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Ground-state properties of the two-dimensional charged Bose gas
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We study the two-dimensional gas of charged bosons interacting via a logarithmic potential within the
quantal hypernetted-chain approximation. The pair correlation function, the static structure factor, the ground-
state energy, and the spectrum of collective excitations are calculated over a range of the density parameterr s .
We find that the static and dynamical properties are described rather well in this approach in comparison to
previous theories. Our results are in good agreement with the available quantum Monte Carlo simulations.

DOI: 10.1103/PhysRevB.63.104505 PACS number~s!: 67.40.Db, 05.30.Jp, 71.45.Gm
d
t

im
h

m
h
ef
ri-
in
m
th
o

a
sf

icl
m

th
e

to

i
a-
s

-
at
r

te
re

e
n
m
e
io
tic

ed

ar-

f a

me
and
in
lities
te,
m-

d
for

the

ate
ed-

s in-

op-
ison
of

on
the

rties
the

t of
rees

sity
and

e
and
dis-
nd
I. INTRODUCTION

Two-dimensional~2D! electronic systems have attracte
tremendous attention in the last two decades, and are
subject of continuing interest.1,2 The Coulomb interaction
potential and the many-body effects it induces play an
portant role in determining the ground-state properties. T
application of a 2D electron gas model in describing se
conductor heterojunctions and various other structures
proved quite useful for our understanding of correlation
fects in low-dimensional systems. In the artificially fab
cated semiconducting materials the underlying Coulomb
teraction has a three-dimensional character. The Coulo
potential between point charges in a strictly 2D space, on
other hand, is obtained from the solution of the Poiss
equation~in 2D! to give logarithmic behavior, viz., lnr, in
contrast to the 1/r dependence encountered in 3D. The log
rithmic potential has been utilized to develop a succes
theory3 of defects and phase transitions mediated by them
2D systems. The quantum aspects of 2D charged part
are relatively less studied. In this paper we investigate so
ground-state properties of charged bosons interacting wi
ln r potential. The model of a charged Bose fluid has be
gaining attention in connection with high-Tc super-
conductors,4 and our study should provide further insight
the correlation effects5 in these systems.

The ground-state correlations in 2D charged systems
teracting via the lnr potential have been studied with a v
riety of methods. Calinonet al.6 investigated the propertie
of a classical one-component plasma~OCP! using the ap-
proximation technique of Singwi, Tosi, Land, and Sjo¨lander7

~STLS!. Bakshiet al.8 employed the convolution approxima
tion for the classical OCP, and found lower ground st
energies as a function of the coupling strength. Monte Ca
and molecular dynamics simulations of the classical sys
were also presented.9 Quantum 2D electron gas studies we
presented by Thakur and Pathak10 within the STLS. The
static and dynamic quantities of physical interest show
qualitatively similar results to the 3D case. Dharamvir a
Pathak11 later examined the ground-state energy of the sa
system and showed that the Hartree-Fock contribution
actly cancels the divergence in the electrostatic contribut
The binding energies of classical systems for various lat
0163-1829/2001/63~10!/104505~6!/$15.00 63 1045
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structures are also known.12 Quantum Monte Carlo~QMC!
simulations of the 2D Bose Coulomb liquid were perform
by Magro and Ceperley13 motivated by the possibility of
superfluidity without a condensate. They show, using an
gument by Pitaevskii and Stringari,14 that the predominance
of long-wavelength plasmons rules out the existence o
condensate. In a recent study, Moudgilet al.15 considered a
charged Bose fluid within the STLS scheme. The sa
method was also attempted earlier by Caparica
Hipôlito.16 Moudgil et al.15 considered the system to be
the condensate phase, and reported numerical instabi
beyondr s'11. Despite their assumption of the condensa
their calculated results for the static structure factor co
pared well with the QMC calculations.13 Strepparola and
Tosi17 showed that the numerical instability mentione
above is an artifact: the STLS equations can be solved
even larger values ofr s , but the utility of this approach is
limited as it does not provide an overall agreement with
QMC results.

Our aim in this paper is to investigate the ground st
properties of 2D charged bosons within the hypernett
chain ~HNC! approximation scheme,18 which has proved to
be rather accurate for 3D and 2D charged Bose system
teracting via the 1/r potential.19 We are motivated by the
success of the HNC scheme in correctly describing the pr
erties of charged quantum systems especially in compar
with QMC simulations.20 We present a comparative study
the ground-state energy, correlation functions, and plasm
dispersion of 2D charged bosons to demonstrate that
present approach portrays the static and dynamic prope
rather well. The static structure factor develops a peak as
density of the system is lowered, which signals the onse
an ordered phase. Our calculated ground-state energy ag
remarkably well with the available QMC data.13 The plas-
mon energies also indicate a phase transition at low den
through dynamical coupling between the plasmon mode
two other collective excitations.

In the rest of this paper, we first give an outline of th
HNC formalism and some results based on the RPA
STLS scheme in Sec. II. Our results are presented and
cussed in Sec. III. We conclude with a brief summary a
some remarks in Sec. IV.
©2001 The American Physical Society05-1
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II. THEORY

A. HNC formalism

We consider a two-dimensional charged Bose gas wh
interacts via a logarithmic potentialV(r )52e ln(r/L),
~whereL is an arbitrary length scale! obtained from the so-
lution to the 2D Poisson equation. The Hamiltonian of t
system can be written as

H52
1

r s
2 (

i
¹ i

22(
i , j

ln~r i j !1UB , ~1!

where UB is a constant energy due to the presence of
neutralizing background,i and j are particle indices, and w
have used the length scaleL5r sa and energy scalee. The
dimensionless parameterr s is defined through r
51/(pr s

2a2), in terms of the densityr.
The HNC approximation consists in minimizing the e

pectation value of the total energy with respect to the va
tional many-body wave function, assumed to be in
Jastrow-Feenberg form, and using the hypernetted-chain
sure to relate the distribution functions to the two-body~or
higher! correlation functions. In this work we adopt the s
called HNC/0 approximation~we use the abbreviation HNC!
to calculate the ground-state correlation functions and
ergy, which neglects the three-body correlations or elem
tary diagrams. The formal structure and details of the va
tional approach to the many-body problem has be
discussed in a number of papers.19,21 We briefly present the
main ingredients of the calculational scheme.

It is known that in the HNC approximation,19 when the
elementary diagrams are ignored, the total energy can
written as

E5Er1Ek , ~2!

with

Er

N
5

r

2E d2r F @g~r !21#V~r !1
\2

m U¹Ag~r !U2G ,
Ek

N
52

\2

8mrE d2q

~2p!2
q2

@S~q!21#3

S~q!
, ~3!

whereS(q) andg(r ) are the structure factor and pair corr
lation function, respectively. The first and second term in E
~2! are associated with the potential and kinetic energies

The HNC self-consistent equations can be obtained
minimizing the energy defined in Eq.~2! with respect tog(r )
or S(q). The resulting Euler-Lagrange equation yielding t
optimized correlation functions22 reads

2
\2

m
¹2Ag~r !1@V~r !1wind~r !#Ag~r !50, ~4!

where V(r ); ln(r) is the bare interaction potential an
wind(r ) is the induced interaction. In the momentum spa
formulation of this approach, the form ofS(q) can be ex-
pressed in terms of the particle-hole interaction as19
10450
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S~q!5H 11
4m

\2q2
Vp-h~q!J 21/2

, ~5!

where the interaction part is given by

Vp-h~r !5g~r !V~r !1
\2

m
u¹Ag~r !u21@g~r !21#wind~r !,

~6!

and the Fourier transform of the induced interaction satis
the self-consistency relation

wind~q!52
\2q2

2m
@S~q!21#2Vp-h~q!. ~7!

The particle-hole interactionVp-h(q) here is an effective bo-
son interaction which should not be confused with a sim
terminology in Fermi systems. We are following Apa
et al.19 in outlying the formal expressions of the HN
theory. One should also note that throughout the calculati
we have used the dimensionless Fourier transform as
lows:

f ~q!5rE d2r f ~r !eiq•r. ~8!

The set of Eqs.~5!, ~6!, and~7! can be solved iteratively for
g(r ) and S(q). Then, one may go back and calculate t
ground state energy using the expression given by Eq.~2!.

We note that the logarithmic potential considered in t
present application of the HNC scheme presents some
merical problems if the above expressions are used dire
To circumvent these difficulties, we introduce the followin
transformations in the HNC equations:Vp-h(r )→Vp-h(r )
2V(r ) and wind(r )→wind(r )1V(r ). These give rise to a
new set of equations for the static structure factor

S~q!5H 11
4m

\2q2
@Vp-h~q!1V~q!#J 21/2

, ~9!

and for the effective particle-hole interaction,

Vp-h~r !5
\2

m
u¹Ag~r !u21@g~r !21#wind~r !, ~10!

the induced interaction being still given by Eq.~7!. The new
set of equations is free from numerical divergence proble
since the Fourier transform of the bare interaction is avoid
In the following section, we present our numerical results
various quantities of interest.

B. RPA and STLS energies

It would be of interest to compare the results of the HN
approximation with those of the RPA and STLS. Here,
sketch the calculation of ground state energies in the la
approaches. The potential energy per particle is given by

u52
1

2 F ~g2 ln 2!1E
0

`

dq ln q
dS~q!

dq G , ~11!
5-2
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whereg520.577215 is the Euler-Mascheroni constant. W
have used the length and energy scalings introduced ea
The above expression is obtained by considering a repre
tation of the 2D Coulomb interaction23

V~q!5p
d

dsS 222s
G~12s/2!

G~s/2!
qs22D

s50

, ~12!

G(x) being the Gamma function, in the potential energy~per
particle! formulau5 1

2 (kV(k)@S(k)21#, and by integrating
by parts.

In the STLS approximation17 we have

dS~q!

dq
52r s

2S3~q!FS~q!21

q3 28
12G~q!

q5 G , ~13!

whereG(q) is the local field factor for exchange and corr
lation. In particular, the RPA follows when we setG(q)
50, and the potential energy per particle is obtained ana
cally as

uRPA52
1

2 Fg2 ln 21
1

2
ln r sG . ~14!

The ground-state energy is calculated through an inte
over the coupling strength

E5
2

r s
2E

0

r s
drs8r s8u~r s!, ~15!

which in the RPA yields the analytical result

ERPA5
1

8
@124g14 ln 222 ln r s#. ~16!

In the case of the STLS approximation, the integrals fou
andE need to be computed numerically.

III. RESULTS AND DISCUSSION

In this section we present the results of the numer
calculations for static and dynamic properties of the 2D
of charged bosons. We numerically solve the set of Eqs.~9!,
~10!, and~7! with the repulsive logarithmic potential and fin
the static structure factor and the pair correlation functi
from which all other physical quantities of present inter
follow. The principle of our numerics is based on a se
consistent iteration by initially choosingVp-h50 and wind
50, and continuing the procedure until a desired accurac
the converged results is achieved. The calculations are d
for different values of the density parameterr s .

We first display in Fig. 1 the static structure factorS(q)
for 2D charged bosons atr s55 compared with the availabl
QMC data~from Ref. 13! and with STLS results~from Refs.
15 and 16!. As may be observed there is good agreem
between the HNC and the QMC data at thisr s value. Both
SHNC(q) andSQMC(q) exhibit a peak aroundqL.4, in con-
trast to the general shape ofSSTLS(q). The long-wavelength
behavior (q→0) of S(q);q2 smoothly develops in the
HNC a peak structure at intermediateq values, whereas the
STLS result approaches monotonically the asymptotic li
10450
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S(q→`)51. Thus, the HNC approximation provides a be
ter description of the static structure factor of 2D charg
bosons.

The systematic trends in the static structure factor are
lustrated in Fig. 2 by givingS(q) for some values of the
density parameter. As the density is decreased on increa
r s , the correlation effects become stronger andS(q) devel-
ops a broad peak aroundqL.4. The discrepancies betwee
SHNC(q) andSSTLS(q) become notable forr s*3.

The Fourier transform ofS(q) yields the pair-distribution
function g(r ), which is the probability of finding a boson a
some distancer if another one is at the origin. It is wel

FIG. 1. The static structure factorS(q) versusq ~in units of
L21) for r s55. The solid line shows the present HNC resul
which are compared with STLS results~dashed line! and QMC data
~squares!.

FIG. 2. The static structure factorS(q) in the HNC for r s55
~dotted line!, r s510 ~dashed line!, andr s515 ~solid line!.
5-3
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known that the oscillatory behavior ofg(r ) is a signature of
short range order in a fluid. Fig. 3 shows how the oscillat
behavior develops ing(r ) with increasingr s . Similar trends
are also observed within the STLS approximation,15,17 but
the peak heights there are less pronounced.

The ground-state energy as a function of the density
rameterr s is shown in Fig. 4. The HNC results are compar
with the QMC data and with the values calculated within t
RPA and the STLS. There is very good agreement betw
the HNC and the QMC results. The STLS energy is also v
close to the QMC data, even though the correlation functi
within this approximation become inaccurate beyondr s
'5.17 Our results for the correlation functions and t
ground-state energy of the fluid phase may be usefu

FIG. 3. The pair-distribution functiong(r ) for various values of
r s ~given in the legend!.

FIG. 4. The ground-state energyE(r s) per particle within the
HNC, RPA, and STLS approximations, compared with QMC da
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studying the transition to the solid phase by the density fu
tional theory of freezing.24

The kinetic energy and other thermodynamic quantities
the charged boson fluid are also of interest. An exact rela
exists between the pressure and the kinetic energyP
5Ek /p, which follows from the virial theorem25 The
thermodynamic definition of the pressure isP
52(r s/2p)dE/drs , and the isothermal compressibilityk is
given by 1/k5r s(2dE/drs1r sd

2E/drs
2)/(4p).

In Fig. 5 we show the inverse compressibility 1/k as a
function of the density parameterr s . The RPA result~in
units ofe/L2) is a constant, 1/kRPA51/(8p). In this context,
we mention that the compressibility calculated from the a
propriate sum rule on the static dielectric function does
agree well with the thermodynamic result shown in Fig. 5

The exchange and correlation effects beyond the RPA
described by the local field factorG(q) ~see Ref. 7!. The
STLS approximation provides a self-consistent way of c
culatingG(q) within the dielectric formalism. If we identify
our Vp-h(q) as an effective interaction, we can deduce t
corresponding local field factor in the HNC to rea
GHNC(q)512(q2/4m)@1/S2(q)21#/V(q). In Fig. 6 we
show GHNC(q) as a function ofq, for several values of the
density parameter. This function exhibits structure which
comes more pronounced with increasingr s . In contrast,
GSTLS(q) is a monotonic function ofq.17 The local field
factor being greater than unity may be interpreted as
boson liquid becoming unstable against the formation
charge-density wave~CDW! at a certainr s value. Further-
more, the screening properties discussed in the contex
STLS approximation would be modified because of the n
local-field factors.

Within the same viewpoint, which interpretsVp-h(q) as
an effective interaction, we can build an approximate mo
for the dynamic density response functionx(q,v) of the 2D
charged-boson fluid as.

FIG. 5. The inverse compressibilitykRPA/k as a function ofr s

in HNC and STLS.
5-4
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GROUND-STATE PROPERTIES OF THE TWO- . . . PHYSICAL REVIEW B 63 104505
x~q,v!5
x0~q,v!

12Vp-h~q!x0~q,v!
. ~17!

Here,x0(q,v) is the response function of the noninteracti
bosons, x0(q,v)52r(q2/2m)/@v22(q2/2m)21 ih#. The
poles ofx(q,v) in Eq. ~17! allow an estimate of the disper
sion relation of the plasmon mode, which is shown in Fig
for various values ofr s .

We see from Fig. 7 that the estimated dispersion cu
has a minimum and that the frequency at which the m
mum approaches the valuevp/2 at qL'3 for r s.10. A
dynamical coupling between the plasma mode and two ‘
tonic’’ excitations26 becomes important at such values of t
coupling strength. It is interesting to note that such a dyna
cal coupling occurs at a density close to the crystallizat
density~i.e., r s'12) reported in QMC simulations.13

The nature of the condensate in the system of 2D char
bosons is also of interest. QMC simulations13 sampling the
one-body density matrix found that it decays algebraically
long distances indicating that there is no condensate. Wi
the HNC theory the momentum distribution and condens
fraction can be calculated using the variational ground-s
wave functions and optimal correlation functions.27,28 These
calculations show that it is important to include the elem
tary diagrams to obtain reasonable estimates for the o
body density matrix and the momentum distribution. W
have not considered the elementary diagrams in our ver
of the HNC approach, therefore, we do not expect the m
mentum distribution to be represented very accurately

FIG. 6. The local-field correction factorG(q) in HNC for vari-
ous values ofr s .
i
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would be interesting to extend our calculations to study
one-body density matrix of charged bosons in more detail
the QMC simulations13 predict interesting behavior for thi
quantity.

IV. CONCLUSIONS

In summary, we have calculated the ground-state ene
and correlation functions for a two-dimensional charg
Bose gas interacting via the logarithmic potential. The HN
approximation yields a good description of this system, wh
compared with the available QMC results. In particular, t
correlation functions signal the onset of an ordered phas
the right density as predicted by the simulations.

The present results provide a significant improvem
over the previously considered RPA and STLS approach
Further improvements through the inclusion of triplet cor
lations may allow investigations of the dispersion and dam
ing properties of the plasmon and help restore the compr
ibility sum rule.
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