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Abstract: The aim of this study was to assess whether mild cognitive impairment (MCI) is associated
with disruption in large-scale structural networks in newly diagnosed, drug-na€ıve patients with Parkin-
son’s disease (PD). Graph theoretical analyses were applied to 3T MRI data from 123 PD patients and 56
controls from the Parkinson’s progression markers initiative (PPMI). Thirty-three patients were classified
as having Parkinson’s disease with mild cognitive impairment (PD-MCI) using the Movement Disorders
Society Task Force criteria, while the remaining 90 PD patients were classified as cognitively normal (PD-
CN). Global measures (clustering coefficient, characteristic path length, global efficiency, small-world-
ness) and regional measures (regional clustering coefficient, regional efficiency, hubs) were assessed in
the structural networks that were constructed based on cortical thickness and subcortical volume data.
PD-MCI patients showed a marked reduction in the average correlation strength between cortical and
subcortical regions compared with controls. These patients had a larger characteristic path length and
reduced global efficiency in addition to a lower regional efficiency in frontal and parietal regions com-
pared with PD-CN patients and controls. A reorganization of the highly connected regions in the network
was observed in both groups of patients. This study shows that the earliest stages of cognitive decline in
PD are associated with a disruption in the large-scale coordination of the brain network and with a
decrease of the efficiency of parallel information processing. These changes are likely to signal further
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cognitive decline and provide support to the role of aberrant network topology in cognitive impairment
in patients with early PD. Hum Brain Mapp 36:2980–2995, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Mild cognitive impairment (MCI) has a strong impact
on quality of life and frequently progresses to dementia in
patients with Parkinson’s disease (PD) (Svenningsson
et al., 2012). A global study of cerebral network disruption
can provide critical insights into the topological patterns
underlying cognitive decline in PD, going beyond the
study of localized brain regions and their association with
clinical impairment. Such an approach is perfectly suited
to assess cognitive functions, which are not attributable to
individual brain areas but rather emerge from the network
organization of the whole brain and its interactions (Filippi
et al., in press). The ideal tool to examine the structural
brain networks is provided by graph theory analysis (Bull-
more and Sporns, 2009). This framework relies on the
notion that brain regions that are highly correlated in cort-
ical thickness or volume (Alexander-Bloch et al., 2013a;
Bassett et al., 2008; He et al., 2007;) are often part of net-
works that subserve behavioral or cognitive functions
(Alexander-Bloch et al., 2013a; Bohbot et al., 2007; Lerch
et al., 2006). These networks of structural co-variance (He
et al., 2007) partially overlap with the functional networks
of healthy subjects and the targets of gray matter atrophy
in neurodegenerative disorders (Alexander-Bloch et al.,
2013a).

The notion that PD is related to abnormal functional
and structural connectivity has received support in the
past few years. On the one hand, there is increasing evi-
dence showing abnormal connectivity between the basal
ganglia and motor regions (Helmich et al., 2010; Kwak
et al., 2010) as well as decreased functional coupling
between areas of the default-mode network in these
patients (van Eimeren et al., 2009). On the other hand, dif-
fusion tensor imaging has revealed reduced integrity of
frontal, temporal, and parietal white matter connections in
PD patients with MCI (Agosta et al., 2013; Melzer et al.,
2013).

Despite this evidence, studies assessing network organi-
zation in PD using graph theory remain scarce. The only
studies that performed such analyses used functional MRI
(Baggio et al., in press; Skidmore et al., 2011; Wu et al.,
2010) or magnetoencephalography (Olde Dubbelink et al.,
2014) in patients at different disease stages that were
mostly under the effects of dopaminergic medication,
which can affect the network measures and mask the
effects of PD on cognition.

Here, we apply for the first time graph theory analysis
to assess the large-scale structural networks in a large, de

novo, drug-na€ıve cohort of PD patients. Recent studies
have shown that amyloid pathology and a posterior pat-
tern of cortical atrophy, both typical of Alzheimer’s dis-
ease (AD), can predict cognitive decline in PD (Alves
et al., 2014; Siderowf et al., 2010; Weintraub et al., 2012);
hence, we hypothesized that MCI in PD would be associ-
ated with structural network disruptions analogous to the
ones occurring in AD, including alterations in the commu-
nication between distant brain areas and breakdown of
highly connected regions (He et al., 2008; Yao et al., 2010).
We tested this hypothesis by assessing the interconnec-
tions between a region’s neighboring areas (clustering
coefficient) (Luce and Perry, 1949), the overall distance
between any two regions (characteristic path length) (Dijk-
stra, 1959), the balance between local and global connectiv-
ity (small-worldness) (Bassett and Bullmore, 2006; Watts
and Strogatz, 1998) and the highly connected regions of
the network with a key role in interregional communica-
tion (network hubs) (Sporns et al., 2007; van den Heuvel
and Sporns, 2013).

MATERIALS AND METHODS

Participants

All subjects included in the current study were enrolled
in the Parkinson’s Progression Markers Initiative (Parkin-
son progression marker initiative, 2011, www.ppmi-info.
org/data; accessed in March 2013). PD patients were diag-
nosed within 2 years of the screening visit, were entirely
untreated, had a Hoehn and Yahr (1967) stage of I or II,
and were required to have a dopamine transporter deficit
on DaTSCAN imaging. Years of disease duration, motor
severity assessed by part III of the MDS unified Parkin-
son’s disease rating scale (UPDRS) (Goetz et al., 2007) and
disability by Schwab and England scale (Fahn and Elton,
1987) were obtained from all patients. Psychiatric assess-
ment included the 15-item geriatric depression scale (GDS)
(Sheikh and Yesavage, 1986). Healthy controls were
included based on the following criteria: no neurological
dysfunction, no first-degree family member with PD, cog-
nitively normal as defined by a Montreal cognitive assess-
ment (MoCA) score >26, and no detectable dopaminergic
deficit on DaTSCAN.

In this study, we only included subjects whose volumet-
ric MRI was acquired on a 3T Siemens system and passed
quality control before and after image preprocessing. All
subjects underwent a comprehensive neuropsychological
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test battery that evaluated specific cognitive domains: the
15-item version of the Benton’s judgment of line orienta-
tion test (visuospatial); total immediate recall and delayed
recall of the Hopkins verbal learning test-revised (HVLT-
R; verbal memory); three semantic fluency tests (names of
animals, fruits, and vegetables) and the phonemic fluency
subtest of MoCA (executive); the letter number sequencing
test and the symbol digit modalities test (SDMT; attention).
The classification of MCI was performed by an approxima-
tion to the guidelines of the movement disorders society
(MDS) Task Force for the diagnosis of PD with MCI (PD-
MCI) (Litvan et al., 2012) as published elsewhere (Pereira
et al., 2014) and presented in Supporting Information.
Patients with PD who did not fulfill the criteria for MCI
were classified as cognitively normal patients (PD-CN).

The PPMI study was approved by the institutional
review board of all participating sites and written
informed consent was obtained from all participants
before inclusion in the study.

MRI Acquisition

All three-dimensional T1-weighted MRI scans were
acquired in the sagittal plane on 3T Siemens scanners
(Erlangen, Germany) at different centers using a MP-
RAGE sequence. The acquisition parameters were as fol-
lows: repetition time 5 2,300/1,900 ms; echo time 5 2.98/
2.96/2.27/2.48/2.52 ms; inversion time 5 900 ms; flip
angle: 98; matrix 5 240 3 256/256 3 256; voxel 5 1 3 1 3

1 mm3. Based on previously published quality control cri-
teria (Simmons et al., 2011), several subjects were excluded
due to field distortions (14 subjects: all PD patients
scanned at the same center, 7.9%), intensity inhomogene-
ities (2 subjects: 1 PD patient, 0.6%; 1 control; 1%), brain
injuries (5 subjects: 3 PD patients, 1.7%; 2 controls, 1.1%),
and motion artefacts (42 subjects: 25 PD patients, 14.1%; 17
controls, 17.5%).

MRI Preprocessing

The FreeSurfer software (version 5.3, http://surfer.nmr.
mgh.harvard.edu/fswiki) was used to provide a measure
of cortical thickness at each vertex of the cortical surface
(Dale et al., 1999; Fischl and Dale, 2000; Fischl et al., 1999,
2004) as well as volumes of subcortical structures. These
measures were obtained in an automated way after image
preprocessing using an application included in the Free-
surfer distribution called Query design estimate contrast.
Preprocessing consisted of removal of nonbrain tissue
using a watershed/surface deformation procedure
(Segonne et al., 2004) and an automated transformation to
Talairach space. Then, segmentation of subcortical white
matter and deep gray matter structures including the hip-
pocampus, amygdala, putamen, caudate, thalamus, and
nucleus accumbens, was performed using a technique that
automatically assigns a neuroanatomical label to each

voxel based on probabilistic information from a manually
labeled and segmented training set (Fischl et al., 2002).
This classification technique uses both global and local
spatial information for subcortical segmentation. The
global information is encoded by distributing classifiers
throughout an atlas volume and maintaining class statis-
tics on a per-class, per-location basis, allowing the classi-
fiers to be robust to variations in the contrast properties of
an anatomical class over space. The local information is
incorporated into the classification procedure by modeling
the segmentation as a nonstationary anisotropic Markov
random field (Fischl et al., 2002). After subcortical segmen-
tation, intensity normalization (Sled et al., 1998), tessella-
tion of the gray matter–white matter boundary and
automated topology correction (Fischl et al., 2001; Segonne
et al., 2007) were performed. Deformation of the surfaces
was performed following intensity gradients to optimally
place the gray/white and gray/cerebrospinal fluid borders
at the location where the greatest shift in intensity defines
the transition to the other tissue class. Once the cortical
models were complete, registration to a spherical atlas
took place that utilizes individual cortical folding patterns
to match cortical geometry across subjects (Fischl et al.,
1999). This was followed by parcellation of the cerebral
cortex into units based on gyral and sulcal structure fol-
lowing the nomenclature described in Destrieux et al.
(2010). Most of the cortical surface of the brain is hidden
in the sulci. For this reason, the Destrieux atlas also parcel-
lates gray matter regions embedded in brain sulci, classify-
ing them as sulcal gray matter regions and providing a
more precise description of the cortical surface with good
manual concordance to the Duvernoy’s atlas (Duvernoy
et al., 1991). Hence, for each hemisphere, a total of 74 dif-
ferent structures were identified corresponding to the cort-
ical thickness of gray matter regions located in the cortical
gyri and sulci (Supporting Information Table 1). In addi-
tion, seven subcortical volumes were also included: hippo-
campus, amygdala, accumbens, pallidum, thalamus,
putamen, and caudate. Using tkmedit, all preprocessing
steps performed in FreeSurfer were visually inspected to
ensure they had been performed correctly. As a result, 14
subjects (5 PD patients, 2.8%; 9 controls, 9.3%) were
excluded due to incorrect definition of the pial surface and
gray/white matter boundaries, in addition to 18 subjects
(6 PD patients, 3.4%; 12 controls, 12.4%) due to segmenta-
tion errors.

Network Analysis

Cortical networks were constructed for each group using
the structural co-variance method (Alexander-Bloch et al.,
2013a; He et al., 2007). The nodes in the network correspond
to the 148 cortical regions provided by the Destrieux atlas
in addition to 14 subcortical structures, both included in
FreeSurfer (version 5.3, http://surfer.nmr.mgh.harvard.
edu/fswiki) (Supporting Information Table 1). To date,

r Pereira et al. r

r 2982 r

http://surfer.nmr.mgh.harvard.edu/fswiki
http://surfer.nmr.mgh.harvard.edu/fswiki
http://surfer.nmr.mgh.harvard.edu/fswiki
http://surfer.nmr.mgh.harvard.edu/fswiki


most studies have analyzed structural networks with graph
theory using cortical thickness or volumes. In the current
study, we used both thickness and volume measures as
there is evidence showing cortical thickness is more sensi-
tive to gray matter changes occurring in PD (Pereira et al.,
2012) and that these patients also show abnormalities in
subcortical structures (Kehagia et al., 2010). As Freesurfer
does not provide measures for subcortical structures other
than volume, we decided to include these volumes to build
the networks. A similar approach has been used by a previ-
ous study assessing networks based both on cortical thick-
ness and cerebellar volume measures (Hosseini et al., 2013).
However, to ensure that our results were not driven by the
fact we used different anatomical measures, we also built
the networks using only cortical thickness and analyzed
these networks as a supplementary analysis.

In this study, the strength of the connections corre-
sponds to the structural correlation between brain regions,
assessed across each group, and the overall connectivity of
the network can be evaluated using the average structural
correlation strength. The edges between nodes are intro-
duced when the correlation strength between the corre-
sponding brain regions exceeds a certain threshold. The
measures of cortical thickness were adjusted by linear
regression to remove potential confounding effects of age
and gender, while the measures of subcortical volumes
were adjusted by linear regression to remove potential
confounding effects of age, gender, and intracranial vol-
ume. Cortical thickness measures were not corrected for
intracranial volume (ICV) because they do not scale with
head size (http://freesurfer.net/fswiki/eTIV) (Westman
et al., 2013). However, some studies have corrected the
cortical thickness of every brain region by the mean thick-
ness of the whole brain before analyzing the structural
covariance networks (Bernhardt et al., 2011; He et al.,
2007). Hence, in this study, we also built and assessed the
structural networks after applying this additional control.

The resulting residuals were used to substitute for the
raw values. In total, the residuals of 148 cortical regions
(74 per hemisphere) in addition to 14 subcortical volumes
(7 per hemisphere) were included, leading to a grand total
of 162 regions. Therefore, the structural correlation net-
works for controls, PD-CN and PD-MCI patients were
computed based on a 162 3 162 association matrix created
for each group, with each entry defined as the Pearson
correlation coefficient between every pair of anatomical
measures. We note that this association matrix is symmet-
ric (i.e., there is no preferential directionality in the con-
nections). Because of methodological challenges in
analyzing and comparing weighted networks (Rubinov
and Sporns, 2011), we proceeded to construct a (undir-
ected) binary network with a given sparsity (i.e., fraction
of active connections to all possible connections) from each
association matrix, where the correlation coefficient was
considered one if it was above a certain threshold indicat-
ing the presence of a structural correlation between two
brain regions, and zero if it was below the threshold indi-

cating there was not a significant correlation between two
regions.

This was achieved by fixing a threshold that permitted
us to attain a given common sparsity for the three groups.
Hence, we thresholded the constructed association matri-
ces under different network sparsity levels ranging from
Smin 5 2% to Smax 5 12%, in steps of 0.5% and compared
the network topologies across that range. For sparsities
above 12%, the graphs became increasingly similar to ran-
dom graphs (i.e., small-world index close to 1) and, thus,
uninteresting for the purpose of our study. For sparsities
below 2%, the number of connections was inferior to the
number of nodes, corresponding to a network with many
single unconnected nodes. Hence, we defined 2% as the
lower limit of our range of sparsities as it does not make
sense to assess global and regional measures in a widely
disconnected network.

At 2% sparsity, all edges had a correlation coefficient
that was above 0.639 in controls, 0.601 in the PD-CN
group and 0.536 in the PD-MCI group. At 12% sparsity, all
edges were also significant and had a correlation coeffi-
cient that was above 0.487 in controls, 0.446 in the PD-CN
group and 0.375 in the PD-MCI group. We only included
positive suprathreshold correlations in our network analy-
ses, based on the observation by Gong et al. (2012) that
only positive thickness correlations are mediated by direct
fiber pathways. In addition, the formulas that we used to
compute the network measures are not able to quantify
the role of negative correlations in global network organi-
zation at the moment. These formulas were taken from the
Brain Connectivity Toolbox (https://sites.google.com/
site/bctnet/) (Rubinov and Sporns, 2010). We used the
BrainNet Viewer (http://www.nitrc.org/projects/bnv/)
for network visualization (Xia et al., 2013).

We note that the use of structural co-variance networks
is justified as they can result from structural connectivity
based on the physical connection of white matter tracts
(Gong et al., 2012) or functional connectivity based on syn-
chronous neural activation (Alexander-Bloch et al., 2013b).
In addition, structural correlations might also occur
between brain regions due to their connectivity to a third
region or shared mechanisms in neurodegeneration (Zhu
et al., 2012). This approach has been used to assess brain
network structure in normal aging (Zhu et al., 2012), AD
(He et al., 2008), schizophrenia (Bassett et al., 2008), multi-
ple sclerosis (He et al., 2009a), epilepsy (Bernhardt et al.,
2011), and depression (Singh et al., 2013).

To detect differences between groups in the regional
network organization, we assessed the regional clustering
coefficient, the regional efficiency, and the network hubs.
The regional clustering coefficient is a measure of how
strongly a node is locally interconnected; it is measured as
the fraction of the node’s neighbors that are also neighbors
of each other (Rubinov and Sporns, 2010), that is, the frac-
tion of triangles present around the node. The regional
efficiency quantifies how efficiently information can be
transmitted from a node to the rest of the network and
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vice versa; it is assessed as the average of the inverse
shortest path length from the node to each other node in
the graph (Achard and Bullmore, 2007). The network hubs
are the nodes that play a critical role in the attainment and
regulation of the information flow over the network (van
den Heuvel and Sporns, 2013); typically, they have a large
number of connections to other nodes (high degree) and
are traversed by a large fraction of shortest paths between
pairs of nodes belonging to the network (high betweenness
centrality). Depending on their location in the brain, the
network hubs can be classified into heteromodal, unimo-
dal, paralimbic, and primary sensorimotor (Mesulam,
1998). In this study, the hubs were identified as the nodes
with both a degree and betweenness centrality that was
one SD above the network averages.

To detect differences between groups in the overall net-
work architecture, we analyzed four global network meas-
ures: the mean clustering coefficient, the global efficiency,
the characteristic path length, and the small-worldness.
The mean clustering coefficient and the global efficiency
are the average of the regional clustering coefficient and
the regional efficiency of all nodes, respectively. The char-
acteristic path length is the average of the minimum num-
ber of connections that link any two nodes in the network.
The small-worldness is a measure of how much a network
is locally interconnected compared with a random network
but still retaining global connectivity between distant brain
regions (Watts and Strogatz, 1998). In other words, a
small-world network has a higher clustering coefficient
but a similar characteristic path length compared with the
one of a random network (Watts and Strogatz, 1998). In
the current study, the results obtained in the global net-
work analyses were confirmed with another atlas (Desikan
atlas; Desikan et al., 2006), also provided by FreeSurfer.
All measures were calculated taking into account the pres-
ence of disconnected components in the network, as
implemented in the formulas by Rubinov and Sporns
(2010). This is particularly important for the characteristic
path length, which was calculated only within connected
components. The global (and regional) efficiency can be
meaningfully computed on disconnected networks, as
paths between disconnected nodes are considered to have
infinite length and zero efficiency (Rubinov and Sporns,
2010). The average (and regional) clustering coefficient
may also be calculated in disconnected networks; if a node
has less than two connected neighbors then it will have a
regional clustering coefficient of zero. The details regard-
ing the formal definition of the measures have been
included in Supporting Information.

Comparison of Network Measures Between

Groups

Global and regional network measures were computed
for each group. To test the statistical significance of the
differences between groups, we performed nonparametric

permutation tests (Bassett et al., 2008; He et al., 2008) with
1,000 replicates. First, we randomly reallocated each partic-
ipant’s set of regional anatomical measures to one of each
pair of groups with the same number of subjects as in the
original groups and recalculated the correlation matrix for
each randomized group. The corresponding binary matri-
ces were then estimated using the same range of sparsity
thresholds as in the real brain networks. The network
parameters were computed for each randomized group
and the differences between groups were calculated. This
randomization procedure was repeated 1,000 times for
every sparsity threshold value and the 95% confidence
intervals (CI) of each distribution were used as critical val-
ues for a one-tailed test of the null hypothesis at P< 0.05.
In the current study, we applied a conservative threshold
by requiring results to be significant at all sparsities. In
addition, to adjust the regional network results for multi-
ple comparisons, a false discovery rate (Genovese et al.,
2002) procedure was also applied to control for the num-
ber of regions that were tested at a q value of 0.05.

To further confirm that the results obtained in this study
were not influenced by the presence of disconnected com-
ponents, we also compared the network measures obtained
from the weighted networks of each group as these were all
connected and did not have any disconnected nodes.

Statistical Analyses

Differences between groups in demographic and neuro-
psychological variables were analyzed using Mann–Whit-
ney U tests for non-normally distributed data, Student’s T-
test for normally distributed data, and Pearson’s chi-
squared test for categorical data in SPSS 20.0. The con-
struction and analyses of structural brain networks were
conducted in MATLAB 8.1 (2013b) using the Brain Con-
nectivity Toolbox (https://sites.google.com/site/bctnet/)
(Rubinov and Sporns, 2010).

RESULTS

After excluding subjects with an MRI scanner that did
not pass quality control or showed preprocessing errors,
the final sample size consisted of 56 controls and 123 PD
patients as shown in Table I. Following the MDS criteria
(Litvan et al., 2012), 33 out of 123 PD patients were classi-
fied as having PD-MCI, while the remaining 90 PD
patients were classified as PD-CN (Table I). PD-MCI
patients were significantly older, more frequently male
and performed worse on all cognitive tests compared with
controls, except in the phonemic fluency test (P< 0.05;
Table I). Moreover, these patients obtained significantly
lower scores in all cognitive tests compared with PD-CN
patients, except in the semantic and phonemic fluency
tests (P< 0.05; Table I). PD-CN patients obtained signifi-
cantly lower scores in the SDMT compared with controls
(P< 0.05; Table I).
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Global Network Analyses

The weighted correlation matrices, undirected binary
matrices and the constructed brain graphs are presented in
Figure 1. All groups showed strong correlations between
bilaterally homologous regions. A progressive decrease of
the average correlation strength was observed from con-
trols (0.26 6 0.2) to PD-CN patients (0.23 6 0.2) and to PD-
MCI patients (0.13 6 0.2). In particular, PD-MCI patients
showed significantly lower average correlation strength
compared with controls and PD-CN patients after permu-
tation testing (P< 0.01 and P< 0.023, respectively). No sig-
nificant differences were found in the average correlation
strength between controls and PD-CN patients.

In all three groups, using progressively higher values of
sparsity, the average clustering coefficient and global effi-
ciency increased (Fig. 2A,B), the characteristic path length
decreased (Fig. 2C), and a small-world topology was
observed (Fig. 2D). The differences in the characteristic
path length and global efficiency between PD-MCI patients
and controls (Fig. 2E,F) were significant for all sparsities
(P range, <0.001–0.04), while no significant differences
were found in PD-CN patients compared with controls or
between the two patient groups. The mean clustering coef-
ficient and small-worldness did not show significant dif-
ferences at all sparsities between any groups.

When we analyzed the weighted networks, we also
observed a significant increase in the characteristic path
length (P< 0.016; 95% CI: 21.20–0.38) and a decrease of the
global efficiency (P< 0.011; 95% CI: 20.05–0.09) in PD-MCI
patients compared with controls, suggesting that the find-
ings obtained from the analyses in the binary networks were
not influenced by the presence of disconnected components.

In the current study, the global network analyses were
also performed in structural networks built with the parcela-
tions provided by the Desikan atlas. This analysis was per-
formed to validate the reproducibility of our findings with
different parcelation schemes. The results showed that, in
agreement with the findings obtained with the Destrieux
atlas, PD-MCI patients showed significant increases in the
path length and reductions of the global efficiency compared
with controls at several sparsities (P range, <0.001–0.035),
after permutation testing (Supporting Information Table 2).

In addition, we also repeated the global network analy-
ses with the Destrieux atlas after excluding the subcortical
volumes. This analysis was performed to address whether
there was any influence of mixing cortical thickness with
subcortical volumes in our results. We found significant
increases in the characteristic path length and decreases in
global efficiency in PD-MCI patients compared with con-
trols at several sparsities (P range, <0.002–0.049), after

TABLE I. Characteristics of healthy controls, PD-CN patients, and PD-MCI patients

Controls
(n 5 56)

All patients
(n 5 123)

PD-CN
patients
(n 5 90)

PD-MCI
patients
(n 5 33)

Controls
versus
PD-CN

(P value)a

Controls
versus

PD-MCI
(P value)a

PD-CN
versus

PD-MCI
(P value)a

Age, years (mean, std, range) 58.0(10.4) 60.5(9.5) 59.4(10.0) 63.4(7.6) 0.467 0.018 0.058
[30–78] [37–77] [37–77] [49–76]

Gender (% male) 58.9% 61.0% 61.1% 60.6% 0.069 0.024 0.003
Education, years (mean, std) 15.5(2.8) 15.3(2.9) 15.5(2.6) 14.6(3.4) 0.880 0.279 0.202
MoCA total score (mean, std; range) 28.1(1.2) 27.4(2.2) 28.1(1.5) 25.7(2.7) 0.805 <0.001 <0.001

(26–30) (19–30) (24–30) (19–29)
UPDRS-III (mean, std,) – 20.1(8.7) 19.6(8.9) 21.5(8.2) – – 0.178
Hoehn and Yahr stage (median) – 2.0 2.0 2.0 – – 0.555
Disease duration, months (mean, std) – 6.6 (7.2) 6.8 (7.3) 6.2 (6.8) – – 0.448
GDS (mean, std) 5.4(1.7) 5.1(1.4) 5.1(1.4) 5.2(1.6) 0.234 0.590 0.701
Schwab and England ADL (mean, std) – 94.7(5.5) 94.9(5.3) 94.1(5.9) – – 0.534
Benton’s judgment line orientation (mean, std) 13.1(1.9) 12.9(2.1) 13.3(1.8) 11.9(2.3) 0.593 0.011 0.003
Total immediate recall (HVLT; mean, std) 25.9(4.9) 25.5(5.0) 26.6(4.4) 22.4(5.4) 0.424 0.006 <0.001
Delayed recall (HVLT; mean, std) 9.4(2.1) 8.7(2.4) 9.3(2.0) 7.2(2.6) 0.813 <0.001 <0.001
Letter and number sequencing (mean, std) 11.4(2.4) 10.9(2.9) 11.5(2.7) 9.2(2.8) 0.697 0.001 <0.001
Semantic fluency (mean, std) 53.0(9.6) 50.3(12.0) 51.6(11.8) 46.8(12.2) 0.325 0.009 0.061
Phonemic fluency (MoCA; mean, std) 13.8(4.4) 12.8(4.3) 13.0(3.9) 12.0(5.3) 0.488 0.071 0.149
Symbol and digits modalities test (mean, std) 47.7(10.3) 41.2(9.0) 42.6(8.2) 37.7(10.3) 0.003 <0.001 0.038

Std, standard deviation.
aCalculated using Mann–Whitney U tests to compare groups for age, education, UPDRS-III, Schwab and England ADL, Benton’s judg-
ment line orientation scores, Letter and number sequencing scores, total immediate and delayed recall scores (HVLT), semantic and
phonemic fluency scores, Symbol and digits modalities scores; Pearson’s chi-squared tests for gender and Hoehn and Yahr stage; and
Student’s T-test for GDS scores.
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1,000 permutations (Supporting Information Table 3), in
line with the findings obtained in the networks mixing
cortical thickness with subcortical volumes.

Finally, the analyses of the structural networks that
were built after correcting the regional thicknesses by the
whole brain mean thickness did not show any differences
between groups in any network measure.

Regional Network Analyses

We found a lower regional efficiency in the left superior
frontal gyrus in PD-MCI patients compared with controls

and PD-CN patients (P< 0.01, q< 0.05). In addition, we
observed a decrease of the regional efficiency in PD-MCI
patients in the right superior parietal gyrus when compared
with controls (P< 0.01, q< 0.05) and in the right inferior
parietal angular gyrus when compared with PD-CN
patients (P< 0.01, q< 0.05). This is illustrated in Figure 3: in
each subplot, the regions showing significant group differ-
ences are highlighted in red, while the remaining brain areas
are color-coded according to their distance from such
regions. No significant differences were found between PD-
CN and controls in regional efficiency or between any of the
groups in the regional clustering coefficients at all sparsities.

Figure 1.

Structural brain networks in healthy controls, PD-CN patients

and PD-MCI patients. From left to right: weighted correlation

matrices of 162 anatomical regions (warmer colors indicate

higher correlation coefficients), plots showing the number (N8)

of correlations (Y axis) and their correlation coefficients (X axis)

at 7% sparsity (orange line—middle value in the range 2–12%;

only correlations surviving the threshold, which are located on

the right side of the orange line, are included in the binary net-

works and had a correlation coefficient that was above 0.547 in

controls, 0.503 in PD-CN, and 0.433 in PD-MCI patients at 7%

sparsity), undirected binary connectivity matrices at 7% sparsity,

and corresponding brain graphs. From top to bottom: Controls,

PD-CN, and PD-MCI groups.
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Hub Analysis

The hubs were identified as the nodes with both a
degree and betweenness centrality that was one SD above
the network averages. This is a descriptive analysis (its
statistical significance is unknown) by contrast to the
regional efficiency analyses, and it is one of the most com-

mon procedures used by previous studies to identify net-
work hubs (for review, see van den Heuvel and Sporns,
2013).

As shown in Figure 4 and Table II, the control group
had 19 regions that were identified as hubs, including 10
heteromodal, 4 unimodal, 2 paralimbic, and 3 primary sen-
sorimotor. The PD-CN group had 13 regions that were

Figure 2.

Changes in global network measures and significant differences

between groups as a function of network sparsity. Average clus-

tering coefficient (A), global efficiency (B), characteristic path

length (C), and small-worldness (D) of controls (light blue), PD-

CN (dark blue), and PD-MCI patients (orange) as a function of

network sparsity (2–12%). The plots (E) and (F) show the

upper and lower bounds of the 95% CI and significant differen-

ces in characteristic path length and global efficiency between

controls and PD-MCI patients as a function of sparsity. The tri-

angles show the difference between controls and PD-MCI

groups and, when falling outside the CI, indicate that the differ-

ence was statistically significant at P< 0.05. The open squares

indicate the mean values of the difference in characteristic path

length and global efficiency between the randomized groups

after running the permutation tests.
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identified as hubs, including 9 heteromodal, 2 unimodal, 1
paralimbic, and 1 primary sensorimotor. Finally, the PD-
MCI group had 16 hubs, of which 4 were in heteromodal,
3 in unimodal, 8 in paralimbic, and 1 in primary sensori-
motor regions.

In the control group, the hubs were mainly located in
posterior parietal, lateral temporal, superior frontal, mid-
dle frontal, and middle occipital regions. Compared with
controls, the PD-CN group also showed hubs in bilateral
superior frontal regions as well as in the right middle
frontal, inferior parietal (angular gyrus), superior tempo-
ral, middle temporal, and middle occipital areas. Com-
pared with controls, these patients showed more hubs in
the left frontal cortex and less hubs in the posterior parie-
tal and lateral temporal areas of both hemispheres.

Compared with controls, the PD-MCI patients also
showed hubs in the left inferior parietal (supramarginal
and angular gyri), left superior temporal and lateral tem-
poral regions, in addition to the right precuneus and right
superior temporal areas. Compared with controls, the PD-
MCI group showed more hubs in paralimbic regions such
as the left inferior orbital frontal, left subcentral, right
orbital, right temporal pole areas as well as the bilateral
insula, and bilateral posterior dorsal cingulum.

DISCUSSION

This study is the first in assessing large-scale structural
networks associated with the earliest stages of cognitive
impairment in PD. We found that global network proper-
ties were disrupted in PD-MCI patients, as reflected by an
increase of characteristic path length and a decrease of
global efficiency. This disruption affected mainly frontal
and parietal areas, as indicated by a decrease of their
regional efficiency. These findings show that MCI in PD is
associated with widespread changes that affect the whole
cerebral network already at early disease stages. Further-
more, a reorganization of the network’s hubs was
observed not only in PD-MCI but also in PD-CN patients,
suggesting that the alterations of the structural cerebral
networks are detectable even in cognitively preserved,
newly diagnosed, untreated patients.

By contrast to conventional MRI studies of individual
brain regions, imaging the structural correlations between
brain areas can reveal the pathology of neurodegenerative
diseases at the network level (Alexander-Bloch et al.,
2013a). In line with this, an abnormal pattern of increased
and decreased structural correlations has been found in
AD patients compared with healthy controls (He et al.,

Figure 3.

Regions showing higher regional efficiency in controls and PD-

CN patients compared with PD-MCI patients. The red node

corresponds to the region showing significant differences

between groups in regional efficiency: (A) left superior frontal

gyrus, (B) right superior parietal gyrus, (C) right inferior parietal

angular gyrus. The remaining nodes correspond to the brain

regions directly or indirectly connected to them by a path length

of one to four nodes. The reduction of regional efficiency entails

that more nodes had to be crossed in the PD-MCI network to

reach the red node from any other node in the network.

r Pereira et al. r

r 2988 r



2008; Yao et al., 2010). In this study, we found a marked
reduction in the average correlation strength between cort-
ical and subcortical regions in PD-MCI patients. These
decreases in structural co-variance could be related to a
disconnectivity process that compromised the white matter
pathways connecting brain areas to one another. In fact, it
has been previously suggested that PD, like AD, is a dis-
connection syndrome (Cronin-Golomb, 2010) characterized
by white matter integrity reductions that are more severe
in cognitively impaired compared with cognitively pre-
served patients (Agosta et al., 2013; Melzer et al., 2013).
These findings are in line with our results of decreased
average correlation strength in PD, which were more
marked in the PD-MCI group. The presence of disconnec-
tivity in the brain networks of PD patients could be associ-
ated with Lewy body (Braak et al., 1999) and AD-related
neuropathology (Compta et al., 2011; Palop and Mucke,
2010). In fact, there is growing evidence suggesting mis-
folded proteins (including beta-amyloid and tau) first
develop intraneuronally and then spread from neuron to

neuron through axonal connections, following a prion-like
mechanism (Frost and Diamond, 2010). This mechanism
has received support from research in PD patients who
received a transplant of dopaminergic neurons and devel-
oped pathology within those neurons a few years later
(Angot et al., 2010).

Alpha-synuclein-positive Lewy neurites can be found in
extensive portions of the axons in PD (Braak et al., 1999),
which may damage presynaptic terminals, impair axonal
transport, and produce axonal degeneration in white matter
pathways (Saito et al., 2003). There is evidence suggesting
that this axonal degeneration ultimately damages the neuro-
nal cell body, a process that is also known as the “dying
back” pattern of neurodegeneration (Hattori et al., 2012),
which starts in the axon and spreads to the soma. This pro-
cess may equally affect the regions that were once connected
by the damaged axon, in which case the correlation strength
between them would increase due to shared mechanisms in
neurodegeneration (Zhu et al., 2012). However, it may also
lead to cortical atrophy of the region containing the dying cell
body, leaving the other region relatively spared structurally.
In this case, an attenuation of the correlation strength between
two regions would be observed (Alexander-Bloch et al.,
2013a), a mechanism that could explain the weaker structural
correlations observed in the PD-MCI patients in our study.

In line with previous studies in AD (He et al., 2008; Yao
et al., 2010), we found a longer characteristic path length
and reduced global efficiency in the networks of PD-MCI
patients compared with controls. Short paths in a brain
network ensure an efficient and easy communication
between brain regions (Rubinov and Sporns, 2010). The
characteristic path length and global efficiency have been
previously associated with intelligence (van den Heuvel
et al., 2009) and cognitive abilities (Wen et al., 2011),
including visuospatial and executive functions. Our find-
ings also support this association of network path length
and efficiency with cognition as we did not find such
alterations in PD-CN patients.

Previous studies have shown that neurodegenerative
diseases target brain regions that are especially highly cor-
related in healthy subjects (Seeley et al., 2009). These
regions are the network hubs, which play a crucial role in
the network as they interact with many brain regions (van
den Heuvel and Sporns, 2013). In our study, we found
regional efficiency decreases in frontal and parietal regions
in PD-MCI patients. Interestingly, these regions are part of
the default-mode network and were identified as network
hubs in the control group but not in the PD-MCI group,
suggesting they were lost as a result of neurodegeneration
in these patients, like in other neurodegenerative disorders
(Seeley et al., 2009). The regional efficiency decreases we
found in parietal and frontal areas are in agreement with a
study showing that frontal and parietal abnormalities are
an early marker of cognitive decline in PD (Rektorova
et al., 2014). In addition, they also agree with previous
neuropathological data showing that PD targets neurons
that establish connections between high-order sensory

Figure 4.

Network hubs. Hubs identified in the structural networks of

controls, PD-CN patients, and PD-MCI patients. They were clas-

sified according to their location in the brain: heteromodal hubs

(light blue), unimodal hubs (dark blue), paralimbic hubs (orange),

primary sensorimotor hubs (yellow).
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association areas and prefrontal areas (Braak and Del Tre-
dici, 2005). These neurons are vulnerable to PD due to
their long, thin and poorly myelinated axons: it has been

suggested that incompletely myelinated axons are sub-
jected to higher energy demands and a permanent expo-
sure to oxidative stress (Braak and Del Tredici, 2005).

TABLE II. Regions showing high nodal degree and betweenness centrality in controls, PD-CN patients, and PD-MCI

patients

Class Degree Betweenness centrality

Controls
Lh superior frontal G Heteromodal 51 4.6
Lh inferior parietal supramarginal G Heteromodal 44 3.2
Lh inferior parietal angular G Heteromodal 42 2.9
Lh superior temporal S Unimodal 38 2.7
Lh superior temporal G (lateral part) Unimodal 25 2.3
Lh temporal pole Paralimbic 37 5.1
Lh middle temporal G Heteromodal 39 2.5
Lh middle occipital G Primary SM 52 6.2
Rh superior frontal G Heteromodal 41 3.4
Rh middle frontal G Heteromodal 29 2.9
Rh precentral G Primary SM 34 2.3
Rh middle posterior cingulate G and S Paralimbic 39 3.2
Rh superior parietal G Heteromodal 54 6.8
Rh precuneus G Heteromodal 34 2.9
Rh inferior parietal angular G Heteromodal 49 2.8
Rh superior temporal S Unimodal 41 3.2
Rh superior lateral temporal G Unimodal 34 2.5
Rh middle temporal G Heteromodal 33 2.8
Rh middle occipital G Primary SM 42 2.4

PD-CN patients
Lh orbital G Paralimbic 30 4.1
Lh superior frontal G Heteromodal 52 4.4
Lh superior frontal S Heteromodal 43 2.2
Lh middle frontal G Heteromodal 50 3.0
Lh inferior frontal opercular G Heteromodal 33 2.2
Lh inferior temporal G Unimodal 31 3.1
Rh superior frontal G Heteromodal 50 3.9
Rh middle frontal G Heteromodal 44 2.4
Rh inferior parietal supramarginal G Heteromodal 44 2.9
Rh inferior parietal angular G Heteromodal 42 2.3
Rh superior temporal S Unimodal 39 5.4
Rh middle temporal G Heteromodal 38 2.2
Rh middle occipital G Primary SM 46 5.6

PD-MCI patients
Lh inferior frontal orbital G Paralimbic 32 5.8
Lh subcentral G and S Paralimbic 23 6.1
Lh inferior circular insula S Paralimbic 29 3.9
Lh inferior parietal supramarginal G Heteromodal 40 5.0
Lh cingulate G—posterior dorsal part Paralimbic 26 3.7
Lh inferior parietal angular G Heteromodal 28 4.2
Lh superior temporal S Unimodal 32 4.1
Lh superior lateral temporal Unimodal 24 4.7
Rh orbital G Paralimbic 25 3.9
Rh superior circular insular S Paralimbic 23 4.2
Rh precentral G—inferior part Primary SM 46 9.2
Rh inferior parietal supramarginal G Heteromodal 29 5.0
Rh precuneus Heteromodal 34 4.3
Rh cingulate G—posterior dorsal part Paralimbic 24 4.4
Rh superior temporal S Unimodal 34 4.1
Rh temporal pole Paralimbic 28 5.3

Lh, left hemisphere; Rh, right hemisphere; G, gyus; S, sulcus; SM, sensorimotor.
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In the current study, 10 heteromodal hubs were found
in controls compared with only four in PD-MCI patients,
suggesting a severe disruption of regions involved in
high-level cognitive processes. In particular, almost all
frontal hubs were lost in PD-MCI patients, by contrast to
PD-CN patients who showed an increase of left frontal
hubs, compared with controls. The loss of frontal hubs in
our PD-MCI group might be associated with the typical
dysexecutive syndrome usually observed in these patients,
which is thought to be produced by fronto-striatal dopa-
minergic deficits (Kehagia et al., 2010). By contrast, the
increase of frontal hubs we observed in PD-CN patients
might stem from upregulated frontal dopaminergic trans-
mission in early PD in response to reductions in striatal
dopamine. This compensatory mechanism is thought to
underlie improved frontal function in early PD patients,
for instance, in measures of susceptibility to distraction
(Cools et al., 2010).

Previous studies assessing functional networks in PD
with graph theory have shown reduced global efficiency
in these patients (G€ottlich et al., 2013; Skidmore et al.,
2011; Wu et al., 2010), similarly to our findings. In addi-
tion, reduced clustering was found in a small group of
early dug-na€ıve patients by one study (Olde Dubbelink
et al., 2014) in line with the lower clustering levels we
found at a few network sparsities in our sample. To date,
the only study assessing the functional networks of PD-
MCI patients showed an increased path length and a reor-
ganization of network hubs at moderate disease stages
(Baggio et al., in press). Our findings suggest that these
network changes can already be identified in the structural
networks of early PD patients, prior to the beginning of
dopaminergic treatment. In addition, in that study (Baggio
et al., in press), an increase in small-worldness was found
in PD-MCI patients compared with controls and PD-CN
patients, in line with our findings of higher small-world
values in the PD-MCI group. However, the explanation
behind this result is most likely different between the two
studies. Normally, the small-worldness is calculated as:
(CC real network/CC random network)/(CPL real net-
work/CPL random network), where CC is the clustering
coefficient and CPL is the characteristic path length. While
in the study by Baggio et al. (in press) the small-worldness
increases were probably due to higher clustering coeffi-
cient values in the real network (CC real network) of PD-
MCI patients, in our study the small-worldness increases
were due to very low clustering values in the random net-
work (CC random network) of PD-MCI patients. These
clustering decreases found in the random network in our
study occurred because PD-MCI patients had less hubs
and a more homogenous degree distribution compared
with controls and PD-CN patients, being easier to derive a
more random network with lower clustering coefficients
from the real network of these patients compared with the
other two groups. Future studies assessing small-
worldness in the structural networks of PD-MCI patients
should take this issue into account.

In a previous study, we identified the individual areas
showing cortical thinning in the same PD sample assessed
in the current study (Pereira et al., 2014). We found signifi-
cant thinning in the temporal cortex in PD-CN patients
and in frontal, temporal, and parietal regions in PD-MCI
patients compared with controls (Supporting Information
Fig. 1). The fact that these results do not completely coin-
cide with the significant regions of our network analysis is
probably related with structural networks containing
exclusive information that cannot be captured by conven-
tional MRI analyses. These measures may be sensitive to
alterations that are not evident in gross structure because
they take into account the integration of every brain area
into the whole cerebral network.

In the current study, when the regional thickness values
were corrected by the average thickness of the whole cor-
tex, the network analyses did not show any differences
between any of the groups. Some studies assessing cortical
thickness networks corrected the values of each region by
the average thickness (Bernhardt et al., 2011; He et al.,
2007), while others have not applied this correction (He
et al., 2008; Teicher et al., 2013), suggesting that it might
not always be appropriate. As mentioned earlier, in a pre-
vious study, we observed that our PD-MCI group showed
cortical thinning in several brain regions compared with
controls, instead of focal thinning in specific areas (Pereira
et al., 2014). Hence, we believe that by correcting for mean
thickness we would remove important information from
the networks of patients as their pattern of brain abnor-
malities, being widespread, is closely associated with the
mean thickness of the whole cortex. Moreover, it is also
very likely that the cortical thinning pattern and the mean
thickness of PD-MCI patients are associated with the net-
work abnormalities that we found in the current study. In
line with this, in a previous study, Reijmer et al., (2013)
found that reductions in white matter volume and
increases in white matter hyperintensity load strongly cor-
related with abnormalities in the global efficiency, cluster-
ing coefficient, and characteristic path length in the white
matter networks of AD patients. In that study, the authors
did not correct the network values by the white matter
volume or hyperintensity load of each patient as it would
probably eliminate the effect they wished to measure.

The current study has several strengths including the
large sample size, neurobiological confirmation of PD
diagnoses with DaTSCAN, diagnosis of MCI using modi-
fied MDS criteria and the fact that all patients were drug-
na€ıve. However, some limitations should also be recog-
nized. First, the anatomical connectivity matrix used in the
current study is estimated on the basis of interregional cor-
relations in a group of subjects and does not provide indi-
vidual networks for each patient. Second, although
representative of early stages of PD, the PPMI sample is a
research-based cohort, which might not be truly represen-
tative of a community-based sample. Third, similarly to
the Alzheimer’s disease neuroimaging initiative (http://
adni.loni.usc.edu/), PPMI is a multicenter study and the
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acquisition of MRI scans from patients and controls was
performed in the same type of scanner at different centers.
To avoid any issues that might arise from variability
between centers, PPMI includes a harmonization and qual-
ity control protocol (www.ppmi-info.org/data) that must
be applied to all MRI scans. This protocol involves acquir-
ing the scans using a phantom to assess scanner noise and
instability in addition to quantifying the geometry accu-
racy, the signal-to-noise ratio and the image uniformity of
the scans. The different centers were also trained to per-
form a basic quality control with an emphasis on full brain
coverage that included the pons and cerebellum and
exclusion of severe image artifacts. Once the scans were
acquired, the different sites transferred them to the PPMI’s
imaging core lab and worked closely with them to verify
that the acquisition parameters of the scans and the char-
acteristics of the scanner were compatible with the PPMI’s
MRI protocol. Hence, the fact that the MRI scans were
acquired at different centers most likely did not interfere
with our results. Fourth, the significant difference in age
found in the current study between controls and PD-MCI
patients could have influenced some of our findings. Pre-
viously, Wu et al. (2012) found significant reductions in
the global efficiency of structural networks in a large
group of elderly subjects between 61 and 80 years of age
compared with middle-aged subjects between 41 and 60
years of age. This finding was interpreted by the authors
as a degeneration process in the structural network over
aging that might lead to an abnormal topological organiza-
tion and predispose elder individuals to a higher risk for
dysconnectivity syndromes. In our study, there were more
subjects between 61 and 80 years of age in the PD-MCI
group compared with the control group, which could have
contributed to the lower global efficiency values found in
PD-MCI patients compared with controls. We addressed
this issue by adjusting the anatomical measures by age
using linear regression to remove age-related effects. How-
ever, it is possible that age could have influenced our
results even after this additional control. This issue should
be addressed by future studies aimed at assessing the
influence of age on the structural networks of PD patients.
Finally, although several studies have shown that the
whole-brain network can be divided into different cohe-
sive modules (Chen et al., 2008; He et al., 2009b; Meunier
et al., 2009) and that disruption of these modules is closely
associated with cognitive impairment (de Haan et al.,
2012; Wang et al., 2013), we did not include a modularity
analysis in the current study due to evidence of weak
modularity (Clauset et al., 2004) in the networks of our
groups (data not shown). However, future studies assess-
ing the networks of PD patients using graph theory should
also include modularity measures and analyze whether
cognitive impairment is associated with abnormal within
and between-module connections in PD.

One mechanism that could account for the negative
effects of MCI on the global network measures such as the
characteristic path length or global efficiency is the contri-

bution of different neurotransmitters deficits to cognitive
impairment in PD. These neurotransmitters are produced
in small subcortical nuclei, which innervate widespread
areas of the cortex and subcortical regions using relatively
few axons. For instance, executive impairment has been
associated with a deficit of dopamine produced by the
substantia nigra and ventral tegmental area, which inner-
vate the striatum and frontal cortex. Visuospatial and
memory impairments have been related to acetylcholine
produced by the pedunculopontine nucleus and basal
nucleus of Meynert, which innervate the thalamus and
widespread neocortical areas. Finally, attention impair-
ment is thought to be mediated by norepinephrine pro-
duced by the lateral tegmental nucleus and the locus
coeruleus, which innervate the hippocampus, amygdala,
and many cortical areas (Kehagia et al., 2010). If the few
axons that innervate all these areas are damaged, then the
neurotransmitter levels would be reduced in several sub-
cortical structures and cortical regions of the brain. This
could lead to abnormalities in global network measures
and to a reorganization of the overall network architecture
as observed in the PD-MCI patients in our study.
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