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ABSTRACT  |  Visible light communication (VLC) is an 

emerging paradigm that enables multiple functionalities to 

be accomplished concurrently, including illumination, high-

speed data communications, and localization. Based on the 

VLC technology, visible light positioning (VLP) systems aim to 

estimate locations of VLC receivers by utilizing light-emitting 

diode (LED) transmitters at known locations. VLP presents a 

viable alternative to radio frequency (RF)-based positioning 

systems by providing inexpensive and accurate localization 

services. In this paper, we consider the problem of localization in 

visible light systems and provide an extensive survey of various 

location estimation techniques, accompanied by discussions of 

their relative merits and demerits within the context of accuracy 

and computational complexity. In addition, we investigate a 

cooperative VLP system architecture in which VLC receiver units 

are able to communicate with each other for the purpose of 

cooperation, and present a low-complexity, iterative localization 

algorithm to demonstrate the benefits of cooperation in VLP 

systems. Finally, we investigate optimal strategies for power 

allocation among LED transmitters to maximize the localization 

accuracy subject to power and illumination constraints.

KEYWORDS  |  Cooperation; direct positioning; localization; 

parameter estimation; power allocation; two-step positioning; 

visible light communication (VLC); visible light positioning (VLP)

I .   IN TRODUCTION

Visible light positioning (VLP) systems have recently attracted 
great attention due to their significant capabilities in localiza-
tion related applications, especially in indoor scenarios [1], 
[2]. In indoor environments, VLP systems, combined with the 
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power of the light-emitting diode (LED) technology, facili-
tate precise and accurate localization and provide low-cost 
solutions for applications that require compact and effective 
positioning systems. Due to the emerging developments 
in the LED technology, LEDs can also be used for commu-
nication and localization purposes besides their primary 
function of providing illumination [3]–[5]. The attractive 
features of LEDs such as long lifespan and low-power con-
sumption make the LED technology the main ingredient in 
a reliable, robust, and efficient illumination system. In addi-
tion to these properties, LEDs have the capability of switch-
ing to different intensity levels at very fast rates; that is, they 
can be modulated at frequencies as high as 300 MHz (much 
higher than the conventional lighting systems) and can be 
used to transmit data without causing visible flicker [6], [7]. 
Hence, LEDs can effectively serve multiple purposes of com-
munication and localization as well as illumination.

A. Features of Visible Light Systems

In the context of communication and localization, 
visible light systems benefit from the desirable proper-
ties of the visible light and its spectrum. Compared to 
traditional wireless systems which employ the cluttered, 
scarce, and expensive radio frequency (RF) spectrum, 
VLP systems utilize the visible light portion of the elec-
tromagnetic spectrum, which is unlicensed and unregu-
lated [4]. The visible light spectrum with its huge license 
free bandwidth facilitates high speed data transmission 
and reduces the costs for operators. Besides VLP systems, 
visible light communication (VLC) systems complement 
the RF-based communication systems and meet the high-
capacity traffic demand for wireless networks by operat-
ing in the visible light spectrum [3], [6], [8].

In addition to its untapped spectrum, the LED-based 
visible light technology provides some advantages for 
both VLP and VLC systems in terms of reliability, robust-
ness, and security [5], [9]. Compared to the transmitters in 
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conventional RF-based systems, the power consumption of 
LEDs can be significantly lower. Since LEDs are already used 
for illumination purposes in indoor environments, they can 
be incorporated into VLP and VLC solutions without causing 
a substantial increase in the power consumption. In addition, 
the inherent line-of-sight (LOS) property of LEDs provides a 
secure data transmission for systems in which the transmitter 
and the receiver directly communicate via high-frequency vis-
ible light channel in a confined space by ensuring LOS clear-
ance between them. The fundamental reason behind that fea-
ture is the inability of visible light to penetrate through opaque 
objects such as walls [10]. That characteristic of the visible light 
prevents intercell interference issues mostly encountered in 
RF-based systems and leads to efficient cell-based communica-
tion and localization systems separated by partitions such as 
walls [10]. Furthermore, visible light signals do not interfere 
with the RF signals in sensitive electronic devices and conse-
quently they can freely be employed in applications where RF 
interference may cause issues for proper functioning of devices.

Although global positioning system (GPS) is commonly 
employed in many applications, it suffers from signal block-
age and multipath propagation, which results in poor perfor-
mance in indoor environments [11]. For that reason, other 
RF-based positioning systems are proposed in the literature 
for indoor applications [12]–[15]. However, those systems 
can easily be exposed to multipath interference and conse-
quently their localization performance can degrade as the 
radio signals reaching a receiver via different multiple paths 
(e.g., due to reflections from objects such as walls) complicate 
the process of estimating location related parameters from the 
received signal. On the other hand, due to the nature of vis-
ible light channels, multipath effects are not as significant in 
VLP systems as those in RF-based positioning [8], [16]–[21]. 
Moreover, the widespread use of LEDs for illumination con-
stitutes an opportunity to design a ubiquitous and economi-
cal positioning system, which functions efficiently in indoor 
environments [22]. In particular, LED-based VLP systems can 
easily be integrated into the existing lighting infrastructure 
(i.e., facilitates the reuse of existing infrastructure) for the 
purpose of localization in addition to its essential function 
of illumination without usually requiring rewiring. It is also 
important to note that VLP systems can be deployed not only 
for indoor applications but also for outdoor applications such 
as street lights, stop lights, and airport taxi-way lighting [23], 
[24]. In general, VLP systems can appropriately be employed 
in any application where LEDs are utilized.

B. VLP Applications and Design Constraints

VLP systems are used in a broad range of applications 
including automated vehicles, location-aware services, and 
asset tracking [1], [23], [25]–[27]. The VLP system employed 
in each application needs to satisfy different requirements in 
terms of various criteria such as cost, reliability, and robust-
ness. As an example, a VLP system can be installed in a 
museum and with the help of such a system, the visitors of 

that museum can get information about an exhibit (e.g., a his-
torical artifact) when they are in front of it. A handheld device 
(e.g., a smartphone) of a visitor can receive the signals trans-
mitted by the LEDs placed near the exhibit and estimate the 
current position of the visitor. Then, it decides which exhibit 
the visitor is interested in and informs the visitor about the 
corresponding exhibit. Such an application may not have a 
very strict accuracy requirement for localization. However, 
there also exist applications in which highly accurate and 
precise positioning is required; e.g., robot navigation [28]. In 
order to estimate the position accurately and precisely, those 
applications require more advanced algorithms than those 
utilized in the museum application, and employ various tech-
niques to enhance localization performance of VLP systems.

The design of VLP systems depends also on some crucial 
factors and constraints arising from the primal illumination 
purpose of LEDs. The primary function of the LEDs is to 
provide energy-efficient and high-quality illumination. For 
that reason, any VLP system designed based on LEDs should 
be suitable for that purpose and allow the LEDs to operate 
flawlessly without any restraints. Also, the signals transmit-
ted by the LEDs in a VLP system should not cause any vis-
ible flicker, and the color changes in the LEDs should not be 
detectable by the human eye during signal transmission. In 
addition, a practical VLP system should satisfy lighting level 
requirements of an illumination system in which dimming 
control is a required feature. Last, it is worth noting that 
the relationship between the applied current and the light 
output of an LED is linear only in a limited dynamic range. 
Therefore, VLP systems should be designed in consideration 
of nonlinear characteristics of LEDs, as well [29]–[32].

C. Localization Techniques in VLP Systems

Similar to RF-based positioning systems [33]–[39], VLP 
systems consist mainly of two components, namely, trans-
mitters and receivers. LEDs correspond to the transmitter 
part of the VLP system and send the necessary information 
(e.g., a position signal or a code) in order for the receiver to 
determine its own position in the system. On the receiving 
side of the VLP system, two different types of receivers can 
be employed in general [40]–[42], namely, photo detector 
(PD) and imaging sensor. In both cases, the received signals 
(i.e., lights) coming from the LEDs are used to estimate the 
localization parameters such as the relative distance and/
or direction of the LED transmitters. Then, the informa-
tion gathered from the received signals is analyzed based 
on the positioning techniques to figure out the locations 
of the receivers. Regarding the types of receivers, the PD 
is a low-cost solution for the receiver part of the VLP sys-
tem and provides energy-efficient and high-rate data com-
munication. On the contrary, imaging sensors are often 
more costly and suitable for applications with low data rate 
requirements [43]. Recently, with improved cost-perfor-
mance tradeoffs induced by new complementary metal–
oxide–semiconductor (CMOS) technologies, those sensors 
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can already be found in smart devices such as smartphones 
and can readily be employed in desired applications [43].

In a VLP system, various approaches can be employed 
for location estimation, which can mainly be classified into 
two groups: direct positioning and two-step positioning. 
In the direct positioning approach, all the available 
information gathered from the received signals is directly 
exploited to estimate the position of the receiver without 
examining position related parameters in advance. In other 
words, this approach does not include any intermediate 
steps for parameter estimation and can provide the optimal 
solution of the localization problem. On the other hand, 
the two-step method performs position estimation in two 
separate stages. In the first stage, position related param-
eters are extracted, which is followed by estimation of the 
receiver position in the second stage via various algorithms 
and methods based on those parameters. The two-step posi-
tioning approach has a lower complexity than the direct 
positioning approach (which requires high data storage and 
communication capacity); however, it leads to a suboptimal 
solution as it does not use the received signals directly.

Within the context of two-step positioning, the studies in 
the literature consider different position related parameters 
such as received signal strength (RSS) [40], [44]–[46], time 
of arrival (TOA) [47]–[49], time difference of arrival (TDOA) 
[50]–[52], and angle of arrival (AOA) [53]–[56]. In VLP sys-
tems, RSS is a common parameter which is employed to gather 
information related to the distance and orientation of the VLC 
receiver with respect to the LED transmitter. Compared to 
the time-based parameters such as TOA and TDOA, the RSS 
parameter can be estimated in a low complexity manner since 
synchronization is not needed. On the contrary, the VLC 
receiver must be synchronized with each of the LED transmit-
ters in order to estimate the distances between itself and the 
LED transmitters based on TOA measurements. Regarding 
the TDOA parameter, there is no need for synchronization 
between the VLC receiver and the LED transmitters but the 
LED transmitters must be synchronized among themselves 
so that the VLC receiver can estimate the distance difference 
between itself and each pair of LED transmitters based on the 
corresponding TDOA measurement. Last, AOA is a promising 
parameter for VLP systems and can efficiently be employed in 
the localization process. Based on the direction of the received 
signal, the AOA-based systems can adequately perform locali-
zation with the help of LOS connections between the LED 
transmitters and the VLC receiver.

Although the same types of position related parameters 
are employed in both VLP- and RF-based localization sys-
tems, the information carried by these parameters can be 
quite different. In particular, the RSS parameter employed 
in VLP systems has significantly higher accuracy than that 
in RF-based systems [1]. The main reason for this is related 
to the severity of multipath effects in RF-based systems. 
Namely, RF-based systems suffer from multipath interfer-
ence and typically do not have an LOS path between the 

transmitter and the receiver. On the contrary, multipath 
effects are not as crucial in VLP systems as those in RF-based 
ones since VLP systems commonly have LOS paths between 
LED transmitters and VLC receivers and the diffuse com-
ponents arising from multipath scattering are much weaker 
than the LOS component. Similar to the RSS parameter, 
the AOA parameter, which is measured based on received 
power levels at PDs, can also provide high accuracy in VLP 
systems compared to RF-based solutions for the aforemen-
tioned reasons [1]. In addition, it is important to note that 
RSS and AOA parameters provide a low-cost solution for 
VLP systems to estimate the position of a VLC receiver accu-
rately since they do not require synchronization among VLC 
units. On the other hand, estimation of TOA and TDOA 
parameters requires precise synchronization and highly 
accurate time measurements, thus rendering these metrics 
relatively costly in practical applications.

After the position related parameters are obtained in the 
first step of the two-step positioning approach, a VLP system 
can apply numerous algorithms and techniques in the sec-
ond step to finalize the localization process. The algorithms 
and techniques employed to that aim in the literature can 
be grouped as follows. First, the proximity-based methods 
perform localization based on the data obtained from the 
nearest LED and suits for applications in which very accu-
rate position information is not required [57], [58]. Second, 
the geometric methods determine the position of the VLC 
receiver by analyzing the position related parameters such 
as TOA and AOA in a geometric fashion [59], [60]. In other 
words, the extracted information in the first step is evalu-
ated in the second step with the help of some geometric 
processes such as trilateration and triangulation. The sta-
tistical methods, which constitute the third group, benefit 
from the statistical distributions of the parameters obtained 
in the first step and derive the position estimators in view 
of those statistical properties [55], [61]–[64]. Last, in the 
fingerprinting methods, the estimated parameters based on 
the online measurements performed by the VLC receiver  
are compared with the data in a previously obtained data-
base and a matching algorithm decides the position of the 
VLC receiver in the system [65], [66].

Apart from the algorithms and techniques that can be 
applied in the second step of the two-step positioning scheme, 
alternative approaches can also be employed to improve the 
localization performance of VLP systems [67]–[69]. As in 
RF-based positioning systems [34], [70]–[72], cooperation 
among the entities in a VLP system can enhance the accu-
racy of localization [67], [68]. Moreover, the optimal power 
allocation approaches can be designed for LED transmitters 
to enhance the localization accuracy of the VLP system [69]. 
In these approaches, the powers of the LEDs in the system 
can be set to the optimal levels instead of operating all the 
LEDs at the same power level while taking power and illu-
mination constraints into account during the design of the 
system.
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D. Summary and Organization

In general, the aim of this paper is to provide an overview 
of the position estimation methods for VLP systems. The main 
points presented in the paper can be summarized as follows.

• � We present the state-of-the-art methods for position 
estimation in visible light systems, which can essen-
tially be classified as direct and two-step approaches.

• � We investigate different types of position related 
parameters employed in VLP systems, such as RSS, 
TOA, TDOA, and AOA, and focus on positioning tech-
niques that utilize those parameters.

• � We discuss the effects of cooperation on the per-
formance of VLP systems and present an iterative-
gradient-projection-based cooperative localization 
algorithm, motivated by a quasi-convex feasibility 
approach.

• � We study the problem of optimal power allocation 
among LED transmitters to maximize the localiza-
tion performance under practical constraints (e.g., 
illumination) and illustrate the resulting accuracy 
improvements.

The remainder of the paper is organized as follows. 
Section II presents position estimation methods for VLP 
systems. In Section III, positioning techniques are discussed 
in the presence of cooperation among the entities in a VLP 
system. Section IV investigates the optimal power allocation 
problem for LEDs in a VLP system in consideration of illu-
mination constraints, and then provides numerical exam-
ples for the solutions of the optimization problems. Finally, 
Section V concludes the paper and addresses some possible 
directions for future work.

II .   POSITION ESTIM ATION METHODS

In this section, we discuss various positioning schemes for 
VLP systems to present a comprehensive insight on the 
state-of-the-art techniques for parameter extraction and 

position estimation (see Fig. 1). In both RF- and VLC-based 
systems, position estimation is performed by exchang-
ing signals between nodes with known locations (called 
anchor/reference nodes) and nodes whose locations are to 
be estimated (called target/agent nodes) [37], [61]. (Also, 
signal exchanges among target nodes can provide additional 
location information, which is utilized in cooperative posi-
tioning systems; see Section III.) For VLP systems, LED 
transmitters, which have known locations and are typically 
attached to the ceiling of a room in indoor scenarios, func-
tion as anchor nodes, and VLC receivers, equipped with 
PDs, seek to determine their own locations based on signals 
transmitted by LEDs and detected through PDs.1 Hence, 
VLC receivers commonly perform self-localization [81] 
by utilizing incoming VLC signals and known locations of 
LEDs that emit those signals. In the following, we focus on 
the two well-known positioning paradigms, namely, direct 
positioning and two-step positioning. Direct positioning 
consists of a single step for location estimation while two-
step positioning is conducted in two separate phases [61], 
[63], [82]–[84], as detailed in the following sections.

A. Direct Positioning

In the direct positioning approach, localization relies on 
a single-step estimation procedure that utilizes the entire 
received waveforms to infer the location of a target node 
[61], [81], [82], [85]. As opposed to the conventional two-
step approach, the direct positioning technique exploits 
the whole received signals to estimate the location with-
out intermediate steps for extracting location-dependent 
parameters [61], [82]. The direct positioning method has 
successfully been applied to both RF- [82]–[88] and VLC-
based  [63], [89]  localization systems. To investigate the 

1In this paper, PD-based VLC receivers are considered for VLP 
systems. For imaging-sensor-based VLP systems, see [41], [42], and [73]–
[76]. The reader is referred to [25], [26], [46], and [77]–[80] for some 
practical implementations of VLP systems.

Fig. 1. Classification of localization techniques for VLP systems.
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direct positioning approach in VLP systems, we describe 
the signal model at a VLC receiver, present the direct-posi-
tioning-based maximum-likelihood (ML) estimators, and 
provide performance limits for localization in the following 
sections.

1)  Received Signal Model: Consider a VLP system 
with ​​N​L​​​ LED transmitters and a VLC receiver. Assuming a 
LOS scenario between each LED transmitter and the VLC 
receiver [1], [47], the received signal at the PD of the VLC 
receiver due to the ​i​th LED transmitter can be expressed 
as [47] 

	​​ r​i​​ (t) = ​α​  i​​ ​R​ p​​ ​s​i​​ (t−​τ​ i​​)+​η​ i​​ (t)​� (1)

for ​i ∈ {1, . . . , ​N​L​​}​ and ​t ∈ [​T​1,i​​ , ​T​2,i​​]​, where ​​T​1,i​​​ and ​​T​2,i​​​ deter-
mine the observation interval for the signal emitted by the ​
i​th LED transmitter, ​​α​  i​​​ is the optical channel attenuation 
between the ​i​th LED transmitter and the VLC receiver  
(​​α​ i​​ > 0​), ​​R​p​​​ denotes the responsivity of the PD, ​​s​i​​ (t)​ is the 
transmitted signal of the ​i​th LED transmitter, which is 
nonzero over an interval of ​[0, ​T​s,i​​]​, ​​τ​ i​​​ is the TOA of the signal 
emitted by the ​i​th LED transmitter at the VLC receiver, and ​​
η​ i​​ (t)​ is zero-mean additive white Gaussian noise with spec-
tral density level ​​σ​​ 2​​. To facilitate independent processing of 
signals coming from different LED transmitters, a type of 
multiple-access scheme, such as frequency-division or time-
division multiple access [90], [91], can be employed. Hence, 
the signals corresponding to different LED transmitters do 
not interfere with each other at the VLC receiver, and the 
noise processes ​​η​ 1​​ (t) , . . ., ​η​ ​N​L​​​​ (t)​ become independent.

Let ​​l​r​​  = ​​ [​l​r,1​​  ​l​r,2​​  ​l​r,3​​]​​​ T​​ and ​​l​ t​ i ​  = ​​ [​l​ t,1​ 
i ​  ​ l​ t,2​ i ​  ​ l​ t,3​ i ​ ]​​​ 

T
​​ denote, 

respectively, the locations of the VLC receiver and the ​ 
i​th LED transmitter, and ​‖ ​l​r​​ − ​l​ t​ i ​ ‖​ represent the distance 
between the ​i​th LED transmitter and the VLC receiver. 
Then, the TOA parameter in (1) can be modeled as 

	​​ τ​ i​​ = ​ 
‖ ​l​r​​ − ​l​ t​ i ​ ‖ ______ c ​  + ​Δ​i​​​� (2)

where ​c​ is the speed of light, and ​​Δ​i​​​ denotes the time off-
set between the clocks of the ​i​th LED transmitter and the 
VLC receiver. In synchronous VLP systems, where all the 
LED transmitters and the VLC receiver are synchronized to 
a common clock, ​​Δ​i​​ = 0​ for ​i = 1, . . ., ​N​L​​​. In asynchronous 
systems, synchronization exists neither among the LED 
transmitters nor between the LED transmitters and the VLC 
receiver, in which case ​​Δ​i​​​’s can be modeled as deterministic 
unknown parameters. Finally, for quasi-synchronous VLP 
systems [92], where the LED transmitters are synchronized 
to a common time reference but are not synchronized with 
the VLC receiver, ​​Δ​i​​ = Δ​ for ​i = 1, . . ., ​N​L​​​.

Based on the Lambertian model [93], the optical chan-
nel attenuation ​​α​ i​​​ in (1) can be expressed as 

	​​ α​  i​​ = ​ 
(​m​i​​ + 1) ​A​R​​ ​cos​​ ​m​i​​​ (​φ​ i​​) cos (​θ ​ i​​)  ____________________  

2π‖ ​l​  r​​ − ​l​  t​ i​ ​‖​​ 2​
 ​​�  (3)

where ​​m​i​​​ is the Lambertian order for the ​i​th LED transmit-
ter, ​​A​R​​​ is the area of the PD at the VLC receiver, and ​​φ ​ i​​​ and ​​
θ​  i​​​ are the irradiation and the incidence angles, respectively, 
between the ​i​th LED transmitter and the VLC receiver [46], 
[47]. From the definitions of ​​φ ​ i​​​ and ​​θ ​ i​​​ (see Fig. 2), (3) can 
be rewritten as 

	​​ α​ i​​ = − ​ 
(​m​i​​ + 1) ​A​R​​ ​​[​(​l​ r​​ − ​l​ t​ i​)​​ 

T
​ ​n​ t​ 

i ​]​​​ 
​m​i​​

​ ​(​l​ r​​ − ​l​ t​ i​)​​ 
T
​ ​n​r​​   ________________________  

2π ‖​l​ r​​ − ​l​ t​ i​​‖​​ ​m​i​​+3​
 ​​�  (4)

where ​​n​r​​ = ​​[​n​r,1​​  ​n​r,2​​  ​n​r,3​​]​​​ T​​ and ​​n​ t​ 
i ​ = ​​[​n​ t,1​ 

i ​  ​ n​ t,2​ i ​  ​ n​ t,3​ i ​ ]​​​ 
T
​​ stand for 

the orientation vectors of the VLC receiver and the ​i​th LED 
transmitter, respectively [47], [55].

It is assumed that the parameters ​​A​R​​​, ​​R​p​​​, ​​n​r​​​, ​​m​i​​​, ​​l​ t​ i ​​, and ​​n​ t​ 
i ​​,  

and the transmitted signals ​​s​i​​ (t)​ for ​i = 1, . . ., ​N​L​​​ are known 
by the VLC receiver [55], [63].

Remark: It is important to emphasize that the signal 
model in VLP systems differs from the one in RF-based 
localization systems since the intensity of the electromag-
netic waves is modulated in VLP systems instead of the field 
of the wave, which is employed in RF-based localization sys-
tems [47]. Therefore, unlike in RF-based systems, the trans-
mitted signal in VLP systems cannot be negative. Hence, the 
design of modulation techniques to be employed in VLP sys-
tems necessitates the consideration of optical signal proper-
ties together with illumination constraints. In addition to 
modulation techniques, VLP- and RF-based systems differ 
in the channel model, as well. In VLP systems, the optical 
channel model is considered, which significantly depends 
on the orientations of the LED transmitter and the VLC 
receiver, and the area of the PD at the VLC receiver besides 
the locations of the VLC receiver and the LED transmitter.

2)  Direct-Positioning-Based ML Estimators: The ration-
ale behind the use of direct positioning is to estimate the VLC 
receiver location ​​l​r​​​ by exploiting all the available information 
about ​​l​r​​​, i.e., the received signals ​​{​r​i​​ (t)}​ i=1​ 

​N​L​​ ​​ in (1). In this way, 
the information loss stemming from intermediate steps (cf., 

Fig. 2. Illustration of configuration parameters in the Lambertian 
model, where the cylinder represents the ​i​th LED, and the 
rectangular prism denotes the PD.
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Section II-B) can be avoided and the location can be estimated 
in an optimal manner. In the following, the direct-position-
ing-based ML estimators are investigated for synchronous, 
quasi-synchronous, and asynchronous VLP systems.

• � Direct positioning in synchronous systems: Since ​​
Δ​i​​ = 0​ in (2) for synchronous systems, the ML estima-
tor for ​​l​r​​​ can be obtained from (1) as [63] 

	​​​    l ​​ r​ 
DP,syn

​ = arg ​max​ 
​l​ r​​
​ ​   ​  ∑ 

i=1
​ 

​N​L​​

 ​​α​ i​​​ ​∫ ​T​1,i​​
​ 

​ T​2,i​​​ ​ r​i​​​ (t) ​s​i​​ (t − ​τ​  i​​)dt​�

	​ − ​ 
​R​p​​

 __ 2 ​ ​ ∑ 
i=1

​ 
​N​L​​

 ​​α​ i​ 
2​​ ​E​ 2​ i ​​� (5)

where ​​E​ 2​ i ​​ is the electrical energy of ​​s​i​​ (t)​, defined as 

	​​ E​ 2​ i ​ ≜ ​∫ 0​ ​  T​s,i​​ ​ (​ ​s​i​​ (t))​​ 2​ dt.​� (6)

    � The direct estimator in (5) performs a search over all 
possible values of the unknown location ​​l​  r​​​ via its rela-
tion to ​​τ​ i​​​ in (2) (with ​​Δ​i​​ = 0​) and to ​​α​  i​​​ in (4).

• � Direct positioning in quasi-synchronous systems: As 
the LED transmitters are synchronized to a common 
time base in quasi-synchronous systems, the time off-
sets in (2) are the same among the LED transmitters, 
i.e., ​​Δ​i​​ = Δ​ for ​i = 1, . . ., ​N​L​​​, where ​Δ​ is an unknown 
time offset. Under this setting, the direct-positioning-
based ML estimator is given by [94] 

	​​ (​​   l​​ r​ 
DP,qsy

​ ,​Δ ̂ ​)​ = arg ​max​ 
(​l​r​​,Δ)

​ ​   ​ ∑ 
i=1

​ 
​N​L​​

 ​​α​  i​​​ ​∫ 
​T​1,i​​

​ 
​ T​2,i​​​ ​r​i​​​ (t) ​s​i​​ (t − ​τ​ i​​)dt​�

  ​− ​ 
​R​p​​

 __ 2 ​ ​ ∑ 
i=1

​ 
​N​L​​

 ​​α​ i​ 
2​​ ​E​ 2​ i ​​� (7)

�where ​​E​ 2​ i ​​ is as defined in (6). Since the time off-
set ​Δ​ between the receiver and the transmit-
ters is unknown, a joint search over ​​l​r​​​ and ​Δ​ 
must be performed in (7) to find the optimal ​​l​r​​​.  
Note that ​​α ​ i​​​ in (7) depends on ​​l​r​​​ via (4), while ​​τ​  i​​​ is a 
function of both ​​l​r​​​ and ​Δ​ via (2) (with ​​Δ​i​​ = Δ​ for ​i = 1, 
 . . . , ​N​L​​​).

• � Direct positioning in asynchronous systems: For 
asynchronous systems, the time offset ​​Δ​i​​​ in (2) is an 
unknown parameter. In this case, the ML estimator is 
obtained as [63] 

	​​​    l ​​ r​ 
DP,asy

​ = arg ​max​ 
​​​​l​ r​​​​
​ ​ ​  ∑ 

i=1
​ 

​N​L​​

 ​​(​α​ i​​ ​​C ̃ ​​ rs​ 
i ​  − 0.5 ​R​p​​ ​α​ i​ 

2​ ​E​ 2​ i ​)​​​� (8)

where ​​E​ 2​ i ​​ is given by (6) and 

	​​​ C  ̃ ​​ rs​ 
i ​  ≜ ​max​ ​τ​  i​​

​ ​ ​ ∫ ​T​1,i
​​​ 

​ T​2,i​​​ ​ r​i​​​ (t) ​s​i​​ (t − ​τ​ i​​)dt.​� (9)

�As observed from (8), the direct estimator in asyn-
chronous systems attempts to determine the location 
of the VLC receiver based on its relation with the 
channel attenuation factor in (4). This is due to the 

fact that no information about ​​l​  r​​​ can be extracted from ​​
τ​  i​​​’s in (2) due to the unknown time offsets in the asyn-
chronous case. For this reason, the resulting estima-
tor in (8) employs the correlator peak in (9) [cf., the 
integral expression in (5)] and utilizes the relation of ​​
l ​ r​​​ to ​​α​  i​​​’s only.

The direct positioning estimators in (5), (7), and (8) 
constitute the optimal estimators (in the ML sense) for the 
location of the VLC receiver. However, the direct position-
ing paradigm may have several drawbacks, including high 
computational burden [63] and excessive data storage and 
communication concerns.

Remark: In addition to their utilization in VLP sys-
tems, direct localization algorithms have also been widely 
used for RF-based localization systems in the literature 
[82]–[88]. A common observation in RF and VLP systems 
regarding the performance of direct position estimation is 
that the improvement in localization accuracy provided 
by direct positioning over its two-step counterpart2 is par-
ticularly significant in the low signal-to-noise ratio (SNR) 
regime [63], [82], [83], [85], [86], [88], [94]. The major 
difference between these two systems lies in the fact that 
different types of signal metrics are employed for posi-
tion estimation. In particular, both signal-strength-based 
(i.e., ​​α​  i​​​) and time-based (i.e., ​​τ ​ i​​​ and ​Δ​) information are 
utilized for direct positioning in synchronous and quasi-
synchronous VLP systems, as seen from (5) and (7). On 
the other hand, received powers of RF signals can severely 
be affected by multipath and shadowing effects [95]; 
hence, they cannot be used reliably in RF-based direct 
positioning algorithms. Hence, in general, direct localiza-
tion approaches in RF systems consider either synchro-
nous [82]–[85] or quasi-synchronous [83], [87] scenarios. 
However, for VLP systems, direct position estimation can 
be performed also for asynchronous scenarios since the 
Lambertian model in (3) can accurately characterize the 
optical channel attenuation [8].

3)  Performance Limits: Theoretical performance limits 
provide essential guidelines for the design and evaluation of 
practical VLP systems. In this part, we present the Cramér–
Rao lower bound (CRLB) on variances of unbiased estimates 
of ​​l​  r​​​ in synchronous, quasi-synchronous, and asynchronous 
VLP systems. The localization accuracy limits characterized 
by the presented CRLBs are attainable by the correspond-
ing ML estimators in (5), (7), and (8) at high SNRs and/or 
bandwidths [96], [97].

• � CRLB in synchronous systems: The CRLB for localiza-
tion of the VLC receiver in synchronous VLP systems 
is expressed as [63] 

	​ 𝔼 ​{‖ ​​   l​​r​​ − ​l​r​​ ​‖​​ 2​}​ ≥ trace​{​J​ syn​ −1 ​}​​� (10)

2See Section II-B for detailed treatment on two-step positioning 
techniques.
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�where ​​​   l ​​r​​​ represents an unbiased estimate for the loca-
tion ​​l​  r​​​ and the Fisher information matrix (FIM) ​​J​syn​​​ is 
calculated from 

	​​ [​J​syn​​]​
​k​1​​,​k​2​​

​​ = ​ 
​R​ p​ 2​

 ___ 
​σ​​ 2​

 ​ ​ ∑ 
i=1

​ 
​N​L​​

 ​ ​​​(​E​ 2​ i ​ ​ 
∂ ​α​ i​​ ____ ∂ ​l​r,​k​1​​​​

 ​ ​ 
∂ ​α​ i​​ ____ ∂ ​l​r,​k​2​​​​

 ​ + ​E​ 1​ 
i ​ ​α​ i​ 

2​ ​ 
∂ ​τ​ i​​ ____ ∂ ​l​r,​k​1​​​​

 ​ ​ 
∂ ​τ​ i​​ ____ ∂ ​l​r,​k​2​​​​

 ​​​�

	​​ − ​E​ 
3
​ i ​ ​α​

i
​​​(​ 

∂ ​α​ i​​ ____ ∂ ​l​r,​k​1​​​​
 ​ ​ 

∂ ​τ​ i​​ ____ ∂ ​l​r,​k​2​​​​
 ​ + ​ 

∂ ​τ​ i​​ ____ ∂ ​l​r,​k​1​​​​
 ​ ​ 

∂ ​α​ i​​ ____ ∂ ​l​r,​k​2​​​​
 ​)​)​​�

�for ​​k​1​​ , ​k​2​​ ∈ {1, 2, 3}​. In (11), ​∂ ​α​ i​​ /  ∂ ​l​r,k​​​ and ​∂ ​τ​ i​​ /  ∂ ​l​r,k​​​ are, 
respectively, the partial derivatives of the channel 
attenuation in (4) and the TOA parameter in (2) (for ​​
Δ​i​​ = 0​) with respect to ​​l​r,k​​​, ​​E​ 2​ i ​​ is given by (6), and ​​E​ 1​ 

 i ​​ 
and ​​E​ 3​ i ​​ are defined as 

	​​ E​ 1​ 
i ​ ≜ ​∫ 0​ ​ T​s,i​​​ (​ ​​s ′ ​​i​​ (t))​​ 2​ dt​� (12)

	​​ E​ 3​ i ​ ≜ ​∫ 0​ ​ T​s,i​​​ ​s​i​​​ (t) ​​s ′ ​​i​​ (t) dt​� (13)

with ​​​s ′ ​​i​​ (t)​ denoting the derivative of ​​s​i​​ (t)​.

• � CRLB in quasi-synchronous systems: In quasi-syn-
chronous VLP systems, the CRLB for location estima-
tion of the VLC receiver is expressed as [94] 

	​ 𝔼 {‖ ​​   l​​r​​ − ​l​r​​ ​‖​​ 2​} ≥ trace{​J​ qsy​ −1 ​}​� (14)

where 

	​​ J​qsy​​ = ​J​syn​​ − ​  1 _________ 
​∑ i=1​ 

​N​L​​ ​ ​E​ 1​ 
i ​​ ​α​ i​ 

2​
 ​ ν ​ν​​ T​​� (15)

with ​​J​syn​​​ being given by (11), ​ν = ​​[​ν​ 1​​ ​ν​ 2​​ ​ν​ 3​​]​​​ T​​, and 

	​​ ν​ k​​ ≜ ​ 
​R​p​​

 __ σ ​ ​ ∑ 
i=1

​ 
​N​L​​

 ​​(​E​ 1​ 
i ​ ​α​ i​ 

2​ ​ 
∂ ​τ​ i​​ ____ ∂ ​l​r,k​​ ​ − ​E​ 3​ i ​ ​α​ i​​ ​ 

∂ ​α​ i​​ ____ ∂ ​l​r,k​​ ​)​​​� (16)

for ​k ∈ {1, 2, 3}​.

• � CRLB in asynchronous systems: For asynchronous 
VLP systems, the CRLB is stated as [55], [63] 

	​ 𝔼 ​{‖ ​​   l​​r​​ − ​l​r​​ ​‖​​ 2​}​ ≥ trace​{​J​ asy​ −1 ​}​​� (17)

where the FIM is calculated from 

	​​ [​J​asy​​]​
​k​1​​,​k​2​​

​​ = ​ 
​R​ p​ 2​

 ___ 
​σ​​ 2​

 ​ ​ ∑ 
i=1

​ 
​N​L​​

 ​​(​E​ 2​ i ​ −   ​ ​(​E​ 3​ i ​)​​ 
2
​
 ____ 

​E​ 1​ 
i ​
 ​ )​​ ​ 

∂ ​α​ i​​ ____ ∂ ​l​r,​k​1​​​​
 ​ ​ 

∂ ​α​ i​​ ____ ∂ ​l​r,​k​2​​​​
 ​​� (18)

for ​​k​1​​ , ​k​2​​ ∈ {1, 2, 3}​.

It is noted that the transmitted signals ​​s​i​​ (t)​ affect the 
FIM expressions in (11), (15), and (18) via ​​E​ 1​ 

i ​​, ​​E​ 2​ i ​​, and ​​E​ 3​ i ​​,  
and the contribution of the system geometry to the FIM is 
through the ​∂ ​α​ i​​ /  ∂ ​l​r,k​​​ and ​∂ ​τ​ i​​ /  ∂ ​l​r,k​​​ terms. In addition, the  
​∂ ​τ​ i​​ /  ∂ ​l​r,k​​​ terms do not appear in (18) since the TOA param-
eter does not provide location related information in asyn-
chronous systems.

Based on the CRLB expressions, some practical sce-
narios can be investigated to gain insights into the locali-
zation performance of VLP systems with varying levels of 

synchronism. In particular, the following practical assump-
tions are considered: 1)  ​​E​ 3​ i ​ = 0​ for ​i = 1, . . ., ​N​L​​​, which is 
the case for most practical pulses,3 and 2) the transmitted 
signals ​​s​i​​ (t)​ are identical, i.e., ​​s​i​​ (t)  = s(t)​. (In this case, the 
parameters related to the pulse shape are the same for all 
the LED transmitters, i.e., ​​E​ 1​ 

i ​ = ​E​1​​​, ​​E​ 2​ i ​ = ​E​2​​​, and ​​E​ 3​ i ​ = ​E​3​​​ for ​
i = 1, . . ., ​N​L​​​.) Then, it follows from (15) that 

	​​ J​syn​​ − ​J​qsy​​ = ​ 
​R​ p​ 2​ ​E​1​​

 ____ 
​σ​​ 2​

 ​  ϑ ​ϑ​​ T​​� (19)

where ​ϑ = ​​[​ϑ​  1​​ ​ϑ​  2​​ ​ϑ ​ 3​​]​​​ T​​ with ​​ϑ​ k​​ ≜ ​∑ i=1​ 
​N​L​​ ​ ​​ ​α​ i​ 

2​ (∂ ​τ​ i​​ /  ∂ ​l​r,k​​ )/ ​√ 
_______

 ​∑ i=1​ 
​N​L​​ ​ ​α​ i​ 

2​​ ​​ 
for ​k ∈ {1, 2, 3}​. From (19), it is clear that ​​J​syn​​ ≽ ​J​qsy​​​ is always 
satisfied since ​​E​1​​​ is positive by definition, where ​​J​syn​​ ≽ ​J​qsy​​​ 
means that ​​J​syn​​ − ​J​qsy​​​ is positive semidefinite. Therefore, it 
is deduced from (10) and (14) that synchronism between 
the LED transmitters and the VLC receiver helps achieve a 
reduced CRLB (that is, improved localization performance), 
as expected. In addition, based on Parseval’s relation [48] 

	​​ E​1​​ = 4 ​π​​ 2​ ​β​​ 2​ ​E​2​​​� (20)

where ​β​ denotes the effective bandwidth of ​s(t)​,4 it can be 
inferred from (19) that the information gain via synchro-
nism becomes more significant as ​β​ gets larger. Similar to 
(19), a relation between the FIMs of quasi-synchronous and 
asynchronous systems can be derived as 

	​​ J​qsy​​ − ​J​asy​​ = ​ 
​R​ p​ 2​ ​E​1​​

 ____ 
​σ​​ 2​

 ​​ (​(​ ∑ 
i=1

​ 
​N​L​​

 ​​α​ i​ 
2​​ ​μ​i​​ ​μ​ i​ 

T​)​ − ​  1 _______ 
​∑ i=1​ 

​N​L​​ ​ ​α​ i​ 
2​​
 ​ ​ ~ μ​ ​​ ~ μ​​​ T​)​​� (21)

where ​​μ ​ i​​ = ​​[​μ​ i,1​​  ​μ​ i,2​​  ​μ​ i,3​​]​​​ T​​, ​​ ~ μ ​ ≜ ​∑ i=1​ 
​N​L​​ ​ ​α​ i​ 

2​​ ​μ​ i​​​​​, and ​​μ​ i,k​​ ≜ ∂ ​τ​ i​​ /  ∂ ​l​r,k​​​. It 
follows from the Cauchy–Schwarz inequality that ​​J​qsy​​ ≽ ​J​asy​​​.  
Based on (21), similar conclusions to those related to (19) 
can be made. Namely, as the effective bandwidth increases, 
the accuracy of (quasi-)synchronous positioning improves. 
This suggests that using LEDs with optical clock rates up 
to 120 MHz [98], very precise position estimates can be 
obtained in (quasi-)synchronous VLP systems. However, for 
VLP signals with relatively low effective bandwidths and/
or in the presence of imperfect synchronization, asynchro-
nous VLP systems would be more preferable due to their low 
complexity.

B. Two-Step Positioning

As the most prevalent approach for positioning in VLP 
systems, the two-step method first extracts position related 
parameters from the received VLC signals and then performs 
position estimation based on those parameters. Compared 
to direct positioning, the two-step approach leads to low 
computational complexity as it utilizes only a subset of the 
available information (i.e., position-dependent parameters) 
for positioning instead of the entire received signals [63]. 

(11)

3​​E​ 3​ i ​​ is calculated from (13) as ​​E​ 3​ i ​ = (​s​i​​ ​(​T​s,i​​)​​ 2​ − ​s​i​​ ​(0)​​ 2​) / 2​, which is zero 
for practical pulse shapes (e.g., [47, eq. (3)]).

4​β​ is defined as ​β = ​ √ 
_______________

  (1 / ​E​2​​) ​∫​ ​ ​f​​  2​​ |S(f ) ​|​​ 2​ df ​​ with ​S(f)​ representing the 
Fourier transform of ​s(t)​ [62].



Keskin et al . : Localization via Visible Light Systems

1070  Proceedings of the IEEE | Vol. 106, No. 6, June 2018

Hence, a certain level of accuracy is sacrificed for the sake 
of a reduced computational burden in two-step positioning. 
In the following, we first describe the commonly employed 
position-dependent parameters in the first step and how to 
estimate them in an optimal manner. Then, we present posi-
tion estimation techniques that employ those parameters in 
the second step to obtain an estimate of the VLC receiver 
location.

1)  Parameter Estimation: Estimation of position-
dependent parameters in a VLP system is carried out as the 
first step of a two-step positioning method. This part will 
focus on the most common parameters used in the first step 
of VLP algorithms, including RSS, TOA, TDOA, and AOA, 
and also present hybrid algorithms that utilize a combina-
tion of those parameters.

a)  Received Signal Strength: The RSS estimate (meas-
urement) obtained from the received VLC signal contains 
positional information as the channel attenuation fac-
tor5 in (4) depends on the location ​​l ​ r​​​ of the VLC receiver. 
According to the Lambertian model in (4), which charac-
terizes the level of attenuation in visible light channels, 
the received signal gets weaker as the distance between 
the LED transmitter and the VLC receiver increases or  
as the displacement vector ​​l​  r​​ − ​l​ t​ i​​ deviates from the orien-
tation of the LED transmitter and/or the VLC receiver. In 
practical VLP systems, RSS-based positioning is a common 
technique due to its low-cost hardware implementation 
that requires no synchronization, as opposed to TOA-based 
schemes [44]–[46]. In addition, multipath effects in indoor 
visible light channels are not significant as compared to 
RF propagation, which makes the Lambertian formula a 
reliable model for quantification of channel attenuation  
[16]–[18], [8, Sec. 3.4.1].6 Therefore, RSS has been a popu-
lar discriminative feature for positioning in visible light sys-
tems [40], [44]–[46], [64], [100]–[103].

For an asynchronous VLP system, the ML estimate ​​​α ̂ ​​i​​​ of 
the RSS parameter ​​α​ i​​​ corresponding to the ​i​th LED trans-
mitter can be obtained from the received signal in (1) as 

	​​​ α ̂ ​​i​​ = ​ 
​​C  ̃ ​​ rs​ 

i ​
 ____ 

​R​p​​ ​E​ 2​ i ​
 ​​� (22)

if ​​​C  ̃ ​​ rs​ 
i ​  ≥ 0​ (​​​α ̂ ​ ​i​​ = 0​ otherwise), where ​​​C  ̃ ​​ rs​ 

i ​​  and ​​E​ 2​ i ​​ are given 
by (9) and (6), respectively [63]. From (22), it is observed 
that the RSS parameter corresponds to a scaled version  
of the measured energy at the VLC receiver as ​​​C  ̃ ​​ rs​ 

i ​​  rep-
resents the peak value of the correlator output in (9) 
(obtained by correlating the received signal with delayed 
replicas of the transmitted signal). After obtaining the RSS 

estimates ​​{​​α ̂ ​​i​​}​ i=1​ 
​N​L​​ ​​ in the first step, a two-step algorithm can 

use them as an input to the second step to estimate the 
VLC receiver location.

Since the orientations of the LED transmitters and the 
VLC receiver (denoted by ​​n​ t​ 

i ​​ and ​​n​r​​​, respectively) affect 
the RSS measurement in (4), the estimated RSS value can-
not directly be translated to a distance estimate in general. 
However, in certain practical scenarios, distance information 
can unambiguously be obtained from the RSS estimates. For 
example, consider a VLP scenario in which the LED trans-
mitters are pointing downwards (i.e., ​​n​ t​ 

i ​ = ​​ [0  0 − 1]​​​ T​​), the 
VLC receiver is pointing upwards (i.e., ​​n​r​​ = ​​ [0  0  1]​​​ T​​), and 
the height of the VLC receiver is known (that is, the receiver 
moves on a horizontal plane and performs 2-D localization) 
[45], [47]–[49], [64], [100], [101]. Then, the RSS parameter 
in (4) can be expressed as 

	​​ α​ i​​ = ​ 
(​m​i​​ + 1) ​A​R​​ ​h​ i​ 

​m​i​​+1​
  ___________ 

2π ​d​ i​ 
​m​i​​+3​

 ​​�  (23)

where ​​h​i​​​ is the height of the ​i​th LED transmitter with 
respect to the VLC receiver and ​​d​i​​ = ‖ ​l​r​​ − ​l​ t​ i ​ ‖​ is the distance 
between the ​i​th LED transmitter and the VLC receiver. 
Based on the relation (23), the distance estimate ​​​d ̂ ​​i​​​ can be 
calculated from the RSS estimate ​​​α ̂ ​​i​​​ [40], [48], which can 
then be utilized in a trilateration algorithm to get the final 
position estimate [18], [44], [45], [104].

The accuracy of RSS information can be quantified by 
theoretical performance limits to explore the best achiev-
able estimation performance. The CRLB on the variance 
of an unbiased estimate ​​​α ̂ ​​i​​​ of the RSS parameter ​​α​ i​​​ can be 
expressed as [63] 

	​ 𝔼​{​(​​α ̂ ​​i​​ − ​α​ i​​)​​ 2​}​ ≥ ​ 
​E​ 1​ 

i ​
 __________ 

​E​ 1​ 
i ​ ​E​ 2​ i ​ − ​​(​E​ 3​ i ​)​​​ 

2
​
 ​ ​ ​σ​​ 2​ ___ 
​R​ p​ 2​

 ​​� (24)

where ​​E​ 1​ 
i ​​, ​​E​ 2​ i ​​, and ​​E​ 3​ i ​​ are given by (12), (6), and (13), respec-

tively. As noted from (24), the performance of RSS estima-
tion deteriorates with an increase in the noise level in the 
received signal in (1). In addition, as the electrical energy ​​
E​ 2​ i ​​ of the transmitted signal increases, the RSS information 
becomes more accurate due to more favorable SNR condi-
tions. Moreover, the accuracy of RSS estimates improves for 
larger values of the responsivity ​​R​p​​​ of the PD, since respon-
sivity, defined in terms of amperes per watt, measures the 
conversion efficiency of incident optical power to electrical 
current [93].

For scenarios in which the RSS-distance transformation 
can explicitly be performed [as in (23)], the CRLB for RSS-
based distance estimation can be obtained as [48], [101] 

	​ 𝔼​{​(​​d ̂ ​​i​​ − ​d​i​​)​​ 
2
​ }​≥ ​ 

​E​ 1​ 
i ​
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​
 ​ ​​(​ 
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​​�

	​ × ​  1 ____________  
​(​m​i​​ + 1)​​ 2​ ​(​m​i​​ + 3)​​ 2​

 ​ ​​(​ 
​d​i​​ __ ​h​i​​

 ​)​​​ 
2​m​i​​+2

​​� (25)

5In this paper, the RSS parameter refers to the channel attenuation 
factor ​​α​  i​​​ since ​​α​  i​​​ is nonnegative and the received signal energy is deter-
mined by ​​α​ i​​​ [63].

6Multipath effects can significantly be mitigated by employing cali-
bration techniques, such as selecting a subset of LEDs and using a dense 
LED configuration [99].
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where ​​​d ̂ ​​i​​​ denotes an unbiased estimate of ​​d​i​​​. From (25), it is 
observed that when ​​d​i​​ ≈ ​h​i​​​, that is, when the VLC receiver is 
almost directly under the LED, the CRLB decreases with an 
increasing Lambertian order ​​m​i​​​ since the sensitivity of RSS 
to distance becomes more pronounced for larger values of ​​m​i​​​ 
in such cases. More specifically, considering the fact that the 
directivity of an LED is determined by the Lambertian order 
(more directive for larger orders), the Lambertian pattern 
in (23) is more sensitive to distance (or, angle7) around the 
peak point of the pattern for higher levels of directivity. On 
the other hand, when ​​d​i​​ ≫ ​h​i​​​, the accuracy of distance esti-
mation improves as the Lambertian order decreases since 
more signal power can be received at longer distances if the 
LED is not very directive. These remarks are illustrated for 
an example scenario in Fig. 3, where ​​h​i​​ =​2 m, ​​E​ 2​ i ​ = 2 . 25 × ​
10​​ −4​​ W, ​​E​ 3​ i ​ = 0​, ​​σ​​ 2​ = 1 . 3381 × ​10​​ −22​​ W/Hz, ​​R​p​​ = 0 . 4​ A/W, 
and ​​A​R​​ = ​ 10​​ −4​ ​m​​ 2​​ in (25) (the same parameters as in [48] 
with a source optical power of 1 W).

b)  Time of Arrival: The distance between an LED 
transmitter and a VLC receiver can be calculated based on 
the time of flight of the signal between the two devices, 
which is determined by the TOA parameter as defined in 
(2). The primary requirement for the utilization of TOA 
information in VLP systems is that the clocks of the LED 
transmitters and the VLC receiver must be synchronized 
[47]. In the case of synchronization, the VLC receiver 
can estimate the TOAs of the incoming signals from mul-
tiple LEDs and accomplish position estimation based on 
these TOA (equivalently, distance) estimates. Due to the 
increased cost of implementation associated with clock 
synchronization, the research on TOA-based positioning is 
fairly limited [47]–[49], [63].

The TOA parameter can be estimated from the received 
VLC signal in (1) as [48], [63] 

	​​​ τ ̂ ​​i​​ = arg ​max​ ​τ​ i​​
​ ​ ​ ∫ ​T​1,i

​​​ 
​  T​2,i​​​ ​ r​i​​​ (t) ​s​i​​ (t − ​τ​ i​​)dt​� (26)

where ​​​τ ̂ ​​i​​​ is the ML estimate of the TOA parameter ​​τ​ i​​​. 
As observed from (26), the optimal ML TOA estimation 
is achieved by the correlation (matched filter) receiver 
[105]. That is, the TOA between the transmitter and the 
receiver is estimated by performing correlation of the 
received VLC signal with delayed copies of the transmit 
signal and identifying the location at which the peak 
occurs.

The CRLB for distance estimation based on TOA infor-
mation in synchronous VLP systems is stated as [47], [48] 

	​ 𝔼​{​(​​d ̂ ​​i​​ − ​d​i​​)​​ 
2
​}​ ≥ ​ 

​E​ 2​ i ​
 __________ 

​E​ 1​ 
i ​ ​E​ 2​ i ​ − ​​(​E​ 3​ i ​)​​​ 

2
​
 ​ ​ ​(​  σ c _____ ​R​p​​ ​α​  i​​

 ​)​​​ 
2
​​� (27)

where ​​​d ̂ ​​i​​​ represents an unbiased estimate of distance ​​d​i​​​ 
between the ​i​th LED transmitter and the VLC receiver, and ​
c​ is the speed of light. It is noted from (27) that the accuracy 
of TOA estimation increases with the SNR [cf., the signal 
model in (1)]. In addition, for ​​E​ 3​ i ​ = 0​, the lower bound in 
(27) reduces for larger effective bandwidths via (20). As 
opposed to the TOA-based method, the effective bandwidths ​​
β ​ i​​​’s have no effects on the CRLB of RSS-based distance esti-
mation in (25) for ​​E​ 3​ i ​ = 0​. Therefore, synchronous VLP sys-
tems exploiting high-bandwidth LEDs offer the potential of 
high accuracy distance estimation.

c)  Time Difference of Arrival: TDOA-based position-
ing exploits the differences between the distances from 
multiple LED transmitters to the VLC receiver. The 
TDOA parameter can be obtained by taking the difference 
of two TOA measurements corresponding to two different 
LEDs as 

	​ Δ ​​τ  ̂ ​​ij​​ = ​​τ  ̂ ​​i​​ − ​​τ  ̂ ​​j​​​� (28)

where ​Δ ​​τ ̂ ​​ij​​​ denotes the TDOA estimate between the  
​i​th and ​j​th LEDs, and ​​​τ ̂ ​​i​​​ is the TOA estimate for the ​i​th 
LED as in (26). Considering the TOA model in (2), the 
TDOA parameter in the noiseless case can be modeled 
as follows:

	​ Δ ​τ​ ij​​ = ​ 
‖ ​l​r​​ − ​l​ t​ i ​ ‖ ______ c ​  − ​ 

‖ ​l​r​​ − ​l​ t​ j ​ ‖ ______ c ​  + ​Δ​i​​ − ​Δ​j​​ .​� (29)

In the presence of synchronization among the LED 
transmitters (i.e., ​​Δ​i​​  =  Δ​ for ​i  ∈  {1, . . . , ​N​L​​}​), the TDOA 
information in (29) characterizes the difference in the TOA 
values belonging to the two LEDs since the constant time 
offsets are removed via subtraction. Hence, utilizing TDOA 
measurements requires that the LED transmitters be syn-
chronized to a common time reference [106]. However, 
as opposed to TOA-based positioning, no synchronization 
is required between the LED transmitters and the VLC 

7For 2-D scenarios, irradiation angle ​​ϕ ​ i​​​ can be converted to distance 
by ​​d​i​​ = ​h​i​​ /  cos ​ϕ ​ i​​​, where ​​h​i​​​ is the known height of the LED with respect to 
the receiver.

Fig. 3. The square root of the CRLB expression in (25) versus the 
Lambertian order ​​m​i​​​, for various values of distance ​​d​i​​​.
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receiver, thereby making TDOA a relatively less expensive 
method for VLP systems [106].

Besides the TDOA estimation method in (28), the cross 
correlation of the two received signals can be performed to 
estimate the TDOA parameter as follows [50], [51]:

	​ Δ ​​τ ̂ ​​ij​​ = arg ​max​ 
Δ​τ​ ij​​

​ ​ ​ ∫ ​T​1,ij
​​​ 

​  T​2,ij​​​ ​ r​i​​​ (t) ​r​j​​ ​(t + Δ ​τ​ ij​​)​dt​� (30)

where ​​T​1,ij​​​ and ​​T​2,ij​​​ specify the complete observation 
interval corresponding to the signals emitted by the ​i​th 
and ​j​th LEDs. Another method for measuring the range 
differences between LEDs is to utilize different carrier 
frequencies for the transmit signals ​​s​i​​ (t)​ belonging to dif-
ferent LEDs [26], [52], [107]. In this way, phase differ-
ences between the received signals can be converted to 
distance differences [52]. Moreover, TDOA can also be 
calculated by using the same carrier frequency with dif-
ferent phase shifts for ​​s​i​​ (t)​’s [108].

d)  Angle of Arrival: The information regarding the 
AOA of VLC signals incident upon the PD of the VLC 
receiver can be exploited to determine the position of the 
VLC receiver. Specifically, with the knowledge of the posi-
tions and the orientations of LED transmitters, the AOA 
(i.e., the incidence angle) of a signal arriving at a PD yields 
a unique angle of departure (AOD) (i.e., the irradiation 
angle) from the LED that emits that signal. In the ideal case 
of noiseless AOA/AOD estimation, the intersection point of 
the lines extending from multiple LEDs in the directions of 
the corresponding AOD estimates would coincide with the 
location of the VLC receiver [55], [60], [109]. Hence, VLP 
systems can take advantage of the AOA parameter for loca-
tion estimation.

One way to estimate the AOA parameter is via the 
LED connectivity information, which can be acquired by 
deploying multi-LED visible light access points (VAPs) in 
an indoor scenario [55], [60]. Each VAP can be designed to 
contain multiple LED transmitters with very narrow field of 
views, whose orientations are adjusted such that every point 
in the room gathers a signal only from a single LED [60, 
Fig. 1]. For such a configuration, the receiver is connected 
to a single LED of each VAP, which characterizes the AOA 
information gathered from that VAP via the orientation of 
the designated LED.

Another method for AOA estimation is to use an array 
of PDs in the VLC receiver [53], [54], [110], [111]. For 
instance, the differences in RSS measurements at the PDs 
arranged in a circular layout on the VLC receiver can be uti-
lized to estimate the AOA of the signal at the receiver [53]. 
It is also possible to use a uniform linear array (ULA) of 
PDs to determine the direction of arrival of the VLC signal 
via a beamforming vector [54], [110]. To increase the sen-
sitivity of received powers at PDs to the direction of signal 
arrival, a reasonable approach is to employ aperture-based 

receivers where an opaque aperture containing a hole is 
placed on top of each PD in a circular array [56], [111]. In 
such configurations, the holes on the apertures are shifted 
from the location of PDs toward the center of the circular 
array [111, Fig. 1] to enlarge the relative differences in the 
measured signal powers at PDs, resulting in more accurate 
AOA estimates.

Similar to array configurations, the VLC receiver struc-
tures involving multiple PDs with different orientations 
can be employed to obtain AOA information from the 
received signals [109], [112]–[115]. Using a corner-cube 
structure that involves three PDs with orthogonal detec-
tor planes, AOA estimation can be performed by measuring 
the difference in signal powers received at the PDs [109], 
[115]. Similarly, multiple tilted PDs on a VLC receiver can 
reveal information about the direction of arrival of incom-
ing signals via the differences of RSS measurements at the 
PDs [112]–[114].

e)  Hybrid Approaches: In addition to parameter estima-
tion methods that utilize only a single property of received 
VLC signals (e.g., TOA, RSS, or AOA), there exist hybrid 
schemes that aim to estimate position-dependent param-
eters through joint utilization of several signal attributes 
[48]. Such hybrid approaches are likely to produce more 
accurate first-step parameter estimates compared to con-
ventional techniques by blending the benefits of each signal 
characteristic into a unified estimation framework.

As discussed previously, both TOA and RSS measure-
ments can provide information for distance estimation 
in VLP systems. Hence, an ML-based distance estimator 
that incorporates information from both time delay (i.e., 
TOA) and optical channel attenuation (i.e., RSS) param-
eters can be designed to improve the accuracy of ranging 
in a synchronous scenario [48]. For such an estimator, 
the information obtained from the TOA parameter gets 
more significant as the effective bandwidth of the signal 
increases. For small effective bandwidths (around for 1 
MHz or lower), the additional information from the TOA 
parameter becomes negligible compared to the informa-
tion obtained from the RSS parameter; hence, synchro-
nism does not provide significant performance benefits in 
such scenarios (since RSS can also be estimated in asyn-
chronous systems) [48].

2)  Position Estimation: As the second step of a two-step 
positioning algorithm, the position estimation procedure 
takes as input the position related parameters from the first 
step and outputs the estimated position of the VLC receiver. 
In this part, we discuss four different classes of position 
estimation methods, namely, proximity-based methods, 
geometric methods, statistical methods, and fingerprinting/
mapping methods.

a)  Proximity-Based Methods: Proximity-based position 
estimation depends simply on connectivity information and 
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thus has the advantage of being computationally efficient. 
In a proximity-based positioning scheme, the VLC receiver 
extracts from the received signals the identification data of 
the nearest LED8 and relays it to a central database, which 
transmits the LED position information corresponding  
to that identification back to the receiver [1], [57], [58], 
[116]. As an alternative approach, LED transmitters may 
broadcast their positions instead of their identities, which 
circumvents the need for communications with the data-
base [1], [58]. As the result of this process, the VLC receiver 
acquires the location of the closest LED, which provides a 
rough location information (i.e., the receiver lies in the area 
spanned by the field of view of the specified LED transmit-
ter). Therefore, the accuracy of proximity based positioning 
is primarily affected by how dense the LEDs are deployed 
over the ceiling of the indoor environment in which the 
receiver operates [64].

Proximity-based localization is particularly useful for 
applications where accuracy requirements are not strict, 
such as asset tracking in hospitals and location-aware ser-
vices in art galleries [1]. However, certain applications, 
such as mobile robot navigation, may require more pre-
cise location information than that provided by the prox-
imity-based method [1]. In order to alleviate this problem, 
angular information obtained from auxiliary sensors can 
be combined with the proximity-based information to 
refine the coarse position estimates [117]. In addition, a 
biconvex lens can be inserted under each LED luminary  
containing multiple LED transmitters to improve the 
accuracy of proximity-based positioning by providing 
angular diversity [118].

b)  Geometric Methods: Geometric techniques exploit 
the geometric interpretations of the first-step parameter 
estimates to obtain the position of the VLC receiver. In 
the following, we elaborate on how geometric properties 
of measurements related to distance (TOA/RSS), angle 
(AOA), and distance difference (TDOA) can be utilized for 
localization.

• � Distance-based geometric localization: In geo-
metric position estimation, a distance estimate 
between an LED transmitter and the VLC receiver, 
which can be derived from TOA and/or RSS meas-
urements,9 delineates a sphere around the LED 
transmitter corresponding to possible locations of 
the VLC receiver. Based on distance measurements 
from four (three) LEDs in 3-D (2-D) positioning, 
the VLC receiver is able to estimate its location 
as the intersection point of four (three) spheres 
(circles), a process which is called trilateration. 

As an example, for 2-D VLP systems where the 
height of the VLC receiver is known, consider the 
following noiseless model for distance measure-
ments between ​​N​L​​​ LED transmitters and the VLC 
receiver:

	​​​ (​l​r,1​​ − ​l​ t,1​ 
i ​ )​​​ 

2
​ + ​​(​l​r,2​​ − ​l​ t,2​ i ​ )​​​ 

2
​ = ​​(​​d  ̂ ​​ i​ 

hor
​)​​​ 

2
​,�

		    i = 1, 2, . . . , ​N​L​​​� (31)

�where ​​l​r,k​​​ and ​​l​ t,k​ i ​​  denote, respectively, the ​k​th com-
ponent of the position vector of the VLC receiver 
and the ​i​th LED transmitter, and ​​​d ̂ ​​ i​ hor​​ is the hori-
zontal distance measurement between the VLC 
receiver and the ​i​th LED transmitter.10 After some 
algebraic manipulations, (31) can be expressed as 

	​ Ax = b​� (32)

�where ​x  = ​ [​l​r,1​​  ​l​r,2​​]​​ is the unknown horizontal 
location of the VLC receiver, and the entries of ​ 
A ∈ ​ℝ​​ (​N​L​​−1)×2​​ and ​b ∈ ​ℝ​​ (​N​L​​−1)×1​​ are given, respec-
tively, by [44], [45], [59] 

	​​ A​
i,k

​​ = ​l​ 
t,k

​ i+1​ − ​l​ 
t,k

​ 1 ​​�  (33)

	  ​​b​i​​ = ​ 
​​(​​d ̂ ​​ 1​ 

hor
​)​​​ 

2
​ − ​​(​​d ̂ ​​ i+1​ 

hor
​)​​​ 

2
​ + ​​(​l​ t,1​ 

i+1​)​​​ 
2
​ + ​​(​l​ t,2​ i+1​)​​​ 

2
​
   ____________________________  2  ​​�

	​ − ​ 
​​(​l​ t,1​ 

1 ​ )​​​ 
2
​ + ​​(​l​ t,2​ 1 ​ )​​​ 

2
​
  ____________ 2 ​​�  (34)

�for ​i ∈ {1, 2, . . . , ​N​L​​ − 1}​ and ​k ∈ {1, 2}​. In the prac-
tical case of noisy distance measurements, the 
linear least squares (LLS) estimate ​​   x​​ of ​x​ can be 
obtained as [44], [45], [59] 

	​​    x​ = ​(​A​​ T​ A)​​ 
−1

​ ​A​​ T​ b.​� (35)

• � Angle-based geometric localization: In addition to 
distance-based geometric positioning, there also 
exist localization techniques that leverage the geo-
metric implications of angle measurements to esti-
mate the position of the VLC receiver [55], [60]. 
The set of possible locations of the VLC receiver 
based on an AOA measurement from an LED trans-
mitter lies on a straight line passing through the 
LED. Then, two AOA measurements can be used 
to specify the location of the VLC receiver as the 
intersection point of the two lines defined by these 
measurements in the ideal case. To express the 
geometric relations in a formal manner, consider 
a 2-D localization scenario in which the noiseless 

8If the receiver can determine the identity of multiple LED transmit-
ters, meaning that the receiver is connected to multiple LEDs or that the 
receiver is able to decode the signals coming from multiple LEDs, then it 
selects the one with the largest RSS value as the nearest LED [106].

9As mentioned in Section II-B1, an RSS measurement can be trans-
lated to a distance estimate only under certain conditions.

10​​​d  ̂ ​​ i​ 
hor

​​ is obtained by ​​​d  ̂ ​​ i​ 
hor

​  = ​ √ 
_______

 ​(​​d  ̂ ​​i​​)​​ 
2
​ − ​h​ i​ 

2​ ​​ where ​​​d  ̂ ​​i​​​ is the distance 
measurement between the ​i​th LED transmitter and the VLC receiver and ​​
h​i​​​ is the known height of the transmitter with respect to the receiver.
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AOA estimate ​​​φ  ̂​​i​​​ related to the ​i​th LED transmitter 
is expressed as [60] 

	​ tan ​​ϕ  ̂ ​​i​​ = ​ 
​l​r,2​​ − ​l​ t,2​ i ​

 ______ 
​l​r,1​​ − ​l​ t,1​ 

i ​
 ​ ,    i = 1, 2, . . ., ​N​L​​ .​� (36)

�Then, based on (36), the following linear relation 
can be obtained [60]:

	​ Ax = b​� (37)

�where ​x = ​[​l​r,1​​  ​l​r,2​​]​​ denotes the VLC receiver loca-
tion, and ​A ∈ ​ℝ​​ ​N​L​​×2​​ and ​b ∈ ​ℝ​​ ​N​L​​×1​​ consist of the 
following elements:

	​​ A​i,1​​ = sin ​​ϕ ̂ ​​i​​​� (38)

	​​ A​i,2​​ = − cos ​​ϕ  ̂ ​​i​​​� (39)

	​​ b​i​​ = ​l​ t,1​ 
i ​  sin ​​ϕ  ̂ ​​i​​ − ​l​ t,2​ i ​  cos ​​ϕ  ̂ ​​i​​​� (40)

�for ​i ∈ {1, 2, . . ., ​N​L​​}​. Similar to (35), in the case 
of noisy measurements, the LLS estimate ​​   x​​ of the 
unknown location ​x​ can be calculated as 

	​​    x​ = ​(​A​​ T​ A)​​ 
−1

​ ​A​​ T​ b.​� (41)

• � Distance-difference-based geometric localization: 
In the absence of measurement noise, a TDOA 
measurement specifies the difference of distances 
from the VLC receiver to two LED transmitters, 
and implies that the receiver must be located on 
a hyperbola the focus of which is the closest LED 
transmitter (considering a 2-D VLP scenario with 
a known receiver height) [106]. Hence, it is pos-
sible to determine the position of the VLC receiver 
using two TDOA measurements, which yield a 
unique intersection point of the two respective 
hyperbolas under certain conditions [81]. To for-
mulate the TDOA-based localization, the following 
TDOA measurement model is adopted via (29):

	​ Δ ​τ​ i1​​ = ​ 
‖ ​l​r​​ − ​l​ t​ i ​ ‖ − ‖ ​l​r​​ − ​l​ t​ 1​ ‖  ____________ c ​  ,   i = 2, . . ., ​N​L​​​� (42)

�where the first LED is selected as the reference. In 
the presence of noisy TDOA measurements ​Δ ​​τ ̂ ​​i1​​​ 
obtained by (28), the unknown location ​​l​r​​​ can be 
estimated by the following nonlinear least squares 
(NLS) estimator [119]:

	​​​    l​​r​​ = arg ​min​ 
​l​r​​
​ ​ ​  ∑ 

i=2
​ 

​N​L​​
 ​​​(Δ ​τ​ i1​​ − Δ ​​τ  ̂ ​​i1​​)​​​ 2​​​� (43)

�where the dependence of ​Δ ​τ​ i1​​​ on ​​l​r​​​, expressed in 
(42), is used for finding the optimal location in 
(43). Apart from the NLS estimator, the TDOA-
based geometric techniques involving linear and 
quadratic equations can also be employed for 
localization [33].

c) Statistical Methods: Statistical positioning methods 
make use of the statistical properties of the parameter 
measurements obtained in the first step to design position 
estimators. Contrary to geometric techniques, which lack 
mathematical rigor and depend solely on insights derived 
from the localization geometry, statistical techniques con-
stitute a methodical way of position estimation and thus 
can provide asymptotic optimality/performance guarantees 
[81]. For instance, the ML position estimators in [55], [63], 
[64], and [102] can asymptotically achieve the CRLB as the 
SNR increases. In the following, we first present a generic 
formulation for position estimation based on a statistical 
measurement model and then introduce statistical esti-
mators employed in synchronous, quasi-synchronous, and 
asynchronous VLP systems.

• � Generic formulation: Consider the following meas-
urements obtained by the VLC receiver in the param-
eter estimation step (i.e., the first step) of a two-step 
positioning approach [61]:

	 ​χ = ω (​l​r​​) + ζ​� (44)

�with ​χ = ​​[​χ​ 1​​ . . .​ χ​ ​N​L​​​​]​​​ 
T​​, ​ω (​l​r​​) = ​​[​ω​ 1​​ (​l​r​​) . . .​ ω​ ​ N​L​​​​ (​l​r​​)]​​​ T​​, and ​

ζ = ​​[​ζ​ 1​​ . . .​ ζ​ ​N​L​​​​]​​​ T​​, where ​​χ​ i​​​ denotes the first-step param-
eter measurement corresponding to the ​i​th LED trans-
mitter, ​​ω​ i​​ (​l​r​​)​ is the true value of the parameter related 
to the ​i​th LED transmitter, which depends on the loca-
tion ​​l​r​​​ of the VLC receiver, and ​​ζ​ i​​​ is the noise for the ​ 
i​th measurement. For example, ​​ω​  i​​ (​l​r​​)​ may represent 
the TOA parameter in (2), the RSS parameter in (4), 
the TDOA parameter11 in (29), or the AOA param-
eter in (36). Assuming that the probability density 
function (PDF) of the noise vector ​ζ​ is given by ​​f​ζ​​ (⋅)​,  
the conditional PDF of the measurement vector ​χ​ 
given ​​l​r​​​ can be expressed as [61] 

	​​ f​χ​​ ( χ | ​l​r​​) = ​f​ζ​​ ( χ − ω (​l​r​​)) .​� (45)

Based on the availability of prior information on ​​l​r​​​,  
several statistical estimators can be investigated. In 
the absence of prior information, the ML estimator, 
which maximizes the likelihood of observations in 
(45), can be employed to estimate ​​l​r​​​ [62]

	​​​    l​​ r​ 
ML

​ = arg ​max​ 
​l​r​​
​ ​ ​ f​χ​​ ( χ | ​l​r​​).​� (46)

If the prior information on ​​l​ r​​​ is available, Bayesian 
estimators can be used for position estimation. 
Denoting the prior PDF of ​​l​ r​​​ by ​π (​l​ r​​)​, the two well-
known Bayesian estimators, namely, the maximum 
a posteriori probability (MAP) estimator and the 

11In the case of TDOA measurements, the number of measurements 
that carry information reduces to ​​N​L​​ − 1​ since the first LED is selected as 
the reference for TDOA calculations [see (42)].
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minimum mean square error (MMSE) estimator, can 
be obtained, respectively, as [62] 

	​​​    l​​ r​ 
MAP

​ = arg ​max​ 
​l​r​​
​ ​ ​ f​χ​​ ( χ | ​l​r​​)π (​l​r​​)​� (47)

	​​​    l​​ r​ 
MMSE

​ = 𝔼​{​l​r​​ | χ}​.​� (48)

• � ML position estimation in synchronous VLP systems: 
For synchronous VLP systems, both TOA and RSS 
parameters can be calculated in the first step and 
employed for position estimation in the second step. 
First, the asymptotic characteristics of the TOA and 
RSS estimates are discussed, which provides a basis for 
designing ML position estimators. Let ​τ ≜ ​​[​τ​ 1​​ . . . ​τ​ ​N​L​​​​]​​​ 

T​​ 
and ​​   τ ​ ≜ ​​[​​τ  ̂ ​​1​​ . . . ​​τ  ̂ ​​​N​L​​​​]​​​ T​​, where ​​τ​ i​​​ is the true value of the ​ 
i​th TOA parameter in (2) (with ​​Δ​i​​ = 0​) and ​​​τ ̂ ​​i​​​ is the ​i​th 
TOA estimate in (26). Similarly, let ​α ≜ ​​[​α​  1​​ . . . ​α​ ​ N​L​​​​]​​​ 

T​​ 
and ​​   α ​ ≜ ​​[​​α ̂ ​​ 1​​ . . . ​​α ̂ ​​​ N​L​​​​]​​​ T​​, where ​​α​  i​​​ and ​​​α ̂ ​​ i​​​ denote, respec-
tively, the true value of the ​i​th RSS parameter in 
(4) and the ​i​th RSS estimate in (22). Assuming that ​​
E​ 3​ i ​ = 0​ for ​i = 1, . . ., ​N​L​​​ [see (13)], the TOA estimates ​​   τ ​​ 
and the RSS estimates ​​   α ​​ can be modeled as independ-
ent Gaussian random vectors in the high SNR regime 
(i.e., for ​​α​  i​ 

2​ ​R​ p​ 2​ ​E​ 2​ i ​ ≫ ​σ​​ 2​​; cf., (1) and (6)) as follows [63]:

	​​    τ ​~N(τ, ​Σ​τ​​)​� (49)

	​​    α ​~N(α, ​Σ​α​​)​� (50)

where 

	​​ Σ​  τ​​ = diag​
(

​​
{

​  ​σ​​ 2​ ______ 
​R​ p​ 2​ ​α​ i​ 

2​ ​E​ 1​ 
i ​
 ​
}

​​ 
i=1

​ 
​N​L​​

 ​
)

​​� (51)

	​​ Σ​  α​​ = diag​
(

​​
{

​  ​σ​​ 2​ ____ 
​R​ p​ 2​ ​E​ 2​ i ​

 ​
}

​​ 
i=1

​ 
​N​L​​

 ​
)

​​� (52)

�with ​diag(⋅)​ denoting the diagonal matrix, ​N(μ, Σ)​ rep-
resenting the Gaussian distribution with mean vector ​
μ​ and covariance matrix ​Σ​, and ​​E​ 1​ 

i ​​ and ​​E​ 2​ i ​​ given by (12) 
and (6), respectively. It is noted that (49) and (50) 
result from the asymptotic unbiasedness and efficiency 
properties of ML estimation [62]. Next, from (49) and 
(50), the ML estimator for ​​l​r​​​ based on the first-step 
TOA and RSS estimates ​​{​​τ ̂ ​​i​​ , ​​α  ̂​​i​​}​ i=1​ 

​N​L​​ ​​ is obtained as [63] 

​​​   l​​ r​ 
TS,syn

​ = arg ​min​ 
​l​r​​
​ ​ ​  ∑ 

i=1
​ 

​N​L​​
 ​​(​E​ 1​ 

i ​ ​α​  i​ 
2​ ​​(​​τ ̂ ​​ i​​ − ​τ​  i​​)​​​ 2​ + ​E​ 2​ i ​ ​​(​​α ̂ ​​ i​​ − ​α​  i​​)​​​ 2​)​​​​​

	​ − ​ 2 ​σ​​ 2​ ___ 
​R​ p​ 2​

 ​ ​  ∑ 
i=1

​ 
​N​L​​

 ​log​ ​α​ i​​​� (53)

�where the optimal ​​l​  r​​​ is searched via the relations of ​​
τ​  i​​​ and ​​α​  i​​​ with ​​l​  r​​​, as defined, respectively, in (2) (with ​​
Δ​i​​ = 0​) and (4). In the high SNR regime, the last term in 
(53) becomes negligible as compared to the others and ​​

α ​ i​​​ in the first term is approximately equal to ​​​α  ̂​​ i​​​ via (50). 
Hence, the estimator in (53) can be simplified to [63] 

​​​   l​​ r​ 
TS,syn

​ = arg ​min​ 
​l​ r​​
​ ​ ​  ∑ 

i=1
​ 

​N​L​​

 ​​(​E​ 1​ 
i ​ ​​​α ̂ ​​ i​​​​ 2​ ​​(​​τ ̂ ​​ i​​ − ​τ ​ i​​)​​​ 2​ + ​E​ 2​ i ​ ​​(​​α ̂ ​​ i​​ − ​α​  i​​)​​​ 2​)​​​​​​

​​which is an NLS estimator. It is shown in [63, Prop. 
2] that the NLS estimator in (54) is asymptotically 
optimal, i.e., attains the CRLB in (10) at high SNRs.

• � ML position estimation in quasi-synchronous VLP 
systems: Since the LED transmitters and the VLC 
receiver are not synchronized in quasi-synchronous 
VLP systems, TOA measurements cannot directly be 
utilized in the second step of a two-step estimator. 
However, by virtue of synchronization among the LED 
transmitters, TDOA measurements can be employed 
along with RSS measurements to design an ML esti-
mator for ​​l​ r​​​. Choosing the first LED as the reference, 
let ​Δτ ≜ ​​[Δ ​τ​  21​​ . . . Δ ​τ​ ​N​L​​1​​]​​​ T​​ and ​Δ​   τ ​ ≜ ​​[Δ ​​τ ̂ ​​21​​ . . . Δ ​​τ ̂ ​​​N​L​​1​​]​​​ T​​,  
where ​Δ ​τ​ i1​​​ and ​Δ ​​τ ̂ ​​i1​​​ denote, respectively, the true 
value of the ​i​th TDOA parameter in (42) and the  
​i​th TDOA estimate in (28). Then, for ​​E​ 3​ i ​  =  0, i  =  
1,  . . . , ​N​L​​​, the TDOA and RSS measurement vectors 
are independent and distributed asymptotically (at 
high SNRs) as [94] 

	​ Δ​   τ ​~N(Δτ, ​Σ​ Δτ​​)​� (55)

	​​    α ​~N(α, ​Σ​   α​​)​� (56)

where ​​Σ​α​​​ is as in (52) and 

	​​ Σ​  Δτ​​ = ​  ​σ​​ 2​ ______ 
​R​ p​ 2​ ​α​ 1​ 

2​ ​E​ 1​ 
1​
 ​ 1 + diag​

(
​​
{

​  ​σ​​ 2​ ______ 
​R​ p​ 2​ ​α​ i​ 

2​ ​E​ 1​ 
i ​
 ​
}

​​ 
i=2

​ 
​N​L​​

 ​
)

​​� (57)

�with ​1​ denoting the all-ones matrix. Then, the ML 
estimate of ​​l​  r​​​ based on the TDOA estimates ​Δ​   τ ​​ and the 
RSS estimates ​​   α ​​ can be written as [94] 

  	​​​     l​​ r​ 
TS,qsy

​ = arg ​min​ 
​l​r​​
​ ​ ​ (​   υ ​ − υ)​​ T​ ​Σ​​ −1​ (​   υ ​ − υ)+log |​Σ​Δτ​​|� (58)

​​�where ​​   υ ​ ≜ ​​[Δ ​​   τ ​​​ T​ ​​   α ​​​ T​]​​​ 
T
​​, ​υ ≜ ​​[Δ ​τ​​ T​ ​α​​ T​]​​​ 

T
​​, and ​Σ ≜ Diag​(​Σ​ Δτ​​ , ​

Σ​ α​​)​​ with ​Diag( ⋅ )​ denoting the block diagonal matrix. 
The cost function in (58) depends on the unknown 
location ​​l​r​​​ via ​υ​, ​​Σ​ Δτ​​​, and ​Σ​.

• � ML position estimation in asynchronous VLP systems: 
Since time-based information cannot be obtained in 
asynchronous VLP systems, only the RSS measure-
ments can be utilized for the second step of the two-
step position estimation. Then, the ML estimator for ​​l​  r​​​ 
based on the RSS measurements can be written as [63] 

	​​​    l​​ r​ 
TS,asy

​ = arg ​min​ 
​l​ r​​
​ ​ ​  ∑ 

i=1
​ 

​N​L​​

 ​​w​i​​​ ​​(​​α ̂ ​​ i​​ − ​α​  i​​)​​​ 2​​� (59)

�where ​​α​  i​​​ is the true value of the RSS parameter associ-
ated with the ​i​th LED transmitter and depends on ​​l​r​​​ 

(54)
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via (4), ​​​α ̂ ​​i​​​ is the RSS estimate for the ​i​th LED trans-
mitter, which is obtained by (22), and the weighting 
coefficients ​​w​i​​​ are defined as [63] 

	​​ w​i​​ = ​E​ 2​ i ​ −  ​ ​(​E​ 3​ i ​)​​ 
2
​
 ____ 

​E​ 1​ 
i ​
 ​  ⋅​� (60)

The proposed weighting coefficient in (60) is 
determined according to the reliability of each RSS 
estimate. Therefore, ​​w​i​​​ is inversely proportional to the 
CRLB for estimating ​​α​ i​​​ from the received signal ​​r​i​​ (t)​, as 
observed from (24). As demonstrated in [63, Prop. 4],  
the two-step estimator in (59) is equivalent to the 
direct estimator in (8) for ​​E​ 3​ i ​ = 0​. Thus, the two-step 
estimator is the optimal ML estimator in asynchro-
nous VLP systems for practical pulse shapes.

d)  Fingerprinting/Mapping Methods: A fingerprinting 
method for position estimation generally consists of two 
phases, namely, the offline phase and the online phase. In 
the offline phase, a database is constructed by gathering 
measurements over a grid of reference points in an indoor 
environment [65], [66]. Each entry of the database stores 
the location of the specified reference point and the param-
eter estimates (e.g., RSS, TOA, TDOA, AOA, or a combina-
tion of them) associated with the LED transmitters obtained 
at that location [65], [66]. In the online phase, the vector 
of parameter estimates measured by the VLC receiver is 
compared with the database to decide on the location of 
the receiver according to a proximity measure between the 
online measurement vector and the offline prestored data-
base [17], [65], [66]. In addition, a decision rule that maps 
the online feature/measurement vector to a location in the 
scene can be devised using machine learning techniques, 
such as ​k​ nearest neighbor (​k​-NN), neural networks, and 
random forest [120]. Hence, based on the training database 
containing offline parameter measurements, a fingerprint-
ing/mapping method can learn a classifier through which 
online measurements are mapped to corresponding loca-
tions in the room.

One of the most common parameters employed in fin-
gerprinting methods for VLP systems is the RSS parameter 
[28], [65], [66], [120]–[126] since it does not require syn-
chronization as in the case of TOA and TDOA measure-
ments, and it can simply be measured via a single PD at 
the receiver as opposed to AOA measurements. Another 
parameter that can be preferred for fingerprinting is the 
extinction ratio, which refers to the difference between 
the received powers corresponding to bit-0 and bit-1 trans-
missions [127].

Given a comprehensive offline database with densely 
placed reference points, fingerprinting/mapping techniques 
are capable of producing more accurate location estimates 
as compared to geometric positioning methods [65]. The 
primary disadvantage of fingerprinting techniques over geo-
metric, statistical, and proximity-based position estimation 
methods is that they involve the process of building and 

maintaining an offline training database, which aggravates 
the computational complexity in dynamic scenes [81].

III .   COOPER ATI V E V ISIBLE LIGHT 
POSITIONING

As shown by numerous studies in the literature, cooperation 
among target nodes (i.e., nodes with unknown positions) 
can enhance performance of RF-based localization systems 
[34], [70]–[72], [128]–[133]. Similarly, cooperation among 
VLC units in a VLP system can be useful for achieving 
improved localization performance compared to the case in 
which VLC units gather signals only from the LED transmit-
ters at known positions. In this section, we investigate a new 
VLP system architecture that facilitates communications 
among VLC units for the purpose of cooperative localization 
and discuss an iterative algorithm based on gradient projec-
tions to estimate locations of VLC units.

A. System Model

In a cooperative VLP system, there exist ​​L​0​​​ LED trans-
mitters with known locations and orientations (i.e., anchor/
reference nodes), and ​​N​V​​​ VLC units that are to be located 
(i.e., agent/target nodes). The location of the ​ℓ​th LED trans-
mitter is denoted by ​​y​ℓ​​​ and its orientation vector is given 
by ​​n​ T,ℓ​ (0) ​​ for ​ℓ ∈ {1, . . ., ​L​0​​}​. Each VLC unit not only receives 
signals from the LED transmitters at known locations but 
also communicates with other VLC units in the system for 
cooperation purposes [67]. Therefore, VLC units consist of 
both LEDs and PDs; namely, there exist ​​L​i​​​ LEDs and ​​K​i​​​ PDs 
at the ​i​th VLC unit for ​i ∈ {1, . . ., ​N​V​​}​. The unknown location 
of the ​i​th VLC unit is represented by ​​x​i​​​, where ​i ∈ {1, . . ., ​N​V​​}​.  
For the ​k​th PD at the ​i​th VLC unit, the location is denoted 
by ​​x​i​​ + ​a​i,k​​​ and the orientation vector is given by ​​n​ R,k​ (i) ​​, where ​
k ∈ {1, . . ., ​K​i​​}​. Similarly, for the ​ℓ​th LED at the ​i​th VLC unit, 
the location is represented by ​​x​i​​ + ​b​i,ℓ​​​ and the orientation 
vector is denoted by ​​n​ T,ℓ​ (i) ​​, where ​ℓ ∈ {1, . . ., ​L​i​​}​. The displace-
ment vectors ​​a​i,k​​​’s and ​​b​i,ℓ​​​’s are known design parameters of 
the VLC units [67]. In addition, the orientation vectors for 
the LEDs and PDs at the VLC units are assumed to be known 
since they can be determined by the VLC unit design and/or 
via auxiliary sensors such as gyroscopes [55], [67], [134]. To 
distinguish the LED transmitters at known locations from 
the LEDs at the VLC units, the former are called as the LEDs 
on the ceiling in the remainder of this section (see Fig. 4).

In the cooperative VLP system, each PD communicates 
with a subset of all the LEDs in the network. For this reason, 
the following connectivity sets are defined to specify the 
connections between the PDs and the LEDs [67]:

​​S​ k​ (i,j)​ = {ℓ ∈ {1, . . ., ​L​i​​}∣ ℓth LED of ithVLC unit is​
​connected to kth PD of jth VLC unit}, ​

	​ k ∈ {1, . . ., ​K​j​​},  i ∈ {0, 1, . . ., ​N​V​​},​ ​j ∈ {1, . . ., ​N​V​​ }.​� (61)
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Namely, ​​S​ k​ (i,j)​​ represents the set of LEDs at the ​i​th VLC 
unit that are connected to the ​k​th PD at the ​j​th VLC unit. It 
is noted that the LEDs on the ceiling are considered as the 
zeroth VLC unit in order to develop a unified formulation. 
In other words, “VLC unit 0” is a hypothetical VLC unit with ​​
L​0​​​ LEDs (at known locations) and zero PDs. Hence, index ​i​ 
starts from zero in (61).

We consider a scenario in which RSS measurements 
performed by the PDs are employed for estimating the 
unknown locations of the VLC units, i.e., ​​x​1​​ , . . ., ​x​​N​V​​​​​. Let ​​
P​ ℓ,k​ (i,j)​​ represent the RSS measurement at the ​k​th PD of the  
​j​th VLC unit due to the transmission from the ​ℓ​th LED at 
the ​i​th VLC unit. From the Lambertian formula [93], ​​P​ ℓ,k​ (i,j)​​ 
can be stated as follows:

​​P ​ ℓ,k​ (i,j)​ = ​ 
​m​ ℓ​ 

(i)
​ + 1 _____ 2π

 ​ ​ P​ T,ℓ​ (i) ​ ​ cos​​ ​m​ ℓ​ 
(i)

​​ ​(φ​ ​ ℓ,k​ (i,j)​)​ cos​( ​θ​ ℓ,k​  (i,j)​)​ ​ 
​A​ k​ 

( j)
​
 ______ 

​​(​d​ ℓ,k​  (i,j)​)​​​ 
2
​
 ​​

	​ + ​η​ ℓ,k​ (i,j)​​� (62)

for ​j ∈ {1, . . ., ​N​V​​}​, ​k ∈ {1, . . ., ​K​j​​}​, ​i ∈ {0, 1, . . ., ​N​V​​}⧵j​, and ​ℓ ∈ ​
S​ 

k
​ (i,j)​​, where the distance ​​d​ ℓ,k​ (i,j)​​ is given by 

	​​ d​ ℓ,k​ (i,j)​ = ‖ ​d​ ℓ,k​ (i,j)​ ‖​� (63)

with 

	​​ d​ ℓ,k​ (i,j)​ ≜ ​{​
​x​j​​ + ​a​j,k​​ − ​x​i​​ − ​b​i,ℓ​​, 

​ 
if i ≠ 0

​  
​x​j​​ + ​a​j,k​​ − ​y​ℓ​​, 

​ 
if i = 0

​​
.
​� (64)

In (62), ​​m​ ℓ​ (i)​​ is the Lambertian order for the ​ℓ​th LED 
at the ​i​th VLC unit, ​​A​ k​ ( j)​​ is the area of the ​k​th PD at the  
​j​th VLC unit, ​​P​ T,ℓ​ (i) ​​  is the transmit power of the ​ℓ​th LED at 
the ​i​th VLC unit, ​​φ​ ℓ,k​ (i,j)​​ is the irradiation angle at the ​ℓ​th 
LED at the ​i​th VLC unit with respect to the ​k​th PD at the  
​j​th VLC unit, and ​​θ​ ℓ,k​ (i,j)​​ is the incidence angle for the ​k​th PD 
at the ​j​th VLC unit related to the ​ℓ​th LED at the ​i​th VLC 
unit. The noise component ​​η​ ℓ,k​ 

(i,j)
​​ is modeled by a random 

variable with a generic PDF ​​f​ 
η
​  ( j,k)​ ( ⋅ )​. Supposing the use of a 

certain multiplexing scheme (e.g., time-division multiplex-
ing among the LEDs at the same VLC unit and on the ceil-
ing, and frequency-division multiplexing among the LEDs at 
different VLC units or on the ceiling), ​​η​ ℓ,k​ (i,j)​​’s are assumed to 
be independent for all different ​( j, k)​ pairs and for all ​ℓ​ and ​i​  
[67], [104], [106]. From (63) and (64), the RSS measure-
ments in (62) can also be expressed as follows [67]:

	​​ P​ ℓ,k​ 
(i,j)

​ = ​α​ ℓ,k​ 
(i,j)

​ + ​η​ ℓ,k​ 
(i,j)

​​� (65)

where 

​​α​ ℓ,k​ 
(i,j)

​ ≜ − ​ 
​m​ ℓ​ 

(i)
​ + 1
 _____ 2π

 ​ ​ P​ T,ℓ​ (i) ​ ​ A​ k​ 
(j)

​​ 
(​(​d​ ℓ,k​ 

(i,j)
​)​​ 

T
​ ​n​ T,ℓ​ (i) ​ )​​ 

​m​ ℓ​ 
(i)

​
​ ​(​d​ ℓ,k​ 

(i,j)
​)​​ 

T
​ ​n​ R,k ​ 

( j)
 ​
   ___________________  

‖ ​d​ ℓ,k​ (i,j)​ ​‖​​ ​m​ ℓ​ (i)​+3​
 ​  ⋅​​​​​ 

Remark: The proposed system model for cooperative 
VLP applications relies on one-shot position estimation 
that utilizes the parameter values of a given configuration 
to estimate the locations of VLC units at a given instant. In 
VLP scenarios with mobile VLC units, certain parameters, 
such as locations and orientations of VLC units, are highly 
time varying and need to be updated at each decision/esti-
mation step. For instance, the displacement vectors ​​a​i,k​​​ and ​​
b​i,ℓ​​​ depend on the orientation vectors ​​n​ R,k​ (i) ​​ and ​​n​ T,ℓ​ (i) ​​, respec-
tively. Hence, the values of ​​a​i,k​​​ and ​​b​i,ℓ​​​ can be updated at 
each time step using the new values of ​​n​ R,k​ (i) ​​ and ​​n​ T,ℓ​ (i) ​​ (e.g., 
via rotation matrices). For the proposed localization frame-
work, it is assumed that the current values of all localization 
related parameters are known and thus can be employed for 
position estimation at the current time step.

B. Localization Algorithms

Let the vector of unknown parameters be represented 
as ​x ≜ ​ [​x​ 1​ 

T​. . . ​x​ ​N​V​​​ 
T ​ ]​​ 

T
​​, which has a size of ​3 ​N​V​​ × 1​. The aim 

is to estimate the elements of ​x​ based on the RSS measure-
ments in (62) [equivalently, in (65)]. To this aim, various 
approaches can be considered, as discussed in the following.

1)  Centralized Approach:In this approach, all the RSS 
measurements are processed at a central unit to estimate 
the locations of the VLC units jointly. Let ​P​ denote a vector 
consisting of all the measurements in (65). Namely, the 
elements of ​P​ are expressed as follows: 

​  ​{{{​​{ ​P ​ ℓ,k​ (i,j)​ ​}​ℓ∈​S​ 
k
​ (i,j)​​​ ​}​i∈{0,1,…,​N​V​​}∖{j}​​ ​}​k∈{1,…,​K​j​​}​​​ 

​​}​​
j∈{1,…,​N​V​​}

​

Then, the ML estimate of ​x​ based on ​P​ is given by [62] 

	​​​    x​​ML​​ = arg ​max​ 
x
​ ​  f (P | x)​� (67)

where ​f (P | x)​ denotes the conditional PDF of ​P​ given ​x​, 
i.e., the likelihood function. For example, if the noise PDF ​​
f ​ 

η
​  (j,k)​ (⋅)​ follows a Gaussian distribution with zero mean 

and a variance of ​​σ​ j,k​ 2 ​​, then the ML estimate in (67) can be 
obtained from (65) as follows [67]:

	​​​    x​​ML​​ = arg ​min​ 
x
​ ​ ​  ∑ 

j=1
​ 

​N​V​​

 ​ ​ ∑ 
k=1

​ 
​K​j​​

 ​  ​  1 ___ 
​σ​ j,k​ 2 ​

 ​​​ ​  ∑ 
 i=0,i≠j

​ 
​N​V​​

 ​  ​ ​  ∑ 
ℓ∈​S​ k​ (i,j)​

​​ ​ ​(​P​ ℓ,k​  (i,j)​ − ​α​ ℓ,k​ (i,j)​)​​​ 2​� (68)

(66)

Fig. 4.Illustration of a cooperative VLP system with three VLC units 
(e.g., robots). The white cylinders on the ceiling and at the VLC units 
represent the LEDs, and the red rectangular prisms denote the PDs.
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​​where ​​α​ ℓ,k​ 
(i,j)

​​ is calculated from (66) via (64).
The problem in (67) has high computational complex-

ity since it requires a search over a ​3 ​N​V​​​-dimensional space. 
Therefore, it may not be employed in practical applications. 
Hence, decentralized approaches with lower complexity can 
be considered, as discussed next.

2) Decentralized Approach: Since the objective func-
tion in (67) is, in general, nonconcave with respect to 
the vector of unknown locations ​x​ via (64) and (66) 
[e.g., nonconvexity of the objective function in (68)], 
the problem in (67) cannot be solved to global optimality 
using standart convex optimization methods. In addition, 
obtaining globally optimal solutions of (67) via global 
optimization tools may lead to an excessive computational 
burden, especially as the number of VLC units increases 
[68]. Therefore, we formulate the problem of cooperative 
localization as a feasibility problem and propose a low-
complexity iterative algorithm that can be implemented 
in a decentralized manner to solve the feasibility prob-
lem [68]. In the following, we first present the problem 
formulation and then introduce the proposed cooperative 
localization algorithm [68].

a)  Formulation of Feasibility Problem: In feasibility 
problems, the aim is to find a point that satisfies certain con-
straints without having to optimize an objective function, as 
opposed to optimization problems [135]. Hence, the com-
putational complexity of feasibility-seeking techniques can 
be significantly lower than that of optimization methods, 
which makes feasibility modeling an attractive approach for 
dealing with nonconvex problems. In this part, we present 
the formulation of the feasibility problem that is intended 
to approximate the problem of cooperative localization as 
defined by the ML estimator in (67).

Based on the measurement model in (65), an RSS obser-
vation at a PD can be modeled as 

	​​​ P ̂ ​​r​​ = ​P​r​​ + η​� (69)

where ​​P​r​​​ denotes the true value of the RSS parameter [as 
in (66)] and ​η​ is the measurement noise. To facilitate the 
feasibility-based formulation, it is assumed that the noise 
PDF ​​f​η​​ (⋅)​ satisfies ​​f​η​​ (​ η  ̅ ​) = 0  ∀ ​ η ̅ ​ > 0​, i.e., the RSS meas-
urement errors are negative (​​​P ̂ ​​r​​ ≤ ​ P​r​​​).12 Then, using the 
Lambertian model in (66), a generic Lambertian function ​

g : ​ℝ​​ D​  → ℝ​  with respect to the unknown PD location  
​x ∈ ​ℝ​​ D​​ satisfies13

	​ g(x; y, ​n​T​​ , ​n​R​​ , m, γ)  ≤ 0​� (70)

where 

​g(x; y, ​n​T​​ , ​n​R​​ , m, γ)  ≜ γ − ​ 
​​[​(x − y)​​ T​ ​n​T​​]​​​ 

m
​ ​(y − x)​​ T​ ​n​R​​

  _________________  
‖x − y ​‖​​ m+3​

 ​​�  (71)

and ​y​ denotes the location of the LED, ​​n​T​​​ and ​​n​R​​​ are the 
orientation vectors of the LED and PD, respectively, ​m​ is the 
Lambertian order of the LED, and ​γ​ is defined as ​γ = (​​P ̂ ​​r​​ / ​P​t​​) 
(2π / ((m + 1) A))​ with ​​P​t​​​ and ​A​ denoting, respectively, the 
transmit power of the LED and the area of the PD. Invoking 
the negative error assumption and using (70), the location 
of the PD belongs to the following feasible set (referred to as 
the Lambertian set):

	​ ℒ = ​{x ∈ ​ℝ​​ D​   |  g(x; y, ​n​T​​ , ​n​R​​ , m, γ)  ≤ 0}​.​� (72)

Regarding communications between the LEDs on the 
ceiling and the VLC units, the Lambertian set for ​k​th PD 
of the ​j​th VLC unit based on the signal emitted by the ​ℓ​th 
LED on the ceiling for ​ℓ ∈ ​S​ k​ (0,j)​​ is given by (referred to as the 
noncooperative Lambertian sets)

	​​ C​ ℓ,k​ (0,j)​ = ​{z ∈ ​ℝ​​ D​   |   ​​g ̃ ​​ ℓ,k​ (j) ​ (z)  ≤ 0}​​� (73)

where ​​​g ̃ ​​ ℓ,k​ 
( j)

 ​ (z)​ is defined as 

	​​​ g ̃ ​​ ℓ,k​ 
( j)

 ​ (z)  ≜ g ​(z; ​y​ℓ​​ − ​a​j,k​​ , ​n​ T,ℓ​ (0) ​ , ​n​ R,k​ ( j) ​ , ​m​ ℓ​ (0)​ , ​γ​ ℓ,k​  (0,j)​)​​� (74)

and ​​γ​ ℓ,k​ 
(i,j)

​ = (​P​ ℓ,k​ 
(i,j)

​ / ​P​ T,ℓ​ 
(i)

 ​)(2π / ((​m​ ℓ​ 
(i)

​ + 1) ​A​ k​ 
(j)

​))​ for ​i ∈ {0, 1, . . ., ​
N​V​​}​ via (65) and (66). Similarly, regarding communications 
among the VLC units, the Lambertian set for the ​k​th PD of 
the ​j​th VLC unit based on the signal emitted by the ​ℓ​th LED 
of the ​i​th VLC unit for ​ℓ ∈ ​S​ k​ (i,j)​​ is given by (referred to as the 
cooperative Lambertian sets) 

	​​ C​ ℓ,k​ (i,j)​ = ​{z ∈ ​ℝ​​ D​   |   ​g​ ℓ,k​ (i,j)​ (z, ​x​i​​) ≤ 0}​​� (75)

for ​i ∈ {1, 2, . . ., ​N​V​​}​, where ​​g​ ℓ,k​ (i,j)​ (z, ​x​i​​)​ is defined as 

	​​ g​ ℓ,k​ (i,j)​ (z, ​x​i​​) ≜ g​(z ; ​x​i​​ + ​b​i,ℓ​​ − ​a​j,k​​ , ​n​ T,ℓ​ (i) ​ , ​n​ R,k​ ( j) ​ , ​m​ ℓ​ (i)​ , ​γ​ ℓ,k​  (i,j)​)​.​

Then, the problem of cooperative localization in VLP sys-
tems is equivalent to identifying a point inside the intersec-
tion of Lambertian sets as defined in (73) and (75). Assuming 
that the Lambertian function in (71) is quasi-convex,14 the 

(76)

12We can always subtract a constant value from the obtained RSS 
measurement to satisfy the assumption of negative measurement noise 
[136], [137]. For PDFs having finite support, this value can be chosen as ​​
η ̂ ​ =  sup {​η ̅ ​ ∈ ℝ | ​f​η​​ (​η ̅ ​) >  0}​. For PDFs having infinite support, such as 
Gaussian, we can set ​​η ̂ ​  =  inf​{​η ̅ ​  ∈  ℝ | ​∫ −∞​ ​η ̅ ​ ​ ​ f​η​​​ (ϵ) dϵ ≥  1 − ϖ}​​ for some 
small probability ​ϖ​ to approximately satisfy the assumption. In terms of 
convergence properties, Algorithm 1, which is proposed later in this 
section, has a theoretical convergence guarantee under the assumption 
of negative errors (see [68, Sec. V] for convergence analysis). Although 
no convergence guarantee can be provided for Algorithm 1 in the case of 
both positive and negative errors (e.g., Gaussian noise), numerical simu-
lations reveal that the iterations generated by Algorithm 1 are able to 
converge to true locations asymptotically as the SNR increases.

13​D​ is the dimension of localization in the cooperative VLP scenario. 
For example, when the height of the VLC receiver is known as in [47], 
[48], [100], and [101], 2-D localization is performed, i.e., ​D = 2​. However, 
in general, ​D = 3​.

14For the case of a known PD height and perpendicular LED orienta-
tion, i.e., ​​x​3​​​ is known and ​​n​T​​ = ​​[0 0 − 1]​​​ T​​ in (71), the Lambertian function 
in (71) is quasi-convex [68]. For the general case in which the LED orienta-
tion is arbitrary and/or the height of the PD is unknown, we can obtain a 
quasi-convex approximation of the Lambertian function in (71) [68].
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quasi-convex feasibility problem (QFP) can be formulated as 
follows [138], [139].

Problem 1. Let ​x ≜ ​(​x​1​​, . . ., ​x​​N​V​​​​)​​. The feasibility problem 
for cooperative localization of VLC units is expressed as 

	​ find    x ∈ ​ℝ​​ D​N​V​​​​�

	​ subject to   ​  x​j​​ ∈ ​Υ​j​​ ,  j = 1, . . ., ​N​V​​​� (77)

where 

	​​ Υ​j​​ = ​ ∩ 
k=1

​ 
​K​j​​

 ​ ​ ∩ 
i=0

​ 
​N​V​​

 ​​  ∩ 
  ℓ∈​S​ k​ (i,j)​

​​​C​ ℓ,k​  (i,j)​​​​​� (78)

with ​​C​ ℓ,k​ 
(i,j)

​​ being given by (73)  and (75).
QFPs constitute a class of feasibility problems in which 

the functions characterizing the constraint sets [e.g., the 
Lambertian function in (71) and the associated constraint 
set in (72)] are quasi-convex [139]. In the next part, an 
iterative decentralized algorithm is introduced to solve 
the QFP in (77). To gain an intuition on the geometry of 
Problem 1, a noncooperative VLP system and its coopera-
tive version are illustrated along with the corresponding 
Lambertian sets in Fig. 5.

b)  Decentralized Algorithm: In this part, we present a 
decentralized algorithm based on iterative gradient projec-
tions to solve Problem 1. The motivation behind the use of 
gradient projections is to reach the intersection region of 
the constraint sets ​​C​ ℓ,k​ (i,j)​​ in (78) by moving in the opposite 
direction of the gradients of the functions ​​​g ̃ ​​ 

ℓ,k
​ ( j) ​ (⋅)​ in (74) and ​​

g​ ℓ,k​ (i,j)​ (⋅,  ​x​i​​)​ in (76) and  [140]. First, we present the definition 
of the gradient projection operator.

Definition 1: The gradient projection operator ​​G​ f​ 
λ​ : ​

ℝ​​ D​  → ​ ℝ​​ D​​ onto the zero sublevel set of a continuously dif-
ferentiable function ​f : ​ℝ​​ D​ → ℝ​ is given by [141] 

	​​ G​ f​ 
λ​ (x)  = x − λ  ​ 

​f​​  +​ (x)
 _______ 

‖ ∇ f (x) ​‖​​ 2​
 ​  ∇ f (x)​� (79)

where ​λ​ is the relaxation parameter, ​∇​ is the gradi-
ent operator, and ​​f​​  +​ (x)​ denotes the positive part, i.e., ​​
f​​  +​ (x)  = max  {0, f (x)}​.

Based on Definition 1, we present the proposed algo-
rithm, namely, the cooperative gradient projections (CGP), 
in Algorithm 1. 

The algorithm consists of the following three phases, 
which are executed for each VLC unit (say, the ​j​th VLC unit) 
either in parallel or in a sequential manner.

• � Projection onto intersection of halfspaces: In order to 
keep the ​n​th iterate ​​x​ j​ 

(n)​​ inside the region where the 
noncooperative Lambertian functions defined in (74) 
are all quasi-convex, ​​x​ j​ 

(n)​​ is projected onto the inter-
section of the halfspaces in (82), which are derived 
from the noncooperative Lambertian sets.15 The 

quasi-convexity of a Lambertian function guarantees 
that the gradient projection operator forces the iter-
ates to get closer to the Lambertian set associated with 
that function.

• � Parallel projection onto Lambertian sets: In this step, 
the current point ​​​ ~ x​​ j​ 

(n)​​, which is the output of the pre-
vious step, is projected onto each noncooperative and 
cooperative Lambertian set via the gradient projec-
tion operator in (79). Then, the resulting projections 
are weighted in (83) to obtain the next iterate ​​x​ j​ 

(n+1)​​.  
The cooperative Lambertian sets as defined in (75)  
are constructed from the most recent position infor-
mation of the other VLC units [i.e., ​​x​ i​ 

(n)​​ or ​​x​ i​ 
(n+1)​​ for ​

i ≠  j​ depending on the order of position updates, as 
shown in (83)].

• � Updating relaxation parameters: The relaxation 
parameters ​​λ​ j​ 

(n)​​ for the ​j​th VLC unit at the ​n​th itera-
tion, which are used in the gradient projection opera-
tor, are updated using the Armijo step size selection 
rule in [68, Algorithm 2].

We note that Algorithm 1 can be implemented in a decen-
tralized manner via a gossip-like procedure among the VLC 

Algorithm 1: Cooperative Gradient Projections (CGP)

15The reader is referred to [68, Sec. III and IV] for a thorough discus-
sion.See [68, Algorithm 1] for the definition of ​​P​​Γ​j​​​​ (⋅)​ in (80).
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units [142]. In an asynchronous scenario, each VLC unit 
can sequentially update its position via the iterative step in 
Algorithm 1 and broadcast the resulting position information 
to neighboring (connected) VLC units. For the synchronous 
variant of Algorithm 1, VLC units can update their locations in 
parallel and share the updated locations with their neighbors.

To illustrate the performance of the proposed cooperative 
localization algorithm, we consider a VLP scenario in a room 
of size ​10 × 10 × 5​ ​​m​​ 3​​ consisting of ​​L​0​​ = 4​ LED transmitters 

on the ceiling and ​​N​V​​  =  2​ VLC units, whose locations are 
given by ​​y​1​​  = ​​ [1  1  5]​​​ T​ m​, ​​y​2​​  = ​​ [1  9  5]​​​ T​ m​, ​​y​3​​  = ​​ [9  1  5]​​​ T​ m​,  
​​y​4​​  = ​​ [9  9  5]​​​ T​ m​, ​​x​1​​  = ​​ [2  5  1]​​​ T​ m​, and ​​x​2​​  = ​​ [6  6  1 . 5]​​​ T​ m​.  
The LEDs on the ceiling are pointing downwards, i.e., ​​
n​ T,ℓ​ (0) ​  = ​​ [0    0  − 1]​​​ T​​ for ​ℓ  ∈  {1, 2, 3, 4}​. Each VLC unit con-
tains two PDs and one LED, whose offsets with respect to 
the center of the VLC unit are set to ​​a​i,1​​ = ​​ [0  − 0 . 1  0]​​​ T​ m​, ​​
a​i,2​​ = ​​[0  0 . 1  0]​​​ T​ m​, and ​​b​i,1​​ = ​​[0 . 1  0  0]​​​ T​ m​ for ​j = 1, 2​. The 
orientation vectors of the PDs and the LEDs on the VLC units  
are given as follows: ​​n​ R,1​ 

(1) ​ = ​​[0 . 3  − 0 . 1  1]​​​ T​​, ​​n​ R,1​ 
(2) ​ = ​​[0 . 2  0 . 4  1]​​​ T​​, ​​ 

n​ R,2​ 
(1)

 ​ = ​​[0 . 8  0 . 6  0 . 1]​​​ T​​, ​​n​ R,2​ (2) ​ = ​​[− 0 . 7  0 . 2  0 . 1]​​​ T​​, ​​n​ T,1​ 
(1) ​ = ​​[0 . 9   

0 . 4  0 . 1]​​​ T​​, and ​​n​ T,1​ 
(2)​ = ​​[− 0 . 8  0 . 1  0 . 1]​​​ T​​. In addition, the 

connectivity sets are determined as ​​S​ 1​ 
(i,j)​ = Ø​ and  ​​S​ 2​ (i,j)​ = {1}​ 

for ​i, j  ∈  {1, 2}, i ≠  j​ for the cooperative measurements and ​​
S​ 1​ 

(0,1)​ = {1, 2, 3}​, ​​S​ 1​ 
(0,2)​ = {2, 3, 4}​, and ​​S​ 2​ (0,j)​ = Ø​ for ​j ∈ {1, 2}​ for 

the noncooperative measurements. Furthermore, the area of 
each PD is taken as 1 cm2 and the Lambertian order of all the 
LEDs is set to ​m =  1​. The noise component ​​η​ ℓ,k​ 

(i,j)
​​ in (62) is 

assumed to be a zero-mean Gaussian random variable with 
a variance of ​​σ​ j,k​ 2 ​​, which is calculated using [143, Table I and  
eq. (6)]. The simulation results are averaged over 500 differ-
ent noise realizations. In the simulations, a 2-D localization 
scenario is considered, i.e., the VLC units have known heights. 
The initial ​x​–​y​ location of each VLC unit in Algorithm 1 is 
selected as the same as that of the closest LED connected to 
that VLC unit.

Fig. 6 shows the average localization error of the VLC 
units versus the transmit power of the LEDs on the ceil-
ing achieved by Algorithm 1 and the ML estimator in (68), 
together with the CRLB in [68, eq. (11)], in both the non-
cooperative and cooperative scenarios. It is observed that 
cooperation among VLC units can provide significant 

Fig. 6. Average localization error of VLC units with respect to the 
transmit power of LEDs on ceiling for Algorithm 1 (CGP) along with 
the ML estimator and the CRLB. Cooperation among VLC units 
provides nonnegligible performance benefits at low-to-medium LED 
powers.

Fig. 5. (a) A noncooperative VLP system with four LED transmitters 
on ceiling and two VLC units, where VLC-1 gathers signals from LED-1 
and LED-2, and VLC-2 from LED-3 and LED-4. The noncooperative 
Lambertian sets for VLC-1 and VLC-2 are represented by green and 
blue regions, respectively. (b) Cooperative version of the VLP system 
in (a), where the VLC units cooperate for improved localization 
performance. Green and blue dotted lines represent, respectively, 
the cooperative Lambertian sets corresponding to VLC-1 and VLC-2. 
Incorporating cooperative Lambertian sets into the localization 
geometry narrows the region of intersection of Lambertian sets, 
thereby yielding more accurate location estimates [68].
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localization performance gains (62- and 39-cm improve-
ments for 100- and 316-mW optical powers, respectively, 
via the CGP algorithm). In addition, the proposed algorithm 
converges to true VLC unit locations as the SNR, i.e., the 
transmit power of the LEDs, increases. As observed from the 
results in the high SNR regime, the decentralized approach 
(Algorithm 1) and the centralized approach [the ML esti-
mator in (68)] can attain similar localization performance, 
while the former has a much lower computational complex-
ity than the latter.

I V.   OP TIM A L POW ER A LLOC ATION 
FOR LEDs U NDER ILLUMINATION 
CONSTR A IN TS

In VLP systems, a typical approach is to set LED transmis-
sion powers to the same constant level (e.g., [44], [45], [55], 
[102], and [144]), which can be adjusted according to trade-
offs among several parameters such as power consumption, 
localization performance, illumination concerns, and LED 
lifetime. However, depending on positions and orienta-
tions of LED transmitters and VLC receivers, localization 
accuracy can be improved by optimizing transmit powers 
of LEDs under certain practical considerations [69].16 In 
this section, we formulate the problem of optimal power 
allocation for LEDs in VLP systems in the presence of some 
practical constraints related to power consumption and illu-
mination requirements. In addition, based on illustrative 
examples, we demonstrate the improvements in localization 
performance that can be achieved via the optimal power 
allocation approach over uniform power allocation.

A. Optimization Variables

Let the transmit signal ​​s​i​​ (t)​ for the ​i​th LED transmitter 
be expressed as 

	​​ s​i​​ (t)  = ​√ 
__

 ​P​i​​ ​   ​​ s ̃ ​​i​​ (t)​� (85)

for ​i = 1, . . ., ​N​L​​​, where ​​N​L​​​ is the number of LED transmit-
ters, ​​P​i​​​ is a parameter that determines the transmit power, 
and ​​​ s ̃ ​​i​​ (t)​ is a fixed base signal that satisfies ​​∫ 0​ ​ T​s,i​​​ ​( ​​ s ̃ ​​i​​ (t))​​ 2​​ dt / ​
T​s,i​​ = 1​, with ​​T​s,i​​​ denoting the period of ​​s​i​​ (t)​. Then, the opti-
cal power of ​​s​i​​ (t)​ can be calculated as [47] 

	​​ E​ i​ 
opt​ = ​ 

​∫ 0​ ​ T
​s,i​​​ ​s​i​​​ (t) dt

 ________ ​T​s,i​​
 ​  = ​√ 

__
 ​P​i​​ ​   ​​E ̃ ​​ i​ opt​​� (86)

where 

	​​​ E ̃ ​​ i​ opt​ ≜ ​ 
​∫ 0​ 

​ T​s,i​​​   ​​ s ̃ ​​i​​ (t)​ dt
 ________ ​T​s,i​​

 ​​�  (87)

is a fixed quantity representing the optical power of ​​​ s ̃ ​​i​​ (t)​. The 
electrical power of the ​i​th LED is proportional to ​​P​i​​​ [93], i.e., 

	​​ E​ i​ 
elec​ ∝ ​ 

​∫ 0​ 
​ T​s,i​​​ (​s​i​​ (​ t))​​ 2​ dt

 __________ ​T​s,i​​
 ​  = ​P​i​​ .​� (88)

The goal of this section is to optimize the electrical pow-
ers of the LEDs by adjusting ​​{​P​i​​}​ i=1​ 

​N​L​​ ​​ to achieve improved 
localization accuracy.

B. VLP System Constraints

The aim of power allocation in VLP systems is to opti-
mize the power vector ​p  ≜ ​​ [​P​1​​ . . . ​P​​N​L​​​​]​​​ T​  ∈ ​ℝ​​  ​N​L​​​​ subject to 
practical constraints so that the localization performance is 
maximized. In an LED power optimization scheme, the fol-
lowing constraints can be considered.

1)  Individual Power Constraints: In order to provide 
efficient electrical-to-optical conversion, the LED output 
power must be proportional to the input drive current, 
which is possible if the LED transmission power operates in 
the linear regime [29]–[32]. In addition, high drive currents 
may have adverse effects on the LED lifetime by inducing 
self-heating [143]. Therefore, the minimum and peak power 
constraints for LEDs must be incorporated, resulting in the 
following constraint set:

	​​ P​1​​ ≜ ​{p ∈ ​ℝ​​ ​N​L​​​ : ​p​lb​​ ≼p≼ ​p​ub​​}​​� (89)

where ​​p​lb​​ ∈ ​ ℝ​​ ​N​L​​​​ and ​​p​ub​​ ∈ ​ ℝ​​ ​N​L​​​​ represent, respectively, the 
lower and upper bounds on the power vector ​p​.

2)  Total Power Constraint: As VLP systems must oper-
ate under a specific power budget, there is a certain upper 
limit ​​P​T​​​ for the total electrical power of LEDs [32], [93], 
[151], [152]. Also, the necessity for preventing damage to 
human eyes leads to a limitation on the total power con-
sumption [32]. Hence, the resulting constraint set can be 
defined as follows:

	​​ P​2​​ ≜ ​{p ∈ ​ℝ​​ ​N​L​​​ : ​1​​ T​ p ≤ ​P​T​​}​​� (90)

where ​1​ denotes the all-ones vector.

3)  Individual Illumination Constraints: In addition to 
power constraints, VLP system designers must also take 
into account illumination constraints to keep the bright-
ness level at specified locations in the room above a certain 
threshold for proper indoor lighting [9], [22], [32], [153]. 
The illuminance (​​lm/m​​ 2​​, ​lx​), defined as the luminous 
flux (​lm​) per unit area [154], can be used as a measure of 
brightness. Then, utilizing [22, eq. (3)], [154, eq. (16.3)] 
and (86), the horizontal illuminance at location ​x​ due to 
the ​i​th LED is obtained as 

	 ​​ℐ​ ind​ i ​  (x, ​P​i​​) = ​√ 
__

 ​P​i​​ ​ ​φ​ i​​ (x)​� (91)

where 

	​​ φ​ i​​ (x)  ≜  ​ 
(​m​i​​ + 1) ​κ​ i​​ ​​E ̃ ​​ i​ opt​

  __________ 2π
 ​    ​ 

​​[​(x − ​l​ t​ i ​)​​ 
T
​ ​n​ t​ 

i ​]​​​ 
​m​i​​

​ (​l​ t,3​ i ​  − ​x​3​​)
  ________________  

‖x − ​l​ t​ i ​ ​‖​​ ​m​i​​+3​
 ​​�  (92)

with ​​​E ̃ ​​ i​ opt​​ being given by (87) and ​​κ​ i​​​ denoting the luminous 
efficacy (​lm/W​) of the ​i​th LED, defined as the optical power 

16Power allocation has been investigated for RF-based wireless local-
ization networks in [145]–[150].
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to luminous flux conversion efficiency [154]. Based on (91), 
the total illuminance at location ​x​ generated by all the LEDs 
can be calculated as [155] 

	​​ ℐ​ind​​ (x, p)  = ​ ∑ 
i=1

​ 
​N​L​​

 ​​ℐ​ ind​ i ​ ​ (x, ​P​i​​) = ​ ∑ 
i=1

​ 
​N​L​​

 ​​√ 
__

 ​P​i​​ ​​ ​φ​ i​​ (x) .​� (93)

Then, the set that specifies the individual illumination 
constraints can be constructed as 

	  ​​P​3​​ ≜ ​{p ∈ ​ℝ​​ ​N​L​​​ : ​ℐ​ind​​ (​x​ℓ​​ , p)  ≥  ​   I​ℓ,  ℓ = 1, . . ., L}​​� (94)

where ​L​ is the number of locations at which the illuminance 
constraint is to be satisfied, and ​​   I​ℓ​ is the illuminance con-
straint defined for location ​​x​ℓ​​​.

4)  Average Illumination Constraint: Another constraint 
related to illumination is the average illuminance over the room, 
which needs to be maintained at a certain level for satisfying 
average brightness requirements. The average illuminance over 
a horizontal region A in the room can be calculated as 

	 ​​ℐ​avg​​ (p)  = ​ ∑ 
i=1

​ 
​N​L​​

 ​​√ 
__

 ​P​i​​ ​​  ​ 
​∫ A​​ ​φ​ i​​​ (x) dx

 _______ 
|A|

 ​​�  (95)

where ​|A|​ is the volume of ​A​. Then, the related constraint 
set is given by 

	​​ P​4​​ ≜ ​{p ∈ ​ℝ​​ ​N​L​​​ : ​ℐ​avg​​ (p)  ≥  ​   I​avg}​​� (96)

where  ​​ℐ~​avg​​​ denotes the average illuminance constraint.

C. Optimal Power Allocation for LEDs

The accuracy of localization in VLP systems can be 
quantified by the CRLB on the variance of an unbiased esti-
mate ​​​   l ​​r​​​ for the position of the VLC receiver ​​l​ r​​​, which can be 
expressed as [69] 

	​ 𝔼 ​{‖ ​​   l​​r​​ − ​l​r​​ ​‖​​ 2​}​ ≥ trace​{​J​​ −1​ (p)}​​� (97)

where ​J(p)​ is the FIM given by 

	​ J(p)  = ​(​I​3​​ ⊗ p)​​ T​ Γ.​� (98)

In (98), ​⊗​ denotes the Kronecker product, ​​I​3​​​ is a ​3 × 3​ 
identity matrix, and ​Γ ∈ ​ℝ​​ 3​N​L​​×3​​ is a known matrix that is inde-
pendent of ​p​ and depends on VLP system parameters [69].17

For LED power optimization, the CRLB is chosen as the 
optimization metric for evaluating the localization perfor-
mance since it can be achieved asymptotically by the ML 
location estimator as the SNR and/or effective bandwidth 
increases [97]. Hence, considering the system constraints in 
Section IV-B, the optimal power allocation problem for LED 
transmitters is formulated as 

	​​ minimize​ 
p
​ ​     trace​{​J​​ −1​ (p)}​​� (99a)

	​ subject to    p ∈ P​� (99b)

where ​P ≜ ​∩ i=1​ 
4 ​  ​P​i​​​​ . The aim of (99) is to derive the optimal 

LED power distribution that minimizes the CRLB for the 
localization of a VLC receiver under power and illumination 
constraints. As the optimization problem in (99) is convex 
due to the convexity of the objective function in (99a) and 
of the constraint sets in (89), (90), (94), and (96) [69], the 
optimal solution can be obtained efficiently by employing 
standard tools of convex optimization, e.g., interior-point 
methods [156].

A related problem of interest is to minimize the total 
power consumption subject to a prescribed level of localiza-
tion accuracy, which can formally be stated as 

	​​ minimize​ 
p
​ ​  ​   1​​ T​ p​� (100a)

	​ subject to     trace​{​J​​ −1​ (p)}​ ≤ ε​� (100b)

	​ p ∈ ​P​s​​ ​ � (100c)

where ​​P​s​​ ≜ ​P​1​​ ∩ ​P​3​​ ∩ ​P​4​​​ and ​ε​ represents the maximum tol-
erable CRLB level for the localization of the VLC receiver. 
Similar to (99), the problem in (100) is convex.

In the problem formulations (99) and (100), optimiz-
ing the power vector ​p​ requires the knowledge of ​Γ​ in 
(98), which involves parameters such as the location and 
orientation of the VLC receiver [69]. In most practical VLP 
scenarios, those parameters cannot perfectly be estimated 
(e.g., due to localization and tracking errors, and gyroscope 
measurement errors), which may lead to unsatisfactory 
power allocation results. Therefore, we also need to con-
sider robust power allocation formulations in the presence 
of uncertainties in VLP system parameters. To that aim, 
let ​​​   l ​​r​​​ be the estimated location of the VLC receiver, given as 

	​​​    l ​​r​​ = ​l​ r​​ + ​e​​l​ r​​​​ ​ � (101)

where ​​l​ r​​​ is the true location and ​​e​​l​ r​​​​​ is the error vector. 
Assuming a spherical uncertainty set for the location errors 
[157], [158], i.e., 

	​​ e​​l​r​​​​ ∈ ​ℰ​​l​r​​​​ ≜ ​{e ∈ ​ℝ​​ 3​ : ‖e‖ ≤ ​δ ​ ​l​ r​​​​}​​� (102)

where ​​δ​ ​ l​r​​​​​ denotes the maximum error in the location of the 
VLC receiver, the robust counterpart of the power alloca-
tion problem in (99) under location uncertainties can be 
formulated as 

	​​ minimize​ 
p
​ ​    ​  max​ 

​e​​l​ r​​​​∈​ℰ​​l​ r​​​​
​​   trace ​{(​(​I​3​​ ⊗ p)​​ T​ Γ(​​   l ​​r​​ − ​e​​l​ r​​​​))​​ 

−1
​}​​� (103)

	​ subject to p ∈ P​�

with ​Γ(​​   l​​r​​ − ​e​​l​r​​​​)​ corresponding to the matrix ​Γ​ in (98) evalu-
ated at ​​l​r​​ = ​​   l​​r​​ − ​e​​l​r​​​​​. The goal of robustness in (103) is to mini-
mize the worst case CRLB over the uncertainty region ​​ℰ​​l​r​​​​​ in 
(102) using the estimated location ​​​   l​​r​​​. Similar formulations 
to that of (103) can be developed for handling the uncer-
tainty in other parameters (e.g., orientation of the VLC 

17The CRLB expression in (97) and (98) is also valid for scenarios in 
which the VLC receiver is connected to a subset of all the LEDs in the 
VLP system.
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receiver), as well [69]. By exploiting the characteristics of 
the objective function, efficient iterative algorithms can be 
designed to solve (103) (see [69, Sec. V]  for details).

It is worth noting that as in both of the optimization 
problems in (99) and (100), the CRLBs in VLP systems 
are different from those in RF-based systems since the 
system model in VLP scenarios has significant differences 
compared to the one in RF-based systems, as discussed 
in Section II-A1. In addition to the CRLB definitions, the 
constraint sets in (99) and (100) are also different as they 
include individual and average illumination constraints, 
which are not considered in the design of RF-based locali-
zation systems.

D. Simulation Examples

To illustrate the benefits of optimal allocation of LED 
powers in VLP systems, we consider a simple localiza-
tion scenario as depicted in Fig. 7, where there exist four 
LED transmitters (​​N​L​​ = 4​) on the ceiling of a room of size ​
5 × 5 × 2 . 5  ​m​​ 3​​ and a VLC receiver trying to localize itself 
based on signals transmitted by the LEDs. The locations 
of the LED transmitters and the VLC receiver are given by ​​
l​ t​ 1​  = ​​ [1  1  2 . 5]​​​ T​ m​, ​​l​ t​ 2​  = ​​ [1  4  2 . 5]​​​ T​ m​, ​​l​ t​ 3​  = ​​ [4  1  2 . 5]​​​ T​ m​,  
​​l​ t​ 4​ = ​​ [4  4  2 . 5]​​​ T​ m​, and ​​l​ r​​ = ​​ [2  0 . 5  1]​​​ T​ m​. The LED trans-
mitters have perpendicular orientations, i.e., ​​n​ t​ 

i​ = ​​[0  0  − 1]​​​ T​​ 
for ​i  =  1, . . ., ​N​L​​​, while the orientation of the VLC 
receiver is given by ​​n​ r​​  = ​​ [− 0 . 2241  − 0 . 1294  0 . 9659]​​​ T​​,  
which corresponds to an elevation angle of ​​15​​ o​​ and an azimuth 
angle of ​​210​​ o​​. Regarding the illumination requirements, we 
determine four locations for the individual illumination 
constraints, which are specified by ​​x​1​​ = ​​ [1 . 5  1 . 5  1 . 5]​​​ T​ m​,  
​​x​2​​  = ​​ [1 . 5  3 . 5  1 . 5]​​​ T​ m​, ​​x​3​​  = ​​ [3 . 5  1 . 5  1 . 5]​​​ T​ m​, and ​​
x​4​​ = ​​[3 . 5  3 . 5  1 . 5]​​​ T​ m​.

For the LED transmitters, the Lambertian order is set to ​​
m​i​​ = 3​ and the luminous efficacy is ​​κ​ i​​ =​  60  lm/W for ​i =  
1, . . ., ​N​L​​​ [153]. Also, the area of the PD at the VLC receiver 
is taken as ​​A​R​​ = ​0.64 cm​​ 2​​, the responsivity of the PD is set 
to ​​R​p​​ =​ 0.4 mA/mW, and the spectral density level of the 
noise is ​​σ​​ 2​ = 8 . 5641 × ​10​​ −23​​ W/Hz [47]. The base transmit 
signal ​​​ s ̃ ​​i​​ (t)​ in (85) is modeled as [47] 

	​​​  s ̃ ​​i​​ (t)  = ​ 2 __ 3 ​ ​(1 − cos​(2π t / ​T​s,i​​)​)​​(1 + cos (2π ​f​c,i​​ t))​​� (104)

for ​i = 1, . . ., ​N​L​​​ and ​t ∈ [0, ​T​s,i​​]​, where ​​f​c,i​​​ is the center fre-
quency and ​​T​s,i​​​ denotes the observation interval.18 For the 
signal model in (104), ​​​E ̃ ​​ i​ opt​​ in (87) is obtained as ​​​E ̃ ​​ i​ opt​ = 2 / 3​.  
For the simulations, an asynchronous VLP system is con-
sidered with ​​f​c,i​​ =  10 i​ MHz and ​​T​s,i​​ =  1  μ​s for ​i =  1, . . ., ​
N​L​​​. In addition, the lower and upper bounds on the LED 
optical powers are set as 1 W and 10 W, which, based on 
(86) and (87), correspond to power limits of ​​p​lb,i​​ = 2 . 25​ and ​​
p​ub,i​​ = 225​ for ​i = 1, . . ., ​N​L​​​ for the constraint set ​​P​1​​​ in (89).

In Fig. 8, the square root of the CRLBs achieved by the 
optimal power allocation strategy of (99) and the uniform 
strategy are plotted with respect to ​​P​T​​ / ​N​L​​​, which deter-
mines the average electrical power limit. The illumination 
constraints are set as ​​I~​avg​​ =    ​ I~​ℓ​​ = 20  lx​ for ​ℓ = 1, 2, 3, 4​. 
It is deduced from Fig. 8 that the optimal power allocation 
approach can provide significant improvements in localiza-
tion performance over the uniform strategy. For low power 
budgets, the problem in (99) becomes infeasible due to the 
illumination constraints. On the other hand, for sufficiently 
high ​​P​T​​​, the optimal and uniform strategies become equiva-
lent as they both assign the peak powers (i.e., ​​p​ub​​​) to the 
LEDs. In addition, Fig. 9 shows the CRLBs of the optimal 
and uniform strategies corresponding to (99) for a constant 

Fig. 7.  VLP scenario with four LED transmitters and a VLC receiver,  
shown in 2-D.

18The constant factor ​2 / 3​ is included for satisfying ​​∫ 
0
​ ​ 
T​s,i​​​ ​( ​​ s ̃ ​​i​​ (t) )​​ 2​​ dt / ​

T​s,i​​ = 1​, as mentioned in Section IV-A.

Fig. 8. CRLB of (99a) versus ​​P​T​​ / ​N​L​​​ for uniform and optimal power 
allocation strategies, where the average and individual illumination 
constraints are taken as ​​I

~
​avg​​ = ​ I

~
​ℓ​​ = 20 lx​ for ​ℓ = 1, 2, 3, 4​.
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average power limit ​​P​T​​ / ​N​L​​ = 40​ as the illuminance limits ​​ ​​
I
~​avg​​​ and ​I​ℓ​ vary. It is observed that the accuracy improve-
ment via power optimization gets higher as the illumination 
constraints become less stringent, as expected.

In the second example, we investigate the optimal value 
of (100a), which determines the total electrical power 
consumption, against the desired CRLB level ​​√ 

__
 ε ​​ in (100b) 

under various illumination requirements. The results are 
shown in Fig. 10, where the ​y​-axis is calculated as ​​P​ T​ ⋆ ​ / ​N​L​​​ 
with ​​P​ T​ ⋆ ​​ denoting the optimal value of the objective function 
in (100a). It is observed that substantial power saving gains 
can be obtained via the optimal approach as compared to the 
conventional uniform approach. Also, the optimal strategy 
coincides with the uniform strategy for sufficiently high val-
ues of the desired CRLB level due to the illumination con-
straints. In summary, given a desired level of localization 

accuracy in a VLP system, the proposed optimal approach 
can provide a much more power efficient solution than the 
uniform approach.

V.  CONCLUSION A ND F U T U R E 
R ESE A RCH DIR ECTIONS

As a key enabler for low-cost and high-accuracy indoor 
wireless localization services, the VLP technology con-
stitutes a vital ingredient of next-generation location-
aware applications. Therefore, it is imperative, for both 
researchers in the academia and practical system design-
ers in the industry, to acquire a meticulous understand-
ing of the fundamental trends in position estimation via 
visible light signals and their impacts on the performance 
of VLP systems under various operation environments. In 
this paper, we have considered the problem of localiza-
tion in visible light systems and provided a survey of the 
state-of-the-art techniques by taking into account the two 
main research strands. Starting with a received signal 
model for VLC signals, we have presented the direct posi-
tioning approach utilized in synchronous, quasi-synchro-
nous, and asynchronous VLP systems, and provided the 
performance benchmarks that can be used as guidelines 
for system design engineers. Then, we have considered 
the two-step approach to localization, which consists of 
parameter estimation/extraction and position estimation 
steps. Regarding parameter estimation, we have investi-
gated the properties of the widely used first-step param-
eters in VLP systems, such as RSS, TOA, TDOA, and AOA, 
and discussed the estimation methods (e.g., the ML esti-
mates of these parameters) and hardware-related require-
ments imposed by specific types of parameters (e.g., mul-
tiple PDs at the VLC receiver for the case of AOA, and 
synchronization for the case of TOA and TDOA). For the 
position estimation step, proximity-based methods, geo-
metric methods, statistical methods, and fingerprinting 
methods have been reviewed, with an emphasis on statis-
tical position estimators as they provide a mathematically 
rigorous framework for position estimation, which pro-
vides asymptotic performance guarantees.

In addition, we have devised a cooperative VLP system 
architecture that utilizes communications among VLC 
receiver units to improve the accuracy of localization via 
cooperation. A cooperative localization algorithm that is 
amenable to distributed implementation has been proposed 
to illustrate the improvements in localization performance 
via the use of cooperation among the VLC units. Finally, 
we have considered optimal LED power allocation strate-
gies to maximize the localization accuracy of VLC receivers 
subject to power and illumination constraints. The problem 
of optimal power allocation has been shown to be formu-
lated as a convex program, on the basis of which the optimal 
power vectors have been derived efficiently to showcase the 

Fig. 9. CRLB of (99a) versus the illuminance limit for uniform and 
optimal power allocation strategies, where the average power 
constraint is set to ​​P​T​​ / ​N​L​​ = 40​.

Fig. 10. Optimal value of (100a) divided by ​​N​L​​​ (​​P​ T​ ⋆ ​ / ​N​L​​​) versus the 
desired CRLB level ​​√ 

__
 ε ​​ in (100b) for uniform and optimal power 

allocation strategies under various illumination constraints.
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performance benefits over the conventional uniform power 
allocation approach.

Although significant improvements are being made for 
VLP systems in the literature, there are still some issues 
which have not adequately been addressed and should be 
investigated in future work. A recent study in the literature 
has shown that omitting multipath reflections in VLP sys-
tems may considerably reduce the accuracy of localization in 
certain indoor environments [99]. For that reason, VLP sys-
tems should be designed in consideration of multipath prop-
agation. In a similar context, the common algorithms and 
methods in the literature do not consider the situation when 
the LOS between the LED transmitter and the VLC receiver 
is lost; that is, when an LOS blockage occurs. Regarding this 

issue, the approaches for VLP systems should be adapted 
for the case of LOS blockage. In addition, the VLP systems 
should be invulnerable to various interference sources such 
as sunlight and other lighting systems. Moreover, most VLP 
systems cannot be treated separately from illumination sys-
tems, and consequently the design of such systems requires 
the consideration of not only localization performance but 
also illumination constraints. Furthermore, in scenarios 
with mobile entities, temporal cooperation can be utilized 
by taking into account the previous state information of a 
VLC receiver in the design of VLP algorithms in order to 
achieve robust localization results. Overall, in view of these 
challenges and remarks, fully integrated superior designs 
can be developed for VLP systems in the future.� 
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