
1 © 2018 IOP Publishing Ltd  Printed in the UK

Journal of Physics: Condensed Matter

B Hetényi and M Yahyavi

Topological insulation in a ladder model with particle-hole and reflection symmetries

Printed in the UK

10LT01

JCOMEL

© 2018 IOP Publishing Ltd

30

J. Phys.: Condens. Matter

CM

10.1088/1361-648X/aaac9d

10

Journal of Physics: Condensed Matter

Introduction

The analysis of topological insulators (TI) in the light of 
non-spatial symmetries [1–4] was a very crucial step in our 
understanding of such systems. Non-spatial symmetries, time-
reversal (TRS), particle-hole (PHS), and their combination, 
chiral symmetry (CS) lead to the ‘ten-fold way’ characteriza-
tion. Based on whether the TRS or PHS operators square to 
plus or minus one it is possible to establish a ‘periodic table’ 
of TIs, which predicts the topological index (none, Z, or Z2) 
for a system with a given dimensionality. The original Kane–
Mele model [5, 6] is a TRS-1 system (its TRS operator squares 
to minus one), which exhibits Kramers degeneracies at time-
reversal invariant points in the Brillouin zone. Recently, the 
effects of spatial symmetries have also been considered [7–9] 
in the classification of TIs. The interplay of reflection opera-
tors with TRS, PHS, and CS can lead to new topological states 
even in cases in which the original classification schemes [1–
3] indicate a zero topological index, and the ‘ten-fold way’ has 

been extended to include additional topological classes [7, 8]. 
There are several examples [9, 10] of topological insulation as 
a result of TRS and mirror symmetry. From the extended stud-
ies of Chiu et al [7, 8] topological behavior should also result 
from the interplay of PHS and reflection.

Known PHS-1 based topological systems (C and CI sym-
metry class) are topological superconductors and they are two 
[11] or three [12, 13] dimensional. In the absence of spatial 
symmetries one-dimensional systems exhibit a zero topologi-
cal index. It is only when reflection is present, and when the 
reflection operator anti-commutes with the PHS operator that 
non-trivial topological behavior is expected.

In this paper we construct a 1D model, which exhibits 
PHS. Gap closure occurs at finite parameter values separat-
ing two different quantum phases. The PHS operator for the 
model squares to minus one, therefore, the model falls in the 
C and CI classes [1, 2], however, the operator R which inverts 
the legs of the ladder anticommutes with the PHS. Thus, our 
model has a 2MZ topological index according to the clas-
sification of Chiu et al [7, 8]. We also show that our model 
can be viewed as two models superimposed, each of which 
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individually exhibits nontrivial topological behavior. The sub-
models are Creutz models [14, 15] with an external potential. 
The topological invariant of the complete system is the mir-
ror winding number. We find edge states and a quantized Hall 
conductance in the topological phase. Applying the Peierls 
phase to another set of bonds results in the same topological 
behavior, but with reflection about a bond midpoint playing 
the role of R. We also consider adding a term which mixes the 
contributions from the two models but is PHS invariant. The 
winding number displays the same behavior, the edge state 
become nondegenerate.

Model

The model is effectively 1D, inversion and time-reversal symme-
tries are broken simultaneously. The model is a two-legged lad-
der model with an on-site potential and diagonal hoppings with 
a Peierls phase. The hoppings connecting the different legs of 
the ladder perpendicularly move the positions of the gaps within 
the reduced Brillouin zone (BZ) towards the origin. Turning on a 
finite flux along the diagonal bonds allows closure of either gap.

Our model is represented in figure 1. The legs of the lad-
der are one-dimensional tight-binding models with an alter-
nating on-site potential of strength Δ. We study the model 
at half-filling. The hopping parameter for hoppings along the 
legs is tx, ty denotes hoppings perpendicular to the legs, and txy 
denotes diagonal hoppings. A Peierls phase of Φ is introduced 
along the diagonal bonds. Since the phases are directed such 
that they close around squares, they can be viewed as magn
etic impurities placed along the ty bonds. In contrast to the 
Haldane model [16] (HM), the fluxes in neighboring closed 
squares circulate in the opposite direction, corresponding to 
an antiferromagnetic line of impurities. If ty and txy are zero, 
but tx and Δ are finite, the model exhibits two equal gaps at 
the edge of the reduced BZ (where the energy difference at 
half-filling is minimum). Turning on ty moves both of these 
gaps towards the origin. Turning on txy and a finite Φ allows 
the closing of either gap without closing the other. An external 
magnetic field applied perpendicular to the ladder is indicated 
by the other Peierls phase ΦB.

The Hamiltonian of the model in reciprocal space (tak-
ing the lattice constant to be unity) can be written as a 4 × 4 
matrix as

H(Φ,ΦB) =
∑

k




∆ −2tx cos(k +ΦB) −2txy cos(k +Φ) −ty
−2tx cos(k +ΦB) −∆ −ty −2txy cos(k − Φ)

−2txy cos(k +Φ) −ty ∆ −2tx cos(k − ΦB)

−ty −2txy cos(k − Φ) −2tx cos(k − ΦB) −∆


 .

�

(1)

We first focus on the case ΦB = 0. In this case it is conve-
nient to write the Hamiltonian as a sum of three terms, each 
of which is a direct product of a 2 × 2 matrix and one of the 
Pauli matrices as

H(Φ, 0) =
∑

k

[(
0 −2txy cos(k) cos(Φ)

−2txy cos(k) cos(Φ) 0

)
⊗ I2

+

(
−2tx cos(k) −ty

−ty −2tx cos(k)

)
⊗ τx

+

(
∆ 2txy sin(k) sin(Φ)

2txy sin(k) sin(Φ) ∆

)
⊗ τz

]
.

�

(2)

In equation (2) I2 denotes the 2 × 2 identity matrix, and τxτy, τz  
denote the Pauli spin matrices. The overall Hilbert space can 
be viewed as a direct product of two two-dimensional spaces. 
The Pauli matrices in equation (2) act in the ‘right’ subspace. 
A rather convenient fact is that the matrix

U =
1√
2

[(
1 1
1 −1

)
⊗ I2

]
,� (3)

will diagonalize all three of the matrices on the left of each of 
the terms comprising H(Φ, 0), and the gap closure conditions 
can be readily obtained. The second term of H(Φ, 0) results in 
a diagonal 2 × 2 matrix with elementss λ±

x = −2tx cos(k)± ty 
times τx. Requiring that either one is zero gives the values of k 
at which the gaps reside (k±). The third term becomes a diago-
nal 2 × 2 matrix with elements λ±

z = ∆± 2txy sin(k) sin(Φ) 
multiplying τz. Substituting either of k± and requiring that one 
of the λ±

z  is zero leads to a band structure in the reduced BZ 
with one gap closed (either at k+ or at k−). Two examples of 
the band structure as a function of the external parameters are 
shown in figure 2. The phase diagram is shown in the inset of 
figure 2. Gap closure occurs at the lines.

The shape of the phase diagram, and more importantly, the 
meaning of the parameters on the axes (Δ versus Φ) bears a 
definite resemblance to the HM [16]. The main reason for this 
is that like in the HM, inversion symmetry is broken via an on-
site potential, and simultaneously, TRS is broken by introduc-
ing a Peierls phase on second nearest neighbor hoppings. If 
one was to apply Haldane’s steps in a one-dimensional chain 
(Rice–Mele model with Peierls phase on second nearest neigh-
bor bonds), no gap closure would result, since in this case the 
distance between two nearest neighbors is twice the lattice con-
stant, and the contribution at the gap closure points (which are 
at the edge of the RBZ) would be zero. The ladder configuration 
allows for second nearest neighbors whose length is not equal 

to two lattice constants, and the closing of the gap at either k+ 
or k−. We note in passing that a Haldane like phase diagram 
is exhibited in an extended SSH model, in which the Peierls 
phases on hoppings between different sublattices differ [17].
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To characterize the symmetry, let us consider the case 
Φ = π/2. PHS is achieved by ck → c†k  and c†k → ck which 
reverses the signs of all matrix elements. PHS can also be real-
ized by the operator C = i(I2 ⊗ τy), which squares to minus 
one. If ∆ = 0 TRS is realized by T = (I2 ⊗ τx)κ, which 
squares to plus one, and the system is in the CI symmetry 
class. Finite Δ breaks TRS, and the symmetry class of the 
model becomes C. The operator R = (I2 ⊗ τx) can also act as 
the reflection of the different legs of the ladder. This operator 
anti-commutes with the PHS operator, but commutes with the 
TRS.

For a complete topological characterization, however, it 
is expedient to start with the Hamiltonian after applying the 

similarity transformation in equation (3). Considering the case 
Φ = π/2 for simplicity results in

h(π/2, 0) = U−1H(π/2, 0)U = hx ⊗ τx + hz ⊗ τz,� (4)

where hx is a 2 × 2 diagonal matrix with elements 
−2tx cos(k)± ty and so is hz with ∆∓ 2txy sin(k). Hence, we 
have two decoupled subsystems whose Hamiltonian is simi-
lar to the model analyzed by Jackiw and Rebbi [18], where 
zero-mode edge states were already demonstrated. If one of 
the 2 × 2 models is Fourier transformed back to real space, 
the result is a Creutz model with a potential Δ on all the sites 
forming one leg of the ladder, and −∆ on the other. The sym-
metry characterization for ∆ = 0 is BDI [19, 20], for finite Δ 
the TRS and PHS are broken, but CS is maintained, leading to 
AIII. Both of these have a Z topological index.

It is instructive to compare at this point to the spin-depend-
ent ‘doubling’ situation in the Kane–Mele model. The Kane–
Mele model can be constructed in two steps. One first takes 
two Haldane models, one for each spin, and couples them via 
a Rashba term. In the Haldane model TRS is broken, but in the 
combined system it is restored, and at TRS invariant k-points a 
degeneracy is guaranteed by Kramers theorem. Our model can 
be constructed by taking two extended Creutz models, which 
are not PHS invariant individually, but their combination is 
PHS-1. The Creutz models in our case are arrived at after 
transforming our original Hamiltonian, meaning that they are 
defined in terms of quasi-particles, rather than real particles on 
the lattice, hence the analog of ‘doubling’ is in terms of linear 
combinations of orbitals (the transformation in equation  (3) 
combines sites in a unit cell with either both Δ or both −∆). 
There is no Kramers theorem, but a degeneracy can be pro-
duced by tuning the reflection and TRS breaking terms. The 
gap closure does not have to occur at TRS invariant points.

Extending the work of Ryu et al [3] we construct the topo-
logical index. The ground state projector can be written as

P(k) =
1
2
[I4 − Q̄(k)] =

1
2
[I4 − h(k)⊗ τ ].� (5)

The matrix Q̄(k) can be brought into off-diagonal form (Q(k)) 
by applying the transformation

1√
2

[
I2 ⊗

(
1 1
i −i

)]
,� (6)

and switching the order of multiplication for the direct prod-
uct we arrive at the Q(k) matrix

Q(k) =
(

0 q(k)
q(k)∗ 0

)
,� (7)

where q(k) is a diagonal 2 × 2 matrix with elements 
−hz(k)− ihx(k). The winding number [3] is given by

ν =
i

2π

∫ π

−π

Tr
[
q−1(k)∂kq(k)

]
dk = ν1 + ν2,� (8)

where

νj =
i

2π

∫ π

−π

[
q−1

j (k)∂kqj(k)
]

dk,� (9)

Figure 1.  Ladder model. The hopping parameters are defined as 
follows: tx denotes hopping along the legs of the ladder, ty denote 
the hoppings perpendicular to legs, txy denotes hoppings occurring 
diagonally between legs, connecting second nearest neighbors. 
The sites in red(blue) indicate where the site depedendent potential 
is positive(negative). A Peierls phase of Φ is introduced along 
the diagonal hoppings. These can be thought of as arising from 
magnetic impurities residing halfway through the perpendicular (ty) 
hoppings and arranged antiferromagnetically.

Figure 2.  Band structure within the reduced Brillouin zone (RBZ). 
The red dashed lines indicate the band structure for a system with 
tx = 1, ty = 1, txy = 0,∆ = 0.5. At half-filling this system is gapped. 
For ty  =  0 the gaps would be at the edge of the RBZ (k = ±π

2  ). 
Finite ty causes the gaps to move towards the origin (the gap is at 
k± = ±acos( ty

2tx
)). The blue solid lines indicate gap closure when txy 

is made finite (txy sin(k±) sin(Φ) = ∆, (Φ = π
2 )). The inset shows 

the phase diagram (where gap closure occurs) for tx = 1, ty = 1. The 
lines separate two insulating phases. The red(black) lines indicates 
gap closure occurring at k+ (k−).
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with

q1(k) = ∆− 2txy sin(k) + ity + 2itx cos(k)
q2(k) = ∆+ 2txy sin(k)− ity + 2itx cos(k).

� (10)

The winding numbers can be written as contour integrals,

νj =
(−1) j

2πi

∮
dz

z − zj
, j = 1, 2� (11)

where the integral is around the ellipse defined by the curve

z = tx cos(k) + itxy sin(k),� (12)

with −π � k < π, and

z1 =
−ty
2

+ i
∆

2

z2 =
ty
2
+ i

∆

2
.

� (13)

Both winding numbers will be zero, if the points z1 and z2 fall 
outside the curve defined by equation (12). Since the curve is 
symmetric with respect to the imaginary axis, the two points 
will be either both inside the curve or outside. When the points 
are inside, −ν1 = 1 = ν2. The topological index can be called 
the mirror winding number, the one-dimensional analog of the 
mirror Chern number [9, 10]. The conditions for the points 
to fall on the curve correspond to the gap closure conditions 
derived above.

Figure 3 shows the band structure of the system under 
open boundary conditions. The lower panel shows the band 
structure when Φ is scanned between −π,π for tx = ty = 1, 
and txy  =  0.3. Inside the lobes of the phase diagram two edge 
states are found (indicated in blue color in the figure). The 

upper panels of the figure show the squared modulus of these 
edge states. Each one is localized near the ends of the ladder.

We have also considered the Hall response of the system, 
to a magnetic field perpendicular to the plane of the ladder. 
The Středa formula [21, 22] for the Hall conductance reads

σH = ec
∆n
∆ΦB

∣∣∣∣
µ

.� (14)

We applied a magnetic field by threading a flux ΦB on the 
bonds with hopping parameter tx in opposite directions on 
each legs of the ladder (as indicated in figure  1). We first 
calculate the chemical potential for half-filling for ΦB = 0. 
Subsequently we calculated the number of states below the 
chemical potential at ΦB = 0 when the flux is changed by a 
flux quantum per unit cell. In the topologically non-trivial 
phase changing the flux in either direction leads to a decrease 
in the number of states below the chemical potential, by two 
particles. This happens for both positive and negative flux. In 
the topologically trivial phase there is no change in the num-
ber of particles when a flux is threaded.

We now investigate the model with Φ = 0, and a flux 
ΦB = π/2, corresponding to a magnetic field perpendicular 
to the ladder. The behavior we find is very similar to what 
we found for the finite Φ case. The PHS operator in this case 
is C = [iσy ⊗ τx], again squaring to minus one (σx,σy,σz 

Figure 3.  Lower panel: band structure of a system of size 100 sites 
with open boundary conditions. In this calculation tx  =  1, ty  =  1, 
and txy  =  0.3. Inside the lobes (see inset of figure 2) edge states 
arise. Upper two panel: squared modulus of the wavefunction for 
the two edge states averaged over the two legs of the ladder, for 
Φ = π/2 for a system of 200 sites.

Figure 4.  Band structure of system with finite Γ = 0.5 and 
edge states (upper four panels). The other parameters are 
tx = ty = txy = 1, Φ = π/2, and ΦB = 0. The variable Δ is scanned. 
Localized edge states are found at quarter, half, and three-quarter 
fillings.

J. Phys.: Condens. Matter 30 (2018) 10LT01
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denote the Pauli matrices acting in the ‘left’ subspace). The 
TRS is T = [σx ⊗ I2]K , which squares to one, i.e. the system 
falls in the CI symmetry class. The operator [σx ⊗ I2] is also 
an inversion operator, although, unlike in the previous case, it 
inverts halfway along a chosen bond, horizontal in figure 1. 
For the case ∆ = 0 we obtain a Hamiltonian similar to that 
in equation (2),

H(0,π/2) =
∑

k

[
σx ⊗

(
−2txy cos(k) −ty

−ty −2txy cos(k)

)

+σz ⊗
(

0 −2tx sin(k)
−2tx sin(k) 0

)]
.

�

(15)
Here we can apply the similarity transformation via

V =
1√
2

[
I2 ⊗

(
1 1
1 −1

)]
,� (16)

and arrive at

h(0,π/2) = V−1H(0,π/2)V = σx ⊗ gx + σz ⊗ gz,� (17)

with gx and gz being 2 × 2 diagonal matrices with elements 
−2txy cos(k)∓ ty and ∓2tx sin(k), respectively. The two 2 × 2 
models which form the 4 × 4 model are two Creutz models 
[14, 15] with band structures displaced with respect to each 
other by π. The transformation in equation  (16) combines 
sites of the same ladder leg within a unit cell, therefore the 
Creutz models in this case are defined in terms of quasi-parti-
cles of this kind. The gap closures occur at k  =  0 and π when 
ty = ±2txy. We can again construct the mirror winding num-
ber scheme used above. For the topological state the curve

z = txy cos(k) + itx sin(k)� (18)

will include the points ±ty/2, with winding numbers of oppo-
site signs. If these points are outside the curve, both winding 
numbers will be zero. It is well-known that the Creutz model 
is topological and exhibits edge states [14].

For finite values of Δ the topological state survives, since the 
state is adiabatically connected to the ∆ = 0 state. The phase 
diagram can be determined from the fact that the gap closure 
has to occur at k  =  0 (a single point in the reduced Brillouin 
zone). Setting k to zero in the Hamiltonian we can diagonalize 
the resulting matrix, and obtain the gap closure condition,

∆ = ±

√√√√(4t2
xy − t2

y)

(
1 −

(
tx
txy

cos(ΦB)

)2
)

.� (19)

At last, for the case Φ = π/2 we consider adding a term 
of the form Γ[σz ⊗ τz], which still preserves PHS, but mixes 
the two Creutz-like subsystems (in this sense an analog of the 
Rashba term in the Kane–Mele model). The q-matrix in this 
case becomes

q(k) = hx + ihz +

(
0 Γ

Γ 0

)
.� (20)

Although the derivation is more cumbersome than in the pre-
vious case, due to the off-diagonal elements of the q-matrix, 
the winding number falls into the same two pieces as in 

equations  (8)–(13), the gap closure conditions for the two 
contributions are the same as before.

In figure 4 the band structure is shown for a system with 
Γ = 0.5, tx = ty = txy = 1, Φ = π/2, ΦB = 0 scanned over 
the variable Δ. The four midgap states, two at half filling, one 
at quarter and three-quarter fillings are evaluated at ∆ = 0. 
The upper panels show that these midgap states are indeed 
localized edge states. The state at half-filling are non-degener-
ate, unlike for zero Γ. Note that the states form ‘particle-hole’ 
pairs: for a given negative energy state, there is a positive 
energy state which is localized on the other edge.

Conclusion

We have constructed a ladder model (one-dimensional) which 
falls in the C or CI symmetry classes and exhibits topological 
behavior, as a result of two types of reflection symmetries pres-
ent. The models can be shown to consist of two submodels. In 
this respect, the situation is similar to the ‘Haldane squared’ 
model (the Kane–Mele model without the Rashba coupling) 
which exhibits a spin-resolved quantum spin-Hall effect. The 
two submodels on their own exhibit nonzero winding num-
bers, which are of opposite sign in the topologically nontrivial 
phase. While a condensed matter realization of all the interest-
ing parameter ranges seems a challenge, however, ladder mod-
els can be realized as ultracold atoms in optical lattices [23], 
even the analogs of topologically nontrivial models [24, 25].
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