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Summary

Motivated by the increasing transition from fossil fuel–based centralized systems
to renewable energy–based decentralized systems, we consider a bi-objective
investment planning problem of a grid-connected decentralized hybrid renew-
able energy system. In this system, solar and wind are the main electricity
generation resources. A national grid is assumed to be a carbon-intense alter-
native to the renewables and is used as a backup source to ensure reliability.
We consider both total cost and carbon emissions caused by electricity pur-
chased from the grid. We first discuss a novel simulation-optimization algorithm
and then adapt multi-objective metaheuristic algorithms. We integrate a sim-
ulation module to these algorithms to handle the stochastic nature of this
bi-objective problem. We perform extensive comparative analysis for the solu-
tion approaches and report their performances in terms of solution time and
quality based on well-known measures from the literature.
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1 INTRODUCTION

Global warming has become one of the biggest concerns
of the 21st century and will be a major issue in the follow-
ing centuries. It is known that the main reason for global
warming is society's increase in greenhouse gas emissions.
Among all greenhouse gases, carbon dioxide (CO2) is the
biggest driver of global warming.

The reason for current high–carbon emission rates is
society's dependency on electricity generation from fos-
sil fuel–based centralized energy systems. In such sys-
tems, electricity is produced in large-scale (mostly thermal
power) plants and distributed to the end user. Greenhouse
gas emissions can be reduced significantly by shifting from
centralized systems to decentralized ones that are based on
renewable sources. In this regard, most countries promote
decentralized systems that rely on renewable resources
to decrease carbon emission levels and dependence on
finite–fossil fuel reserves.1

One of the main drawbacks related to renewable
energy systems is that renewable sources are only par-
tially predictable and have limited controllability (ie, they
are intermittent). To ease this difficulty, most decen-
tralized energy systems include more than one type of
energy resource, preferably with complementary avail-
ability patterns.2 Such systems are called hybrid energy
systems. In the literature, many hybrid systems include
renewable sources such as solar, wind or hydroelectricity,
and storage technologies.1-3 Another drawback of renew-
able energy systems is that they heavily depend on the
spatial location. Hence, decentralized systems can usu-
ally only be located in areas where renewable sources
are available.

Decentralized systems could be designed as stand-alone
(SA) or grid-connected (GC) systems. Stand-alone sys-
tems are generally located in remote places where grid
networks cannot penetrate. These systems usually have
drawbacks such as low capacity factors, renewable energy
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curtailment, or high storage costs. On the other hand, GC
systems can be built on a large scale as they are connected
to the main grid network. This connection enables the sys-
tem both to purchase electricity from the grid network if
there is not enough renewable energy to meet demand and
to feed excess electricity to the grid (see Kaundinya et al3

for a review paper on decentralized systems).
While designing a GC decentralized system, policy mak-

ers and investors face the decision of choosing an optimal
investment amount. One extreme solution is relying fully
on fossil fuel–based energy, ie, electricity from the grid,
which leads to fewer costs but higher emissions. Another
solution is highly investing in renewables for emission
minimization. Note that there are intermediate solutions
between these 2 extreme solutions, in which demand sat-
isfaction relies partly on renewables and partly on the grid.

In this study, we investigate the optimal sizing deci-
sion of a GC decentralized system, which consists of solar,
wind, and storage units. In our setting, we assume that the
decision maker has both cost and carbon emission con-
cerns and that the investment size of the system will be
determined depending on how carbon sensitive the deci-
sion maker is. Therefore, we take into account the multiple
criteria that the decision maker will be considering and
present the trade-off between cost and CO2 emission lev-
els. To the best of our knowledge, our study is the first to
provide a mathematical programming formulation along
with novel simulation-optimization approach and meta-
heuristic algorithms for a multi-objective design of a GC
decentralized energy system (GCDES) while incorporat-
ing the uncertainty of renewable resources. We perform an
extensive comparative analysis of the proposed methods.

2 LITERATURE REVIEW

With the increased awareness of global warming, the inter-
est in decentralized energy systems (which mostly work
with renewable energy sources) has increased in the lit-
erature. Jebaraj and Iniyan4 and Hiremath et al5 publish
reviews on energy models in general and decentralized
energy planning models, respectively. Kaundinya et al3

review SA and GC decentralized systems and explain their
operational differences.

Most papers on hybrid renewable energy system (HRES)
design and optimization are focused on SA HRESs. In
this study, we review the literature on GC decentralized
HRESs and categorize the problems as single objective6-9

and multi-objective.10-14 The review summary can be found
in Table 1.

A methodology proposed by Chedid and Rahman10 finds
the most favorable design for a decentralized system of
which the electricity generation depends on solar and

wind resources. Storage devices and diesel generators are
also used in the system as backup sources. The authors
analyze both SA (autonomous) and GC versions of the
system. In this analysis, production cost of energy is mini-
mized by using linear programming methods while taking
environmental factors into consideration.

Wang and Singh11 consider the multi-criteria design
of a GC HRES. Their system includes photovoltaic pan-
els, wind turbines, and battery units with a connection
to the grid. In this setting, generated excess electricity
cannot be fed back to the grid rather must be spilled,
which restricts the system's component sizes. Three
conflicting objectives are considered in this problem: min-
imizing cost, minimizing emission, and maximizing reli-
ability (the ratio of meeting demand by renewables). The
authors develop a multi-objective particle swarm opti-
mization (MOPSO) algorithm to obtain a set of nondomi-
nated solutions.

Perera et al12 introduce a 𝜀-multiobjective optimization
technique to determine the optimal design of a GC hybrid
solar/wind/storage system. They find the optimal compo-
nent sizes with a minimum level of grid integration and
energy cost. The results show that the levelized energy cost
decreases when moving from SA mode to GC mode.

Sharafi and ElMekkawy propose a dynamic-MOPSO
(DMOPSO) model for the design of a HRES, and Sharafi
et al use a simulation-based DMOPSO model for optimal
sizing of a GC HRES for residential buildings.13,15 In the
GC system, 3 objective functions (minimizing total net
present cost, minimizing CO2 emission, and maximizing
renewable energy ratio) are used. The system uses solar,
wind, and biomass as resources. In this setting, renew-
able energy is stored using a heat tank. Plug-in electric
vehicles are also included in the system so that vehicles
could be charged using renewable energy. The authors
compare their results with the results of a multi-objective
GA and a MOPSO algorithm. In this work, the uncertainty
of renewable resources is not taken into account.

As mentioned above, because of the variability and inter-
mittency of renewable resources, modeling systems with
renewables is a challenging task. Therefore, in most opti-
mal designs of decentralized energy systems, intermittent
resources such as wind and solar are modeled using hourly
average values for their availabilities.10-12 This method,
however, results in losing information because peak val-
ues are not taken into account.16,17 Further, the variability
and trend in renewables' availabilities cannot be captured
by averages. Moreover, some studies only use 1 year of
hourly data to capture seasonality and trends in resource
availabilities and do not focus on uncertainty.6,8,9

A more realistic way of approaching renewable energy
generation problem is to take uncertainty into consider-
ation. Powell et al highlight the importance of modeling
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the uncertainty of renewable resources and discuss prob-
lems commonly encountered when doing so.16 In Kuznia
et al,7 the optimal design problem is modeled using
2-stage stochastic mixed-integer programming. One year
of wind speed data is disintegrated into seasons. Then,
the problem is solved using a variant of Benders' decom-
position method. Sharafi and ElMekkawy14 include the
stochasticity of renewable resources and variability in
demand into the system that they propose in Sharafi et al.13

Pareto front is approximated using a simulation mod-
ule, DMOPSO algorithm, and sampling-average method.
The authors have 3 objectives: maximizing the renewable
energy ratio, minimizing total net present cost, and mini-
mizing fuel emission. Randomness is incorporated in the
parameters using synthetic data-generation techniques.
Stochastic and deterministic Pareto fronts are compared,
and a sensitivity analysis is conducted.

To sum up, the 2 aspects that make these optimal design
problems complex (their multi-objective and stochastic
natures) should be considered to obtain more realistic
results. Yet to the best of our knowledge, the work of
Sharafi and ElMekkawy14 is the only study in the lit-
erature that considers a multi-objective design problem
of a GCDES while handling the uncertainty related to
renewable resources. We pursue a similar line of research
but focus on a generic system, which includes all the
challenges related to the system design. We provide a
mathematical programming formulation along with a
novel simulation-optimization approach. We also modify
existing metaheuristic algorithms for the solution of this
problem. Our methods handle the multi-criteria nature of
the problem by considering the 2 conflicting criteria of
cost and CO2 emissions as well as its multi-stage stochas-
tic nature, via an integrated simulation-optimization
framework.

3 PROBLEM DEFINITION

In this study, we consider a framework in which a deci-
sion maker plans to invest in a decentralized system. We
assume that the demand point (such as a village or a col-
lege campus) is already connected to the grid network,
which is assumed to supply carbon-intense energy at a
low price. The projected decentralized system is an HRES
that consists of solar and wind power systems as well as a
storage device to reduce the effect of the intermittency of
renewables.

For wind power generation, 3 different wind turbine
types are considered for investment in our problem.
These turbines have different costs and rated powers,
and investors can invest in one or multiple types. For
solar power generation and storage systems, we do not

explicitly specify the technology used; rather, we define
the unit solar energy generation as a function of an effi-
ciency parameter and the solar irradiation. Similarly, for
the storage device, we use a generic efficiency parameter,
which can be changed based on the technology used. We
assume linear cost functions for the solar power genera-
tion and storage devices (ie, the cost of the unit size of these
components is constant).

An HRES can be used either to satisfy local demand or to
make a profit by selling green energy to the grid at elevated
prices. In this study, we assume that the decision maker is
carbon sensitive; hence, the priority of the decentralized
system is to satisfy local demand using green energy rather
than feeding energy to the grid to make a profit. If there is a
surplus of renewable energy, it can be stored in the storage
device and/or fed to the grid. We assume that the storage
device can only store green energy and that this energy can
only be used to satisfy the demand (ie, renewable energy
cannot be sold to the grid through the storage device; there-
fore, we can prioritize renewable energy to be used for local
demand). Fossil fuel–based electricity from the grid will be
used as a backup source only when green energy is not ade-
quate to meet the demand. A schematic description of the
decentralized system can be found in Figure 1.

Governments impose different incentive policies, such
as feed-in tariff programs, tax deductions, and investment
and operating subsidies, to promote renewable energy
investments and decrease CO2 emissions.18 We consider
a setting where a feed-in tariff program is available to
investors. This program is an incentive policy that aims
to promote renewable energy investments by offering
higher selling prices for each renewable energy type. Green

FIGURE 1 The grid-connected decentralized energy system
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energy can be sold to the grid for higher prices for a lim-
ited time.18 It is expected that feed-in tariff programs will
increase the ratio of clean energy fed to the grid in the long
run. This situation will decrease the carbon emission rate
of the electricity bought from the grid. However, in this
study, we assume that this improvement is negligible.

The objective of this study is to determine the change
in size of the described system with respect to the carbon
emission value. To handle the 2 conflicting objectives con-
sidered (cost and CO2 emissions), we propose a solution
framework in which we determine the optimal sizing of
the components and their relations and present a set of
solutions rather than a single solution. Our solution frame-
work is generic, that is, independent of the system scale.
Thus, it can be used for demand points of different sizes at
different locations.

The decisions to be made in such systems are of 2 types:
investment decisions and operational decisions. Invest-
ment decisions include sizing decisions for the compo-
nents (solar panel area, number of wind turbines, storage
size) and are made at the beginning of the time hori-
zon. Operational decisions, on the other hand, are made
in each time unit, such as deciding on the amount of
energy to be stored, purchased, and/or sold. All these deci-
sions are to be made considering both cost and emission
criteria. Note that in addition to being bi-objective, the
problem is stochastic because of the uncertainty of renew-
able resources. The decision support system we propose
helps the decision maker to make investment decisions for
such systems, taking into account the problem's multicri-
teria and stochastic natures.

4 SOLUTION APPROACHES

4.1 Bi-objective 2-stage stochastic
mixed-integer programming approach
In 2-stage stochastic programs, the decision-making pro-
cess is divided into 2 stages, where there are 2 differ-
ent types of decision variables: first and second stage.
First-stage variables are decided on before the realiza-
tion of random parameters. After uncertain events unfold
(such as availability of renewable resources), operational
decisions can be made. The general form of the 2-stage
stochastic linear program is given below:

Min cTX + E
[
Q(X , 𝜉(𝜃))

]
s.t AX = b

X ⩾ 0

where Q(X , 𝜉(𝜃)) = Min qTY
s.t tX + wY = h

Y ⩾ 0

where X and Y are first- and second-stage variables,
respectively. The second-stage problem depends on the
data (q, t,w, h), where some or all elements can be ran-
dom. The expectation of Q is taken with regard to the
probability of 𝜉. Randomness in 𝜉 can be incorporated
in 2 ways. The first way uses a continuous probabil-
ity distribution. This approach keeps the problem size
steady, but it may cause nonlinearities and computational
difficulties.19 The second way is scenario based. In this
approach, uncertainty is modeled as a union of random
discrete events. There are a finite number of possible out-
comes with certain probabilities, and the problem size
increases enormously depending on the number of out-
comes. Let Θ be the number of possible outcomes and p𝜃

be the corresponding occurrence probability of scenario 𝜃.
Then, the 2-stage stochastic program with discrete random
events becomes:

Min cTX +
Θ∑
𝜃=1

[
p𝜃q𝜃Y𝜃

]

s.t AX = b
t𝜃X + w𝜃Y𝜃 = h𝜃 𝜃 = 1...Θ
X ⩾ 0,Y𝜃 ⩾ 0 𝜃 = 1...Θ.

We model our problem as a bi-objective 2-stage stochas-
tic mixed-integer program. To be able to model the ran-
dom availabilities of resources, we follow a scenario-based
approach. Renewable energy generation depends on
uncertain data such as wind speed and solar irradia-
tion, and the sizing decision must be made before such
uncertainties are realized. Once the component sizes of
the decentralized system are determined, the amount of
renewable energy generation can be calculated and oper-
ational decisions (storing, outsourcing, and meeting local
demand) can be made accordingly. The parameters and
decision variables of our GCDES model are introduced in
Tables 2 and 3, respectively.

The GCDES decides on the capacity of renewable energy
generation and storage components to be built in the area
of interest by minimizing the annualized total cost and
CO2 emissions. Fixed costs (cb, cs, ci

w) represent the cost of
the renewable resource investment, which includes capi-
tal, operation, and maintenance costs. We annualize these
investment costs by multiplying each component by its
annualization factor, which is calculated using the equiva-
lent annual cost formula considering the discount rate (dr)
and the respective lifetime of a component. We show an
example calculation for solar in Formula 1.

𝛼s =
dr

1 + (1 − dr)−Ls
. (1)
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TABLE 2 Parameters, sets

T Time horizon (t ∈ {1...T})
I Set of wind turbine generator (WTG) types
Θ Set of scenarios (𝜃 ∈ Θ)
dr Discount rate
cb Investment cost of storage unit, $/kWh
cs Investment cost of solar panel, $/m2

ci
w Investment cost of WTG type i, $/unit

Lb Lifetime of storage unit, years
Ls Lifetime of solar panel, years
Li

w Lifetime of WTG type i, years
LFT Duration of feed-in tariff policy, years
Lsystem Duration of the GCDES, years
𝛼b Annualization factor for storage unit
𝛼s Annualization factor for solar panel
𝛼w Annualization factor for wind turbines
𝛼ps Annualization factor for sale price of solar energy
𝛼pw Annualization factor for sale price of wind energy
pg Price of electricity purchased from grid (spot price), $/kWh
ps Elevated sale price of solar energy, $/kWh
pw Elevated sale price of wind energy, $/kWh
d𝜃

t Local demand in (t, 𝜃), kWh
v𝜃t Wind speed in (t, 𝜃), m/s
r𝜃t solar irradiation in (t, 𝜃), kW/m2

𝜂s Overall efficiency of solar panel, %
𝜂b Storage efficiency, %
𝜅 Electricity generation limit multiplier
M Maximum unit time demand, kWh
𝛽 CO2 Equivalent emission by electricity grid, tonne/kWh

The electricity purchase price (pg) represents the average
retail price of electricity in the market. Governments that
practise a feed-in tariff policy offer different elevated sale
prices (higher than the retail price of electricity) for each
renewable energy resource to investors.18 This policy has
different prices for each renewable source (pw, ps) and is
usually available for a limited amount of time. Therefore,
incentivized prices cannot be used throughout the lifespan
of the system. After the feed-in tariff expires, green energy
becomes available to the market at retail price. Thus, we
distribute the effect of an elevated sale price (ps, pw) across
the lifetime of the system. Formula 2 calculates the annual-
ization factor for the sale price of solar energy (𝛼ps), where
LFT represents the duration of the feed-in tariff policy. The
same formula is used to calculate the annualization factor
for the sale price of wind energy (𝛼pw) by replacing (ps)
with (pw).

𝛼ps =
psLFT + pg(Lsystem − LFT)

psLsystem
. (2)

TABLE 3 Decision variables

Ab Size of storage unit, kWh
As Size of solar panels, m2

Ai
w Number of WTGs of type i

S𝜃
t Electricity generated by solar panels in (t, 𝜃), kWh

SD𝜃
t Solar electricity used to satisfy demand in (t, 𝜃), kWh

SB𝜃
t Solar electricity used to charge battery in (t, 𝜃), kWh

SS𝜃
t Solar electricity sold to grid in (t, 𝜃), kWh

W𝜃
t Electricity generated by WTGs in (t, 𝜃), kWh

WD𝜃
t Wind electricity used to satisfy demand in (t, 𝜃), kWh

WB𝜃
t Wind electricity sent to storage in (t, 𝜃), kWh

WS𝜃
t Wind electricity sold to grid in (t, 𝜃), kWh

B𝜃
t State of charge at the end of time t in scenario 𝜃, kWh

BD𝜃
t Discharge amount in (t, 𝜃), kWh

G𝜃
t Amount of electricity supplied from the grid in (t, 𝜃), kWh

X𝜃
t 1, if electricity is not purchased from the grid in (t, 𝜃)

0, if electricity is not fed to the grid in (t, 𝜃)

4.1.1 Mathematical model formulation

min Z1 ∶ 𝛼bcbAb + 𝛼scsAs + 𝛼w
∑
i∈I

ci
wAi

w

+ 1
|Θ|

∑
𝜃∈Θ

∑
t∈T

[
pgG𝜃

t − 𝛼pspsSS𝜃
t − 𝛼pwpwWS𝜃

t
] (3)

min Z2 ∶ 𝛽
1
|Θ|

∑
𝜃∈Θ

∑
t∈T

G𝜃
t (4)

s.t

S𝜃
t = 𝜂sr𝜃t As ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (5)

W𝜃
t =

∑
i∈I

f i(v𝜃t
)

Ai
w ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (6)

S𝜃
t = SS𝜃

t + SD𝜃
t + SB𝜃

t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (7)

W𝜃
t = WS𝜃

t +WD𝜃
t +WB𝜃

t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (8)

d𝜃
t = SD𝜃

t + WD𝜃
t + 𝜂bBD𝜃

t + G𝜃
t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ

(9)

B𝜃
t = B𝜃

t−1+SB𝜃
t +WB𝜃

t −BD𝜃
t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (10)

𝜅M ⩾ S𝜃
t + W𝜃

t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (11)

𝜅MX𝜃
t ⩾ SS𝜃

t + WS𝜃
t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (12)
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|T|MX𝜃
t ⩾ SB𝜃

t + WB𝜃
t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ

(13)

M
(
1 − X𝜃

t
)
⩾ BD𝜃

t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (14)

M
(
1−X𝜃

t
)
⩾ G𝜃

t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (15)

Ab ⩾ B𝜃
t ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (16)

B𝜃
0 = 0 ∀𝜃 ∈ Θ (17)

B𝜃
T = 0 ∀𝜃 ∈ Θ (18)

S𝜃
t ,B𝜃

t ,W𝜃
t ,G𝜃

t ⩾ 0 ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (19)

SB𝜃
t , SS𝜃

t ,WS𝜃
t ,WB𝜃

t ⩾ 0 ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (20)

SD𝜃
t ,WD𝜃

t ,BD𝜃
t ⩾ 0 ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (21)

As,Ab,Ai
w ⩾ 0 Ai

w ∈ Z⩾0,∀i ∈ I (22)

X𝜃
t ∈ {0, 1} ∀t ∈ {1...T}, ∀𝜃 ∈ Θ (23)

In our mathematical model, we have 2 objective func-
tions: Z1 and Z2. The first objective represents the sum-
mation of the total investment and expected operational
costs, which correspond to the first- and second-stage deci-
sions, respectively. The second objective function, Z2, is for
the CO2-equivalent emissions amount, which can be cal-
culated using different forms of functions of the electricity
purchased from the grid. In this setting, a linear func-
tion is used with the rate of emission (𝛽), which depends
on the proportion of fossil fuel–based electricity in the
grid network and increases as the proportion of the fossil
fuel increases.

For each scenario 𝜃 and time unit t, generated solar and
wind energy are calculated in constraints 5 and 6, respec-
tively. In constraint 6, the wind energy output in time t
in scenario 𝜃 is calculated using fi, the piecewise linear
function of the WTG type i. Constraints 7 and 8 are used
to represent the distribution of generated energy, which

can be used to meet local demand, sold directly to the
grid or stored. Constraint 9 guarantees that demand is met
in each time unit and scenario by generated renewable
energy, energy in the storage device, or electricity from the
grid. Energy production is limited with a bound, based on
the physical limitations of the area. With constraint 11,
total energy production within a unit time is limited by
𝜅M, where M can be considered as a very big number and
𝜅 is a constant multiplier. For this study, M is taken as
the amount of peak demand observed during the planning
horizon. By changing 𝜅, the dependency of optimal sizes
on the physical limitations can be investigated.

The binary variable X𝜃
t is used in constraints 12 to 15

to ensure that local demand has priority over storage and
selling; that is, only excess energy can be sold or stored. In
our setting, we use storage and the grid network as backup
components, which can be used to satisfy demand only in
case of an energy deficit. The constraints 12 to 15 guaran-
tee that generated renewable energy will be used first to
satisfy local demand.

In constraint 16, it is ensured that state of charge at time
unit t cannot exceed the nominal capacity of the storage
unit. It is assumed that the storage is empty at the begin-
ning and at the end of the horizon, which is ensured by
constraints 17 and 18. The nonnegativity of variables is
satisfied with 19 to 22.

The nondominated solutions of the GCDES model are
found using the 𝜀-constraint method, which is widely used
for bi-objective problems.20 The method is based on solv-
ing single-objective models iteratively, limiting the second
objective function value by a constraint. Note that to guar-
antee that the solutions are nondominated in the strict
sense, one must ensure that for each level of the objec-
tive that is optimized, the solution that provides the best
value in terms of the other objective should be returned.
In other words, in our setting, among alternative solu-
tions with the same total cost value, the solution that gives
the minimum CO2 emission level should be found. This
result can be ensured by solving 2 models at each itera-
tion of the 𝜀-constraint method; first, we solve a model that
minimizes cost to obtain the optimal cost value, and then
we solve a model in which CO2 emissions are minimized
over solutions that have this cost value. From now on, we
refer to the approach based on solving the GCDES model
with the 𝜀-constraint method as the GCDES approach. The
schematic description of this approach can be found in
Figure 2.

4.2 Simulation-optimization approach
Our problem has a multi-stage stochastic nature because
of the intermittency of renewable resources. A 2-stage
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FIGURE 2 Grid-connected decentralized energy system (GCDES) approach

FIGURE 3 Simulation-optimization approach

stochastic programming model partially handles this
uncertainty by generating scenarios and making deci-
sions such that the expected value of a function over
all scenarios is optimized. Such a model, however, still
violates nonanticipativity constraints; that is, it makes
operational decisions assuming that the availability pat-
tern reflected in each scenario is known in advance
(eg, knowing what the hourly wind speed will be for
the whole planning horizon), which is not the case in
real life. In reality, operators observe the availability of
renewables in a time period and make operational deci-
sions accordingly, following a given policy. With the
hope of addressing this multi-stage decision-making pro-
cess in a computationally tractable way, we introduce a
simulation-optimization (SO) approach, which includes
2 different versions of the GCDES model and a sim-
ulation module, where the simulation module handles
nonanticipativity issues.

The flow diagram of the SO approach we propose can be
seen in Figure 3. The overall algorithm works as a variant
of the 𝜀-constraint method.

4.2.1 Module 1—reduced version of the
GCDES model
Our algorithm starts with solving the reduced version of
the GCDES model. The main reason for using the reduced
version is to obtain the initial component sizes to be fed
into the simulation module. In this version, constraints 14
and 15, which include the binary variable X𝜃

t , are relaxed
to reduce computational effort. This method enables the
module to obtain the optimal component sizes of a set-
ting in which renewable energy can be sold to the grid
while meeting demand using electricity from the grid. The
results of this model (the number of wind turbines, the
solar panel area, and the storage size) are used as inputs
for the simulation module.

4.2.2 Module 2—simulation
Taking the component sizes (first-stage decision variables)
as inputs in the simulation module, the operator follows
a policy to make operational decisions (second-stage deci-
sion variables) without knowledge of the future availability
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of wind and solar resources. The policy is designed to pri-
oritize renewable sources while meeting local demand,
which is in line with the objective of minimizing the
CO2 emission value. This module takes the investment
decisions (the number of wind turbines, the solar panel
area, and the storage size) obtained from the reduced
version of the GCDES model and calculates the renew-
able energy generated at each time period of the planning
horizon for each scenario. First, local demand is satisfied
using a less-profitable renewable energy source, and then
excess energy is transferred to the storage unit until it is
full. If there is still excess energy, it is sold to the grid.
When there is insufficient renewable energy to satisfy local
demand, first, the amount is discharged from the storage
unit if possible and then any deficit amount is purchased
from the grid. In this way, the simulation module deter-
mines whether to sell renewable energy or outsource fossil
fuel–based electricity from the grid, which corresponds to
the binary variables in the GCDES model (X𝜃

t ). The result-
ing total CO2 emission value and related binary variables
(X𝜃

t ) are used as inputs in module 3 (the restricted version
of the GCDES model).

4.2.3 Module 3—restricted version of the
GCDES model
In the restricted version, the output of the simulation mod-
ule is used to dictate purchasing/selling decisions. These
decisions are conveyed to the model by fixing binary vari-
ables (X𝜃

t ) in constraints 14 and 15. Moreover, the total CO2
emission value observed in the simulation module is used
to update the CO2 limit in the restricted model. This model
is solved, and the new investment decisions are fed back to
the simulation module, which now applies the policy using
the new component sizes. In this way, the component sizes
and the purchasing/selling decisions can be adjusted itera-
tively. This adjustment continues until the decisions made

in modules 2 and 3 are in line with each other, and the
(adjustment) loop terminates when the improvement in
cost is less than 0.1%. Each such loop provides a solution
with a corresponding cost and CO2 level. To move to the
next (neighbor) solution, we further restrict the CO2 limit
by subtracting a predetermined amount (step size) from
the CO2 level of the latest solution found. A new (Pareto)
loop is initiated by solving module 1 with this new CO2
limit (see the outer loop in Figure 3).

4.3 Metaheuristic approaches
For the addressed problem, we present metaheuristic algo-
rithms that consist of 2 modules as in the SO approach.
In the optimization module, existing multi-objective meta-
heuristic algorithms are used to obtain a Pareto front and
the simulation module is the same with that of the SO
approach discussed in Section 4.2. These procedures start
with an initial set of solutions with randomly generated
component sizes. Then these solutions are conveyed to
the module 2 so as to perform the simulation. Given an
operation policy and the component sizes, the simulation
module makes the operational decisions and the objec-
tive function values are calculated. The resulting cost and
CO2 emission values are returned to the optimization mod-
ule. Following the algorithm steps, an approximate Pareto
front is generated in the end. The working scheme of the
approach can be found in Figure 4.

As seen in the Figure 4, simulation and optimization
modules operate in a loop where they provide input for
each other. For the simulation purposes, we resort to the
previously discussed module 2, while optimized MOPSO
(OMOPSO), nondominated sorting genetic algorithm II
(NSGA-II), and strength Pareto evolutionary algorithm
(SPEA) 2 are employed in the module 1 regarding the
optimization.

FIGURE 4 Metaheuristic approach
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FIGURE 5 Flowchart of the optimized multi-objective particle swarm optimization algorithm

4.3.1 Optimized MOPSO
Particle swarm optimization (PSO) algorithm proposed by
Kennedy and Eberhart21 is one of the popular metaheuris-
tic algorithms used in diverse optimization tasks. This
algorithm mimics the flocking of birds and tries to find an
optimal solution throughout the search space. At the initial
step of the procedure, a set of solutions called swarms or
particles is generated. As these swarms fly over the feasible
area, each particle updates its velocity and position accord-
ing to a group of equations. These equations consider both
the best solution that particle has found so far and all the
best solutions found by the members of the swarm. In the
end, the optimal solution is attained via particle experience
and best global particle.21

Although PSO performs well in a range of optimiza-
tion problems, its application is restricted to the sin-
gle objective problems.22 Extending the idea of PSO to
multi-objective problems, Coello and Lechuga22 develop
MOPSO algorithm. The main idea of MOPSO is includ-
ing a global repository in which each particle deposits
its flight experience after a cycle. Later, this reposi-
tory is used by the swarms to select the leader that
guides the flight. Differently from the PSO, the result
is a set of nondominated solutions that are kept in the
repository.22

Many algorithms originated from MOPSO can be found
in the literature.23 Although they have the common idea
of selecting the leader from the nondominated particles,
the selection process could be different. To compare these
MOPSOs, an experimental study is conducted by Durillo
et al.23 Three benchmark problems and performance met-
rics are employed so as to make the comparison. The
results of the experiments indicate that OMOPSO per-
forms best in all of the studied problems. Because of its
superior performance, OMOPSO algorithm is applied to

the present problem, minimizing total cost and CO2 emis-
sion simultaneously. The algorithm runs following the
steps outlined in Figure 5.

4.3.2 Nondominated sorting genetic
algorithm II
Genetic algorithms are used for solving a variety of multi-
objective optimization problems, thanks to their ability to
provide good solutions in a reasonable amount of time.20

These algorithms work according to the evolutionary prin-
ciples in the optimization of both continuous and discrete
valued problems. Nondominated sorting genetic algorithm
II, one of the genetic algorithms, has been applied to differ-
ent multi-objective optimization tasks because of its con-
vergence performance.24 The procedure starts with ran-
domly generating N members. After the generation, these
members are sorted into different nondomination levels
by pairwise comparisons. When the sorting task is com-
pleted, each member is assigned 2 attributes, which are
later used in the selection. Having these properties, the
members experience selection and mutation, which cause
changes in the member itself.24 In the end, the offspring
population of size N is obtained. To store the solutions
from the parent population, former and offspring popula-
tions are combined. The recently created population with
2N members is nondomination sorted. There should be a
selection between these nondomination sorted members
so as to maintain the size N. In the selection, previously
assigned properties are taken into account. This whole pro-
cess continues until a predefined number of generations
are reached. At the end of all steps, a Pareto set of solu-
tions is obtained.24 Generational loop of the NSGA-II can
be found in Figure 6.
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FIGURE 6 Flowchart of the nondominated sorting genetic algorithm II

FIGURE 7 Flowchart of the strength Pareto evolutionary algorithm 2

4.3.3 Strength Pareto evolutionary
algorithm 2
Strength Pareto evolutionary algorithm 2 is another evolu-
tionary multi-objective optimization technique that could
approximate the set of optimal solutions in a single opti-
mization run.20 The algorithm is introduced by Zitzler,
Laumanns, and Thiele25 so as to eliminate the potential
weaknesses of its predecessor SPEA. The method is ini-
tialized by creating a population and an external archive.
Following the initialization, the members both in popu-
lation and archive are assigned fitness values and they
are selected using these values with a tournament to fill
the mating pool. The selected parents mate with each
other and the resulting offspring are exposed to mutation.
Because the algorithm takes the parent population into

consideration while searching for the solution, the old and
offspring populations are brought together. The evolution
process continues until the maximum number of itera-
tions is attained. When the process reaches the predefined
number of iterations, the set of optimal solutions becomes
available.25 See Figure 7 for the flowchart.

5 NUMERICAL STUDIES

5.1 Data generation
We use different data sets to analyze the effect of location
differences. For this purpose, 3 different levels of resource
availability are determined (high, medium, and low) for
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TABLE 4 Renewable resource availability data

Wind speed (m/s) Solar irradiation (kW/m2)

Data Set Min Mean Max Min Mean Max
High 0.21 7.81 29.90 0 0.24 1.09
Medium 0.13 5.14 19.35 0 0.17 0.97
Low 0.02 3.33 11.92 0 0.08 0.66

FIGURE 8 Solar and wind profiles for medium availability level [Colour figure can be viewed at wileyonlinelibrary.com]

solar and wind energy alike. Solar irradiation and wind
speed data are gathered using Hybrid Optimization of Mul-
tiple Energy Resources software. Statistics for the different
levels of resource availability data can be found in Table 4.
For example, we represent a place with medium wind
speed and medium solar irradiation by generating data
with a mean wind speed value of 5.14 m/s and mean solar
irradiation value of 0.17 kW/m2.

To illustrate, wind speed and solar irradiation for 1-year
profiles for the medium availability level are represented
in Figure 8.

For our numerical study, we consider a medium-scale
demand point such as a university campus. To generate
an illustrative data set, we obtain 1 month of the hourly
average electricity consumption data of Bilkent University
campus in Turkey. By preserving the electricity consump-
tion characteristics of Bilkent University, hourly consump-
tion profiles for 1 year are generated using Hybrid Opti-
mization of Multiple Energy Resources software. Bilkent's
average hourly and monthly electricity consumption can
be found in Figure 9.

Three different wind turbine types with differently rated
powers are used in the analysis. These turbines have capac-
ities of 0.9, 2, and 3 MW. Wind energy generation cal-
culations are made based on the respective power curve
of each turbine.26 Parameters for the numerical analysis
are provided in Table 5. For more information about the
parameters and numerical analysis, see Altıntaş.27 The
GCDES and SO approaches are implemented in MAT-
LAB 9.0 and solved using CPLEX 12.6. The source codes
of metaheuristic algorithms written in JAVA environment
are executed.28 All of these solution procedures are run in
a computer with Intel Xeon CPU E5-1650 3.6 GHz proces-
sor and 32 GB RAM. The resulting times are expressed in
central processing unit (CPU) seconds.

5.2 Comparison of metaheuristic
algorithms
So as to assess the quality of Pareto fronts obtained by
metaheuristics, performance metrics are introduced in
multi-objective optimization literature. These measures

http://onlinelibrary.wiley.com/
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FIGURE 9 Hourly and monthly averages of campus demand [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Parameters for numerical study

cb $330/kWh pg $0.06/kWh
cs $300/m2 ps $0.13/kWh
c900 kW

w $1.77 M pw $0.07/kWh
c2 MW

w $4.3 M 𝜂s 12
c3 MW

w $5.49 M 𝜂b 80
Lb 10 years r 0.05
Ls 30 years 𝜅 2
Lw 20 years 𝛽 0.0004836
Lsystem 30 years T 8760 hours
LFT 10 years

can be categorized into 3 groups based on their ability to
depict a certain aspect of the solution set.29

1. Metrics that assess convergence to the known
Pareto-optimal front.

2. Metrics that evaluate spread of the solutions on the
Pareto-optimal front.

3. Metrics that measure combinations of solutions' con-
vergence and spread.

In this study, each Pareto front is evaluated using various
metrics from the above categories. Because the true Pareto
front is unknown, it is not possible to measure the conver-
gence truly. Instead, coverage value is computed so as to
compare 2 Pareto sets with each other. Together with the
coverage metric, hypervolume measure from the third cat-
egory is employed to assess the convergence and spread of
solutions simultaneously. In addition to this assessment,

FIGURE 10 Hypervolume measure for a 2-objective
minimization case [Colour figure can be viewed at
wileyonlinelibrary.com]

spacing and maximum spread values are calculated for
evaluating the solutions' spread.

http://onlinelibrary.wiley.com/ 
http://onlinelibrary.wiley.com/ 
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Spacing (S): The measure is proposed by Schott30 and
has been used to estimate the diversity of Pareto front.
In the formulation, n stands for the number of solu-
tions in frontier, di represents the minimum Manhattan
distance between a solution i and any other solution,
and d̄ is the average distance between 2 solutions. As S
becomes zero, a more uniformly distributed Pareto front
is attained.

S =

√√√√ 1
n − 1

×
n∑

i=1
(di − d̄)2. (24)

Maximum spread (MS): Zitzler31 introduces maximum
spread metric to measure the spread of a given set. For this
measure, greater values are preferred because they indi-
cate a better spread of the points. The measure is calculated
as follows where ai and bi are 2 solutions in Pareto frontier
and n is the number of solutions.

MS =

√√√√ n∑
i=1

max(||ai − bi||). (25)

Coverage (C): The coverage metric, suggested by Zitzler,31

is used to determine whether a Pareto front dominates
another. So as to make the comparison between 2 Pareto
fronts, A and B, each solution from one front is compared
with all solutions in the other front. Two points, a and b,
are compared with each other at a time using the weakly
dominance operator shown as ⪰. The coverage values of
sets A and B are represented by C(A,B) and C(B,A). If
C(A,B) is equal to 1, it means all solutions in the set B
are weakly dominated by A. In the opposite case, where
C(A,B) is 0, none of the points in B is weakly dominated by
A. Because there could be interaction between 2 sets, both
directions should be considered in the calculation.

C(A,B) = |{b ∈ B|∃a ∈ A ∶ a ⪰ b}|
|B| . (26)

Hypervolume: The hypervolume measure is first pro-
posed by Zitzler and Thiele32 as the size of space covered.
With change in the name over the time, this metric has
been applied for evaluating the Pareto solutions' conver-
gence and spread at the same time. For this purpose,
the hypervolume quantifies the volume of the dominated

space, which is enclosed with a reference point. Usually,
the point in the reference set having the worst-case results
for each of the objective is selected, and by adding some
delta value, the reference point is reached. Considering a
2-objective minimization problem setting, with objective
functions f1(x) and f2(x), the computed area can be seen in
Figure 10.33

Given the economic parameters and the data sets, 3
well-known algorithms, OMOPSO, NSGA-II, and SPEA2,
are tested for a medium solar–medium wind problem
instance with 9 scenarios. To find the parameter config-
uration of each algorithm, different generations are tried.
By changing the generation count, various sets of opti-
mal solutions are obtained. These solutions are compared
based on some popular performance metrics, and their
values are recorded in Tables 6 to 8. So as to provide
an example for the tuning of the algorithms, OMOPSO
algorithm is selected, and its generation count is arranged
based on the metric results in Table 6.

All of the performance metric results indicate that 5000
and 10 000 evaluations should be preferred over the others.
Provided that there is no significant difference between
5000 and 10 000 evaluations in terms of the other per-
formance measures, the version, which takes less CPU
time, 5000 is chosen. Tunings of the other algorithms
are completed following the same steps here and in the
end 5000 generations is accepted as the parameter of the
3 algorithms.

Using 5000 generations, statistical analyses are con-
ducted. For this purpose, each metaheuristic algorithm
is run for 10 times and their results are compared based
on the hypervolume measure. This metric is selected
because it evaluates both convergence and spread of
the solutions. Minimum, mean and maximum values
of this measure are listed in Table 9. To understand
which algorithm performs the best, hypothesis test-
ing is conducted. While checking if there is a signifi-
cant difference between OMOPSO, NSGA-II, and SPEA2,
Kruskal-Wallis and Mann-Whitney U tests are applied.34

The results of these tests clearly show that OMOPSO is the
best performing algorithm for the given problem. When
the other 2 algorithms are compared with each other,
no significant difference is found. Therefore, OMOPSO
algorithm is used for obtaining the set of Pareto solu-
tions in our stochastic bi-objective optimization of the
GC system.

TABLE 6 Performance measure results for optimized multi-objective particle swarm
optimization algorithm

Performance metric/# of evaluations 500 1000 5000 10 000

Spacing 0.0154 0.0047 0.0009 0.0005
Max Spread 9.5723 14.2817 35.1018 49.8013
CPU Time, s 143.95 289.08 1367.16 2818.88
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TABLE 7 Performance measure results for strength Pareto evolutionary algorithm 2 algorithm

Performance metric/# of evaluations 500 1000 5000 10 000

Spacing 0.0120 0.0128 0.0039 0.0042
Max Spread 10.4554 10.1637 10.2725 10.2664
CPU Time (s) 141.44 290.30 1423.75 2930.03

TABLE 8 Performance measure results for nondominated sorting genetic algorithm II algorithm

Performance metric/# of evaluations 500 1000 5000 10 000

Spacing 0.0122 0.0074 0.0072 0.0069
Max Spread 9.3381 10.1065 10.0013 10.2081
CPU Time (s) 144.83 279.61 1406.53 2935.09

TABLE 9 Hypervolume metric results for algorithms

Algorithm Hypervolume Count Indifferent

Min Median Max
OMOPSO 0.579 0.581 0.582 10 -
NSGA2 0.571 0.576 0.578 10 SPEA2
SPEA2 0.570 0.578 0.579 10 NSGA2

TABLE 10 Attributes of generated scenarios

Solar irradiation (kW/m2)
Scenario 1 Scenario 2 Scenario 3

Level Min Mean Max Min Mean Max Min Mean Max
High 0 0.2442 1.1108 0 0.244 1.1412 0 0.2441 1.1354
Medium 0 0.1748 0.9987 0 0.1749 1.0029 0 0.1748 0.9916
Low 0 0.0835 0.6757 0 0.0835 0.6634 0 0.0835 0.6872

Wind Speed (m/s)
Scenario 1 Scenario 2 Scenario 3

Level Min Mean Max Min Mean Max Min Mean Max
High 0 7.3669 26.9398 0.0066 7.5248 26.6697 0.0309 7.3283 24.5682
Medium 0.0001 4.6157 17.3236 0.0025 4.6938 17.6675 0.0004 4.6461 18.5492
Low 0.0019 3.0054 9.6265 0.0048 3.0585 10.6093 0.0014 2.9368 10.7751

5.3 Comparative analysis

In this part, 3 solution methods (GCDES, SO, and
OMOPSO) are compared with each other by taking the
stochasticity of a location's renewable resources into
consideration. To handle the stochasticity aspect of the
problem, a scenario-wise approach is used. For solar data,
scenarios are formed via perturbation of the profiles shown
in Figure 8. Choosing the parameter as 5%, the procedure
of Kuznia et al7 is followed in the scenario generation. For
wind data, techniques introduced by Dukes and Palutikof35

and McNerney and Veers36 are used to create the scenar-
ios. In the literature, the Weibull distribution is commonly
used to generate synthetic wind speed data.37 In that tech-
nique, different states are constructed and wind speed
is generated using a Markov transition matrix, which is
constructed using the Weibull distribution. Wind speed
values are centered around the given mean value, and the

correlation between time units is handled by a decreasing
exponential function.

For each of our low, medium, and high solar and wind
cases, 3 scenarios are generated, and their statistics are
given in Table 10.

The GCDES, SO, and OMOPSO algorithms are run for
9 different locations (combinations of high, medium, and
low resource availability levels) using 9 different scenarios
(combinations of 3 solar and 3 wind scenarios), of the data
of which are introduced in Section 5.1. The outputs of these
computational experiments can be found in Table 11.

As it is seen among the results, GCDES approach fails
to conclude the experiment in a predesignated amount
of time for all 9 cases and, hence, delivers only a few
solutions. On the other hand, SO method provides a satis-
factory number of outcomes after the process is completed.
The results indicate that OMOPSO algorithm is able to
achieve a variety of solutions with less computational



462 ALT1NTAŞ ET AL.
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effort compared with the other approaches. Although this
table gives valuable insights about the performances, it is
necessary to conclude the comparison by looking at the
performance measures.

With the 3 metrics implemented, performances of the
all approaches can be seen in Table 12. It should be noted
that infinity values are recorded because GCDES method
finds only one solution in that cases because of time limit.
Although this algorithm has S values as 0 in some set-
tings, the overall performance of the method can be noted
as poor when MS and C numbers are taken into account.
While comparing SO and OMOPSO, it is clear that there
are significant differences between the numerical results.
For the S measure, OMOPSO has numbers that are almost
one-tenth of the SO. A similar ratio is observed among the

FIGURE 11 Nine-scenario Pareto of the grid-connected
decentralized energy system (GCDES), simulation-optimization
(SO), and optimized multi-objective particle swarm optimization
(OMOPSO) approaches for the medium solar–medium wind case

MS values. Despite high weakly domination ratios in some
cases, OMOPSO performs better in terms of the C metric
as well. The results can be seen graphically in Figure 11.

Because of the mediocre performance of the GCDES
in 9 scenarios, we now reduce our solution approaches
to SO and OMOPSO while working with the scenarios
in which demand uncertainty is included. Using medium
solar–medium wind case and by generating 3 and 5 sce-
narios for demand, the number of scenarios is increased
to 27 and 125, respectively. The outcomes of this study
can be seen in Table 13. By looking at this table, we can
conclude that OMOPSO returns a diverse set of solutions
which performs better in all of the metrics in a shorter
amount of time.

5.4 Sensitivity analysis
A sensitivity analysis is also conducted to determine the
effect of the key parameters on the investment size of the
system components for the medium solar–medium wind
resource level. For this analysis, we first bound the CO2
level such that the total amount of energy purchased from
the grid will not exceed 60% of the total demand, and
solve the problem with our SO and OMOPSO approaches.
We investigate the effects of the investment costs of solar,
wind, and storage as well as the selling prices of solar
and wind energy. For each cost parameter, we halve and
double the value (while keeping all other parameters at
their base levels). For selling prices, we double the val-
ues to see the effect of an increase in the feed-in tariff
policy. The results are summarized in Tables 14 and 15.
Note that in this problem instance, storing energy is not
cost efficient even when the investment cost of storage
is halved.

TABLE 13 Outputs of the SO and OMOPSO approaches for 27 to 125 scenarios

SO OMOPSO
Soln S MS C(OMOPSO, SO) (%) #Solns Soln S MS C(SO, OMOPSO) (%)

#Scens #Solns Time (s) Time (s)

27 12 40 178 0.131 3.6 83.3 716 6033 0.003 27.1 0.4
125 11 976 980 0.100 3.4 81.8 1056 24 781 0.004 33.0 1.0

TABLE 14 Sensitivity analysis results of SO approach

Base case cb cs cw pw ps

100% 200% 50% 200% 50% 200% 50% 200% 200%

Cost 2 510 187 2 510 187 2 510 187 2 997 726 1 684 329 2 592 661 1 946 417 2 510 373 2 553 399
Grid P. 59.30% 59.30% 59.30% 58.72% 58.52% 59.99% 58.72% 58.85% 51.51%
Ab 0 0 0 0 0 0 0 0 0
As 50 104 50 104 50 104 20 010 97 608 89 713 20 010 31 989 76 666
A900 kW

w 0 0 0 0 0 0 0 0 0
A2 MW

w 0 0 0 0 0 0 0 0 0
A3 MW

w 1 1 1 3 0 0 3 2 1

http://onlinelibrary.wiley.com/ 
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TABLE 15 Sensitivity analysis results of OMOPSO approach

Base case cb cs cw pw ps

100% 200% 50% 200% 50% 200% 50% 200% 200%

Cost 2 497 306 2 496 815 2 497 882 3 233 194 1 969 693 2 908 045 2 156 122 2 495 758 2 478 357
Grid P. 59.99% 59.99% 59.94% 59.97% 57.89% 59.95% 59.99% 59.98% 59.99%
Ab 3.87 0 0 0 0 0 8.96 0 3.35
As 48 368 48 336 48 482 34 620 65 212 58 636 31 547 48 389 48 336
A900 kW

w 0 0 0 0 0 0 1 0 0
A2 MW

w 0 0 0 1 1 1 1 0 0
A3 MW

w 1 1 1 1 0 0 1 1 1

6 CONCLUSION

Motivated by the interest in shifting from fossil fuel–based
centralized energy systems to decentralized renewable
energy systems to decrease emissions, we consider the siz-
ing problem of a GC decentralized system. This system is
a hybrid decentralized system that depends on solar and
wind energy generation backed up with a storage. Our
main aim is to provide insights for decision makers about
the optimal scale of the decentralized system they plan to
invest in. The optimal sizing decision problem includes 2
important aspects, stochasticity (uncertainty of renewable
resources) and a multi-objective structure (having con-
cerns for multiple criteria such as cost and emissions).
In our study, we consider these 2 aspects elaborately by
assuming that the decision maker is responsive to cost and
environment (carbon emission) alike and by modeling the
problem as a stochastic problem, using random resource
availabilities.

We provide a mathematical programming formulation.
We then discuss alternative solution approaches that
include a simulation-optimization approach and meta-
heuristic algorithms. We first model the problem as
a bi-objective 2-stage stochastic mixed-integer program.
This model has 2 objective functions: minimizing the
annualized system cost as well as the amount of emit-
ted CO2-equivalent gases while satisfying local demand.
Nondominated solutions of this model are generated using
the 𝜀-constraint method. This model determines optimal
component sizes for a predetermined CO2 emission limit
and also determines optimal operational decisions, such as
selling, outsourcing, and storing energy in each time unit.
Further, we develop a simulation-optimization method,
which approaches the multi-stage stochastic nature of the
problem in a more realistic way. Preserving the simulation
module of this newly introduced method, 3 well-known
metaheuristic algorithms are investigated additionally.

A numerical analysis of all methods is performed for
multiple-scenario cases. The outputs of the study indicate
that the GCDES approach cannot find the whole Pareto
set in a reasonable time. Simulation-optimization is better

at returning various solutions, however, is outperformed
by OMOPSO, which returns better quality solutions in
less time.

As future research, this study can be extended in mul-
tiple directions. One extension would be to consider
more objectives, such as reliability and social acceptance.
Interaction among these objectives can provide valuable
insights for the decision maker. Another research direction
worth exploring is considering ways to increase the uncer-
tainty in the problem. We envisage a potential extension
in this direction: One can assume that price parameters
are also uncertain. As the number of uncertain param-
eters increases, the models will become more realistic,
yet harder to solve. This situation provides the opportu-
nity to investigate methodologies to tackle the computa-
tional challenges as well as to demonstrate the value of
stochasticity in such cases. Moreover, one can also consider
alternative multi-objective metaheuristic approaches such as
multi-objective gravitational search and multi-objective har-
mony search in the optimization module of our algorithm.
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