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Abstract. Given a/?-subgroup P of a finite group G, we express the number
of /i-blocks of G with defect group P as the /?-rank of a symmetric integer
matrix indexed by the j¥(/>)/,P-conjugacy classes in PC(P)/P. We obtain a
combinatorial criterion for P to be a defect group in G.

QUESTION A. Given a p-subgroup P of a finite group G, how many p-blocks
of G have defect group P? In particular, when is P a defect group in G?

An answer to this venerable question was given in Robinson [5], reformula-
ted in Broue [2], and generalised and further illuminated in Broue Robinson
[3]. The number of /^-blocks with defect group P is presented, in those three
works, as the/>-rank of a symmetric integer matrix indexed by certain conjugacy
classes of G.

QUESTION B. Supposing that G is a normal subgroup of a finite group F,
what is the number /o(G, F) of F/G-orbits of defect-zero p-blocks of G whose
stabilisers in F/G are p'-groups?

Question B is more general than Question A because Brauer's extended
first main theorem describes a bijective correspondence between the /^-blocks
of G with defect group P, and the NG(P)/PCG(P)-orbits of defect-zero p-
blocks b of PCa(P)/P such that the stabiliser of b in NG(P)/PCa(P) is a
p'-group. In answer to Question B, Theorem 5 below expresses fo(G, F) as the
/7-rank of a symmetric integer matrix ¥(G, F) indexed by the F-conjugacy
classes of G. Corollary 6 spells out the new answer thus provided to Question
A.

In view of the local reduction indicated above, and also in view of another
local reduction conjectured by Alperin [1], the number fo(G)=fo(G, G) of
defect-zero ^-blocks of G is of especial interest. A description of/0(G) as the
/7-rank of a symmetric integer matrix indexed by the conjugacy classes of G
has already been given by Robinson [5], but it is to be noted that the matrix
*F(G) = *F(G, G) has the feature of being independent of p.

This work is a synthesis of character-theoretic constructions in Strunkov
[6] and G-algebra-theoretic techniques implicit in Broue [2], Broue Robinson
[3], Robinson [5]. We also make use of a G-algebra-theoretic approach to
Clifford theory. I am grateful to Robinson for communicating to me an illumi-
nating formulation of material in [6].
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Let 0 be a complete local noetherian commutative ring whose residue field
O/J(O) has prime characteristic/?, and whose field of fractions K has character-
istic zero. We shall assume that K splits for all the given groups under consid-
eration. When speaking of an integer, we shall always be refering to a rational
integer, and we shall identify the integers with the elements of the minimal
unital subring of O. Also, we shall identify the /^-blocks of G with the block
idempotents of OG. Let Irr {KG) denote the set of irreducible JcG-characters,
and Irr0 {KG) the subset consisting of those j e l r r (KG) such that |G|/^(1) is
coprime to p.

The conjugation action of F on its normal subgroup G induces algebra
automorphisms of KG and OG, and induces permutations of Irr (KG). Recall
that, for H^K^F, the image {OG)K

H of the relative trace map Tr£ : (OG)H^
(OGf is an ideal of the AT-fixed subalgebra (OG)K of OG. For each irreducible
*:G-character x, w e write Nf.{x) f° r the stabiliser o f / in F, and write bF for
the primitive idempotent of the commutative algebra (OG)F such that
X(bF

x) = x(\)- Note that bx is the sum of the F-conjugates of the /?-block bx

of G containing X- We say that a primitive idempotent b of (OG)Fis projective
provided be(OG)F (when G = F, these idempotents are precisely the defect-
zero /^-blocks of G).

PROPOSITION 1. There is a bijective correspondence between the projective
primitive idempotents b of(OG)F, and the F-orbits of irreducible KG-characters
X such that |AV(z) | /z0) is coprime to p, whereby b corresponds to the F-orbit
of x provided b = bx .

Proof Let x be an irreducible KrG-character, and put N=NF(x)- It is
well-known that bx is a defect-zero />-block of G if, and only if, |G | / j ( l ) is
coprime to /;. When these equivalent conditions hold, the F-conjugates of x
are precisely the irreducible K"G-characters x' such that bF = bx-. So it suffices
to prove that bx is projective if, and only if, \N\/x(l) is coprime to p.

Suppose that \N\/x(\) is coprime to p. Then bx' is a defect-zero block of
OG, that is, tf — Trf (77) for some rjeOG. Also, \G: N\ is coprime to p, and
N is the stabiliser of b'x in F, hence the primitive idempotent

is projective. Conversely, suppose that bF is projective. By Mackey
decomposition,

So the idempotent bx=bxbx belongs to the ideal (OG)f of (OG)N, and in
particular, bx is a defect-zero block of OG. Therefore, |G|/#(1) is coprime to
p, and writing hx' =

 rYr1^ (p) for some fieOG, we have

Trf

whereupon \N: G\ must be coprime to p.

In particular, fo(G, F) is the number of projective primitive idempotents
of (OG)F. Let bf

G be the sum of the projective primitive idempotents of (OG)F.
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Thus bG is the sum of the defect-zero ^-blocks of G. We have a direct sum of
free cyclic O-modules

{OG)FbF
G= ® {OGfb

h

where b runs over the projective primitive idempotents of (OG)F. lizuka
Watanabe [4, Lemma 2] proved the following result in the special case G = F.

LEMMA 2: (OG)FbF
G^({OG)Ff^(OG)FbF

G®J(0){OG)F(\-bG).

Proof: Let V=(OG)Fbf
G and U=((OG)Ff as ideals of (OG)F. Clearly,

bGe V, so Kg U. Now

I f f IIT(K-G)

where the notation indicates that # runs over the F-orbits of Irr (KG). Let us
fix an irreducible (cG-character %. If bF is projective, then bFe V, so UbFs V.
Assuming now that bF is not projective, we have bGbF=0, and it suffices to
show that UbF<=J(O)(OG)F.

First suppose that ^6l r r 0 (KG). Then bFt£U, so UbF is strictly contained
in the free cyclic O-module (OG)FbF. Therefore UbF^J(O)(OG)Fin this case.
Now suppose that £<£Irr0 (KG). We observed above that (OG)F^(OG)'f, and
that the assertion holds when G = F. So

f )2^ZOG • b$®J(O) • ZOG(\ -bG).

But bG
xb

F = 0, so UbF^J(O) • ZOGn(OG)F=J(O)(OG)F.

For each irreducible fcG-character #, let <?̂  be the primitive idempotent of
(KG)F such that x(ez)=XO)> a n ( l ' e t ffl^ be the algebra map (K-G)F-+K- such
that co(eF) = 1. Then coF is a restriction of the central character wG

x associated
with x- That is to say, coF=x/xW o n (KG)F. Let coG: (KGY-HC, and
vG: (KG)F®K (KG)F->K be the characters afforded by the translation actions
of (KG)F and (KG)F®K (KG)F on (KG)F. Thus, given £, f ' 6 (K-G) F , the trace
of the action of f on (KG)F is

while the trace of the action of C®C o n (*G)F is

We define linear maps <pG : KG-+K and if/G : )c(G x G)-*/c given by

q£(g) = \{(x,w)eGx F: g=[x,w]}\,

yaig, h) = \{(x, w, v)eG x f x F: ̂ " ' u ^ 1 = [x, w]}\

for g,heG. Here, [x, W] = XH'X"'VV^1. The next result shows that <pG is a JCG-

character, and that \j/G is a K ( G X G)-character. Recall that the irreducible
K(GX G)-characters are the K(G X G)-characters of the form ^ * Z
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X, X s[rr (KG), where

For any element .veG, we write [x]F for the set of /-"-conjugates of x. For
any subset A <= G, we write A f for the sum in KG of the elements of [x]F. Thus
{[x]F : xeG) is a K-basis for (KG)F.

LEMMA 3.

(a) <t>G = lxe^(K-G)\

Proof. Given an element C,€(KG)F, and writing

then w£(^) = Z,.e.<;C>-.r- where the notation indicates that the two sums are
indexed by representatives y of the F-conjugacy classes of G. So for g, heG,
we have

/£(#, h) = | {x, w, D , i / )eGxfx Fx F: ugu~lvh~'v~lwxw~' =x}\/\F\

= X \{(w,v, u ) '

F/.-lrr( KG),UCI' ^ F,vG<~F

Part (b) is thus established. Part (a) may be proved either by showing, simi-
larly, that

or else by o b s e r v i n g t h a t (pc(g) = tyo(g, \)/\F\.

LEMMA 4. Given g, heG, then:

(a) \CF(g)\ divides (pF
G(g);

(b) \CF)(g)\\CF(h)\ divides yG(g,h).

Proof. The proof of Lemma 3 shows that (pG(g)/\CF(g)\ =ft>c([g]F), and
\f/G(g, h)/\CF(g)\ \CF(h)\ = va{[g]F®[h~[]F). Any rational number belonging
to 0 must be an integer.
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We define a symmetric integer matrix ^(G, F) = (y/'(;(g, h))fJier(; (indexed
by representatives of the F-conjugacy classes in G). For any integer matrix 4*,
let rk,, ¥ denote the /7-rank of *P (the rank of the reduction of f modulo p).

THEOREM 5. (a) fo(G, F) = rkp
y¥(G, F).

(b) (OG)F has a projective primitive idempolent if, and only if, <p'<;(x) is co-
prime to p for some xeG.

Proof. Any projective primitive idempotent b of (OG)' may be written in
the form b = Trf ( £ eG bgg) with each bHeO. Given another projective primitive
idempotent b' of (OG)F, the proof of Lemma 3 gives

which is zero when b + b'. But (or
a(b)= 1 because b = eh

x for some ^elrr,, (KG).
So f)(G, F) <rk ;, *Po-• The proof of Lemma 3 also shows that

V&g, h) = &>£(Trf (g) Trf (If'))

for g,heG. But / 0 (G, F) is the O-rank of (OG)'b'G, so Lemma 2 forces
/o(G, F)^rk, , ^ G , establishing part (a).

Part (b) is the assertion that y/G{g. h) is coprime to p for some g, heG if
and only if cpo(x) is coprime to p for some xeG. The forwards implication
holds because y/a(g,h) = (pG(gTrf(h~i)) for all g,heG. Proposition 1 and
Lemma 3(a) give the reverse implication.

Thanks to Lemma 4(b),fQ(G, F) is, in fact, the p-runk of the submatrix of
, F) indexed by those representatives g such that CF(g) is a //-group.

COROLLARY 6. Le/ P 6e a p-subgroup of G. Define C= PCG(P)/P and
N = NG(P)/P. Then:

(a) the number of p-blocks of G with defect group P is xkp ¥ (C, N);
(b) P is a defect group of a p-block of G if and only if there exists some geC
such that p does not divide the number of solutions in xeC and weN to the
equation g= [x, w].

Proof This is immediate from Proposition 1, Theorem 5, and Brauer's
extended first main theorem.

Putting G = F in Theorem 5, or P— 1 in Corollary 6, we deduce that/0(G)
is the/i-rank of the symmetric integer matrix ¥ (G) =X¥(G,G) indexed by the
representatives of the conjugacy classes of G. We note, as above, that to
calculate/o (G), we need only consider the submatrix indexed by the representa-
tives of the defect-zero conjugacy classes. Furthermore, we recover the special
case of Strunkov [6, Theorem 1] asserting that G has a defect-zero /?-block if,
and only if, there exists an element geG such that p does not divide the number
of ways of expressing g as a commutator [x, w] with A\ weG.
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We end by observing another relationship between the character q>(;=(po
and the number of defect-zero p-blocks of G. Let us fix a Sylow />-subgroup
S of G. We write (Res'v (<pG), l.v) to denote the multiplicity of the trivial KS-
module in the restriction of (p(j to S. Note that

(Res'v (q>a),\s) = \{(x, w)eGxG: [x, w]eS}\/\S\.

PROPOSITION 7. Modulo p, we have a congruence

\G: S\fo{G)=p(Resg (q>c), Is).

Proof. For any t^eZOG, Lemma 3(a) gives

j-elrr(nG)

In particular, \G\ divides V'o-(C)- Let Gp denote the set /7-elements of G. By
Iizuka Watanabe [4, Lemmas 3 and 4], if j e l r r o (KG) then <ox(GP~) = 1, other-
wise p divides cox(Gp). So

Let N=NO(S). A well-known variant of Sylow's theorem asserts that the
number of Sylow p-subgroups of G containing any given /(-subgroup is congru-
ent to unity modulo p. Applying this to the cyclic/"-subgroups, we deduce that
\G: N\ is congruent to unity modulo p, and so too is the coefficient in
Tr£(S + ) of each /--element. Hence (Tr% (S+)-Gp")/peZOG, and p\G\
divides q>G(Jx% (S h) - Gp ). Therefore

<Pa(G;)/\S\=p<pa(TT%{S+))/\S\=p<pG(S+)/\S\=(Res§(<PG),\s).
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