

(

θF
(

∆(φ),xt

)

+ θF
(

U z,

β
(w(z)

pz )

t−1

)

)

)

(8)

∂h̃t

∂w
(z)
pq

= ∆

(

tanh
′

(·)
)

(

F ∗(nk)
m

(

θF
(

U (h), θF
(

∆(ζ),ht−1

))

+ θF
(

U (h), θF
(

∆(rt),β
(w(z)

pz )

t−1

))

)

)

(9)

∂rt

∂w
(z)
pq

= ∆

(

σ
′

(·)
)

(

F ∗(nk)
m

(

θF
(

U (r),β
(w(z)

pz )

t−1

)

)

)

, (10)

where α =
(∂(1− zt)

∂w
(z)
pq

)

, γ =
( ∂h̃t

∂w
(z)
pq

)

, ψ =
( ∂zt

∂w
(z)
pq

)

,

φ =
(∂W (z)

∂w
(z)
pq

)

= δ
(W (z))
pq I, ζ =

( ∂rt

∂w
(z)
pq

)

∆(1−zt) =

−∆(zt) and β
(w(z)

pz )

t−1 =
(∂ht−1

∂w
(z)
pq

)

. By substituting the value of

(10) in (9), then (8) and (9) in (7) and finally substituting the

value of (7) in (6), we can evaluate the online additive update

at time t for the corresponding parameter. For the rest of the

network parameters, the updates can be derived accordingly.

B. Weight Matrix Factorization (WMF) on FFT-IFFT based

GRU Networks

In this subsection, we use the WMF on FFT-IFFT based

GRU networks. We use the idea form [15] and apply to our

model. Let A ∈ R
m×n be a matrix, then by using WMF we

can write A ≈ BC, where B ∈ R
m×p, C ∈ R

p×n and

p << min(m,n). We apply WMF on our FFT-IFFT based

GRU network with W (·) ≈ P (·)Q(·) and U (·) ≈ R(·)S(·) as

follows:

zt = σ

(

F ∗(nk)
m

(

θF
(

P (z), θF (Q
(z),xt)

)

+

θF
(

R(z), θF (S
(z),ht−1)

)

)

)

(11)

rt = σ

(

F ∗(nk)
m

(

θF
(

P (r), θF (Q
(r),xt)

)

+

θF
(

R(r), θF (S
(r),ht−1)

)

)

)

(12)

h̃t = g

(

F ∗(nk)
m

(

θF
(

P (h), θF (Q(h),xt)
)

+

θF
(

R(h), θF (S
(h), θF (∆

(rt)),ht−1)
)

)

)

(13)

ht = F
∗(nk)
m

(

θF (∆
(1−zt), h̃t) + θF (∆

(zt),ht−1)
)

, (14)
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Fig. 1: Detailed schematic diagram of the FFT-GRU network.

Remark 1: For the case of WMF based FFT-IFFT GRU

networks, the gradient updates are similar to the updates for

FFT-IFFT GRU networks as shown in the previous section in

(7)-(10). For the GRU network with WMF defined in (11)-(14)

and for τpq = p
(z)
pq ,

∂ht

∂τpq
is calculated as follows:

∂ht

∂p
(z)
pq

= F ∗(nk)
m

(

θF
(

∆(α), h̃t

)

+ θF
(

∆(1−zt),∆(γ)
)

+

θF
(

∆(ψ),ht−1

)

+ θF
(

∆(zt),β
(p(z)

pz )

t−1

)

)

(15)

∂zt

∂p
(z)
pq

= ∆

(

σ
′

(·)
)

(

F ∗(nk)
m

(

θF
(

∆(φ), θF
(

Q(z),xt

))

+

θF
(

Rz, θF
(

Sz,β
(p(z)

pz )

t−1

))

)

)

(16)

∂h̃t

∂p
(z)
pq

= ∆

(

g
′

(·)
)

(

F ∗(nk)
m

(

θF
(

R(h), θF
(

S(h), θF
(

∆(ζ),

ht−1

)))

+ θF
(

R(h), θF
(

S(h), θF
(

∆(rt),β
(p(z)

pz )

t−1

)))

)

)

(17)

∂rt

∂p
(z)
pq

= ∆

(

σ
′

(·)
)

(

F ∗(nk)
m

(

θF
(

R(r), θF
(

S(r),β
(p(z)

pz )

t−1

))

)

)

,

(18)

where g
′

(·) = tanh
′

(·). Similarly, substituting the value of

(18) in (17), (16) and (17) in (15) and then finally substituting

the value of (15) in (6) we can calculate the online additive

update of the corresponding parameter. For rest of the network

parameters, we can similarly derive the updates as in (15)-(18).

III. EXPERIMENTS

In this section, we illustrate the performance of our pro-

posed algorithm on various data sets. We first compare the

regression performance of our algorithm on the financial data

set, i.e., Alcoa corporation stock price data set [16]. We then

evaluate the regression performance on various real-life data

sets, i.e., kinematics [17] and elevators[18]. Throughout this

section, we use four variants namely: simple GRU, FFT-GRU,

WMF-GRU and FFT-WMF-GRU networks. We also validate

the performance by using the LSTM networks.

In Fig. 2, we compare the regression performance by

calculating the time accumulated error over all the data sets.

In our experimental setup, we use learning rate for SGD

updates to be η = 0.1 and keep the common parameters

of all the variants same for a fair experimental environment.

For the WMF, we use rank = 2 for all the network weight

sub-matrices. Fig. 2 shows the regression performance using

simple, FFT and WMF variants of the GRU networks. Fig. 2a

illustrates the distance prediction performance for the 8-link all

revolute robotic arm. The input for this data set is x ∈ R
8. The

main aim of this robot architecture is to predict the distance of

the disturbing medium, i.e., effector, form the target. In Fig.

2b, we predict the set of actions taken by the F-16 aircraft with

respect to various parameters related to the aircraft mechanism.

Here, the input vector is x ∈ R
18. Similarly, in Fig. 2c, we

have the daily stock price data for the Alcoa Corporation. We

aim to predict the next instant future stock price by relying on

the past values of the stock price data. As a whole, in Fig. 2,

we observe that FFT-WMF-LSTM shows the best performance

among all other variants like FFT-GRU, WMF-GRU and GRU

networks among all the data sets. We also perform the same

set of experiments using the LSTM networks.

Table. I, shows the steady state errors for both of the GRU

and LSTM variants for all three data sets. From Table. I, we

observe that the FFT-WMF-GRU networks surpass all other

WMF and FFT GRU variants as well as the LSTM network

variants. In Table. II, we list down the total number of the

network parameters to be trained for all the variants of the

algorithms and for all three data sets. From Table. I and Table.

II, we can conclude that the FFT-WMF-GRU/LSTM networks

have the lowest steady state error as well as less number of

network training parameters.

Remark 2: The effect of WMF on the network can be more

precisely seen for the Elevators data set, where the number of

parameters for the simple and WMF variant GRU network is

2034 and 306 respectively. There is ≈ 6.5% reduction in the

number of network parameters but we still manage to get the

best performance as shown in Table. I.

IV. CONCLUSIONS

We analyzed the online regression performance on the GRU

networks using FFT-IFFT operation. We performed the gating

operations in the frequency domain and then converted them

back to time domain before the non-linear functions in the

GRU networks. We first derived the online additive updates

for FFT-GRU networks and then validated their performance
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Fig. 2: Regression performance of Kinematics, Elevators and Alcoa Corp. data sets using simple and FFT, WMF variants of

the GRU network.

TABLE I: Steady State Error Performance of simple and FFT, WMF variants of the GRU and LSTM networks.

Data Sets/Algorithms GRU FFT-GRU WMF-GRU FFT-WMF-GRU LSTM FFT-LSTM WMF-LSTM FFT-WMF-LSTM

Kinematics 0.3602 0.1077 0.5533 0.0804 0.3599 0.9991 0.3826 0.0815
Elevators 1.5260 1.4200 2.5450 1.0590 1.5255 1.3905 2.5555 1.0637

Alcoa Corp. 0.0080 0.0026 0.0040 0.0021 0.0079 0.0026 0.0043 0.0020

TABLE II: Total number of network parameters for the simple

and FFT, WMF variants of the GRU and LSTM networks

Data Sets/
Algorithms

Kinematics Elevators Alcoa

GRU /

FFT-GRU
424 2034 155

WMF-GRU /

FFT-WMF-GRU
136 306 65

LSTM /

FFT-LSTM
560 2682 225

WMF-LSTM /
FFT-WMF-LSTM

168 378 105

on both financial and real-life data sets. We then applied the

WMF on the FFT-GRU networks and then derived the online

additive updates for one of the parameters. Furthermore, we

demonstrate significant performance improvement in terms of

cumulative error for the FFT-WMF-GRU networks. We also

perform similar experiments using the LSTM architecture and

then compare their results. We observed that our proposed

FFT-WMF based GRU and LSTM networks performs much

better than the simple GRU/LSTM, WMF-GRU/LSTM and

FFT-GRU/LSTM networks and are much less computationally

expensive in terms of number of network parameters. We

observed that the GRU based networks are superior to LSTM

based networks with FFT-IFFT operation.
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