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Abstract—In this study, theoretical limits are obtained for
the accuracy of range (distance) estimation in visible ligh &= =
positioning (VLP) systems. In particular, the Ziv-Zakai bound LED transmitters
(Z2zB) and the weighted Cramér-Rao bound (WCRB) are derived
for range estimation based on received signal strength (RSS
measurements. Also, the maximuna posteriori probability (MAP)
and the minimum mean-squared error (MMSE) estimators are
obtained for RSS based range estimation, and compared agan
the theoretical limits. . n
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|. INTRODUCTION

Indoor positioning via light emitting diodes (LEDs) hassig 1. visible light positioning (VLP) system.
recently gathered significant attention [1]. Since LEDsadty

thavef W|d¢§glre?dhl;se for |IIu_m|?.at|orl/Eérpos§s,.tht()ellrztmlr: order to provide a valid bound. Based on these motivations,
ion for visible light communication (VLC) and visible ligh . 7, 7y ai hound (zzB) and the weighted CRB (WCRB)
positioning (VLP) can facilitate new applications and sees are derived in this study for RSS based range estimation in

for indoor enyironments [2]' [.3]' VLP systems can PrOVid?/LP systems. The ZZB is known for providing tight limits
accurate position information since line-of-sight (LOStom- even in low SNR scenarios and the WCRB is an extended
monly present and much stronger than multipath componi%

in visible light channels. In addition, VLP systems do n Ksion of the CRB that takes prior information into account

? . . Based on a generic formulation with multiple power
suffer from interference as in RF systems, and they can al g pie p

b loved i . ts in which RE emissi asurements, the ZZB and the WCRB on range estimation
€ employed in environments in which RE emission may kclﬁe derived for VLP systems for the first time in the literatur
forbidden, e.g ., planes, hospitals, and mines [4]. }

0 f th hes in VLP i . |n addition, the maximuna posteriori probability (MAP) and
ne of the common approaches iIn SYstems 1S {Rq minimum MSE (MMSE) estimators are obtained for range

estimate the position of a VLC receiver based on receve timation, and their comparisons with the theoreticalnoisu
signal strength (RSS) measurements between the VLC recelye

and a number of LED transmitters [4]-[6]. In [5], a complete e provided.
VLP system, which achieves sub-meter accuracy via RSS
based range estimation and trilateration, is implemeraad, ) ) ] .
comparisons with other positioning systems are preseited. Consider a VLC system in which LED transmitters are
[4], Kalman and particle filtering are used for RSS basdgcated on the ceiling ofaroom,and_a VI__C rece|ver_|_s_located
position tracking in VLP systems. The study in [6] employ8" @n object on the floor, as shown in Fig. 1. By utilizing the
a single LED transmitter and multiple optical receivers fotignals received from the LED transmitters (which have kmow
position estimation, where the position of the receivet isi POsitions), the VLC receiver estimates its distance (range
determined based on RSS measurements at multiple receiv@@§h LED transmitter via RSS measurements and determines
Although various studies have been performed on VL8 Position based on range estimates [5]. The aim in thidystu
systems, theoretical limits on estimation accuracy hawnbéS to derive the fundamental limits, namely, the ZZB and the
investigated only in few studies. In [7] and [8], the CrameM/CRB, on RSS based range estimation in VLP systems.
Rao bound (CRB) is derived for RSS based and time-of-An LED transmitter at locatio, € R* and a VLC receiver
arrival based range estimation, respectively, and effeéts at locationl, € R® are considered. The distance between
LED parameters and system configuration are studied. T#¢ LED transmitter and the VLC receiver is denoted by
CRB provides a lower limit on mean-squared errors (MSEs) &f Which is expressed as = ||l — I;||>. Considering)/
unbiased estimators; however, it is not a tight bound in ggneMmeasurements at the VLC receiver, the received power for the
for low signal-to-noise ratios (SNRs) [9]. In addition, inet th measurement?.;, can be modeled as
presence of prior information about the unknown parameter, n+1 . AR
which is commonly available in indoor environments, the Fri= 73 cos” () COS(G)F Lto<provy +m (1)
theoretical limits should also consider the prior knowledig

Il. SYSTEM MODEL
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[o<prov) represents an indicator function, which is equal tbor the estimation problem described in Sectiorplly|z) is
1if 6 < fpov and zero otherwise. The measurement noisitained from the model in (2) as
7; is modeled as a zero-mean Gaussian random variable with M M
variances? [7], and it is assumed that the noise is independent _ e (Pri —g(@)? 1
z _ T p(yle) =expy = g [ = ()
for each measurement. Multiple measurements can be realize pt 20; P V27 oy
in a VLC receiver by performing measurements at different _
times (under stationarity conditions) or by employing ripi¢  Wherex € [h, h] and P,.; corresponds to théh element of
closely located photo detectors at the receiver. y, as defined earlier. Sincehas a PDF denoted hy(z), the
For brevity of analytical expressions, it is assumed, gsimil Prior probabilities of hypothesed, and#, in (5) are given
to [6]-[8], that the LED transmitter is pointing downward®yY w(y)/(w(e)+w(p+4)) andw(p+4)/(w(p)+w(e+9)),
(which is commonly the case) and the photo detector at tFRSPectively. Then, from (5) and (6), the MAP decision rule
VLC receiver is pointing upwards such that = ¢ and Can be expressed, after some manipulation, as
cos(¢) = cos(f) = h/x, where h denotes the height of p Mo
Fhe LED transmitter reIat|ve_ to the V!_C receiver, as shownz — § (g(0 +6) + g(p)) Z — +A(p, 0 +0) (7)
in Fig. 1. (Possible extensions to different transmitted an ;= %i 4, = 20;
receiver orientations are discussed in Section VIl.) AEin o
[4], [6]-[8], it is assumed that the height of the VLC receivef0r § = 0, whereA(p, ¢ +6) = log(w(p+4)/w())/(9(p) —
is known. This assumption holds in various practical sdesar 9(¥ + 9)), with log denoting the natural logarithm. The
e.g., when the VLC receiver is attached to a robot or a c&fobability of error for the rule in (7) can be obtained as

that is tracked via a VLC system (e.g., Fig. 3 in [1]). Under w(@)Peo + w(p + 8)Per

these assumptions and considering scenarios in which tBe LEmin(#; ¢ +6) = w(@) T w(p £9) with (8)
transmitter is in the field of view of the VLC receiver, the v
measurements in (1) can be expressed as — 49 1 P
e L L . A
p.—n+1p A" AR—l—-é k o2 @)+ i=1 i
ri = o T\ G 22 ni = Zn+3 ni =gz i 9)
_ @ fori € {0,1}, whereA(p, p+38) £ Ao, o+6)/\/ S, 072
fori=1,..., M, wherek is a known constant that depends =

onm, Py, h, and Ap. Lety = [Py Py P, ] denote the and Q1) = (1/v2m) [~ e 7 /%dr denotes the)-function.
measurement vector. Then, the conditional probabilitysitgn 1€ ZZB in (4) can be evaluated based on (8) and (9) for any

function (PDF) of the measurement vector is represented $yen Prior PDF. In particular, for the uniform prior PDF in
p(ylz). ( ) . %{ Alp, o+ 0) in (7) (henceA(p, ¢ + ) in (9)) becomes

For the considered system model in Fig. 1, the range 2rovyp, o, and the ZZB in (4) reduces, based on (2), (8), and
rameter,z, can be modeled to lie betweérandh, whereh = ), to

h/ cos(frov ).t Therefore, the prior PDF of is represented 1 h—h ph—§ i %
by a generic density(x), which is zero forz ¢ [h,h]. Asa &= ﬁ/ / Q < o s dpdds
special case, when is uniformly distributed oveih, h], the - h 14 (¢ +9)
prior PDF is given by (10)
w(x) =Tpepeny/ (h—h). (3) wherek £ 0.5k/> Y, 572 The ZZBs in (4) and (10) can be
evaluated accurately via numerical approaches as theratteg
[1l. Z1v-ZAKAI BOUND (ZZB) limits are finite. Also, they provide tight limits on MSEs of

. - L timal estimators for RSS based timation in VLP
The ZZB provides a lower limit on the MSE by relating it toop 'mal esfimators Tor ased range estimation in

the probability of error in a binary hypothesis-testinggem. systems, as investigated in Section V.

For a prior PDF that is zero for ¢ [h, h], it is given by [9] V. WEIGHTED CRB (WCRB)

L it pheo The CRB belongs to the family of covariance inequality
> 2 .
&= 2 /0 /h (w(p) + w(% +0))Pmin(p, ¢ + 0)dp o do bounds [9]. For a given value of parameterthe conditional

(4) CRBcan be calculated as in [7] based on (2) and (6) as follows:

_ R4 21 | - -
where ¢ = E{|z — z|*} is the mean-squared error of an L (E{(dlogp(y|a;)>2}>

arbitrary estimatoi, w(-) denotes the prior PDF of parameter & > (Jr(z))™ d
. X
z, and Pin(p, ¢ + J) represents the probability of error
corresponding to the MAP decision rule for the following B (¢'(x)) "2 B x2nt8 (11)
hypothesis-testing problem: Zij\il % k*(n+3)? Z?il L

Ho : plylr =), Hi1 : p(ylr =¢+9) ®) where¢ represents the MSE of an unbiased estimator.

1 i _ In the presence of prior information about the unknown
It is assumed that no communications occur when the LED rnétes is he& . CRB (BCRB b idered
not in the field of view of the VLC receiver. In fact, the thetical results in para_meter, t aye_s'a_‘n ( ) can be con§| ered to
this study are valid for any finite value &f with & > h. provide a lower limit on the MSE of any estimator [9].



However, for some prior distributions, such as the uniforffo obtain a closed-form solution fansap(y), the first-order
distribution, the BCRB does not exist (since an assumptidierivative of the objective function in (18) is calculated a
in the derivation of the BCRB is violated), in which case théllows:

weighted CRB (WCRB) is commonly employed. The WCRB M

M
is given by [9] E(n +3)z~"* (Z Pri _ pp—n-3 > %) . (19
=1 i

o?
2 i= 7
. (E{g()}) 1
E{¢?(z)Jr(x)} + E {qQ(x) (% sion in the big parentheses, which is a monotone increasing
function of z for x > 0. Then, the MAP estimator in (18) can
where¢ denotes the MSE of any estimator, the expectations ase obtained as

)2} (12) The sign of the first-order derivative depends on the expres-

with respect taz, Jr(x) is the conditional Fisher information h if ZM Pri o _k ZM 1
defined in (11),w(z) is the prior PDF ofz, and¢(z) is a o . vl 52% hnts i*]{f?,
weighting function. Similarly to [9], the following weiglrg Zvar(y) =< b, it > i, 02 < # >im1 0_12

function is employed in this study: f(y), otherwise

x—h\° x—h\° (20)
= — I— 3
q(x) (h — h) (1 h— h) (13) o\ M HD)

_ s M 1
if « € [h,h], andg(x) = 0 otherwise, where is a parameter wheref(y) = (k 2i=1 U?/Zizl o} ) S
that can be adjusted to improve the bound in (12). From (13),On the other hand, the MMSE estimator is given by [10]

E{q(x)} is calcula’;ed as ivse(y) = E{z|y) = /xp(a:|y)da:

E{q(z)} = w(x)g(x)de = PBlc+1,c+1 (14) h h
tate)y /h () | : = (/h :vw(:v)p(ylfc)d:v>/</h w(x)p(ylx)dw> (21)

where the final expression is obtained for the uniform prior

PDF in (3) with 3(a,b) = fol 271 (1 — )"~ dx representing wherep(y|z) is as in (6).

the beta function. Also, the second term in the denominatorit is noted that the MAP estimator has lower computational
of (12) can be obtained for the uniform prior as complexity than the MMSE estimator. However, the MMSE

2 estimator can achieve lower MSEs in general since it is the
E {,12(56) <M> } _cfQetl.2c—1)  ntimal estimator in terms of MSE minimization [10].

dx (h — h)?
(15) VI. NUMERICAL RESULTS

Finally, based on (11) and (13), the first term in the denomi- In this section, numerical examples are presented to iRvest
nator of (12) can be stated for the uniform prior as follows:gate the ZZB and the WCRB and to compare them against the
Mo MAP and MMSE estimators for RSS based range estimation
2 ) 2 in VLP systems. The following parameters are employed for
BAq (2)Je (@)} = k(n +3) Z o2 the model in (1) = 1, Ar = 1cm?, andéroy = 60° [4],
1 = [5]. Also, the uniform prior is considered, aridd= 4 m, and
X / 2%°(1 — 2)* ((h — h)z + h)_%_8 dz. (16) h = h/cos(frov) = 8m are used in (3). The variances of
0 the measurement noigg in (1) are taken to be equal; that is,
From (14)—(16), the WCRB in (12) can be evaluated. In} =c* fori=1,..., M, ando? is set tol0~'3 A2 [7].
addition, maximization over is performed to find the tightest In Fig. 2, the root mean-squared errors (RMSEs) for the
lower bound. Since the calculation of the WCRB for a giveMAP estimator, the MMSE estimator, the ZZB, and the
value ofc involves single integrals only, the maximization oveWWCRB? are plotted versus the transmit powr for M/ = 1
c leads to comparable computational complexity with that df.€., single measurement). It is observed that the ZZBiges/

the ZZB in (10). a very tight lower limit for the performance of the optimal
MMSE estimator whereas the WCRB gets loose at high
V. MAP AND MMSE ESTIMATORS values of P,.. As P, increases, the measurements in (2) get

To compare the theoretical bounds against practical estiny§"Y accurate and the prior information becomes negligible

tors, the MAP and MMSE estimators are derived for the ram§8mp"’“6(_j to the information gathered from the measurements
parametery, in this section. The MAP estimator [10] for thel SUCh situations, the WCRB may not be a tight bound when
range can be expressed as the conditional CRB is a function of the unknown parameter

[9], which is the case in the considered problem (cf. (11)).

Emap(y) = arg max w(2)p(y|z) . (17) Another observation from Fig. 2 is that the MAP estimator
2€[h,h] has higher RMSEs than the MMSE estimator for low power
For the uniform prior PDF in (3), the MAP estimator in (17)evels. This is due to the fact that & goes to zero, the MAP
reduces, based on (2) and (6), to estimator in (20) results in eithér or h whereas the MMSE
M estimator in (21) converges #®©{z} = 0.5(h + h).

) (Pr,i _ kx—n—3)2
arg min .
z€[h,h] ; 207

(18) 2For eachP, the optimal value of: is calculated and the tightest WCRB

is employed (see (12)—(16) in Section V).
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and the WCRB forM = 1. and the WCRB forP, = 1W.

In Fig. 3, the RMSEs for the MAP estimator, the MMSESan provide guidelines for the design of VLP systems; eqy., f

estimator, the ZZB, and the WCRB are plotted versus tffhoosing an LED transmitter with required parameters ssch a

; the transmit power.
number of measurements/, for a transmit power of?, = . .
1W. Similar to Fig. 2, the ZZB provides a very tight limit The assumption that the LED transmitter and the VLC

for the performance of the optimal MMSE estimator and thrgceiver are pointing downwards and upwards, respectively
WCRB is not very tight in general. As expected, the RMS an be relaxed to some extent based on arguments similar to

decreases with/; however, a diminishing return is observed10S€ in Section II-C of [7]. In that casg(z) in (2) andh
as M increases. It is also noted that performing multipl§d" P& updated accordingly and the generic ZZB expression

: i : ified by (4), (8), and (9) still holds. Also, the WCRB can
independent measurements can result in significant rechscti SPECITEC g
in the RMSE (e.g., 34.2% reduction in the RMSE of thQe obtained based on (12) by modifying (11) and (14)-(16)

MMSE estimator with)M = 5).

The numerical results indicate that the ZZB can be used
provide guidelines for determining the parameters of a VL
system with a desired level of ranging accuracy. For example
from (10) and the definition of presented after (10), it is

accordingly. As future work, range/position estimationthwi
ultiple LED transmitters can be considered in the presence
unknown height for the VLC receiver.
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