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Abstract
We study the question of how the competition between bulk disorder and a 
localized microscopic defect affects the macroscopic behavior of a system 
in the directed polymer context at the free energy level. We consider the 
directed polymer model on a disordered d-ary tree and represent the localized 
microscopic defect by modifying the disorder distribution at each vertex in 
a single path (branch), or in a subtree, of the tree. The polymer must choose 
between following the microscopic defect and finding the best branches 
through the bulk disorder. We describe three possible phases, called the 
fully pinned, partially pinned and depinned phases. When the microscopic 
defect is associated only with a single branch, we compute the free energy 
and the critical curve of the model, and show that the partially pinned phase 
does not occur. When the localized microscopic defect is associated with 
a non-disordered regular subtree of the disordered tree, the picture is more 
complicated. We prove that all three phases are non-empty below a critical 
temperature, and that the partially pinned phase disappears above the critical 
temperature.

Keywords: directed polymer, free energy, bulk disorder, microscopic defect

1.  Introduction

Directed polymers in a random environment are typical examples of models used to study 
the behavior of a one-dimensional object interacting with a disordered environment. In the 
mathematical formulation of these models, paths of a directed walk on a regular lattice or tree 
represent the directed polymer while an independent and identically distributed (i.i.d.) collec-
tion of random variables attached to the vertices of the lattice/tree correspond to the random 
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environment (bulk disorder). Each path is assigned a Gibbs weight corresponding to the sum 
of the random variables of the visited vertices. The polymer’s interaction with the random 
environment is controlled by a parameter, β, which represents the inverse temperature. The 
main questions are whether there exist different phases in the model depending on the temper
ature which manifest the effect of the disorder on the large scale behavior (diffusive versus 
superdiffusive) of the polymer, and how the phases can be characterized [15]. The earliest 
example of the model studied in the physics literature [29] (and then rigorously in [31]) was a 
1  +  1 dimensional lattice case as a model for the interface in a two-dimensional Ising model 
with random exchange interaction. Since then it has been used in models of various growth 
phenomena: formation of magnetic domains in spin-glasses [29], vortex lines in superconduc-
tors [38], roughness of crack interfaces [27], and the KPZ equation [34]. The last twenty years 
have witnessed many significant results on the problems related to directed polymer models 
and more general polymer models. For a comprehensive introduction and an up-to-date sum-
mary of the results and methods for both the lattice and tree version of the directed polymer 
model, see the lecture notes [15]. For more general polymer models, see [19, 23, 24].

A different direction of research considers polymers in a deterministic environment with 
a localized microscopic defect. A primary example is the case of an interfacial layer between 
two fluids, modelled by a plane in a 3-dimensional lattice (called a ‘defect plane’ in some 
contexts), such that each monomer of a polymer is energetically rewarded if it lies in this 
layer. A related model is the situation that the monomers are attracted to an impenetrable wall 
of a container; in this case, the polymer lives in a half-space bounded by an attracting plane. 
There is typically a critical value of β above which a positive fraction of the polymer is pinned 
or adsorbed to the surface, and below which the polymer is mostly free of the surface—that 
is, it is depinned or desorbed. It is generally expected that the critical β is strictly positive for 
an impenetrable boundary, and equal to zero for a penetrable boundary. This problem can 
be solved exactly for directed polymers [24, 25, 39]. For the self-avoiding walk model of 
polymers, the impenetrable result has been proven [26], while the penetrable case remains 
open, but can be proved under an extremely weak hypothesis [36]. In the very special case of 
self-avoiding walks at an impenetrable boundary on the honeycomb lattice, the exact critical 
value has been determined in [5]. Pinning problems also arise elsewhere, notably the context 
of high-temperature superconductors [10, 13].

1.1. The bulk disorder versus a localized microscopic defect

In this paper, we shall study the question of how the competition between bulk disorder and a 
localized microscopic defect affects the macroscopic behavior of a system as reflected in pin-
ning phenomena of directed polymers. In the directed polymer on a disordered tree model, we 
add a fixed potential u to each vertex on a branch or a subtree of the tree which represents the 
localized microscopic defect. Roughly speaking, the polymer must choose between following 
the localized microscopic defect and finding the best branch(es) through the bulk disorder. 
We see that there are three possible phases depending on the defect structure (a single branch 
versus a subtree) and the model parameters (β, u):

	 -	Fully pinned phase RFP: the partition function is dominated by polymer configurations 
that spend almost all their time in the defect structure.

	 -	Depinned phase RD: the partition function is dominated by polymer configurations that 
spend hardly any time in the defect structure.
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	 -	Partially pinned phase RPP: the partition function is dominated by polymer configura-
tions that spend a positive fraction (but not close to all) of their time inside the defect 
structure.

For the formal definition of each phase, see definition 2.4 in section 2.3.
In the (nonrigorous) physics literature, this problem has been studied extensively in the 

lattice version of the directed polymer model [2, 30, 33, 40] but there have been disagreeing 
predictions for the 1  +  1 dimensional lattice version as to whether the polymer follows the 
defect line as soon as the potential level u is greater than 0; for more details see section 3.2. 
For some rigorous partial results in this direction, see [1, 6, 7]. We consider this problem in 
the tree version of the directed polymer model which can be viewed as a mean field approx
imation of the lattice case.

In order to study our problem precisely, we first present some definitions and introduce 
some notation related to the directed polymers on disordered trees, a model introduced in [20]. 
Let T be a rooted d-ary tree, in which every node has exactly d offspring (d � 2). We label the 
nodes of T by two integers (k, j) where k corresponds to the generation and j ∈ {1, 2, · · · , dk} 
numbers the nodes within the kth generation from left to right. The root is labeled as 0 = (0, 1). 
See figure 1. An infinite directed path from the root is called a branch of the tree.

We assume that every node x = (k, j) of the tree T has an associated random variable 
denoted by V(x) or Vk,j that represents the random disorder at that node, all independent.

The Hamiltonian of the model is defined as

V〈W〉 :=
∑

y∈W\{0}

V(y)

where W is a directed path in T from the root 0 to some node in the nth generation.
In the homogeneous disorder (HD) model, all the random variables V(x) have the same 

distribution as some non-degenerate random variable V with

λ(β) := logE[eβV ] < ∞ for all β ∈ R.� (1.1)

The partition function of the HD model is defined as

ZHD
n (β) :=

∑
W:0→(n,·)

eβV〈W〉
� (1.2)

where the sum is over all directed paths W in T from the root 0 to some node in the nth genera-
tion. The parameter β represents the inverse temperature.

The free energy of the HD model is defined to be

φ(β) := lim
n→∞

1
n
log ZHD

n (β).� (1.3)

For each β, this limit exists and is constant almost surely. It is computed explicitly in [11] as

φ(β) =

{
λ(β) + log d if β < βc
β
βc
(λ(βc) + log d) if β � βc

� (1.4)

where the critical inverse temperature βc is the positive root of λ(β) + log d = βλ′(β), or is 
+∞ if there is no root; see lemma 1.5 in section 1.2 for details.

The defect structure is incorporated into the model by assigning random variables from a 
different distribution to the vertices in a part of the tree. Let T̃ be the ‘left-most’ d1-regular sub-
tree of the d-regular tree T, with the same root 0 (for the precise definition see the beginning 
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of section 2). We assume that there are two possible distributions for V(x), which we shall 
call V and Ṽ :

If x ∈ T̃, then V(x) has distribution Ṽ .
If x ∈ T \ T̃, then V(x) has distribution V.

We assume that V satisfies equation (1.1). We shall consider two special cases:

Case I (Shift defect): There is a real constant u such that the distribution of Ṽ  is V  +  u.  
Case II (Nonrandom defect): There is a real constant u such that P(Ṽ = u) = 1.

1.1.1.  Polymers on non-disordered trees with a defect subtree.  As a first case, we shall con-
sider a directed polymer model on a deterministic d-regular tree T, no bulk disorder, and 
identify the localized microscopic defect with a d1-regular subtree T̃ of T by placing a fixed 
potential u at each vertex of T̃ and potential 0 elsewhere in T. That is, we have P(V = 0) = 1 
and P(Ṽ = u) = 1.

We define the free energy as

f Det(β, u) := lim
n→∞

1
n
log ZDet

n (β, u)� (1.5)

where ZDet
n (β, u) is the partition function of the model. Note that f Det(β, 0) = log d.

The critical curve is defined as

uDet
c (β) := inf{u ∈ R : f Det(β, u) > log d}.� (1.6)

The following result is straightforward to prove (see section 2.1):

Theorem 1.1.  For any β � 0 and u ∈ R, we have

f Det(β, u) = max{βu + log d1, log d}� (1.7)

and hence

uDet
c (β) =

log(d/d1)

β
.� (1.8)

(0,1)

(1,1)

(2,1)

(3,1) (3,2)

(2,2)

(3,3) (3,4)

(1,2)

(2,3)

(3,5) (3,6)

(2,4)

(3,7) (3,8)

Figure 1.  The nodes of a d-ary tree T are labeled by two integers (k, j) where k 
corresponds to the generation and j enumerates the nodes within the kth generation 
from left to right. The root is labeled as 0 = (0, 1).
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We interpret the critical curve as follows. When u < uc(β), then f Det(β, u) = log d, 
which shows that the free energy is dominated by walks that are entirely (except for the root) 
outside of T̃; there are (d − d1)dn−1 such walks, each with weight 1 in the partition func-
tion. This corresponds to the desorbed or depinned phase. In contrast, when u > uc(β), then 
f Det(β, u) = βu + log d1, which shows that the free energy is dominated by walks that are 
entirely in T̃; there are dn

1 such walks, each with weight eβnu. This corresponds to the fully 
adsorbed or fully pinned phase.

1.1.2.  Polymers on disordered trees with a defect branch.  Next, we shall consider a directed 
polymer model on a d-regular tree T with bulk disorder and a one-dimensional microscopic 
shift defect. Specifically, we identify the defect with the leftmost branch T̃ of the tree T by 
adding a fixed potential u to each vertex of T̃; that is, the distribution of Ṽ  is V  +  u. See fig-
ure 2. Therefore, for a directed path W from the root to some node in the nth generation, the 
Hamiltonian is

V〈W〉 :=
∑

y∈T̃∩ (W\{0})

(V(y) + u) +
∑

y∈(T\T̃)∩ (W\{0})

V(y).

Then the free energy of the model is defined as

f Br(β, u) := lim
n→∞

1
n
log ZBr

n (β, u)� (1.9)

where ZBr
n (β, u) is the partition function of the model, defined as in the right-hand side of 

equation (1.2). The existence of the limit in equation (1.9) is part of the assertion of theorem 
1.2 below. Observe that f Br(β, 0) = φ(β) (recall equation (1.3)).

We define the critical curve as

uBr
c (β) := inf{u ∈ R : f Br(β, u) > φ(β)}.� (1.10)

In our next result, we compute the free energy and the critical curve explicitly. In the state-
ment of the theorem, the quantity βc is the critical inverse temperature for the homogeneous 
disorder model, see equation (1.4) and section 1.2.

Theorem 1.2.  For any β � 0 and u ∈ R, we have almost surely

f Br(β, u) = max{βu + βµ,φ(β)}� (1.11)

root

Figure 2.  The thick edges represent the defect branch T̃ of the tree T. We assume that 
V(x) has distribution V for each x ∈ T \ T̃, whereas V(x) has distribution Ṽ = V + u 
for each x ∈ T̃. When u > uc(β), the polymer follows the defect branch.
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where µ = E(V). Hence

uBr
c (β) =

{
1
β (λ(β) + log d)− µ if β < βc
1
βc
(λ(βc) + log d)− µ if β � βc.

� (1.12)

We also see that for this model the partially pinned phase, RPP , is always empty. Indeed, 
we show in the proof of theorem 1.2 (see section 2.2) that βu + βµ is the contribution to the 
free energy from the path W that lies in T̃.

Remark 1.3.  Note that for a non-degenerate random variable V, eλ(β) =  
E(eβV) > eβE(V) = eβµ. Therefore

uBr
c (β) >

{
log d
β if β < βc

log d
βc

if β � βc.
� (1.13)

From equations (1.8) (with d1  =  1) and (1.13), we see that quenched randomness shifts the 
critical curve, that is, uBr

c (β) > uDet
c (β) for all β > 0.

1.1.3.  Polymers on disordered trees with a non-disordered defect subtree.  In this section, we 
shall consider a different microscopic defect structure that is identified with a deterministic 
d1-regular subtree T̃ of the d-regular tree T, and we identify the bulk disorder with the verti-
ces in T \ T̃; that is, there is a real constant u such that Ṽ ≡ u. See figure 3. Therefore for a 
directed path W from the root to some node in the nth generation, the Hamiltonian is

V〈W〉 :=
∑

y∈T̃∩(W\{0})

u +
∑

y∈(T\T̃)∩(W\{0})

V(y).

We denote the partition function of the model with a defect subtree by ZST
n (β, u). For this 

model, it is not obvious how to prove that the limiting free energy exists almost surely; see the 
beginning of section 2.3.

root

Figure 3.  The thick edges represent the defect subtree T̃ of the tree T. Here, d  =  3 
and d1  =  2. The disorder V(x) has distribution V for each x ∈ T \ T̃, whereas V(x) 
has distribution Ṽ  for each x ∈ T̃. In section 1.1.3, we assume that Ṽ  is almost surely 
constant, that is, Ṽ ≡ u.
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We shall define the following functions:

F(β) :=
1
β
(λ(β) + log d − log d1)� (1.14)

J(β) :=
1
β

(
φ(β)− log d1 −

[λ(β) + log d − φ(β)] log d1

λ(2β)− 2λ(β)− log d

)
.� (1.15)

Our main result for this model is the following. The proof appears in section 2.3. See also 
figure 4.

Theorem 1.4. 

	(a)	For every β ∈ [0,βc], we have

(β, u) ∈
{
RFP if u � F(β)
RD if u � F(β).

	(b)	For every β > βc, we have

Figure 4.  Phase diagram for the model with a non-disordered defect subtree, from 
theorem 1.4. The value βc is the critical inverse temperature for the phase transition 
between weak and strong disorder in the homogeneous disorder model; see section 1.2. 
For the fully pinned phase, RFP , the dominant terms in the partition function are the 
walks that spend almost all their time in the defect subtree, whereas for the depinned 
phase, RD, the walks that spend hardly any time in the defect subtree dominate the 
partition function. In contrast, the dominant walks in the partially pinned phase, RPP , 
are those for which the fraction of time spent in the defect subtree is bounded away from 
0 and from 1. The boundary curves F and J are given explicitly in equations (1.14) and 
(1.15). Our characterization of the phases is not complete for β > βc when u is between 
F(βc) and J(β). The point (βc, F(βc)) is the leftmost boundary point of the partially 
pinned phase, by proposition 2.5.
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(β, u) ∈





RFP if u � F(β)
RD if u � F(βc)

RPP if J(β) < u < F(β)
RD ∪RPP if F(βc) < u � J(β).

We also prove in proposition 2.5 that F(βc) < J(β) < F(β) whenever β > βc. This shows 
that for every β > βc, there is a value of u such that (β, u) ∈ RPP. That is, the partially pinned 
phase appears as soon as β exceeds βc.

In a different direction of research [4], Basu, Sidoravicius and Sly considered the question 
of ‘how a localized microscopic defect, even if it is small with respect to certain dynamic 
parameters, affects the macroscopic behavior of a system’ in the context of two classical 
exactly solvable models: Poissonized version of Ulam’s problem of the maximal increasing 
sequence and the totally asymmetric simple exclusion process. In the first model, by using a 
Poissonized version of directed last passage percolation on R2, they introduced the micro-
scopic defect by adding a small positive density of extra points along the diagonal line. In the 
second, they introduced the microscopic defect by slightly decreasing the jump rate of each 
particle when it crosses the origin. They showed that in Ulam’s problem the time constant 
increases, and for the exclusion process the flux of particles decreases. Thereby, they proved 
that in both cases the presence of an arbitrarily small microscopic defect affects the macro-
scopic behavior of the system, and hence settled the longstanding ‘slow bond problem’ from 
statistical physics.

The rest of the paper is organized as follows. In section  1.2, we introduce some nota-
tion, review the directed polymer on disordered tree model, and summarize the main existing 
results which we use in this paper. In section 2, we prove our results: theorem 1.1 is proved 
in section 2.1, theorem 1.2 in section 2.2, and theorem 1.4 in section 2.3. We conclude by 
discussing our results and some related models in section 3.

For two random variables X and Y, we use the notation X d
= Y  to denote that they have 

the same distribution. If a probability statement is true with probability one, then we use the 
phrase ‘almost sure’, abbreviated ‘a.s.’.

1.2.  Polymers on trees with homogeneous disorder

In this section, we present some definitions and review the main results related to directed 
polymers on disordered trees. Let T be a rooted d-ary tree, in which every node has exactly d 
offspring (d � 2). Recall that we label the nodes of T by two integers (k, j) where k corresponds 
to the generation and j ∈ {1, 2, · · · , dk} numbers the nodes within the kth generation. The 
root is 0 = (0, 1). The set of offspring of node (k, j) is {(k + 1, ( j − 1)d + �) : 1 � � � d}. 
See figure 1. If x = (k, j), then we say that k is the generation or height of x, and we write 
k = Height(x). We assume that every node x = (k, j) of the tree T has an associated random 
variable denoted by V(x) or Vk,j that represents the random disorder at that node, all indepen-
dent and with the same distribution as V.

Define

f (β) := λ(β) + log d − βλ′(β) for β � 0� (1.16)

where λ comes from equation (1.1).
Note that λ is a strictly convex function of β, and therefore we have f ′(β) < 0 and 

f (β) < log d  for all β > 0.
For the proof of the following lemma, see [14, 37].
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Lemma 1.5.  f has a unique positive root if and only if either

	 -	V is unbounded, or
	 -	w := ess supV  is finite and P(V = w) < 1/d .

We use βc to denote the unique positive root of f. If no solution exists, then βc = ∞.

Recall that ZHD
n (β) denotes the homogeneous disorder partition function defined in 

equation (1.2).
The following positive martingale (Mn(β),Fn)n�0 has played a crucial role in the analysis 

of the model:

Mn(β) :=
ZHD

n (β)

EZHD
n (β)

where Fn = σ{V(x) : Height(x) � n} is the σ-algebra generated by all the random variables 
between generation 1 and n. The martingale methods are first used in [9] in the lattice ver-
sion of the directed polymer model and then in [11] for the tree version. From the Martingale 
Convergence theorem, it follows that M(β) := limn→∞ Mn(β) exists almost surely and 
Kolmogorov’s zero-one law implies that P(M(β) = 0) ∈ {0, 1} because {M(β) > 0} is a tail 
event. It is known that [8, 32]

M(β) > 0 almost surely for all 0 � β < βc

M(β) = 0 almost surely for all β � βc

where βc comes from lemma 1.5. The first case is called the weak disorder regime and the sec-
ond case is called the strong disorder regime [15]. Recall that the critical inverse temperature 
βc also marks a phase transition in the model at the level of the free energy φ which is defined 
in equation (1.3).

The strong disordered regime can be considered as the energy dominated or localized phase 
as a single polymer configuration supports the full free energy whereas the weak disorder 
regime can be considered as the entropy dominated or delocalized phase as the full free energy 
is supported by a random sub-tree of positive exponential growth rate, which is strictly smaller 
than the growth rate of the full tree [37]. Note also that Mn(β) converges to zero exponentially 
fast for β > βc, but even though βc is in the strong disorder regime the decay rate of Mn(βc) 
is not exponential [28].

The following concentration result is proven in proposition 2.5 of [16] for the partition 
function of the lattice version of the directed polymer model, and it is easy to see that it also 
holds true for the tree version of model.

Proposition 1.6 ([16]).  For any ε > 0 and β � 0, there exists N := N(β, ε) such that

P(| log ZHD
n (β)− E log ZHD

n (β)| � nε) � exp

(
−ε2/3n1/3

4

)
, n � N.

� (1.17)
By combining equations (1.4) and (1.17), we also get

φ(β) = lim
n→∞

1
n

E log ZHD
n (β).� (1.18)

Observe that

EZHD
n (β) = dn(eλ(β))n = enλ(β)+n log d

N Madras and G Yıldırım﻿J. Phys. A: Math. Theor. 51 (2018) 154001
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and hence

lim
n→∞

1
n
logEZHD

n (β) = λ(β) + log d.� (1.19)

We also note that

φ(β) � λ(β) + log d for every β� (1.20)

(for example, by equations (1.18) and (1.19) and Jensen’s inequality). Indeed, equation (33) 
of [11] tells us that

φ(β) < λ(β) + log d for every β > βc.� (1.21)

2.  Proofs of the main results

Before we prove our results, we introduce some more notation. We assume that 1 � d1 < d. 
Let T̃ be the ‘left-most’ d1-regular subtree of the d-regular tree T, with the same root 0, where 
‘left-most’ is interpreted as follows. For a node x ∈ T̃, let D̃(x) be the set of nodes in T̃ whose 
parent is x, and let D(x) be the set of nodes in T \ T̃ whose parent is x. Using the notation 
x = (k, j), we specify

D̃(x) := {(k + 1, d( j − 1) + �) : 1 � � � d1}
D(x) := {(k + 1, d( j − 1) + �) : d1 < � � d}.

For d  =  3, the cases d1  =  1 and d1  =  2 are depicted in figures 2 and 3 respectively. Observe 
that

|D̃(x)| = d1 and |D(x)| = d − d1 for x ∈ T̃.

Observe that for every directed path W = (w(0), w(1), . . . , w(n)) with w(0) = 0 and 
Height(w(n)) = n, there is an integer k ∈ [0, n] such that w(m) ∈ T̃ if and only if m � k . That 
is, once the path leaves T̃, it never returns to T̃. Many of our calculations involve summing 
over values of this quantity k.

Recall that we assume that there are two possible distributions for V(x), called V and Ṽ :

If x ∈ T̃, then V(x) has distribution Ṽ .
If x ∈ T \ T̃, then V(x) has distribution V.

For a node x with Height(x) � n, let

Z[x]
n (β) :=

∑
W:x→(n,·)

eβV〈W〉
� (2.1)

where the sum is over all directed paths W in T from x to some node in the nth generation, and 
the Hamiltonian is

V〈W〉 :=
∑

y∈W\{x}

V(y).

We shall write Z[x]
n (β) for whichever model is under consideration, suppressing other 

details from the notation.
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2.1. The deterministic model: proof of theorem 1.1

Recall that we have P(V = 0) = 1 and P(Ṽ = u) = 1 for this model. Then the partition func-
tion can be written explicitly as

ZDet
n (β, u) =

n−1∑
k=0

ekβudk
1(d − d1)dn−k−1 + dn

1enβu.

The free energy, equation (1.5), exists because

max{enβudn
1, (d − d1)dn−1} � ZDet

n (β, u) � (n + 1) (max{eβud1, d})n

which shows that

f Det(β, u) = max{βu + log d1, log d}.� (2.2)

From equation (2.2), it follows that the critical curve defined in equation (1.6) is given by

uDet
c (β) =

log(d/d1)

β
.� (2.3)

2.2. The defect branch: proof of theorem 1.2

First, we shall introduce some notation. For each nonnegative integer m, let Sm be the sum 
of the (unshifted) disordered variables along the left-most branch of the tree up to the mth 
generation, that is,

Sm :=
m∑

k=1

Vk,1 and S0 = 0.

Recalling the definition in equation (2.1), let

GBr
k,n(β) :=

∑
y∈D((k,1))

eβV(y)Z[y]
n (β) for 0 � k < n, and

GBr
n,n(β) := 1.

� (2.4)

That is, GBr
k,n(β) is the sum of all contributions by walks from node x = (k, 1) up to height n 

that do not pass through the node (k + 1, 1).
Then the partition function can be written as

ZBr
n (β, u) =

n∑
k=0

eβ(uk+Sk)GBr
k,n(β).� (2.5)

Observe that for each y ∈ D((k, 1)), the quantities Z[y]
n (β) and ZHD

n−k−1(β) have the same 
distribution. Moreover, we see that the sum GBr

k,n(β) is stochastically smaller than ZHD
n−k(β), 

which by definition means that

P(GBr
k,n(β) � A) � P(ZHD

n−k(β) � A) for every real constant A.� (2.6)

Fix β and u, and let ε > 0 be given. By equation  (1.18), there exists a constant 
no = no(ε,β) � 1 such that
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E log ZHD
j (β) � j(φ(β) + ε) for every integer j � no.� (2.7)

From equations (2.6), (2.7) and (1.17), there exist n1 = n1(ε,β) and c = c(ε) such that for all 
nonnegative integers k and n with n − k � n1, we have

P
(

GBr
k,n(β) � e(n−k)[φ(β)+2ε]

)
� P

(
ZHD

n−k(β) � e(n−k)[φ(β)+2ε]
)

� P
(
log ZHD

n−k(β) � E log ZHD
n−k(β) + (n − k)ε

)

� e−c(n−k)1/3
.

� (2.8)
Let us define the quantities W := max{β(u + µ),φ(β)} and

pn := P
(

ZBr
n (β, u) � (n + 1)en(W+3ε)

)
for n � 1.� (2.9)

By equation (2.5), for every n we obtain

pn �
n∑

k=0

P
(

eβ(ku+Sk)GBr
k,n(β) � ek(W+ε)+nεe(n−k)(W+ε)+nε

)

�
n∑

k=0

P
(

eβ(ku+Sk)GBr
k,n(β) � ek(β(u+µ)+ε)+nεe(n−k)(φ(β)+ε)+nε

)

� An + Bn,

where

An :=
n∑

k=0

P
(

eβ(ku+Sk) � ek(β(u+µ)+ε)+nε
)

and

Bn :=
n∑

k=0

P
(

GBr
k,n(β) � e(n−k)(φ(β)+ε)+nε

)
.

We shall handle An by a standard ‘large deviation’ bound. Recall that λ(β) = logE[eβV ] 
and µ = E(V). For every t  >  0 and every α > 0, we have

P(Sm � m(µ+ t)) � e−m[α(µ+t)−λ(α)] for every m � 1

(see for example equation  (2.6.2) of [22]). Since λ′(0) = µ, there exists α∗ > 0 such that 
α∗(µ+ ε)− λ(α∗) > 0 (this is lemma 2.6.2 of [22]). Therefore, for every k ∈ [1, n], we have

P
(

Sk � k
(
µ+ ε+

nε
kβ

))
� e−k[α∗(µ+ε+ nε

kβ )−λ(α∗)] < e−n(α∗ε/β).

Thus, observing that the k  =  0 summand of An equals 0, we have

An =

n∑
k=1

P
(

Sk � k
(
µ+ ε+

nε
kβ

))
� n e−n(α∗ε/β) for all n � 1.� (2.10)

For Bn, let mn = �n −
√

n�. Using equations  (2.6) and (2.8) and Markov’s inequality, we 
deduce that if 

√
n > n1(ε,β), then
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Bn �
mn∑

k=0

P
(

GBr
k,n(β) � e(n−k)(φ(β)+ε)+(n−k)ε

)

+

n∑
k=mn+1

P
(

ZHD
n−k(β) � e(n−k)(φ(β)+ε)+nε

)

�
mn∑

k=1

e−c(n−k)1/3
+

n∑
k=mn+1

EZHD
n−k(β)

e(n−k)[φ(β)+ε]+nε

� ne−cn1/6
+

n∑
k=mn+1

e(n−k)(λ(β)+log d)

e(n−k)φ(β) enε

� ne−cn1/6
+ (

√
n + 1) e−nεe

√
n(λ(β)+log d−φ(β))

�

(2.11)

(where the last inequality holds because φ(β) � λ(β) + log d).
Recalling that pn � An + Bn, we see from equations (2.10) and (2.11) that 

∑∞
n=1 pn conv

erges. Therefore, the Borel–Cantelli lemma tells us that

P
(

1
n
log ZBr

n (β, u) �
1
n
log(n + 1) + W + 3ε for infinitely many values of n

)
= 0.

Therefore lim supn→∞
1
n log ZBr

n (β, u) � W + 3ε almost surely. Since ε can be made arbi-
trarily close to 0, we obtain

lim sup
n→∞

1
n
log ZBr

n (β, u) � W a.s.

Note also that

eβun+Sn + eβV((1,2))Z[(1,2)]
n (β) � ZBr

n (β, u).

By the strong law of large numbers (applied to Sn), and equation (1.3) (recalling that Z[(1,2)]
n (β) 

and ZHD
n−1(β) have the same distribution), we conclude that

W = max{β(u + µ),φ(β)} � lim inf
n→∞

1
n
log ZBr

n (β, u) a.s.

This completes the proof of theorem 1.2.� □ 

Example 2.1.  If the disorder distribution is normal with mean μ and variance σ2, then 
βc =

√
2 log d/σ and

uBr
c (β) =

{
1
2σ

2β + log d
β if β < βc

σ
√

2 log d if β � βc.
� (2.12)

Example 2.2.  Let V be a general disorder distribution with mean zero and variance σ2. 
Then λ(β) ∼ 1

2σ
2β2 as β → 0. Therefore, uBr

c (β) ∼ 1
2σ

2β + log d
β  as β → 0.

Remark 2.3.  More generally, our proofs can be easily modified to show that for the case 

d1  =  1 and V(x) d
= Ṽ  for all x ∈ T̃, we have
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lim
n→∞

1
n
log Z[0]

n (β) = max{βE(Ṽ),φ(β)} a.s.

This reduces to theorem 1.2 in Case I, where E(Ṽ) = u + E(V).

2.3. The defect subtree: proof of theorem 1.4 and some auxiliary results

For the model with a non-disordered defect subtree, it is not obvious how to prove that the 
limiting free energy exists almost surely.

Therefore, we make the following definitions:

f
ST
(β, u) : = lim sup

n→∞

1
n
log ZST

n (β, u)

f ST(β, u) : = lim inf
n→∞

1
n
log ZST

n (β, u).

By the Kolmogorov zero-one law, f
ST
(β, u) and f ST(β, u) are constant almost surely, so we 

shall treat f
ST

 and f ST as deterministic functions. If f
ST
(β, u) = f ST(β, u), then we define 

f ST(β, u) to be the common value; in other words,

f ST(β, u) := lim
n→∞

1
n
log ZST

n (β, u) if this limit exists.� (2.13)

We can now formalize the definition of the three phases that we introduced in section 1.1.

Definition 2.4.  We define the three phases as follows:

RFP := {(β, u) : f ST(β, u) = βu + log d1} (fully pinned)

RD := {(β, u) : f ST(β, u) = φ(β)} (depinned)

RPP := {(β, u) : f
ST
(β, u) > max{φ(β),βu + log d1} } (partially pinned).

Implicit in the definitions is that the limiting free energy of equation (2.13) must exist for 
every point of RFP  and RD.

Let’s recall the definitions of the functions F and J defined in section 1.1.3:

F(β) =
1
β
(λ(β) + log d − log d1)� (2.14)

J(β) =
1
β

(
φ(β)− log d1 −

[λ(β) + log d − φ(β)] log d1

λ(2β)− 2λ(β)− log d

)
.� (2.15)

Our characterization of the phases in theorem 1.4 is not complete for β > βc when u is 
between F(βc) and J(β). However, the following proposition, combined with theorem 1.4, 
shows that the partially pinned phase is nonempty, and indeed it contains points (β, u) with β 
arbitrarily close to βc.

Proposition 2.5.  For every β > βc,

F(βc) = J(βc) < J(β) <
φ(β)− log d1

β
< F(β).
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The proof of proposition 2.5 appears at the end of this section, immediately before the 
proof of theorem 1.4. We shall first prove some preliminary results.

Proposition 2.6.  For every β > 0 and every u,

lim inf
n→∞

1
n
log ZST

n (β, u) � max{φ(β), βu + log d1} a.s.

Before we prove proposition 2.6, observe that in any path W from the root 0 to generation 
n, there is a node x in W such that the part of W from 0 to x is contained in T̃, and the rest of 
W is outside T̃. Writing k to represent the generation of x, we see that

ZST
n (β, u) =

n−1∑
k=0

∑

x∈T̃: Height(x)=k

∑
y∈D(x)

eβkueβV(y)Z[y]
n (β) + dn

1eβnu.� (2.16)

(The rightmost term corresponds to those paths that never leave T̃, i.e. k  =  n.)

Proof of proposition 2.6.  We shall use equation (2.16). Specifically, for y ∈ D(0), we 
have

ZST
n (β, u) � eβV(y)Z[y]

n (β) and Z[y]
n (β)

d
= ZHD

n−1(β).

Then by equation (1.3), we have

lim inf
n→∞

1
n
log ZST

n (β, u) � φ(β) a.s.
� (2.17)

Also, since ZST
n (β, u) � dn

1eβnu, we have

lim inf
n→∞

1
n
log ZST

n (β, u) � log d1 + βu a.s.� (2.18)

The proposition follows from inequalities (2.17) and (2.18).� □ 

We introduce the following notation: for 0 � k < n,

GST
k,n(β) :=

∑

x∈T̃: Height(x)=k

∑
y∈D(x)

eβV(y)Z[y]
n (β).

� (2.19)

(Observe that in the case d1  =  1, the above would reduce to GBr
k,n(β) as defined in equa-

tion (2.4).) Then we see from equation (2.16) that

ZST
n (β, u) =

n−1∑
k=0

eβkuGST
k,n(β) + dn

1eβnu,� (2.20)

which is the analogue of equation (2.5). Since GST
k,n(β) is a sum of dk

1(d − d1) independent 
copies of eβV∗

ZHD
n−k−1(β) (where V* is a copy of V, independent of everything else), we have

E(GST
k,n(β)) = dk

1(d − d1)dn−k−1e(n−k)λ(β) and� (2.21)

Var(GST
k,n(β)) = dk

1(d − d1)Var(eβV∗
ZHD

n−k−1(β)).� (2.22)
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Proposition 2.7.  For every β > 0 and every u,

lim sup
n→∞

1
n
log ZST

n (β, u) � max{λ(β) + log d, βu + log d1} a.s.

Proof of proposition 2.7.  For given (β, u), let M = max{λ(β) + log d, βu + log d1}. 
Fix C  >  M. By equation (2.20), we have

P
(

1
n
log ZST

n (β, u) > C
)

= P
(
ZST

n (β, u) > eCn)� (2.23)

�
n−1∑
k=0

P
(

eβkuGST
k,n(β) >

eCn

n + 1

)
+ 1

(
dn

1eβnu >
eCn

n + 1

)
.� (2.24)

The rightmost term in equation (2.24) is zero for all sufficiently large n, since C > βu + log d1. 
For 0 � k � n − 1, we have

P
(

eβkuGST
k,n(β) >

eCn

n + 1

)

�
eβku E(GST

k,n(β))

eCn/(n + 1)
(by Markov′s Inequality)

<
eβku dk

1 dn−k e(n−k)λ(β)

eCn/(n + 1)
(by equation (2.21))

= (n + 1)
(eλ(β)+log d)n−k(eβu+log d1)k

eCn

� (n + 1) en(M−C).

Hence, for large n,

P
(

1
n
log ZST

n (β, u) > C
)

� n(n + 1) en(M−C).

Since M  −  C  <  0, the Borel–Cantelli lemma shows that, with probability 1, there are only 
finitely many values of n for which 1n log ZST

n (β, u) > C. This proves that

lim sup
n→∞

1
n
log ZST

n (β, u) � C a.s.

Since C can be arbitrarily close to M, proposition 2.7 follows.� □ 

Since φ(β) = λ(β) + log d for β � βc, propositions 2.6 and 2.7 immediately imply the 
following.

Corollary 2.8.  For every β � βc,

lim
n→∞

1
n
log ZST

n (β, u) = max{φ(β), βu + log d1}.

In particular, the limit exists almost surely.
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Since φ(β) < λ(β) + log d  for β > βc (equation (1.21)), we must ask whether the conclu-
sion of corollary 2.8 holds for all values of β. We shall show that the answer is no. This is 
interesting because it tells us that the dominant terms in the partition function are neither the 
walks that spend almost all their time in the defect subtree nor the walks that spend hardly 
any time in the defect subtree. This is in direct contrast to the case of a defect branch (d1  =  1), 
which we examined in section 2.2.

The next lemma will be needed for an application of Chebychev’s Inequality.

Lemma 2.9. 

	(a)	For every β � 0, the limit

Θ ≡ Θ(β) := lim
n→∞

(
Var(eβV∗

ZHD
n (β))

)1/n

		 exists and equals max{d2e2λ(β), deλ(2β)}.
	(b)	For every β > βc, we have Θ = deλ(2β).

Proof of lemma 2.9. 

	(a)	Let us write Y = eβV∗
 and Zn = ZHD

n (β). Recall that V* is a copy of V, inde-
pendent of everything else. Since Y and Zn are independent, it is easy to see that 
Var(YZn) = E(Z2

n)Var(Y) + (E(Y))2Var(Zn), and hence that

E(Z2
n)Var(Y) � Var(YZn) � E((YZn)

2) = E(Y2)E(Z2
n).

		 Since Y does not depend on n, we deduce that Θ = limn→∞ E(Z2
n)

1/n if this limit exists. 
Using this observation, part (a) follows from the following calculation:

E[(ZHD
n (β))2] =

∑
W:0→(n,·)

∑
W′:0→(n,·)

E[eβV〈W〉+βV〈W′〉]

= dn

(
n−1∑
k=0

(d − 1)dn−k−1(eλ(2β))k(e2λ(β))n−k + enλ(2β)

)

= d (d − 1) e2λ(β)
n−1∑
k=0

(
deλ(2β)

)k (
d2e2λ(β)

)n−1−k
+
(

deλ(2β)
)n

= d(d − 1) e2λ(β) (deλ(2β))n − (d2e2λ(β))n

deλ(2β) − d2e2λ(β) +
(

deλ(2β)
)n

.

	(b)	Fix β > βc, and assume that d2e2λ(β) > deλ(2β). That is, log d > λ(2β)− 2λ(β). By 
the Mean Value theorem, we know that λ(2β) = λ(β) + βλ′(β̃) for some β < β̃ < 2β. 
Recalling equation (1.16) and lemma 1.5, we find that

f (β) > λ(β) + λ(2β)− 2λ(β)− βλ′(β)

= β(λ′(β̃)− λ′(β))

> 0 (since λ′′ > 0).

		 This contradicts the fact that f (β) < 0 for β ∈ (βc,∞). Therefore d2e2λ(β) � deλ(2β). 
Part (b) follows.� □
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The following lemma plays an important role in proving that the partially pinned phase is 
not empty for β > βc.

Lemma 2.10.  Fix β > 0. Let t be a real number in (0, 1) such that
(

Θ

d2e2λ(β)

)1−t

< dt
1.� (2.25)

Then for every u,

lim inf
n→∞

1
n
log ZST

n (β, u) � (λ(β) + log d)(1 − t) + (βu + log d1)t a.s.
� (2.26)

Remark 2.11.  Observe that equation (2.25) holds when t is close enough to 1.

Before we prove lemma 2.10, we shall show how it can be used.

Proposition 2.12.  Assume β > βc. Then the strict inequality

lim inf
n→∞

1
n
log ZST

n (β, u) > max{φ(β), βu + log d1} a.s.� (2.27)

holds if either of the following hold:

	(a)	φ(β) = βu + log d1; or
	(b)	λ(β) + log d > βu + log d1 > φ(β).

In particular, (β, u) is in the partially pinned phase RPP  if (φ(β)− log d1)/β � u < F(β).

The proof of theorem 1.4 will also use lemma 2.10 to prove that the inequality (2.27) also 
holds if βu + log d1 is smaller than, but sufficiently close to, φ(β).

Proof of proposition 2.12.  Let M = max{φ(β), βu + log d1}.

	 (a)	In this case, M = φ(β) = βu + log d1. Since φ(β) < λ(β) + log d (by equation (1.21)), 
we see that the right side of equation (2.26) is strictly greater than M for every t in the 
interval (0, 1). By remark 2.11, the result follows.

	(b)	In this case, λ(β) + log d > M = βu + log d1. As in part (a), the result follows.

Proof of lemma 2.10.  For 0 � k < n, define the event

A[k, n] :=
{∣∣GST

k,n(β)− E(GST
k,n(β))

∣∣ �
1
2

E(GST
k,n(β))

}
.

By Chebychev’s Inequality, and equations (2.21) and (2.22), we have

P(A[k, n]) �
4 Var(GST

k,n(β))

E(GST
k,n(β))

2

=
4 Var(eβV∗

ZHD
n−k−1(β))

dk
1(d − d1)d2(n−k−1)e2(n−k)λ(β)

.

Next, we let k = k(n) be an integer-valued function of n with the property that

lim
n→∞

k(n)
n

= t
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where t is given in the statement of the lemma. Then

lim sup
n→∞

P(A[k(n), n])1/n �
Θ1−t

dt
1(deλ(β))2(1−t) < 1� (2.28)

where the final inequality is a consequence of equation (2.25). Therefore P(A[k(n), n]) decays 
to 0 exponentially rapidly in n, and hence the Borel–Cantelli lemma shows that (with prob-
ability 1) A[k(n), n] occurs for only finitely many values of n.

Observe that GST
k,n(β) > E(GST

k,n(β))/2 on A[k, n]c (where c denotes complement). There-
fore

GST
k(n),n(β) �

1
2

E(GST
k,n(β)) 1(A[k(n), n]c).

The final conclusion of the previous paragraph, together with equation (2.21), shows that

lim inf
n→∞

GST
k(n),n(β)

1/n � dt
1(deλ(β))1−t a.s.� (2.29)

Finally, equation (2.20) implies that ZST
n (β, u) � eβk(n)uGST

k(n),n(β). Lemma 2.10 follows im-
mediately from this and equation (2.29).� □ 

We define the critical curve as

uST
c (β) := inf{u ∈ R : f

ST
(β, u) > φ(β)}.� (2.30)

Then we have the following.

Proposition 2.13.  Assume β � βc and u � Ψ, where

Ψ :=
1
βc

(λ(βc) + log d − log d1).

Then

lim
n→∞

1
n
log ZST

n (β, u) = φ(β) a.s.� (2.31)

That is, uST
c (β) � Ψ for all β � βc.

Proof of proposition 2.13.  Fix β � βc and u � Ψ. Let ε > 0 and let

C := φ(β) + ε =
β

βc
(λ(βc) + log d) + ε.

Our approach is similar to the proof of proposition 2.7. As in equation (2.24), we have

P
(

1
n
log ZST

n (β, u) > C
)

= P

(
n∑

k=0

eβkuGST
k,n(β) > eCn

)

�
n−1∑
k=0

P
(

eβkuGST
k,n(β) >

eCn

n + 1

)
+ 1

(
dn

1eβnu >
eCn

n + 1

)
.

�

(2.32)
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Since βu + log d1 � βΨ+ (β/βc) log d1 < C, the final term in equation (2.32) is 0 for all 
sufficiently large n.

Since β � βc, we have GST
k,n(β)

1/β � GST
k,n(βc)

1/βc by lemma 5 of [11], and thus

P
(

eβkuGST
k,n(β) >

eCn

n + 1

)

� P
(

GST
k,n(β)

β/βc >
eCn−βku

n + 1

)

= P
(

GST
k,n(β) >

e(βc/β)Cn−βcku

(n + 1)βc/β

)

�
(n + 1)βc/βeβcku E(GST

k,n(β))

e(βc/β)Cn (by Markov′s Inequality)

=
(n + 1)βc/βeβcku dk

1(d − d1)dn−k−1e(n−k)λ(βc)

e(βc/β)Cn (by equation (2.21))

� (n + 1)
(

eλ(βc)+log d

eCβc/β

)n−k (
eβcu+log d1

eCβc/β

)k

.

Since

Cβc

β
= λ(βc) + log d +

βcε

β
= βcΨ+ log d1 +

βcε

β
� βcu + log d1 +

βcε

β
,

we conclude that for large n,

P
(

1
n
log ZST

n (β) > C
)

� n(n + 1) e−nεβc/β .

It follows from the Borel–Cantelli lemma that lim supn→∞
1
n log ZST

n (β, u) � φ(β) + ε with 
probability 1. Since this holds for every positive ε, we can combine this with proposition 2.6 
to complete the proof of equation (2.31).� □ 

We are now ready to prove the main results of this section.

Proof of proposition 2.5.  Note that λ(βc) + log d = φ(βc) and hence F(βc) = J(βc). Fix 
β > βc. We have λ(β) + log d > φ(β) (by equation (1.21)) and

λ(2β)− 2λ(β)− log d > 0� (2.33)

by lemma 2.9 (a) and (b). Hence the second and third inequalities follow.
It remains to prove the first inequality in the proposition. Since λ is strictly convex, we can 

consider slopes of secant lines to obtain

λ(2β)− λ(β)

β
>

λ(β)− λ(βc)

β − βc
.� (2.34)

Now replace φ(β) by β
βc
(λ(βc) + log d) in the definition of J(β) in equation (1.15), obtaining
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J(β) =
λ(βc) + log d

βc
− log d1

β

(
1 +

λ(β) + log d − φ(β)

λ(2β)− 2λ(β)− log d

)

= F(βc) +
log d1

βc
− log d1

β

(
λ(2β)− λ(β)− φ(β)

λ(2β)− 2λ(β)− log d

)
.

Now, some algebra gives

J(β)− F(βc)

log d1
=

1
βc

− 1
β

(
λ(2β)− λ(β)− (β/βc)[λ(βc) + log d]

λ(2β)− 2λ(β)− log d

)

=
(β − βc)[λ(2β)− λ(β)]− β[λ(β)− λ(βc)]

ββc[λ(2β)− 2λ(β)− log d]
> 0 (by equations (2.33) and (2.34)).

Therefore J(β) > F(βc), and the proof is complete.� □ 

Proof of theorem 1.4.  We start with the observation that every point (β, u) (with 
β > 0) is in at least one of RFP  or RD or RPP . To see this, suppose (β, u) �∈ RPP. Then 

max{φ(β),βu + log d1} � f
ST
(β, u) � f ST(β, u). But f ST(β, u) � max{φ(β),βu + log d1} 

by proposition 2.6, so the limit f ST(β, u) exists and equals βu + log d1 or φ(β). That is, 
(β, u) ∈ RFP ∪RD.

To prove part (a), fix β � βc. By corollary 2.8, the limiting free energy exists and is given 
by

f ST(β, u) = max{φ(β),βu + log d1}.

First assume u � F(β). This is equivalent to βu + log d1 � λ(β) + log d. Since 
φ(β) = λ(β) + log d, we obtain f ST(β, u) = βu + log d1, and hence (β, u) ∈ RFP. Simi-
larly, the assumption u � F(β) leads to βu + log d1 � λ(β) + log d = φ(β), and hence 
f ST(β, u) = φ(β), i.e. (β, u) ∈ RD.

Now we shall prove part (b). Fix β > βc.
First assume u � F(β). Then βu + log d1 � λ(β) + log d � φ(β) (the second inequality is 

from equation (1.20)). By propositions 2.6 and 2.7, we have

f ST(β, u) � βu + log d1 � f
ST
(β, u),

which shows that f ST exists and equals βu + log d1. Therefore (β, u) ∈ RFP.
Next, assume that u � F(βc). Then proposition 2.13 says that (β, u) ∈ RD, since F(βc) = Ψ.
Next, assume that J(β) < u < F(β). Let

t∗ ≡ t∗(β) =
λ(2β)− 2λ(β)− log d

log d1 + λ(2β)− 2λ(β)− log d
and� (2.35)

L(β, t) = φ(β)−
(

1 − t
t

)
(λ(β) + log d − φ(β)) for t �= 0.� (2.36)

By lemma 2.9 (a) and (b), we know that λ(2β)− 2λ(β)− log d > 0, which implies that 
t∗ ∈ (0, 1). Also, observe that
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J(β) =
L(β, t∗)− log d1

β
.� (2.37)

Recalling from lemma 2.9 (b) that Θ = deλ(2β), it is easy to show that
(

Θ

d2e2λ(β)

)1−t∗

= d t∗
1 ,

and that the inequality of equation (2.25) holds whenever t*  <  t  <  1.
Still assuming J(β) < u < F(β), we consider two possible cases:

	 (i)	φ(β) � βu + log d1, or
	(ii)	βu + log d1 < φ(β).

If case (i) holds, then proposition 2.12 says that (β, u) ∈ RPP. So we shall assume that 
case (ii) holds. Since (L(β, t∗)− log d1)/β < u, we can choose t ∈ (t∗, 1) such that 
(L(β, t)− log d1)/β < u. From simple algebra, it follows that, for this value of t, the 
right hand side of equation  (2.26) is strictly greater than φ(β), which in turn equals 
max{φ(β),βu + log d1} in case (ii). For this choice of t, lemma 2.10 shows that (β, u) ∈ RPP.

Finally, assume that F(βc) < u � J(β). Since φ(β) < λ(β) + log d (by equation (1.21)), we 
see from equation (2.36) that L(β, t∗) < φ(β). We then have u � J(β) < (φ(β)− log d1)/β 
(by equation (2.37)), and hence βu + log d1 < φ(β). Therefore, by proposition 2.6, we have 

f ST(β, u) � φ(β) > βu + log d1. Hence (β, u) is not in RFP , so it must be in RD or RPP  by 
the first observation of the present proof.� □ 

3.  Discussion of the results and some future research directions

In this section, we will discuss our results and also mention some possible future research 
directions.

3.1.  Polymers on disordered trees with a shifted-disordered defect subtree

Let’s assume that Ṽ(x) = V(x) + u for x ∈ T̃, so that the Hamiltonian is given by

V〈W〉 :=
∑

y∈T̃∩(W\{0})

(V(y) + u) +
∑

y∈(T\T̃)∩(W\{0})

V(y).

Note that the localized microscopic defect was non-random in the model introduced in 
section 1.1.3.

We denote the partition function of this model by

Z̃ST
n (β, u) := Z[0]

n (β).� (3.1)

Then for u � 0, we have

lim inf
n→∞

1
n
log Z̃ST

n (β, u) � max(φ(β),βu + φ̃(β)) a.s.� (3.2)

where
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φ̃(β) =

{
λ(β) + log d1 if β < βc
β
βc
(λ(βc) + log d1) if β � βc.� (3.3)

To see that the left side of the equation (3.2) is greater than φ(β), we restrict the partition 
function to T \ T̃; and to see that it is greater than βu + φ̃(β), we restrict the partition func-
tion to T̃.

We don’t yet know much more about this general model but it is reasonable to suspect a 
phase diagram similar to figure 4.

3.2.  Directed polymers on disordered integer lattice Zd  with a defect line

The 1  +  d dimensional lattice version of the directed polymer in a random environment is 
formulated as follows.

The polymer configurations are represented by the directed paths of the simple symmetric 
random walk (SSRW) {( j, Sj)}n

j=1 in N× Zd. The disordered random environment is given by 
i.i.d. random variables {v(i, x) : i � 1, x ∈ Zd} with law denoted by P satisfying

λ(β) = logE[eβv(i,x)] < ∞ for all β ∈ R.� (3.4)

The Hamiltonian of the model is given by

Hn(S) :=
n∑

j=1

v( j, Sj)� (3.5)

and Zn(β) :=
∑

S eβHn(S) denotes the partition function where the sum is overall SSRW paths 
of length n with S0  =  0. The free energy of the model is defined as

f (β) := lim
n→∞

1
n
log Zn(β).� (3.6)

The existence of the free energy is first proven by Carmona and Hu [12] for the Gaussian 
environment and then for any distribution which satisfies the exponential moment condition 
in equation (3.4) by Comets et al in [16]. There is no explicit expression for the free energy 
for the lattice case as opposed to the tree case as in equation (1.4).

The first rigorous mathematical work on the directed polymers in 1  +  d dimensions was 
done by Imbrie and Spencer [31], proving that in dimension d � 3 with Bernoulli disorder and 
small enough β, the end point of the polymer scales as n1/2, i.e. the polymer is diffusive. Later, 
Bolthausen [9] extended this to a central limit theorem for the end point of the walk, showing 
that the polymer behaves almost as if the disorder were absent. In the same paper, Bolthausen 
also introduced the nonnegative martingale Mn(β) = Zn(β)/E[Zn(β)] and observed that 
for the positivity of the limit M(β) = limn→∞ Mn(β), there are only two possibilities, 
P(M(β) > 0) = 1, known as weak disorder, or P(M(β) = 0) = 1, known as strong disorder. 
Comets and Yoshida [16, 17], showed that there exists a critical value βc ∈ [0,∞], with βc = 0 
for d = 1, 2 and 0 < βc � ∞ for d � 3, such that P(M(β) > 0) = 1 if β ∈ {0} ∪ (0,βc) and 
P(M(β) = 0) = 1 if β > βc. In particular, for the 1  +  1 dimensional case, disorder is always 
strong. It is not known whether βc belongs to the weak disorder or strong disorder phase for 
the lattice version, whereas we know that βc belongs to the strong disorder phase for the tree 
case.
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In the 1  +  1 dimensional case, the localized microscopic defect is incorporated to the 
model by modifying the Hamiltonian as follows:

Hu
n(S) :=

n∑
j=1

(v( j, Sj) + u1Sj=0)� (3.7)

and Zn(β, u) :=
∑

S eβHu
n(S) denotes the partition function. See figure 5. The free energy and 

the critical curve of the model are defined as

Figure 5.  A 1  +  1 dimensional directed polymer in a random environment with a defect 
line. The polymer configurations are represented by directed random walk paths. Each 
site of the lattice Z2 is assigned a random variable which represent the bulk disorder. 
The sites on the x-axis carry an extra potential u which represents the defect line. It is 
not clear for a given β whether uc(β) > 0 or uc(β) = 0, defined so that for u > uc(β) 
the polymer places a positive fraction of its monomers on the x-axis.

B
D0

A

B
D1

A

B
D2

A

Figure 6.  The recursive construction of the first three generations of the diamond 
lattice Dn, a special case of the hierarchical lattice for b = 2, s = 2. Each site of the 
lattice carries a random disorder, and directed paths from A to B represent the polymer 
configurations.
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f (β, u) := lim
n→∞

1
n
log Zn(β, u)� (3.8)

uc(β) := inf{u � 0 : f (β, u) > f (β, 0)}.

For the existence of the limit in equation (3.8) and its self-averaging property, see [1]. As we 
discussed in section 1.1, the question of whether uc(β) > 0 or not for some range of β is still 
an open question. One of the reasons why it is not easy to solve this question rigorously is that 
a nice decomposition, such as in equation (2.5), is not available for the partition function of 
the lattice model.

3.3.  Directed polymers on disordered hierarchical lattices with defect substructure

The directed polymers on disordered hierarchical lattices were first introduced and studied in 
the physics literature by Derrida and Griffiths [21], and Cook and Derrida [18] for the bond 
disordered case, and then rigorously by Lacoin and Moreno [35] for the site disordered case. 
The hierarchical lattices are usually generated by an iterative rule as described for the diamond 
lattice: The first generation, D0, consists of two sites, labeled as A and B, with one bond. In 
the next generation, D1, the bond is replaced by a set of four bonds, and then in each step, 
each bond is replaced by such a set of four bonds to form the next generation, see figure 6. For 
more general hierarchical lattices, the generation Dn+1 is obtained by replacing each bond in 
the generation Dn by b branches of s bonds. The directed paths in Dn linking the sites A and 
B represent the polymer configurations. The disorder is introduced in the model by assigning 
independent random variables from a distribution to each site. The Hamiltonian of the model, 
partition function, and free energy are defined as in lattice and tree version of the model, and 
the martingale defined by the normalized partition function separates two phases as weak and 
strong disorder depending on the lattice parameters b, s and the inverse temperature β, for the 
details see [35]. In [35], in particular, they prove that the free energy exists almost surely and it 
is a strictly convex function of β which holds also for the directed polymer on Zd  but not on the 
tree for β > βc. As noted in [35], this fact is related to the ‘correlation structure’ of the models 
as two directed paths on Zd  and hierarchical lattice can re-intersect after being separated at 
some point which is not the case for the tree model. 

B

A

Figure 7.  Hierarchical lattice with a defect branch. The thick bonds represent the 
defect branch. The disordered variables along the defect branch are enhanced by a fixed 
potential u. The polymer will follow the defect branch for u > uc(β, b, s) depending on 
the inverse temperature β and the lattice parameters b and s.
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The localized microscopic defect is incorporated to the model by enhancing the disorder 
variables along a single directed path from A to B with a fixed potential u, see figure 7. The 
main question is determining whether the critical point for the extra potential is zero or not 
depending on the model parameters, inverse temperature β, and lattice parameters b, s; that 
is whether uc(β, b, s) = 0 or not for some β, b, s. This problem was studied in [3] by using 
Migdal-Kadanoff renormalization group method but the results lack the rigor of formal math-
ematical proofs.
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