THE NUMBER OF BLOCKS WITH A GIVEN DEFECT GROUP

LAURENCE BARKER

Abstract. Given a p-subgroup P of a finite group G, we express the number of p-blocks of G with defect group P as the p-rank of a symmetric integer matrix indexed by the N(P)/P-conjugacy classes in PC(P)/P. We obtain a combinatorial criterion for P to be a defect group in G.

QUESTION A. Given a p-subgroup P of a finite group G, how many p-blocks of G have defect group P? In particular, when is P a defect group in G?

An answer to this venerable question was given in Robinson [5], reformulated in Broué [2], and generalised and further illuminated in Broué-Robinson [3]. The number of *p*-blocks with defect group *P* is presented, in those three works, as the *p*-rank of a symmetric integer matrix indexed by certain conjugacy classes of *G*.

QUESTION B. Supposing that G is a normal subgroup of a finite group F, what is the number $f_0(G, F)$ of F/G-orbits of defect-zero p-blocks of G whose stabilisers in F/G are p'-groups?

Question B is more general than Question A because Brauer's extended first main theorem describes a bijective correspondence between the *p*-blocks of G with defect group P, and the $N_G(P)/PC_G(P)$ -orbits of defect-zero *p*blocks b of $PC_G(P)/P$ such that the stabiliser of b in $N_G(P)/PC_G(P)$ is a p'-group. In answer to Question B, Theorem 5 below expresses $f_0(G, F)$ as the *p*-rank of a symmetric integer matrix $\Psi(G, F)$ indexed by the F-conjugacy classes of G. Corollary 6 spells out the new answer thus provided to Question A.

In view of the local reduction indicated above, and also in view of another local reduction conjectured by Alperin [1], the number $f_0(G) = f_0(G, G)$ of defect-zero *p*-blocks of *G* is of especial interest. A description of $f_0(G)$ as the *p*-rank of a symmetric integer matrix indexed by the conjugacy classes of *G* has already been given by Robinson [5], but it is to be noted that the matrix $\Psi(G) = \Psi(G, G)$ has the feature of being independent of *p*.

This work is a synthesis of character-theoretic constructions in Strunkov [6] and G-algebra-theoretic techniques implicit in Broué [2], Broué-Robinson [3], Robinson [5]. We also make use of a G-algebra-theoretic approach to Clifford theory. I am grateful to Robinson for communicating to me an illuminating formulation of material in [6].

Let *O* be a complete local noetherian commutative ring whose residue field O/J(O) has prime characteristic *p*, and whose field of fractions κ has characteristic zero. We shall assume that κ splits for all the given groups under consideration. When speaking of an integer, we shall always be referring to a rational integer, and we shall identify the integers with the elements of the minimal unital subring of *O*. Also, we shall identify the *p*-blocks of *G* with the block idempotents of *OG*. Let Irr (κG) denote the set of irreducible κG -characters, and Irr₀ (κG) the subset consisting of those $\chi \in Irr (\kappa G)$ such that $|G|/\chi(1)$ is coprime to *p*.

The conjugation action of F on its normal subgroup G induces algebra automorphisms of κG and OG, and induces permutations of Irr (κG). Recall that, for $H \leq K \leq F$, the image $(OG)_H^K$ of the relative trace map $\operatorname{Tr}_H^K : (OG)^H \rightarrow$ $(OG)^K$ is an ideal of the K-fixed subalgebra $(OG)^K$ of OG. For each irreducible κG -character χ , we write $N_F(\chi)$ for the stabiliser of χ in F, and write b_{χ}^F for the primitive idempotent of the commutative algebra $(OG)^F$ such that $\chi(b_{\chi}^F) = \chi(1)$. Note that b_{χ}^F is the sum of the F-conjugates of the p-block b_{χ}^G of G containing χ . We say that a primitive idempotent b of $(OG)^F$ is projective provided $b \in (OG)_1^F$ (when G = F, these idempotents are precisely the defectzero p-blocks of G).

PROPOSITION 1. There is a bijective correspondence between the projective primitive idempotents b of $(OG)^F$, and the F-orbits of irreducible κG -characters χ such that $|N_F(\chi)|/\chi(1)$ is coprime to p, whereby b corresponds to the F-orbit of χ provided $b = b_{\chi}^F$.

Proof. Let χ be an irreducible κG -character, and put $N = N_F(\chi)$. It is well-known that b_{χ}^G is a defect-zero *p*-block of *G* if, and only if, $|G|/\chi(1)$ is coprime to *p*. When these equivalent conditions hold, the *F*-conjugates of χ are precisely the irreducible κG -characters χ' such that $b_{\chi}^F = b_{\chi'}^F$. So it suffices to prove that b_{χ}^F is projective if, and only if, $|N|/\chi(1)$ is coprime to *p*.

to prove that b_{χ}^{F} is projective if, and only if, $|N|/\chi(1)$ is coprime to p. Suppose that $|N|/\chi(1)$ is coprime to p. Then b_{χ}^{G} is a defect-zero block of OG, that is, $b_{\chi}^{G} = \operatorname{Tr}_{1}^{G}(\eta)$ for some $\eta \in OG$. Also, |G:N| is coprime to p, and N is the stabiliser of b_{χ}^{F} in F, hence the primitive idempotent

$$b_{\chi}^{F} = \operatorname{Tr}_{N}^{F}(b_{\chi}^{G}) = \operatorname{Tr}_{1}^{F}(\eta/|G:N|)$$

is projective. Conversely, suppose that b_{χ}^{F} is projective. By Mackey decomposition,

$$(OG)_1^F \subseteq (OG)_1^N \subseteq (OG)_1^G$$
.

So the idempotent $b_{\chi}^{G} = b_{\chi}^{F} b_{\chi}^{G}$ belongs to the ideal $(OG)_{1}^{N}$ of $(OG)^{N}$, and in particular, b_{χ}^{G} is a defect-zero block of OG. Therefore, $|G|/\chi(1)$ is coprime to p, and writing $b_{\chi}^{G} = \operatorname{Tr}_{1}^{N}(\mu)$ for some $\mu \in OG$, we have

$$b_{\chi}^{G} = \operatorname{Tr}_{1}^{N}(\mu b_{\chi}^{G}) = |N:G| \operatorname{Tr}_{1}^{G}(\mu b_{\chi}^{G})$$

whereupon |N:G| must be coprime to p.

In particular, $f_0(G, F)$ is the number of projective primitive idempotents of $(OG)^F$. Let b_G^F be the sum of the projective primitive idempotents of $(OG)^F$.

Thus b_G^G is the sum of the defect-zero *p*-blocks of *G*. We have a direct sum of free cyclic *O*-modules

$$(OG)^F b_G^F = \bigoplus_b (OG)^F b$$

where b runs over the projective primitive idempotents of $(OG)^{F}$. Iizuka-Watanabe [4, Lemma 2] proved the following result in the special case G = F.

LEMMA 2:
$$(OG)^F b_G^F \subseteq ((OG)_1^F)^2 \subseteq (OG)^F b_G^F \oplus J(O)(OG)^F (1 - b_G^F).$$

Proof: Let $V = (OG)^F b_G^F$ and $U = ((OG)_1^F)^2$ as ideals of $(OG)^F$. Clearly, $b_G^F \in V$, so $V \subseteq U$. Now

$$U = \bigoplus_{\chi \in F \operatorname{Irr}(\kappa G)} U b_{\chi}^{F}$$

where the notation indicates that χ runs over the *F*-orbits of Irr (κG). Let us fix an irreducible κG -character χ . If b_{χ}^{F} is projective, then $b_{\chi}^{F} \in V$, so $Ub_{\chi}^{F} \subseteq V$. Assuming now that b_{χ}^{F} is not projective, we have $b_{G}^{F}b_{\chi}^{F}=0$, and it suffices to show that $Ub_{\chi}^{F} \subseteq J(O)(OG)^{F}$.

First suppose that $\chi \in \operatorname{Irr}_0(\kappa G)$. Then $b_{\chi}^F \notin U$, so Ub_{χ}^F is strictly contained in the free cyclic *O*-module $(OG)^F b_{\chi}^F$. Therefore $Ub_{\chi}^F \subseteq J(O)(OG)^F$ in this case. Now suppose that $\chi \notin \operatorname{Irr}_0(\kappa G)$. We observed above that $(OG)_1^F \subseteq (OG)_1^G$, and that the assertion holds when G = F. So

$$Ub_{\chi}^{F} \subseteq U \subseteq ((OG)_{1}^{G})^{2} \subseteq ZOG \cdot b_{G}^{G} \oplus J(O) \cdot ZOG(1 - b_{G}^{G}).$$

But $b_{\chi}^{G}b_{\chi}^{F} = 0$, so $Ub_{\chi}^{F} \subseteq J(O) \cdot ZOG \cap (OG)^{F} = J(O)(OG)^{F}.$

For each irreducible κG -character χ , let e_{χ}^{F} be the primitive idempotent of $(\kappa G)^{F}$ such that $\chi(e_{\chi}^{F}) = \chi(1)$, and let ω_{χ}^{F} be the algebra map $(\kappa G)^{F} \rightarrow \kappa$ such that $\omega(e_{\chi}^{F}) = 1$. Then ω_{χ}^{F} is a restriction of the central character ω_{χ}^{G} associated with χ . That is to say, $\omega_{\chi}^{F} = \chi/\chi(1)$ on $(\kappa G)^{F}$. Let $\omega_{G}^{F}: (\kappa G)^{F} \rightarrow \kappa$, and $v_{G}^{F}: (\kappa G)^{F} \otimes_{\kappa} (\kappa G)^{F} \rightarrow \kappa$ be the characters afforded by the translation actions of $(\kappa G)^{F}$ and $(\kappa G)^{F} \otimes_{\kappa} (\kappa G)^{F}$ on $(\kappa G)^{F}$. Thus, given $\zeta, \zeta' \in (\kappa G)^{F}$, the trace of the action of ζ on $(\kappa G)^{F}$ is

$$\omega_G^F(\zeta) = \sum_{\chi \in F \operatorname{Irr}(\kappa G)} \omega_{\chi}^F(\zeta)$$

while the trace of the action of $\zeta \otimes \zeta'$ on $(\kappa G)^F$ is

$$v_G^F(\zeta \otimes \zeta') = \omega_G^F(\zeta \zeta') = \sum_{\chi \in \operatorname{Irr}(\kappa G)} \omega_{\chi}^F(\zeta) \omega_{\chi}^F(\zeta').$$

We define linear maps $\varphi_G^F : \kappa G \to \kappa$ and $\psi_G^F : \kappa (G \times G) \to \kappa$ given by

$$\varphi_G^F(g) = |\{(x, w) \in G \times F : g = [x, w]\}|,$$

$$\psi_G^F(g, h) = |\{(x, w, v) \in G \times F \times F : gvh^{-1}v^{-1} = [x, w]\}|$$

for $g, h \in G$. Here, $[x, w] = xwx^{-1}w^{-1}$. The next result shows that φ_G^F is a κG -character, and that ψ_G^F is a $\kappa(G \times G)$ -character. Recall that the irreducible $\kappa(G \times G)$ -characters are the $\kappa(G \times G)$ -characters of the form $\chi * \chi'$ with

 $\chi, \chi' \in Irr(\kappa G)$, where

$$(\chi * \chi')(g, h) = \chi(g)\chi'(h^{-1}).$$

For any element $x \in G$, we write $[x]_F$ for the set of *F*-conjugates of *x*. For any subset $A \subseteq G$, we write A^+ for the sum in κG of the elements of $[x]_F$. Thus $\{[x]_F^+: x \in G\}$ is a κ -basis for $(\kappa G)^F$.

LEMMA 3.

(a)
$$\phi_G^F = \sum_{\chi \in \operatorname{Irr}(\kappa G)} |N_F(\chi)| \chi/\chi(1).$$

(b) $\psi_G^F = \sum_{\chi \in \operatorname{Irr}(\kappa G), vN_F(\chi) \subseteq F} (|N_F(\chi)|/\chi(1))^2 \chi * {}^v \chi.$

Proof. Given an element $\zeta \in (\kappa G)^F$, and writing

$$\zeta[x]_F^+ = \sum_{y \in FG} \zeta_{x,y}[y]_F^+$$

then $\omega_G^F(\zeta) = \sum_{y \in FG} \zeta_{y,y}$, where the notation indicates that the two sums are indexed by representatives y of the *F*-conjugacy classes of G. So for $g, h \in G$, we have

$$\begin{split} \psi_{G}^{F}(g,h) &= |\{x,w,v,u\} \in G \times F \times F \times F : ugu^{-1}vh^{-1}v^{-1}wxw^{-1} = x\}|/|F| \\ &= \sum_{x \in FG} |\{(w,v,u) \in F \times F \times F : ugu^{-1}vh^{-1}v^{-1}wxw^{-1} = x\}|/|C_{F}(x)| \\ &= \sum_{x \in FG} |\{y,v,u\} \in [x]_{F} \times F \times F : ugu^{-1}vh^{-1}v^{-1}y = x\}| \\ &= v_{G}^{F}(\mathrm{Tr}_{1}^{F}(g) \otimes \mathrm{Tr}_{1}^{F}(h^{-1})) \\ &= \sum_{\chi \in F^{\mathrm{Irr}}(\kappa G)} \chi(\mathrm{Tr}_{1}^{F}(g))\chi(\mathrm{Tr}_{1}^{F}(h^{-1}))/\chi(1)^{2} \\ &= |G|^{2} \sum_{\chi \in F^{\mathrm{Irr}}(\kappa G), uG \subseteq F, vG \subseteq F} \chi(ugu^{-1})\chi(vh^{-1}v^{-1})/\chi(1)^{2} \\ &= \sum_{\chi \in F^{\mathrm{Irr}}(\kappa G), vN_{F}(\chi) \subseteq F} (|N_{F}(\chi)|/\chi(1))^{2}\chi(ugu^{-1})\chi(vh^{-1}v^{-1}). \end{split}$$

Part (b) is thus established. Part (a) may be proved either by showing, similarly, that

$$\varphi_G^F(g) = \omega_G^F(\operatorname{Tr}_1^F(g)) = \sum_{\chi \in \operatorname{Irr}(\kappa G)} |N_F(\chi)| \chi(g) / \chi(1)$$

or else by observing that $\varphi_G^F(g) = \psi_G^F(g, 1)/|F|$.

LEMMA 4. Given $g, h \in G$, then:

- (a) $|C_F(g)|$ divides $\varphi_G^F(g)$;
- (b) $|C_F(g)| |C_F(h)|$ divides $\psi_G^F(g, h)$.

Proof. The proof of Lemma 3 shows that $\varphi_G^F(g)/|C_F(g)| = \omega_G^F([g]_F^+)$, and $\psi_G^F(g, h)/|C_F(g)||C_F(h)| = v_G^F([g]_F^+ \otimes [h^{-1}]_F^+)$. Any rational number belonging to *O* must be an integer.

We define a symmetric integer matrix $\Psi(G, F) = (\Psi_G^F(g, h))_{g,h \in rG}$ (indexed by representatives of the *F*-conjugacy classes in *G*). For any integer matrix Ψ , let $\mathrm{rk}_p \Psi$ denote the *p*-rank of Ψ (the rank of the reduction of Ψ modulo *p*).

THEOREM 5. (a) $f_0(G, F) = \operatorname{rk}_p \Psi(G, F)$.

(b) $(OG)^F$ has a projective primitive idempotent if, and only if, $\varphi_G^F(x)$ is coprime to p for some $x \in G$.

Proof. Any projective primitive idempotent b of $(OG)^F$ may be written in the form $b = \operatorname{Tr}_1^F(\sum_{g \in G} b_g g)$ with each $b_g \in O$. Given another projective primitive idempotent b' of $(OG)^F$, the proof of Lemma 3 gives

$$\psi_G^F\left(\sum_{g\in G} b_g g \otimes \sum_{h\in G} b'_h h^{-1}\right) = \nu_G^F(b\otimes b') = \omega_G^F(bb')$$

which is zero when $b \neq b'$. But $\omega_G^F(b) = 1$ because $b = e_{\chi}^F$ for some $\chi \in \operatorname{Irr}_0(\kappa G)$. So $f_0(G, F) \leq \operatorname{rk}_p \Psi_G^F$. The proof of Lemma 3 also shows that

$$\psi_{G}^{F}(g,h) = \omega_{G}^{F}(\operatorname{Tr}_{1}^{F}(g) \operatorname{Tr}_{1}^{F}(h^{-1}))$$

for $g, h \in G$. But $f_0(G, F)$ is the O-rank of $(OG)^F b_G^F$, so Lemma 2 forces $f_0(G, F) \ge \operatorname{rk}_p \Psi_G^F$, establishing part (a). Part (b) is the assertion that $\psi_G^F(g, h)$ is coprime to p for some $g, h \in G$ if

Part (b) is the assertion that $\psi_G^F(g, h)$ is coprime to p for some $g, h \in G$ if and only if $\varphi_G^F(x)$ is coprime to p for some $x \in G$. The forwards implication holds because $\psi_G^F(g, h) = \varphi_G^F(g \operatorname{Tr}_1^F(h^{-1}))$ for all $g, h \in G$. Proposition 1 and Lemma 3(a) give the reverse implication.

Thanks to Lemma 4(b), $f_0(G, F)$ is, in fact, the *p*-rank of the submatrix of $\Psi(G, F)$ indexed by those representatives *g* such that $C_F(g)$ is a *p'*-group.

COROLLARY 6. Let P be a p-subgroup of G. Define $\overline{C} = PC_G(P)/P$ and $\overline{N} = N_G(P)/P$. Then:

(a) the number of p-blocks of G with defect group P is $\operatorname{rk}_{p} \Psi(\overline{C}, \overline{N})$;

(b) *P* is a defect group of a *p*-block of *G* if, and only if, there exists some $g \in \overline{C}$ such that *p* does not divide the number of solutions in $x \in \overline{C}$ and $w \in \overline{N}$ to the equation g = [x, w].

Proof. This is immediate from Proposition 1, Theorem 5, and Brauer's extended first main theorem.

Putting G = F in Theorem 5, or P = 1 in Corollary 6, we deduce that $f_0(G)$ is the *p*-rank of the symmetric integer matrix $\Psi(G) := \Psi(G, G)$ indexed by the representatives of the conjugacy classes of *G*. We note, as above, that to calculate $f_0(G)$, we need only consider the submatrix indexed by the representatives of the defect-zero conjugacy classes. Furthermore, we recover the special case of Strunkov [6, Theorem 1] asserting that *G* has a defect-zero *p*-block if, and only if, there exists an element $g \in G$ such that *p* does not divide the number of ways of expressing *g* as a commutator [x, w] with $x, w \in G$.

We end by observing another relationship between the character $\varphi_G = \varphi_G^G$ and the number of defect-zero *p*-blocks of *G*. Let us fix a Sylow *p*-subgroup *S* of *G*. We write (Res^{*G*}_{*S*}(φ_G), 1_{*S*}) to denote the multiplicity of the trivial κS module in the restriction of φ_G to *S*. Note that

$$(\operatorname{Res}_{S}^{G}(\varphi_{G}), 1_{S}) = |\{(x, w) \in G \times G : [x, w] \in S\}|/|S|.$$

PROPOSITION 7. *Modulo p, we have a congruence*

$$|G:S| f_0(G) \equiv_p (\operatorname{Res}_S^G(\varphi_G), 1_S).$$

Proof. For any $\zeta \in ZOG$, Lemma 3(a) gives

$$\varphi_G(\zeta) = |G| \sum_{\chi \in \operatorname{Irr}(\kappa G)} \omega_{\chi}(\zeta).$$

In particular, |G| divides $\psi_G(\zeta)$. Let G_p denote the set *p*-elements of *G*. By lizuka Watanabe [4, Lemmas 3 and 4], if $\chi \in Irr_0(\kappa G)$ then $\omega_{\chi}(G_p^+) = 1$, otherwise *p* divides $\omega_{\chi}(G_p^+)$. So

$$f_0(G) \equiv_p \varphi_G(G_p^+)/|G|.$$

Let $N = N_G(S)$. A well-known variant of Sylow's theorem asserts that the number of Sylow *p*-subgroups of *G* containing any given *p*-subgroup is congruent to unity modulo *p*. Applying this to the cyclic *p*-subgroups, we deduce that |G:N| is congruent to unity modulo *p*, and so too is the coefficient in $\operatorname{Tr}_N^G(S^+)$ of each *p*-element. Hence $(\operatorname{Tr}_N^G(S^+) - G_p^{\mp p})/p \in ZOG$, and p|G| divides $\varphi_G(\operatorname{Tr}_N^G(S^+) - G_p^{\mp})$. Therefore

$$\varphi_G(G_p^+)/|S| \equiv_p \varphi_G(\operatorname{Tr}_N^G(S^+))/|S| \equiv_p \varphi_G(S^+)/|S| = (\operatorname{Res}_S^G(\varphi_G), 1_S).$$

References

- 1. J. L. Alperin. Weights for finite groups. Proc. Symp. Pure Math., 47 (1987), 369-379.
- 2. M. Broué. On a theorem of G. Robinson. J. London Math. Soc., 29 (1984), 425-434.
- 3. M. Broué and G. R. Robinson. Bilinear forms on G-algebras. J. Algebra, 104 (1986), 377-396.
- 4. K. Iizuka and A. Watanabe. On the number of blocks of irreducible characters of a finite group with a given defect group. *Kumamoto J. Sci. (Math.)*, 9 (1973), 55–61.
- 5. G. R. Robinson. The number of blocks with a given defect group. J. Algebra, 84 (1983), 493-502.
- 6. S. P. Strunkov. Existence and the number of *p*-blocks of defect 0 in finite groups. *Algebra and Logic*, 30 (1992), 231–241.

Dr. L. J. Barker, Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey. 20C20: GROUP THEORY AND GENERALIZATIONS; Representation theory of groups; Modular representations and characters. Received on the 6th of September, 1996.