THE NUMBER OF BLOCKS WITH
A GIVEN DEFECT GROUP

LAURENCE BARKER

Abstract.  Given a p-subgroup P of a finite group G, we express the number
of p-blocks of G with defect group P as the p-rank of a symmetric integer
matrix indexed by the N(P)/P-conjugacy classes in PC(P)/P. We obtain a
combinatorial criterion for P to be a defect group in .

QUESTION A.  Given a p-subgroup P of a finite group G, how many p-blocks
of G have defect group P? In particular, when is P a defect group in G?

An answer to this venerable question was given in Robinson [5], reformula-
ted in Broué [2], and generalised and further illuminated in Broué-Robinson
[3]. The number of p-blocks with defect group P is presented, in those three
works, as the p-rank of a symmetric integer matrix indexed by certain conjugacy
classes of G.

QuEesTION B,  Supposing that G is a normal subgroup of a finite group F,
what is the number fo (G, F) of F/G-orbits of defect-zero p-blocks of G whose
stabilisers in F/G are p'-groups?

Question B is more general than Question A because Brauer’s extended
first main theorem describes a bijective correspondence between the p-blocks
of G with defect group P, and the N;(P)/PCs;(P)-orbits of defect-zero p-
blocks b of PCs(P)/P such that the stabiliser of b in N;(P)/PCy(P) is a
p’-group. In answer to Question B, Theorem 5 below expresses f, (G, F) as the
p-rank of a symmetric integer matrix W(G, F) indexed by the F-conjugacy
classes of G. Corollary 6 spells out the new answer thus provided to Question
A.

In view of the local reduction indicated above, and also in view of another
local reduction conjectured by Alperin [1], the number fo,(G)=fo(G, G) of
defect-zero p-blocks of G is of especial interest. A description of f,(G) as the
p-rank of a symmetric integer matrix indexed by the conjugacy classes of G
has already been given by Robinson [5], but it is to be noted that the matrix
Y(G)="P(G, G) has the feature of being independent of p.

This work is a synthesis of character-theoretic constructions in Strunkov
[6] and G-algebra-theoretic techniques implicit in Broué [2], Broué-Robinson
[3], Robinson [5]. We also make usc of a G-algebra-theoretic approach to
Clifford theory. I am grateful to Robinson for communicating to me an illumi-
nating formulation of material in [6].
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Let O be a complete local noetherian commutative ring whose residue field
0/J(0) has prime characteristic p, and whose field of fractions x has character-
istic zero. We shall assume that « splits for all the given groups under consid-
eration. When speaking of an integer, we shall always be refering to a rational
integer, and we shall identify the integers with the elements of the minimal
unital subring of O. Also, we shall identify the p-blocks of G with the block
idempotents of OG. Let Irr (xkG) denote the set of irreducible x G-characters,
and Irry (kG ) the subset consisting of those y €lrr (xG) such that [G]/x(1) is
coprime to p.

The conjugation action of F on its normal subgroup G induces algebra
automorphisms of kG and OG, and induces permutations of Irr (kG ). Recall
that, for H< K <F, the image (OG )5, of the relative trace map Trjy : (0OG)"—
(0G)¥ is an ideal of the K-fixed subalgebra (OG)* of OG. For each irreducible
xG-character y, we write Ni{y) for the stabiliser of y in F, and write b’ for
the primitive idempotent of the commutative algebra (OG)" such that
2(bL)=x(1). Note that b} is the sum of the F-conjugates of the p-block by
of G containing y. We say that a primitive idempotent 4 of (OG)” is projective
provided he(OG){ (when G=F, these idempotents are precisely the defect-
zero p-blocks of G).

ProrosiTION 1. There is a bijective correspondence between the projective
primitive idempotents b of (OG)", and the F-orbits of irreducible x G-characters
x such that |Ng(x)|/x (1) is coprime to p, whereby b corresponds to the F-orbit
of x provided b=b’,.

Proof. Let y be an irreducible xG-character, and put N=Ng(y). It is
well-known that b is a defect-zero p-block of G if, and only if, |G|/x(1) is
coprime to p. When these equivalent conditions hold, the F-conjugates of y
are precisely the irreducible kG-characters y” such that by =b%.. So it suffices
to prove that b} is projective if, and only if, | N]| /,((1) is coprime to p.

Suppose thdl [Nl/)((l) is coprime to p. Then b is a defect-zero block of
OG, that is, bS =Tr{ (r]) for some neOG. Also, |G: N| is coprime to p, and
Nis the stabxllser of b7, in F, hence the primitive idempotent

by =Trk () =Tl (1/1G: M)
is projective. Conversely, suppose that b, is projective. By Mackey
decomposition,
(0G) =(0G) <(0G)Y .

So the idempotent bS =blby belongs to the ideal (OG)Y of (OG)", and in
particular, 5§ is a defect-zero block of OG. Therefore, |G|/ x (1) is coprime to
p. and writing b =Tr} (i) for some p e OG, we have

by =TrY (uby)=|N: G| Tr{ (ub?)

whereupon |N: G| must be coprime to p.

In particular, fo(G, F) is the number of projective primitive idempotents
of (0G)". Let b{; be the sum of the projective primitive idempotents of (0G)”.
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Thus bS is the sum of the defect-zero p-blocks of G. We have a direct sum of
free cyclic O-modules

(0G)'bo=® (0G)"b
h

where b runs over the projective primitive idempotents of (OG)”. lizuka-
Watanabe [4, Lemma 2] proved the following result in the special case G=F.

LEmMMA 2: (OG)'bE< ((0G)Y) < (0G)Y PEDI(OYOG) (1 —bE).

Proof: Let V=(0G)"bi; and U=((0OG)}) as ideals of (OG)". Clearly,
bkeV, so V= U. Now

U= @ Ub,
yerIrr(xG)
where the notation indicates that y runs over the F-orbits of Irr (xG). Let us
fix an irreducible xG-character y. If b7 is projective, then bieV, so UbL < V.
Assuming now that b} is not projective, we have hGby =0, and it suffices to
show that Ub, =J(0)(0OG)".

First suppose that y elrry (xG). Then b ¢ U, so UbY is strictly contained
in the free cyclic O-module (OG)"b.. Therefore Ub, < J(0)(OG)” in this case.
Now suppose that y ¢Irry (kG ). We observed above that (OG)] =(0G){ ., and
that the assertion holds when G=F. So

Ub, = U< ((0G)?)’' = Z0G - be®J(0) - ZOG(1 —bE).
But 6565 =0, so UbL =J(0) - ZOG n (0G)" = J(0)(0G)".

For each irreducible x G-character y, let e, be the primitive idempotent of
(xG)" such that y(ej)=x(1), and let @ be the algebra map (kG )" —« such
that w(e; )=1. Then w} is a restriction of the central character w? associated
with y. That is to say, wi,=x/x(1)on (xG)". Let w: (kG) -k, and
Ve (kG) ' ®, (xG) -k be the characters afforded by the translation actions
of (kG)" and (kG)'®, (kG)" on (xG)". Thus, given ¢, {'e(kG)", the trace
of the action of ¢ on (xkG)" is

wi(H)= Y 05

x €Flr(xG)
while the trace of the action of {®¢ on (kG)F is
ve({®)=wc({l)= Y oy ({ey).
xelrr(x Gy

We define linear maps ¢ : kG—k and y¢§: k(G X G)—x given by
9c(g)={(x, w)eGx F: g=[x, w]},
wal(g, h)=|{(x, w,v)eGx Fx F: goh™'v™" =[x, w]}|

for g, heG. Here, [x, w]=xwx"'w™'. The next result shows that ot is a kG-

character, and that y¢ is a k(G x G)-character. Recall that the irreducible
k(G X G)-characters are the x(G X G)-characters of the form y * y' with
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x. ' elrr (kG), where
(x*xNeh=x(xh").

For any element xe G, we write [x]r for the set of F-conjugates of x. For
any subset 4 <G, we write A" for the sum in kG of the elements of [x]. Thus
{[x]F: xeG) is a k-basis for (kG)".

LeMma 3.

(@) 6=, crrwan |NHOO12 /2 (1)
(b) W(Ff:Zlelrr(x(l),uN;:()()gF(|NF(;C)|/Z(1))ZZ e

Proof. Given an element {e(xG)”, and writing

Sxli= % Colls

vepl

then w&H(¢ )=Y..c,; &rrs Where the notation indicates that the two sums are
indexed by representatives y of the F~conjugacy classes of G. So for g, heG,
we have

velg. y=|{x.w, 0, )eGX FX Fx F:ugu 'vh v 'wxw™ ' =x}|/|F|
Iy §
=Y [{w,o,u)eFXFxF: ugu "oh v wxw T = x} /| Cr(x))|
Neplr
= 3 | oo welxlex Fx Frugu 'oh™'o ™ y=x}]
verlG

=vi(Tri (9@Trl (b))
= Y Tef(g)x(Tey (W) /2 (1)

xerlri(n@)

=G 5 x(ugu™ )y (oh o™y /(1)

xerIm(nGYuG < FoGeF

= > NGO/ x (D)) g (ugu” Yx(vh v ).

zerlr(kGYONHy)S F
Part (b) is thus estabiished. Part (a) may be proved either by showing, simi-
larly, that

Po(g)=os(Trl (g)= ¥ IN()Ix@©)/x(1)

xelrr(xG)

or else by observing that ¢f(g)=wé(g, 1)/|F|.

LEMMA 4. Given g, heG, then:

(a) 1Cr(g)| divides (pg(g); 4
(b) |Cr)(@)| | Crlh)| divides we(g. h).

Proof. The proof of Lemma 3 shows that ¢&(g)/| Cr(g)| = we([g]7 ), and
we(g, /| Cr) Cr(h)] = ve([glr®[h']F). Any rational number belonging
to O must be an integer.
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We define a symmetric integer matrix W(G, F)=(w{(g. h))ure, (indexed
by representatives of the F-conjugacy classes in ). For any integer matrix ‘¥,
let rk, ¥ denote the p-rank of W (the rank of the reduction of ¥ modulo p).

THEOREM 5. (a) fo(G, F)=rk, ¥(G, F). ‘
(b) (OG)" has a projective primitive idempotent if, and only if, g x) is co-
prime to p for some x€G.

Proof. Any projective primitive idempotent b of (OG)" may be written in
the form h=Tr{ (2eq Peg) with each b e 0. Given another projective primitive
idempotent 5 of (OG)”, the proof of Lemma 3 gives

wé( Y bg® Y h}/z‘)z va(b®b') = 0(bh')
relG heG

which is zero when b;éb’. But w¢(h) =1 because h=e¢, for some y elrr, (kG).
So fo(G, F)<rk, W¢.. The proof of Lemma 3 also shows that

wolg, = ob(Tr (g) Trf (1)

for g, heG. But f3(G, F) is the O-rank of (OG)'p., so Lemma 2 forces
fo(G, F)=rk, W§, establishing part (a).

Part (b) is the assertion that w&(g. ) is coprime to p for some g, heG if
and only if @f(x) is coprime to p for some xeG. The forwards implication
holds because (g, h)=¢E(g Tri (k")) for all g, heG. Proposition 1 and
Lemma 3(a) give the reverse implication.

Thanks to Lemma 4(b), fo(G, F) is, in fact, the p-rank of the submatrix of
W(G, F) indexed by those representatives g such that Cr(g) is a p’-group.

_ CorOLLARY 6. Let P be a p-subgroup of G. Define C=PC,;(P)/P and
N=Ng(P)/P. Then:

(@) the number of p-blocks of G with defect group P is tk, ¥(C, N);

(b) P is a defect group of a p-block of G if, and only if, there exists some ge C
such that p does not divide the number of solutions in xe C and weN to the
equation g =[x, w].

Proof. This is immediate from Proposition I, Theorem 5, and Brauer’s
extended first main theorem.

Putting G = F in Theorem 5, or P=1 in Corollary 6, we deduce that f,(G)
is the p-rank of the symmetric integer matrix W(G) := W(G, G) indexed by the
representatives of the conjugacy classes of G. We note, as above, that to
calculate f, (G ), we need only consider the submatrix indexed by the representa-
tives of the defect-zero conjugacy classes. Furthermore, we recover the special
case of Strunkov [6, Theorem 1] asserting that G has a defect-zero p-block if,
and only if, there exists an element g G such that p does not divide the number
of ways of expressing g as a commutator [x, w] with x, weG.
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We end by observing another relationship between the character ¢, = @&
and the number of defect-zero p-blocks of G. Let us fix a Sylow p-subgroup
S of G. We write (Res§ (¢g), 1) to denote the multiplicity of the trivial «S-
module in the restriction of ¢¢ to S. Note that

(Res§ (@), 1s) =1 {(x, w)eG % G: [x, w]eS}|/|S].

ProrosiTiON 7. Modulo p, we have a congruence

|G: S| fo(G)=,(Res§ (¢c), 1s).

Proof. For any (€ ZOG, Lemma 3(a) gives
Pc(0)=1Gl Y @, (0).

xelm(xG)
In particular, |G| divides y({). Let G, denote the set p-elements of G. By
lizuka Watanabe [4, Lemmas 3 and 4], if y €Irro (kG ) then , (G, ) =1, other-
wise p divides w, (G, ). So

fo(G)=,06(G,)/1Gl.

Let N=N;(S). A well-known variant of Sylow’s theorem asserts that the
number of Sylow p-subgroups of G containing any given p-subgroup is congru-
ent to unity modulo p. Applying this to the cyclic p-subgroups, we deduce that
|G: N| is congruent to unity modulo p, and so too is the coefficient in
T (ST) of each p-element. Hence (Tt (S")—G,”)/peZOG, and p|G|
divides ¢, (Try (S ") —G, ). Therefore

(PG(G,: )/1S] :_:,)(P(;(Trx (S+))/IS| Ep(pG(S+)/lS| =(Resg (9), 1s).
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