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The tunable plasmon induced reflectance (PIR) effect has been numerically investigated and

experimentally realized by hybrid metal-graphene metamaterials. The PIR effect is produced by

two parallel strips of gold (Au) and controlled electrically by applying the gate voltage to the gra-

phene layer. The PIR response is generated by the weak hybridization of two bright modes of the

gold strips and tuned by changing the Fermi level (Ef) of the graphene. The total shift of 211.7 nm

was achieved in the reflection peak by applying only 3 V. This concept of real time electrical tuning

of PIR, with a modulation depth of �49% and a spectral contrast ratio of 66.6%, can be used for

designing optical switches, optical modulators, and tunable sensors. Published by AIP Publishing.
https://doi.org/10.1063/1.5063461

Electromagnetically induced transparency (EIT) is a

phenomenon that can be produced by quantum interference

between the two excitation pathways of a laser-activated

atomic medium.1,2 This can be used for slow light applica-

tions,3 optical storage,4 optical switching,5 biosensing appli-

cations,6,7 and quantum information processing.8 Recently,

plasmon induced transparency (PIT), analogous to the EIT-

effect, has been investigated in different platforms. The PIT

has been observed in metallic nanoparticles,9,10 metamaterial

structures,11–13 plasmonic coupled nanocavities,14 hybrid

plasmon waveguide systems,15 and integrated photonic

structures.16 Among these, metamaterial based structures are

the best option as they have been a powerful tool to control

the interaction of light with matter.17–22 A variety of tuning

mechanisms are possible to generate the tunable response of

metamaterials,23–26 which are electrical,27–29 thermal,30 or

mechanical.31

To obtain PIT, the plasmonic mode can be either radia-

tive (bright mode) or subradiant (dark mode).32 If the inci-

dent light couples directly, then it will produce bright modes

that are spectrally broadened due to radiative damping. On

the other hand, if the incident light is not coupled directly, it

will generate dark modes that are weakly damped and spec-

trally narrow.33 PIT has been realized by either the destruc-

tive interference of dark-bright modes11 or detuning of the

two bright modes.34

Hybrid metamaterial based devices can generate a tun-

able PIT response that can be used for enhanced sensing and

switchable camouflage systems.29,35–37 These devices oper-

ate in the transmission mode and require a transparent sub-

strate that limits the design wavelengths based on the type of

substrate being used.11–13,34 On the other hand, the light mat-

ter interaction of graphene on top of the reflecting surface is

increased fourfold.38 This enhanced local electric field on a

reflecting surface in the presence of graphene can be used for

better detection and modulation.39–42 Therefore, a plasmon

induced reflectance (PIR) will be more promising and can be

used for efficient optoelectronic devices. The PIR-effect has

only been experimentally realized by Chun-Feng et al. in

2014.43 The design is based on the cut-wire and split ring reso-

nator acting as dark and bright modes, respectively. However,

a dynamically tunable PIR design has not been investigated.

In this letter, we demonstrate a highly tunable PIR phe-

nomenon with hybrid metal-graphene metamaterials. Our

hybrid metamaterial based PIR device consists of a reflecting

thin metallic film, a dielectric layer, and an electrically tun-

able hybrid metal-graphene structure, as shown in Fig. 1(a).

FIG. 1. Hybrid metamaterials for PIR. (a) 3D view of a PIR device with a

schematic of the top gating. (b) The unit cell of a PIR device with two Au

strips (golden).
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The two strips on top of the graphene layers will have their

own plasmonic resonances, which can be controlled by the

length of the strips, as shown in Fig. 1(b). The optical

response of a PIR device can be engineered by two strips and

the thickness of a dielectric layer. Moreover, this response

can be broadly tunable by electrostatic doping. The optical

properties of the graphene can be explained by the Pauli

blocking principle.44 Two types of band transitions are possi-

ble depending upon the energy of the incident photon. If the

energy of the photon is less than 2Ef, the intra-band transi-

tion is dominant. On the other hand, if the photon energy is

higher than 2Ef, the inter-band transition is dominant.45,46

The interplay of these transitions establishes the optical

response of graphene. The intra-band transitions in the con-

duction or valence band give rise to a Drude-like response

similar to noble metals, and inter-band transitions that are

Pauli blocked give rise to a universal, flat absorption spec-

trum. The Drude response is typically observed for frequen-

cies up to the far-infrared, whereas the flat absorption of

2.3% is observed at optical frequencies.47

The surface conductivity of graphene can be modeled as

an infinitesimally thin isotropic surface conductivity from

both sides. The intra-band transition and inter-band transitions

are presented in the following equations, respectively:48

rintra ¼ �j
e2kBT

p�h2ðx� 2jCÞ
lc

kBT
þ 2ln e

�lc
kBT þ 1

� �� �
; (1)

rinter ¼ �j
e2

4p�h
ln

2jlcj � ðx� 2jCÞ�h
2jlcj þ ðx� 2jCÞ�h

� �
; (2)

where e is the electron charge and kB is the Boltzmann con-

stant. Other parameters include the temperature (T), scatter-

ing rate (C), angular frequency (xc), and chemical potential

(lc) which can be changed in numerical investigations.

Overall, graphene has three major advantages. First,

being a 2D material, it enables device miniaturization down

to the atomic length scale. Second, the doping level in mono-

layer graphene is highly tunable by applying a voltage to an

electrical gate. Third, graphene exhibits an optical response

ranging from terahertz to optical frequencies,49 allowing for

ultra-broadband operation. In particular, broadband optical

modulators have been demonstrated.50

We have numerically investigated a PIR device using

the finite difference time-domain (FDTD) method using

Lumerical FDTD Solutions. The unit cell of the design has

two parallel Au strips. Both strips serve as two bright modes.

Weak hybridization of these bright modes results in the PIR-

effect. The lengths of strips are selected as 0.8 lm and 1 lm

and the width as W¼ 200 nm for both the strips, and the dis-

tance between two strips is kept as D¼ 200 nm. The periodic

boundary condition is used for the x and y axes of the unit

cell, and perfect matched layers (PMLs) are defined in the

propagation direction. The design has a periodicity of 1.5 lm

in the x-axis and 1.0 lm in the y-axis. A plane wave source

along the z direction was used to illuminate the unit cell hav-

ing the electric field component (E) parallel to the x-axis. For

tuning the PIR response, four different values of Ef for gra-

phene were investigated. By changing the Ef value which is

equal to lc, the intra-band transition is changed, and the

optical response of the overall device is tailored. The scatter-

ing rate (C) of graphene was set as 0.01 eV (2.4� 1012 s�1),

and the temperature (T) was set as 300 K.

The device fabrication is done by cleaning the Si sub-

strate using oxygen plasma to remove the residue of the pho-

toresist used for dicing. Al is deposited using an E-beam

evaporator, and 50 nm of Al2O3 is deposited using atomic

layer deposition (ALD). ALD is a technique in which a

chemical reaction takes place on the surface to form a 1 nm

thick oxide layer in each step. The process results in highly

uniform thin films because of the slow rate. We have trans-

ferred graphene on top of the oxide layer with the wet trans-

fer method. Poly (methyl methacrylate) (PMMA) A4 resist

was spin coated and baked, and the sample was coated with

a conductive polymer like aquaSAVE. The sample is

exposed to E-beam lithography. After the exposure, the resist

is developed using a solution of methyl isobutyl ketone

(MIBK):isopropyl alcohol (IPA) (1:1). Once the sample is

patterned, 5/50 nm Ti/Au was coated on patterned samples.

Both metals were deposited using an E-beam evaporator.

Structures were visible after the lift-off process in acetone

for 24 h. The scanning electron microscopy (SEM) image of

PIR structures is shown in the inset of Fig. 2(a).

In order to apply the gate voltage to graphene, BaF2 sub-

strates with the metal contacts at the corners were placed on

top of the PIR device and separated by an insulating tape. An

FIG. 2. Simulated and FTIR measurement of PIR structures. (a) Simulated

results for different Ef values. (b) Normalized reflection at �0.6 V, 0.4 V,

1.4 V, and 2.4 V. The total shift of the reflection peak and SEM image are

presented in the inset.
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ionic liquid is inserted between the two substrates, and a

source was connected to the graphene layer and metal con-

tacts using conductive tape. By applying the gate voltage,

the capacitance is produced between the graphene layer and

the gold contact due to the presence of ionic liquid.25,26 A

schematic of the top gating method is shown in Fig. 1(a). By

controlling this induced field due to capacitance, we have

controlled the carrier concentration accumulation near the

surface of graphene. The Ef of graphene can be controlled by

the carrier concentration as discussed earlier.

The transfer of graphene from Cu to the substrate dopes

graphene chemically and changes the Ef slightly. In order to

find this new value, the charge neutrality point (CNP) is

measured. It is the point where the resistance has a maximum

value and the capacitance has a minimum value for the

applied voltage. It is measured to be �0.6 V, and the relative

Ef is 0.5 eV for simulations.25

Reflection measurements for a PIR device was obtained

by using a Fourier-transform infrared spectroscopy (FTIR)

instrument integrated with a microscope. For the measure-

ment, samples were illuminated with normal incidence.

Measurements were done from 2.5 to 6.5 lm at different

gate voltages using the top gating. The Ef of the graphene is

changed from 0.5 eV to 0.8 eV for simulation in order to

match the experimental curves obtained. These values are

treated as fitting parameters as the I-V measurement similar

to previous works.25,26,29

The reflection simulation and experimental results are

presented in Figs. 2(a) and 2(b), respectively. The PIR

response is shifted toward shorter wavelengths as the Ef of

graphene is increased, as shown in Fig. 2(a). As the gate

voltage is increased from �0.6 V to 2.4 V, a blueshift is

observed in the PIR-effect, shown in Fig. 2(b). The total shift

of 211.7 nm was observed by changing the gate voltage of

3.0 V, presented in the inset of Fig. 2(b). The charge density

in the graphene layer is increased by increasing the gate volt-

age from �0.6 V to 2.4 V. This will shift the resonance fre-

quency of graphene, which is directly proportion to Ef.

Therefore, the blueshift is observed by increasing Ef in this

design. In order to quantitatively describe the change in the

reflection intensity with the change in the Ef of graphene, the

modulation depth in reflectance is defined as

Mdepth ¼
jðR� RgÞj

R
� 100: (3)

Here, R is the reflection at �0.6 V and Rg is the reflection at

2.4 V. The modulation depth (Mdepth) of 49% is realized at 4lm.

The E-field investigation of two strips is made for three

different wavelengths, as shown in Fig. 3. Electric field mag-

nitudes are presented at two resonance wavelengths (3.65 lm

and 4.42 lm) in Figs. 3(a) and 3(c). Moreover, the E-field

magnitude is shown at the PIR wavelength (3.87 lm) in Fig.

3(b). These figures show that both strips are excited separately

at the resonance wavelengths and serve as the bright mode

resonances. On the other hand, at 3.87 lm, the PIR effect is

produced by the simultaneous excitation of both strips.

The spectral contrast ratio (Scon) for PIR is used to eval-

uate the performance of devices in sensing or optoelectronic

applications, and it is described as

Scon ¼
ðRpeak � RdipÞ
ðRpeak þ RdipÞ

� 100; (4)

where Rpeak is the intensity of the reflection peak and Rdip is

the intensity of the resonance dip. The Scon of our design is

66.6%. The PIR device is suitable for filtering and switching

applications.

To summarize, PIR has been numerically investigated

and experimentally realized using two strips on top of gra-

phene. By changing the Ef of graphene, the PIR response

was shifted. A large tuning range was demonstrated for the

FTIR measurements of PIR structures by applying gate volt-

age. We were able to obtain a 211.7 nm shift in the reflection

window and a modulation depth of 49% by applying gate

voltage up to 3 V. These results of PIR can be used in many

fields such as slow light applications and nonlinear optics.
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