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Halves of a real Enriques surface 

ALEXANDER DEGTYAREV AND VIATCHESLAV KHARLAMOV 

Abstract.  The real part E~ of a real Enriques surface E admits a natural decomposition in two halves, 
E R = E ~ ) w E ~  2), each half being a union of components of E~. We classify the triads (E~; E~ ~), E~ 2)) up 
to homeomorphism. Most results extend to surfaces of more general nature than Enriques surfaces. We 
u s e  and study in details the properties of Kalinin's filtration in the homology of the fixed point set of 
an involution, which is a convenient tool not widely known in topology of real algebraic varieties. 

Introduction 

A real Enriques surface is a complex Enriques surface equipped with an 
anti-holomorphic involution, called complex conjugation; its fixed point set is called 
the real part of the surface. This involution lifts to an involution of the covering 
K3-surface (Lemma 1.3.1). Thus the study of real Enriques surfaces is equivalent to 
the study of real K3-surfaces equipped with a holomorphic fixed point free 
involution which commutes with the real structure. 

A systematic study of the topological properties of real Enriques surfaces was 
started by V. Nikulin. It is his preprint [N2] that stimulated our investigation. In 
our preceding paper [DK1] we have completed the classification of real Enriques 
surfaces by the topological types of their real part. 

This classification has a natural refinement (also first studied by V. Nikulin): the 
real part En of a real Enriques surface admits a natural decomposition in two halves 
ER =,-,Rr'~ each half being a union of components of ER. This splitting is due 
to the fact that the real structure lifts to the covering K3 surface in two different 
ways: each half is covered by the fixed point set of one of the two liftings (see 1.3). 
This gives rise to the following problem: to classify the triads (E~; E~ ~), E~ )) up to 
homeomorphism. 

For a large number of topological types an arbitrary splitting is realizable. For 
some other types the splittings are determined by the only restriction: the orienta- 
tion double covering of a half must either consist of two topological tori or have at 
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most one nonspherical component. The surfaces constructed in [DK1] show the 
existence of such splittings in many cases. On the other hand, as it was discovered 
by Nikulin, there are topological types whose distributions must satisfy to certain 
restrictions. 

It is the distribution of the components between the two halves that is the 
principal subject of the present paper. Similar to what happened during the 
investigation of other special classes of surfaces, the present study is stipulated by 
and based on the discovery of some new prohibitions. These prohibitions (see 2.1) 
apply not only to Enriques surfaces but as well to other classes of surfaces with non 
simply connected complexification. More precisely, in this paper we treat what we 
call generalized Enriques surfaces: quotients of a nonsingular compact complex 
surface X with H~(X; 7/ /2)=0 and w2(X) = 0  by a fixed point free holomorphic 
involution (see 1.2 and Appendix B). 

Note that there are quite 'classical' examples of generalized Enriques surfaces: in 
Horikawa's construction (see Section 8.1) bi-degree (4,4) can be replaced with 
(4k, 4k), k ~ 2~+ (and even with (4k + 2, 4k + 2), k ~ 7/+ ; this leads to Spin-surfaces, 
see Appendix B). Thus, our results also provide some prohibitions on the topology 
of symmetric real curves on real quadrics. 

The prohibitions obtained (see 2.1 and Appendix B) are a combination of the 
inequality-type and congruence-type prohibitions. To an extent they may be re- 
garded as some kind of refinement of the Smith-Thom inequality and extension of 
the Arnold-Rokhlin congruences to non simply connected surfaces. (Additional 
prohibitions of this kind, which also have no precise analogues in the simply 
connected case and whose proofs are based on similar techniques, can be found in 
[DK3].) 

We apply these results to the classical Enriques surfaces and complete the 
classification of the distributions of their components (see 2.2.2). 

Another by-product are new proofs which clarify the nature of the prohibitions 
obtained in our previous paper, devoted to the topological classification of real 
Enriques surfaces (see 2.2 and [DK1, 3.7-3.10]). 

The key r61e in our present study is played by so called Kalinin's spectral 
sequence and Viro homomorphisms, used in combination with more traditional 
tools of topology of real algebraic varieties. The spectral sequence in question is 
derived from the Borel-Serre spectral sequence: it is some sort of its stabilization 
with only one grading. It converges to the homology of the fixed point set, and the 
corresponding filtration and identification with the limit term are given by the Viro 
homomorphisms, which have an explicit geometrical definition (see Section 5 for 

the details). 
The paper consists of eight sections and two appendices. In Section 1 we 

introduce the main objects, such as a generalized K3-surface (which, from our point 



630 A L E X A N D E R  D E G T Y A R E V  AND VIATCHESLAV K H A R L A M O V  

of  view, is just a Spin-surface X with H1 (X; 7//2) = 0) and a generalized Enriques 
surface, give some definitions and fix the principal notation. In Section 2 we 
formulate the main results and apply them to the classical Enriques surfaces. In 
Section 3 we expose some auxiliary results on the arithmetic of involutions. Section 
4 is devoted to the study of the basic topological properties of generalized Enriques 
surfaces. In Section 5 we introduce Kalinin's homology spectral sequence and Viro 
homomorphisms and examine their general properties which we need in subsequent 
proofs; these results are then applied to generalized Enriques surfaces in Section 6. 
Finally, in Section 7 we prove the main results announced in Section 2, and in 
Section 8 we construct some surfaces to extend the list of distributions found in 
[DK1] and thus complete the classification for the case of classical Enriques 
surfaces. 

In Appendix A we study the multiplicative structure in Kalinin's spectral 
sequence and prove Theorem 5.2.3, which in the case of an involution on a closed 
manifold relates the intersection pairings on the manifold and on the fixed point set. 

In Appendix B we introduce Spin generalized Enriques surfaces and extend to 
them the main results of Section 2. (The proofs are found in [DK2], along with the 
necessary information on the Steenrod operations in Kalinin's spectral sequence.) 

1. Preliminary definitions and notation 

1.1. Notation 

We agree that, unless specified explicitly, the coefficients of all the homology 
and cohomology groups are :~/2. Both the cohomology characteristic classes of a 
closed smooth manifold and their dual homology classes are denoted by wi. 
Throughout  the paper we use the following notation: 

�9 br and fir stand for the Betti numbers with the integral and Z/2-coefficients 
respectively: br(') = rk Hr(' ; 7/) and fir(') = dim Hr(-); 

�9 /3, is the total Betti number: /3 , ( . )  = Zr>_0 fir('); 
�9 x(X) is the Euler characteristic of  a topological space X; 
�9 ~(M) is the signature of  an oriented manifold M; 
�9 Torsz G is the 2-primary component of an abelian group G. 

1.2. Generalized Enriques surfaces 

A nonsingular compact complex surface X will be called a generalized K3-sur- 
face if Hi (X; Z/2) = 0 and w2(X) = 0. A generalized Enriques surface is a complex 
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surface E which (I)  has w2(E) r 0, and (2) can be obtained as the orbit space X/z  
of a generalized K3-surface by a fixed point free holomorphic involution ~: X ~ X; 
the latter is called the Enriques involution. 

As it follows, e.g., from the Ghysin exact sequence, H, (E; Z/2) = Z/2 (cf. 4.2.1). 
Thus, X is the only double covering space of E, and z is its deck translation. Hence, 
they are both determined by E. 

Remark. Orbit spaces of generalized K3-surfaces with w2(E) = 0 are considered 
in Appendix B. 

1.3. Decomposition o f  the real part 

As usually, by a real structure on a nonsingular complex surface we mean an 
anti-holomorphic involution. When not empty, the fixed point set of  such an 
involution is a real 2-manifold. 

Let E be a generalized Enriques surface, and let conj: E--* E be the real structure 
on E. Denote by E~ the real part, ER = Fix conj. 

1.3.1. LEMMA. There are exactly two liftings t ~ t~2): X--* X ofconj to X. They 
are both anti-holomorphic involutions, commute with each other, and their composi- 
tion is z. Both the real parts X~ ) = Fix t (i), i = 1, 2, and their images E(~ ) in E are 

disjoint, and ~ '  ' r~2) = ER ~ g ~  ~ ,  ~ 

Proof The case ER = Z~ is considered in [Ht]. I f  ER 4: ~ ,  the proof  is obvious 
as soon as the points of X are represented by homotopy classes of  paths in E 
starting at a point of ER: two paths defne the same point in X iff they differ by a 
loop homologous to zero in H1(E; 2~/2). [] 

Due to this lemma, ER canonically splits into two disjoint parts, which we will 
refer to as the halves of Ea. Both E~ ) and E~ 2) consist of whole components of  ER, 
and X~ ) is an unramified double covering of E~ ), i = 1, 2. In most cases these 

coverings are determined by ER intrinsically: 

1.3.2. LEMMA. The real parts XR = X(d)u X(R 2) are orientable. The restriction of  

the projection X ~ E to XR ~ En is the orientation double covering unless a(X) - 

(mod 32), one of  the halves of  E~ is empty, and the nonempty half is orientable. 

The orientability is well known, see [E], [S], or [K]. The rest follows from the 
fact that the canonical orientations of  XR are reversed by z. For classical Enriques 
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surfaces these orientations are given by an exterior holomorphic 2-form co which is 
nowhere zero, t-skew-invariant and becomes t(~ (i.e., satisfying 03 = t(~ after 
multiplication by a proper constant a~. In the general case the construction is 
slightly different. In the proof  below we use the Spin-structures as in [DK1, 
Theorem A.2]. 

Proof of  1.3.2. Since H1(X) = 0, on X there is a unique Spin-structure qJ. In 
particular, ~O is equivariant in respect to any involution, i.e., it takes equal values on 
symmetric framed loops. Let X(R 1) be a nonempty half. In order to compare local 
orientations of  X~ ) at two points x , y  e X~ 1), represent them by 2-frames and 
complete these frames to positive 4-frames of X by some pairs of  t(1)-skew-invariant 
vectors. Then pick a path ? connecting x and y, extend the 4-frames to a field 

= (~1, ~2, ~3, ~4) on ~, and evaluate ~ on the loop y �9 t(1) 7-1 framed with 3 �9 S ' ,  
where 6 ' =  (dt(l)~l, dt~ 2, - d t ~  3, -d t~162 (The latter framed loop is called a 
test loop.) The two orientations are considered coherent iff the value obtained is 0. 
This construction is consistent since ~k is equivariant; thus, it gives a canonical pair 
of  opposite orientations of  X~ ), and it remains to check that t reverses them. 

For  any orientation preserving free involution c: X - , X  with X/c not Spin (in 
particular, for c = t) the value of ~ on a e-symmetric loop with a 4-frame field 

= (~l, ~2, ~3, ~4) is 1 if ~ is c-invariant and 0 if S is c-skew-invariant, i.e., 
de(r ~2, ~3, ~4)--(~1, ~ 2 , -~ 3 ,  -~4) .  Thus, it suffices to construct a t-invariant 
test loop. I f  X~ 2) r J~, pick x e X(~ I) and a e X~, join them by an arc (xa), and let 7 
be the loop formed by (xa), t~ t(xa), and t(2)(xa). Pick a t(1)-invariant frame 
at x and a t(z)-invariant frame at a, complete them by pairs of  t(~)-skew-invariant 
(respectively, t(2)-skew-invariant) vectors to positive 4-frames, and extend these 
4-frames to a 4-frame field over (xa). Reflection gives a t-invariant continuous 
4-framing over ?. 

Let now X~ ) = ~ and ~r(X)~ 0 (mod 32). Then X/t  (2) is not Spin, since 
a(X/t (2)) = �89 ~ 0 (mod 16). Pick a point a e X whose orbit a, t(l)a, ta, t(2)a 
consists of  four elements and form a loop from the same four arcs as above, an arc 

connecting a and t(2)a, and t ~ The test loop constructed as before is the sum 
of a t- invariant  loop (obtained by replacing t(1)6 with t6) and a tt2)-skew-invariant 
one, and ~k equals 1 on the former portion and 0 on the latter one (as t (2) is also 
free now), which totals to 1 on ?. 

Finally, if X ~ is nonorientable, the result follows from the obvious fact that, 
since qJ is t-equivariant,  t either preserves or reverses the canonical orientation of 

all the components of  X~ ) simultaneously. [] 

Since E is a compact surface, each component  C of En is a closed manifold. By 
the first part  o f  1.3.2, C may be of one of the following three types: 
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Sg - a trivially covered orientable surface of genus g > 0; 
Vg- a nonorientable surface of genus g > 0, Vg _~ #gNp 2, covered by an 

orientable component Sg_ ~ c XR; 
T~ - a nontrivially covered orientable surface of genus g > 0. 

In our notation we use any of S = So = Vo for S 2. To describe the decomposition 
of E~ into the two halves, we write E~ = {halfE~ ~} LA {half E(n2~}. 

Remark. According to 1.3.2, the type Tg is very special: ER may have such a 
component only if tr(X) = 0 (mod 32) (or, equivalently, a(E) = 0 (mod 16)), one of 
the halves of ER is empty, and the other one is orientable. In particular, this type 
never occurs in the case of the classical Enriques surfaces. 

Remark. Lemma 1.3.2 gives rise to the following problem: Let X be a closed 
complex surface with H i ( X ) = 0  and w2(X)=0, and let T and conj be two 
commuting fixed point free involutions on X, holomorphic and antiholomorphic 
respectively. If X/z is not Spin, can X/conj be Spin? 

1.4. Types of the real part 

Given a nonsingular compact complex surface Y with real structure, its real part 
Y~ has a well defined 7//2-homology fundamental class [Ya]. We say that YR and Y 
are of type Io (respectively, Iw) if Ya is homologous to zero (respectively, w2(Y)) in 
//2(Y). The surface is said to be of type I if it is of type Io or Iw; otherwise it is said 
to be of type II. 

In the case of a generalized Enriques surface E and its double covering X the 
notion of type obviously extends to the halves Eg ) and X~{ ~. For the covering and 
its halves the types I o and Iw coincide. 

1.5. (M - d)-surfaces 

According to the Smith-Thom inequality, for any complex surface Y with 
real structure one has /~,(Yn)</~,(Y),  and the difference /~ , (Y) - /~ , (YR)  is 
even. By definition, Y is called an ( M -  d)-surface if the above difference is 

2d. 



634 A L E X A N D E R  D E G T Y A R E V  A N D  VIATCHESLAV K H A R L A M O V  

2. Main results 

From now on we fix a generalized real Enriques surface E with E n ~  ~ and 
follow the notation of Section 1: conj: E - * E  is the real structure on E, X is the 
double covering of E with Enriques involution z: X - * X ,  and t ~ t ~2~ are the two 
real structures on X determined by conj (see 1.3.1). 

2.1. General prohibitions 

2.1.1. THEOREM. Let X~ ) be of  type I and both the halves nonempty. Then 
(1) ER has no nonorientable components of  odd genus (i.e., V2g+l); 
(2) at least one of  the two halves E~ ), E~ 2) is orientable. 

2.1.2. THEOREM. Suppose that ER is orientable. Then E is an (M - d)-surface 
with d > 2, and 

(1) / f d  = 2, then z(E~) = a(E) (mod 16) and E~ is of type I; 
(2) / f d  = 3, then z(ER) =-a(E) ___ 2 (mod 16); 
(3) / f d  = 4 and z(ER) = a(E) + 8 (mod 16), then ER is of  type I. 

If, in addition, all the components of  E R are spheres, then d > 3. 

Remark. The last assertion of Theorem 2.1.2 follows from Comessatti-Severi 
inequality z ( E a ) ~ h l ' l ( g )  (see [Co]), which transforms into d > 3 +h2'~ for a 
generalized Enriques ( M -  d)-surface with only spherical components. Thus, such 
a surface may exist only if d > 3, and if d = 3, the lattice Hz(E; 7/) must be 
hyperbolic (as this is the case, e.g., for classical Enriques surfaces). 

2.1.3. THEOREM. Suppose that E R consists of  a single half and does not have 
nonorientable components of  odd genus (i.e., V2g + 1). Then E is an ( M -  d)-surface 
with d > 2, and 

(1) / f d =  2, then x(En) =-a(E) (mod 16) and E~ is of  type I; 
(2) / f d  = 3, then x(En) ~ a(E) ___ 2 (mod 16); 
(3) / f d  = 4 and x(ER) - -a (E)  § 8 (mod 16), then En is of  type I. 

2.1.4. THEOREM. Let E be an (M-3 ) - sur face  with E a = k S .  Then 
Ea = {4pS} ~ {(4q + 1)S}, both the halves being nonempty unless k = 1 (mod 8). 

2.1.5. THEOREM.  Let En = V2g II kS, g > O. Suppose that E is an (M - d)- 
surface and x(Ea) = a(E) + 26 (mod 16). Then for the values of(d,  6) listed in Table 
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d 6 k (2) (mod 4) 

0 0 
1 1 

- 1  

2 0 

2 
- 2  

4 
3 +3 

0 
0,1 
0 ,3  

0, 2 (if E .  is of  type I) 

0 , 1 , 3  ( i fE  R is of  type lI) 
0 , 1 , 2  
0 , 2 , 3  
0 ,2  
0 , 1 , 2 , 3  

1 one has E~ = { V2g U k(~)S} kJ {k(2)S}, where k (2) (mod 4) takes one o f  the values 
given in the table; furthermore, k (2) # 0 with the possible exception o f  the case d = 2, 
6 ~-O, E~ is o f  type I. Besides, there are the following additional prohibitions: 

(1) t f d  =0 ,  then E(~ ~) is o f  type Io and E~ 2) is o f  type Iw; 
(2) t f d  = 0, then k (~) # 0 unless k =-- 0 (mod 8); 
(3) l f d  = 1 and k (~) = O, then either k = 6 (mod 8), or k = 0 (mod 4) and E ~  ) is 

o f  type Iw. 

Remark.  Note that in the case d = 3 the last theorem only states that, if 
x(E~) = a(E) + 6 (mod 16), then both the halves are not empty. This follows also 
from Theorem 2.1.3. 

2.2. Classical Enriques surfaces 

The topological types realizable by the real part of  a classical Enriques surface 
were enumerated in [DK1], where we treated separately the types 6S, $1 IA 5S, 3112 
and series $1 LA Vt IA. . .  not prohibited by the standard inequalities and congru- 
ences known in topology of real algebraic varieties. The prohibition of these 
types is now an immediate consequence of the results of Section 2.1: the first 
two are prohibited by Theorem 2.1.2, the others - by Theorem 2.1.1. To apply 
Theorem 2.1.1 one should note that, if the real part of a real K3-surface X contains 
two components $1, then X is of type I and XR has no other components, see 

[Khl]. 
Consider now the decomposition ER = E~ ) u E~ ). The following obvious obser- 

vation can be found, e.g., in [DK1]: 
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b I 

a b a 

{.S}u{bS}, {V,u.S}u{bS} {V, UaS}U{bS} {V.u.S}u{bS}, 
{ V2u~S }u{ bS } { V, oU~S }u{ bS } 

Figure 1. Exceptional topological types. 

2.2.1. Each half of  a classical real Enriques surface may only be either 
(1) ctVg I laV111bS with g > 1, a >_0, b >_0, ~ =0,  1, or 

(2) 2V2, or 

(3) $1. 

In [DK1] and in Section 8 we construct a number of realizations of Enriques 
surfaces sufficient to show that, with few exceptions, any distribution satisfying 
2.2.1 is realizable. The exceptional topological types are listed in Figure 1: the 
distributions marked by the black nodes are realized, e.g., in [DK1]; the white node 
represents the distributions {2S} U {2S} and { V2 U 2S} II {2S} constructed in [N2]. 
Theorems 2.1.4 and 2.1.5 imply that this list is complete. 

2.2.2. THEOREM. With the exception of  the types kS  and V2r II kS  any distri- 
bution of  components of  a real Enriques surface satisfying 2.2.1 is realizable. The 
exceptional types admit only the distributions listed in Figure 1. 

Remark. The distributions {2S} II {2S}, {112112S} II {2S}, {I/2112S} II 
{ V2 U 2S}, and { V2 II 4S} II { 112} are not constructed in [DK1] or Section 8; their 
existence is announced in [N2]. The first two of them cannot be obtained by our 
construction, i.e., the covering K3-surface is not a double of a symmetric quadric. 
(Proof will be published elsewhere.)* 

3. Involutions on modules 

In this section we expose some elementary facts on the Galois cohomology of 
modules with involution and on the discriminant forms of integral lattices with 
involution. Most results appear, explicitly or implicitly, in [N1]. We give proofs 
When it is easier than to find a precise reference or when the direct proof is simpler. 

*Added in proof. Now we can prove the existence of these 4 distributions. 
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3.1. Galois cohomology of  Z/2-vector spaces with involution 

The zero-dimensional cohomology  group of  a Z/2-vector space V with involu- 
tion c is H~  -- Ker( 1 + c). All the other cohomology  groups are isomorphic  to 
Ker(1 + c)/Im(1 + c); to be short  and in accordance with the notat ion commonly  
used in the literature we denote them b y / ~ o ( v ) .  

3.1.1. L E M M A .  Let V and V' be finite dimensional vector spaces over 7//2 with 
involution. I f  they are connected by one of  the following two short exact sequences of  
spaces with involution 

O ~ 2 ~ / 2 ~ V ~ V ' ~ O  or O ~ V ' - - * V ~ 7 / / 2 ~ O ,  

then d i m / ~ o ( v )  - d im/~o(v , )  = 4- I. In the former case the difference & - 1 i f  and 
only if the generator of  the subgroup Z/2 vanishes in IYI~ In the latter case it is - 1 
if  and only i f  the generator of  the quotient group 7//2 does not lift to fI~ i.e., does 
not belong to the image of Ker( 1 + c) c V. 

Proof Denote  by c, c', and Co the involutions on V, V', and ~_/2 respectively. 
Then Ker(1 + co) = Coker(  1 + Co) = 7/]2, and the result follows immediately f rom 
the additivity of  dimension and the Ker -Coker  exact sequences (see, e.g., [CE, 
L e m m a  V.10.1]) 

0 --* Ker(  1 + Co) ~ Ker( 1 + Co) ~ Ker(  1 + c') --* Coker(  1 + Co) ~ Coker(  1 + c) 

and 

Ker( 1 + c) ~ Ker( 1 + Co) ~ Coker( 1 + c') ~ Coker(  1 + c) --* Coker(  1 + Co) ~ 0. 

[] 

Suppose now that  V is equipped with a c-equivariant  symmetric bilinear form 
o: V |  V ~  7//2. Then o induces, in a natural  way, a symmetr ic  bilinear form on 

Jg~ 

3.1.2. L E M M A .  I f  o : V | V--, 71/2 is nondegenerate, then so is the induced form 
o : ISI~ | I4~ --, Z/2. 

Proof Since H~ = Ker(  1 + c)/Im(1 + c), the result follows f rom the additiv- 
ity of  dimension and the existence of  the induced form. [] 
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3.2. Free abelian groups with involution 

Let L be a finitely generated free abelian group with involution c. Let 
L • = {x e L ]cx  = + x }  be its eigensubgroups and H(L) = I t ~  the cohomol- 
ogy group of  the associated Z/2-vector space L / 2 L  = L | ;//2. Obviously, both L • 
are primitive in L (i.e., the quotients L / L  • are torsion free), and L + n L -  = 0. 

3.2.1. LEMMA. One has 

Ker[(l + c): L / 2 L  --. L/2L] = (L +/2L) + (L - /2L) ,  

Im[( 1 + c): L t 2 L  ~ L/2L] = (L +/2L) n (L - /2L) ,  

dim H(L) = dim L - 2 dim[(L +/2L) m (L-/2L)].  

P r o o f  In L |  each element x is represented as x = x  + + x - ,  where 
x § = �89 + cx) and x -  = �89 - c x ) .  The  first statement follows from the fact that, 
given an x e L, the elements �89 + cx) and �89 - cx) belong to L if and only if 
x =- cx  (mod 2L). To prove the second statement just notice that ( 1 + c)y =- ( 1 - c)y 

(mod 2L) for any y e L, and that whenever x § e L + and x - e L -  are such that 
x + = x -  (mod 2L), one has x § = y  + c y ,  where y =�89 + + x - )  eL .  

The last statement is an immediate consequence of the first two. [] 

3.3. Integral lattices 

Suppose now that L is a unimodular integral even lattice, i.e., L is supplied with 
a symmetric bilinear pairing o: L |  ~ _  so that (1) the correlation q~: L--+L* = 
Hom(L,  71), q~x(y) = x o y, is an isomorphism (L is unimodular), and (2) x o x e 2~ 
for any x e L (L is even). Assume also that L is supplied with an involution 
c: L - - , L  which is a lattice morphism, i.e., cxo  cy = x o y  for any x , y  e L .  Under 
these assumptions each of the sublattices L • is the orthogonal complement of  the 
other one, and they are both nondegenerate, i.e., their correlations are injective. 

Recall that, given a nondegenerate even lattice M, one can define a quadratic 
space discr M, called the discriminant space, in the following way: the underlying 
finite group, called the discriminant group, is discr M = M * / M ,  where M* is 
considered, via the correlation, as an extension of M in M | Q. The quadratic 
function q : d i s c r M ~ Q / 2 Z  is induced from o extended to M |  given 
x e M* c M | Q, define q(x) = x o x (mod 2). 

Let (~ •  q), or briefly ~ •  be the discriminant spaces discr L • 
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3.3.1. LEMMA (see [N1]). Spaces ( 9  • q) are anti-isometric, i.e., there exists a 

group isomorphism ~: ~+ - -*9-  such that q(ctx) = - q ( x )  for  any x ~ ~+.  

At the group level this statement has the following consequence: 

3.3.2. LEMMA. 2(L• * c L  and the quotient ~• 9 • = ( L • 1 7 7  o f  

the multiplication by 2 is an isomorphism ~ • 2 4 7  In 
particular, 9 • are 2-periodic groups and dim H(L) = rk L - 2 dim 9 • 

Proof. Let x ~(L+) *, i.e., let x e L + |  be an element such that x oL § ET/. 
Then for any y ~ L  one has 2 x o y = 2 x o ( y  + + y - ) = 2 x o y + = x o ( y + c y ) e Z .  

Hence, 2x e L* = L and 2(L § c L. Since 2L § c 2L, the multiplication by 2 has a 
well defined quotient ~ +: ~+ = (L +)*/L § ~ L/2L.  

Let x e K e r ~  +, i.e., 2 x e 2 L .  Then x ~ L n ( L + |  = L  § i.e., x = 0  in @+. 
Thus, Ker ct'- = 0 and ~+ is a 2-periodic group. 

Given 2x = (1 + c)y ~ (L+/2L) n ( L - / 2 L )  (see Lemma 3.2.1), for any z ~ L + 
one has x o z =�89 o z + cy o cz) ET_, i.e., x ~(L+) *. This proves that I m p +  

(L +/2I_.) n (L -/2L). 
Since 9 + is a 2-periodic group, 2x e L + for any x ~ (L +) *. Hence Im ct + c L +[2L. 

Since L + is primitive in the unimodular lattice L, the map L = L* ~ (L +)* induced 
by the inclusion L + c L is onto, and, given x e (L§ *, there is some y ~ L so that 
( x - y )  oL  + = 0 .  Then z = 2 x - 2 y ~ L - = ( L + ) "  and 2 x = z  (mod2L).  Hence 
Im ~§ c L - / 2 L .  This completes the proof for ~§ the other isomorphism is con- 

structed similarly. [] 

3.3.3. COROLLARY. An x e L  + vanishes in ~I(L) i f  and only i f  x o L + E 277. 

Proof. According to Lemmas 3.2.1 and 3.3.2, x vanishes in H(L) if and only if 

x mod 2L ~ Im :t § i.e., �89 ~ (L § [] 

3.3.4. To formulate the next statement, remind that, given a (not necessary 

unimodular) nondegenerate lattice M and nondegenerate primitive sublattice 
M ' c M ,  one can define subgroups F ' c d i s c r  M'  and F" c discr M '• and an 

anti-isometry at: F ' - - ,F"  so that M is the pull back of the graph F of  ct under the 
projection (M') * 0) ( M  ' l)* ~discr M'  @ discr M '• and discr M = F ;/F. (Details can 

be found in [N1].) 

3.3.5. LEMMA. Suppose that M '  is a primitive nondegenerate sublattice o f  L + 

and M is the primitive hull o f  M '  �9 L - in L. Let  x ~ M '  c L § be an element with 
1 defines an element in discr M'.  I f  this element belongs to the x o M '  ~ 2;7, so that ~x 

subgroup F'  defined above, then x vanishes in t?I(L). 
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Proof According to Nikulin's construction, if the element defined by ix  in 
discr M'  belongs to F', there are some y E L -  and z E M such that z = ix  + �89 
Then x = 2 z - y  and x o L + E27/ (since y oL + =0).  The statement follows now 
from Corollary 3.3.3. [] 

4. Basic topological properties of generalized Enriques surfaces 

4.1. General facts 

First, consider an arbitrary complex algebraic surface Y equipped with a real 
structure conj: Y---, Y. Let L = H2(Y; Z)/Tors, ~+ =discr  L +, where L -+ are the 
subgroups of conj,-invariant and conj,-skew-invariant elements of L, and Br ~-+ 
the Brown invariant of ~-+. 

4.1.1. LEMMA. The fundamental class [YR] ~H2(Y) and the Stiefel-Whitney 
class w2(Y) are integral, i.e., belong to the image of H2(Y; 7/) in H2(Y). 

Proof As it is known (see [HH]), w2(Y) is integral for any closed orientable 
4-dimensional manifold. 1 According to [Ar], Lemma 32, [Y~] is the characteristic 
class of  the twisted intersection form (x, y) ~ x o conj,  y. In particular, it is orthog- 
onal to the image of Tors H2(Y; 7/) in H2(Y), which, by Poincar6 duality, is the 
orthogonal complement of the image of H2(Y; 7/). [] 

Thus, the projections of [Y~] and w2(Y) to L/2L are well defined, and since both 
these classes are conj,-invariant, they further descend to / I (L ) .  

4.1.2. LEMMA. The projections of [Y~] and w2(Y ) in I?I(L) coincide. 

Proof Since / t (L)  consists of only conj,-invariant classes, the twisted and the 
standard intersection forms on it coincide, and so do their characteristic classes 
(Lemma 3.1.2). On the other hand, [YR] is the characteristic class of the twisted 
intersection form (Arnol'd Lemma, loc. tit.), and w2(Y) is the characteristic class of 
the standard intersection form. [] 

1For complex manifolds this assertion is completely obvious as w2(Y) = cl (Y) mod 2. 
2Arnol'd formulates and proves this assertion only for orientable YR; the proof in the general case 

is literally the same. 
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4.1.3. LEMMA. I f  Y is an (M-d)-surface, then 
(1) z(YR) =tr(Y) + 2  B r N -  (mod 16); 
(2) dim ~ -  = d (mod 2); 

Proof Hirzebruch's signature theorem gives v(Yn)= tr(L +) - t r ( L - ) .  The left 
hand side here equals -z(YR) as the normal Euler number of Y, in Y; the right 
hand side is - t r (Y)  + 2tr(L +) = - tr(Y) - 2  Br ~ -  (mod 16), since due to Lemma 
3.3.1. one has Br N - =  - B r N  + =  - a ( L  +) (mod 8). This proves (1). 

Since Y is an algebraic surface, a(Y) = - X(Y) = - / ~ ,  (Y) (mod 4). By definition, 
/~,(Y) = fl,(YR) + 2d. Substitution to (1) and replacing z(Y~) with - f l , (Y ~)  = 
z(Y~) (mod 4) and Br ~ with dim ~ -  = Br ~ -  (mod 2) gives (2). [] 

4.1.4. LEMMA. The quadratic space ~ -  is even (i.e., q(2) ~ 7//27/ for any 
2 e @-) iff [YR]-  w2(Y) belongs to the image of  Tors H2(Y; 7/) /n H2(Y). 

Proof. [Y a] and w2(Y) are the characteristic classes of the (respectively, twisted 
and standard) intersection forms. In particular, they are both orthogonal to the 
image of Tors/ /2(Y; 7/) in/ /2(Y).  In addition, they are both integral (see Lemma 
4.1.1). Thus, the condition that [ YR] - w2(Y) belongs to the image of Tors/ /2(Y; Z) 
in H2(Y ) is equivalent to the condition that this difference annihilates all the 
integral classes, which, in turn, is equivalent to the congruence x 2= x o conj,  x 
(mod 2) for any x e L. 

Let x + = � 8 9  + |  Then x = x  + + x -  and x 2 - x o c o n j , x -  
2(x-)  2 (mod2Z). Since x - o  L - = x  o L -  takes integral values, x -  belongs to 
(L- )*  and, hence, represents an element in N- .  Moreover, each element in N -  
admits such a representative. Thus, (x - )  2 e 7/ for any x e L if and only if N -  is 
even. [] 

4.1.5. COROLLARY. Suppose that the 2-primary component Tors2 112(Y; 77) is 
generated by w2( Y). (This is the case for generalized Enriques surfaces; see Lemma 
4.2.3 below.) Then YR is of type I if and only if ~ -  is even. 

All the statements above except Lemma 4.1.3 3 extend literally to any (not 
necessary anti-holomorphic) orientation preserving involution conj on any (not 
necessary complex) oriented 4-manifold Y. Lemma 4.1.4 has then the following 

corollary: 

34.1.3 extends to any anti-holomorphic involution on any quasi-complex variety, cf. [Wi]. 
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4.1.6. COROLLARY. Let conj be a fixed point free orientation preserving 
involution on an oriented 4-manifold Y. Then the quadratic spaces 9 § are even if and 
only if  so is H2(Y; 7/)/Tors. 

4.2. Homology of a generalized Enriques surface 

We now consider a generalized Enriques surface E covered by a generalized 
K3-surface X with Enriques involution z. We denote by pr: X ~ E the projection 
and by tr: H , ( E ;  R ) ~ H , ( X ;  R) the transfer (with coefficients in a group R). 

Note that H~ (X) = 0 implies Tors2 H2(X; 7/) = O. 

4.2.1. LEMMA. There are isomorphisms Tors2 H~(E; 7/) = Hi(E) = 7//2 and an 
exact sequence 

tr  
0 ~ Tors2 H2(E; 7/) ~ H2(E) > H2(X), 

where Tors2 H2(E; 7/) = 7//2 is generated by w2(E). 

Proof From the Smith-Ghysin exact sequence it follows that H1 (E) = 7//2 and 
Ker[tr2: H2(E) ~H2(X)]  = 7//2. As tr w2(E) = w2(X) = 0 and w2(E) ~ O, the only 
nontrivial element of Ker tr2 is w2(E). By the Poincar6 duality and universal 
coefficient formula, from H|(E)=7/ /2  it follows that Tors2H2(E;7 / )=  
Tors2 H1 (E; 7/) is a cyclic group. It cannot be larger than 7//2 since otherwise X 
would have a nontrivial double covering. [] 

4.2.2. LEMMA. For any p = 1, 2, 3 there is a short exact sequence 

) "4-~ �9 0 ~ T o r s 2 H e ( E ;  7/) --*Hp(E; Z) tr, He (X, 7/) ~ 0 ,  

where H;~(X; 7/) denotes the subgroup of  z ,-invariant elements. 

4.2.3. LEMMA. Let f_, = H2(X; 7/)/Tors and let i • be the sublattices of  z,-in- 
variant and z,-skew-invariant elements of  L. Then H2(E; 7/)/Tors is an even lattice 
isometric via tr to f~+~(�89 which is f~+~ with modified pairing (x, y) ~ l (x  o y). 

Proof of  Lemmas 4.2.2 and 4.2.3. The transfer H , ( E ; R ) ~ H ~ ( X ; R )  for 
R = Q and R = Z/q, q odd, is an isomorphism (see, e.g., [B]). Thus, in the integral 
homology Ker trp = Tors2 Hp(E; 7/), and to prove 4.2.2 it remains to show that tr2 
reduced modulo torsion maps H2(E; Z)/Tors onto/7, +~. 



Halves of a real Enriques surface 643 

Let L = H2(E; Z)/Tors and L'  = E L  c s where tr is the integral transfer 
modulo torsion. Then L ' c / S  +~ is a subgroup of  finite index. The identity 
tr x o t r y  = 2(x o y) implies that L = L'(�89 as a lattice and, since L is unimodular, 
discr L'  is a 2-periodic group of dimension rk L = rk L'. Since, due to Lemma 4.2.1, 
the index of L'  in /S +~ is odd (~ |  is a monomorphism) and discr/~+~ is also 
2-periodic (Lemma 3.3.2), these two subgroups coincide. 

Thus ~2 provides an isometry between the lattices H2(E; 7/)/Tors and /S+~(�89 
and an isomorphism between the groups H2(E; 7/)/Tors and/S +~. The lattice/S+*(�89 
is even due to Corollary 4.1.6. [] 

4.3. Eigenspaces of  conj, 

Let now E be a generalized Enriques surface with real structure conj: E--)E. 
The following fact is well known and follows from the Lefschetz fixed point 
theorem (part (1)) and Hirzebruch signature theorem (part (2)). Note that (2) 
applies, in fact, to any real algebraic surface, and ( l )  applies to any surface E with 
H~ (E; Q) = O. 

4.3.1. LEMMA. Let L = H2(E; 7/)/Tors and let L • be the subgroups ofcon j , -  
invariant and conj,-skew-invariant elements of  L. Then 

(1)  r k  L + = �89 + Z(E~)) - 1, rk  L -  = �89 - Z(E~))  + 1; 

(2) a(L +) = �89 - )~(E,)), tr(L -) = �89 + z(E,)). 

5. Kalinin's spectral sequence and Viro homomorphisms 

In this section we summarize some auxiliary results from algebraic topology of 
involutions. The constructions, which we present in their homology form, require, 
in principle, a cautious choice of the homology theory, as well as certain appropri- 
ate conditions on the underlying topological spaces. One possibility is to use the 
sheaf theories and suppose that the topological spaces are locally compact and finite 
dimensional. However, as we apply the results to the best topological spaces one 
can possibly expect - smooth compact manifolds - we do not need any definite 

choice and can use any theory. 
Throughout this section Y is a good (see the paragraph above) topological space 

with involution c: Y--) Y. 
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5.1. Kalinin's homology spectral sequence 

5.1.1. There ex&t a filtration 

0 = ~  "+1 c,~-" = �9 �9 �9 ~ ~ ~  = H , ( F i x  c), 

a ~_-graded spectral sequence ( H , ,  d , ) ,  where 

r r r dq:Hq-- ,Hq+r_l ,  dq+~_ 1 odq =0 ,  

(H~ d ~ is the chain complex of  Y, a n d  n q  +1 = Ker dq/Im dq_r +,, 

and homomorphisms b v  r ' j,~r __~ H~  such that 
(1) H~, = H , ( Y )  and d~ = 1 + e , ;  
(2) a cycle Xp ~ H ~ survives to l ip if  and only if  there are some chains 

yp=Xp,yp+l  . . . . .  Yp+r-i in Y so that Oyi+l=(l  +c , ) y i .  In this case 
d~xp = ( l  + c,)yp+r_,; 

(3 )  bvq annihilates o~ q + l and maps ~ T q / ~ q  + 1 isomorphically onto Hq ; 
(4) the filtration, spectral sequence, and homomorphisms are all natural with 

respect to equivariant mappings. 

When necessary, we will use the notation Hq = H q ( Y )  and ~q=~q(Y) to 
indicate the original space Y. 

The original construction of this spectral sequence is due to I. Kalinin [Ka], who 
derived it from the Borel-Serre spectral sequence and related results by Borel (see 
[Bo]). This construction is briefly outlined in Appendix A. Property (2) is proved in 
[D]. An alternative description of Kalinin's spectral sequence, based upon the Smith 
exact sequence, can be found in [DK2]. 

The following results are straightforward consequences of 5.1.1. 

5.1.2. COROLLARY. I f  Y is connected and Fix c r  then Ho(Y ) = 
H E (Y)  = H ~  (Y)  = Z/2 and each nonzero element of  H 2 (Y)  which survives to H~ ( r )  
is nonzero in H ~ ( Y ) .  

5.1.3. C O R O L L A R Y - D E F I N I T I O N .  I f  a cycle admits a representation by an 
equivariant chain, it survives to H , ( Y ) .  Thus, in particular, there are tautological 
homomorphisms Hv(Fix c)--*H~(Y);  with certain abuse of  terminology we will call 
them the inclusion homomorphisms. 
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5.1.4. COROLLARY. One has H~(Y) =/I~ 

The homomorphisms bv, were first discovered, in an equivalent form, by O. 
Viro. That is why we call them Viro homomorphisms. The following geometrical 
description, close to the original one (cf. [VZ]), is found in [D]. 

5.1.5. Suppose that Fix c ~ ~ .  Then 

(1) bvo: H , ( F i x  c) ~ H ~ ( Y )  is zero on H>l(Fixc);  its restriction to 
Ho(Fix c)--+ H~(  Y) = Ho( Y) coincides with the inclusion homomorphism (cf  
5.1.2 and 5.1.3); 

(2) a (nonhomogeneous) element x ~ H , ( F i x  c) represented by a cycle Y-xi be- 

longs to "Jp = Ker bvp_ i (see 5.1.1) i f  and only i f  there exist some chains Ye, 

1 < i < p, so that @Yl = Xo and ~3y i + 1 = Xi -b ( 1 + c,)yi  for  i > 1; the class o f  
Xp +(1 + c,)yp in H p (  Y) represents then bvpx. 

5.1.6. EVIDENT COROLLARY. For any p the Viro homomorphism bvp is zero 
on H>pFix c) and coincides with the inclusion homomorphism (see 5.1.3) when 
restricted to lip (Fix c) ~ Hp (Y). 

5.2. Kalinin' s intersection pairing 

The original construction presented in [Ka] gives a cohomology spectral se- 
quence (H*, d*) starting at H q = Hq(Y) and converging to H*(Fix c). We denote 
by ~q the corresponding filtration on H*(Fix c) and by bvq: H q ~ H*(Fix c) the 
cohomology Viro homomorphisms. This spectral sequence is dual to its homology 
counter-part 5.1.1; the cup-product in H*(Y) converts H* to a spectral sequence of 
Z-graded algebras, and 5.1.1 is a spectral sequence of graded H*-moduli. The 
following result, which, to our knowledge, is stated explicitly only in [Ka], is proved 
in [DK2]: 

5.2.1. PROPOSITION. I f  Y is a closed n-dimensional manifold and Fix c ~ ~Z~, 
then for any r, 1 < r < + or, one has H7 ~- Y/2, and the product map H~ | H7 -P --* 

H7 is a nondegenerate pairing. 

5.2.2. COROLLARY (the dual version of 5.2.1). I f  Y is a closed n-dimensional 
manifold and Fix c ~ ~2~, then the intersection pairing in H , ( Y )  descends to a 

H ~ ~ 72/2. nondegenerate pairing H i | n-p 
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Corollary 5.2.2 is a paraphrase of 5.2.1 using the Poincar6 duality. The pairing 
Hi~ | H~n-p ~ Z/2 is called Kalinin's intersection form. Its relation to the standard 
intersection form in H , ( F i x  c) is given by the following theorem, which we prove 
in Appendix A. 

5.2.3. THEOREM. Let Y be a smooth closed N-dimensional manifold with 
smooth involution c: Y ~ Y and F = Fix c the f ixed point set o f  c. Then for any two 
classes a ~ ~P  and b ~ ~ q  one has w(v) n (a o b) ~ ~P  + q- N and bvp a o bvq b = 
bVp+q_u[W(V ) C3 (a o b)], where w(v) is the total Stiefel-Whitney class of  the normal 
bundle v o f  F in Y. 

5.3. Application to a real structure of  a complex surface 

Let Y be a compact nonsingular complex surface with real structure e: Y--* Y. 
Then the 7//2-homology fundamental class [YR] of YR = Fix c is well defined. 

5.3.1. LEMMA. The Stiefel-Whitney class w2(Y) survives to H ~ ( Y ) .  The pro- 
jection of  w2(Y) in H ~ ( Y )  coincides with bvz[YR]. 

Proof  As any Chern or Stiefel-Whitney class, w2(Y) is realized by the funda- 
mental class of a c-invariant divisor. (The earliest reference which we could find in 
the literature is [BH]; the statement is based on the simple observation that 
Schubert cycles are defined over ~ and even over L )  Thus, w2 survives to H~ (Y). 
The other part of  the lemma follows from 5.2.2, 5.1.4, and the fact that the image 
of [YR] in / /2 (Y)  coincides with the characteristic class of the twisted intersection 
form (cf. the proof  of Lemmas 4.1.1 and 4.1.2). [] 

Denote by (C, . )~ H0(Fix c) and [C~] ~H2(Fix c) the classes represented by a 
component C~ of  Y~. It is clear that H~z is spanned by the following values of Viro 
homomorphisms: (we abbreviate (C~ - Cj ) = ( C , )  - (C j ) )  

- bv0<Ci) in H~(Y) ;  
- bvl ~ and bvl(Ci  - Cj) in H 3 ( Y ) ,  where ~ EHt(Ya);  
- bv2[Ci], bv2 ct, b v 2 ( C i - C j ) ,  and bv2(ct + ( C i -  Cj)) in H ~ ( Y ) .  

From 5.1.5 (which also gives an explicit geometric description of  the corresponding 
chains) and 5.1.6 it immediately follows that: 

- all the above classes but the last three are always well defined; 
- bv2 ~ is defined if and only if bv~ �9 = 0; 
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b v / ( C  i - Cj ) bvz 0t bv2[Ci] 

bv 2 ( C k - C l ) 0 0 t~ik + Oil 
bvz fl 0 (ct o fl)[YR] (fl ~ fl)[Ci] 
bv2[Ck] 6ik + 6jk (~ ~ ~)[Ck] 6e, z(Ci) 

- bv2(Ci - Cj) is defined if and only if bvj (Ci - Cj) = 0; 
- bv2(~ + (C~ - Cj )) is defined if and only if bvl ~ = bv, (Ci - Cj ). 

Theorem 5.2.3 gives the following values for the intersection numbers: 

5.3.2. INTERSECTION MATRIX. The intersection form on H ~ (  Y)  = Im bv2 
is that defined by Table 2, where Ci . . . . .  Ct are some connected components o f  YR, 
and ~, fl are some l-dimensional homology classes in YR. The intersection �9 o fl is 
regarded as an element o f  Ho( YR), and (~ o fl)[YR] and (~ o fl)[ Ci] are, respectively, the 
total intersection number and its part which falls into Ci. 6~ stands for the Kronecker 
symbol: 6~i = 1 and 6 o. = 0 if  i v~j. The intersection form extends linearly to the 
classes o f  the form bv2(~ + ( C i -  Cj)),  as i f  bv2~ and b v 2 ( C i - C j )  w e r e  well 

defined. 

Remark. Note that in this dimension one can avoid reference to 5.2.3 and use 
the standard geometric techniques: represent classes by chains given by 5.1.5, 
smoothen them, bring to general position, and count the intersection points. Since 
the intersection numbers are considered modulo 2, the imaginary intersection 
points, which appear in pairs, can be ignored (cf., e.g., [Kh2, Lemma 2.3]). 

6. Viro homomorphisms in generalized Enriques surfaces 

Recall that we denote by E a generalized real Enriques surface. We assume that 
E a 4= ~ .  The main goal of this section is to prove Propositions 6.1 and 6.2 below. 
We use the homology spectral sequence H ,  and denote fl~, = dim H i .  

6.1. DIMENSION OF THE DISCRIMINANT SPACE. Let  E be an ( M  - d)-  
surface, and let 9 -  be the discriminant space o f  the sublattice o f  conj-skew-invariant 

vectors in H2(E; 7/)/Tors. Then: 
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d - dim ~ -  = 0 i f  either 

(1) E R has a component V2g+l (i.e., w2(E~) ~ 0 ) ,  or 
(2) ER is nonorientable and both the halves are nonempty; 

d - dim ~ -  = 2 /f  either 

(1) ER is nonorientable, w2(ER) = O, and one of  the halves is empty, or 
(2) Ea is orientable and both the halves are nonempty; 

d - dim ~ -  may be 2 or 4 if  E~ is orientable and one of  the halves is empty. 

6.2. R E L A T I O N S  B E T W E E N  R E A L  C O M P O N E N T S .  There is at least one 
and at most two relations between the elements of  H~(E)/w2(E)  realized by the 
fundamental classes of  the components of  ER. One relation is bv2[ER] = w2(E); the 

"EO) only other possible relation is bv2l n ] = bv2[E~ 2~] = 0 ( m o d  w2(E)). 

6.3. Proof of  Proposition 6.1 

6.3.1. L E M M A .  Let C1, C2 be two components of  ER. Then bv~ (C1 - C2) = 0 if  
and only i f  these two components belong to the same half of  ER. 

Proof Pick two points ci e Ci and connect  them with a pa th  ~, in E. By 5.1.2, 
bvl (C1 - 6"2) = 0 if and only if the loop 6 = (conj 7) - '  �9 7 is homologous  to zero in 
H~(E). Thus  b v l ( C l -  C 2 ) =  0 if and only if 6 lifts to a loop in X. Suppose that  
C~ ~ E ~  ) and lift V to a pa th  ~ with the endpoints  71, ?2. Then 6"= ~7. (t~l)~,-) -1 is a 
lift o f  6 which connects ttl)? 2 and ?2- It  is a loop if and only if t~)?2 = c2, i.e., 

c2 ~ E~  ). [] 

6.3.2. L E M M A .  Let ct be an element of  H1(ER). Then bvl ct 4:0 if  and only i f  
to oct = 1, where to ~ HI (Er) is the characteristic element of  the covering Xr ~ ER. 
Moreover, bvl ct ~-0 whenever ct 2 = 1. 

Proof Since H I ( E ) = Z / 2 ,  f rom 5.1.2 it follows that  bv, ~ = 0  if and only if 
in ,  ~ ~ HI (E) is zero, or  equivalently, if  09 o ~ = 0. The last assertion follows f rom 

L e m m a  1.3.2: if w, (Er)  r 0, then to = w I (Ea). [] 
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6.3.3. L E M M A .  The Stiefel-Whitney class w2(E ) (which, due to 5.3.1, always 
survives to H~(E)) represents a nonzero element in H~(E)  if and only if  either 

(1) ER has a component V2g+l (i.e., w2(ER) ~0) ,  or 
(2) En is nonorientable and both the halves are nonempty. 

Proof By 5.2.2 and since w2(E ) is a characteristic element o f  the intersection 
form, w 2 ( E ) # 0  in H~(E)  if and only if there is an element x ~H,(ER)  with 
(bv2 x)2:~ 0. According to 5.3.2 such an x can be found in one o f  the follow- 

ing three forms: (i) x = [G] ,  where C1 c ER is a component  o f  odd Euler character- 
istic; (ii) x = ~ + (C~ - C 2 )  , where ct eHI(ER) is an element with a 2 = 1 and 

bVl ~ 4:0; (iii) x = ~  ~H,(ER) with 0t2= 1 and bVl ~ = 0 .  In (i) we have case (1) o f  
the lemma. In (ii), according to 6.3.1, we have case (2). Finally, (iii) contradicts 
to 6.3.2. [] 

6.3.4. L E M M A .  H~(E)  ~ 0  if and only if  either 
(1) En is nonorientable, or 
(2) En has a component Tg, or 
(3) both the halves of ER are nonempty. 

I f  H~(E)  ~ O, then the spectral sequence collapses at H2 ; in particular, fl~ - [3~ = O. 
I f  H~(E)  = 0 ,  then [32~-fl~ = 0  or 2 and f l ~ = f l ~  = 0 .  

Proof By 5.1.5, H~(E)=bVl  H<l (F ixc ) .  According to 6.3.1 and 6.3.2, a 
homogeneous  element x e H,(ER) with bVl x ~ 0 is either 0t e H1 (E~) with co oct = 1 
(cases (1) and (2) of  the lemma, see 1.3.2) or ( C l -  C2), where Ci = E~ ) are two 
components  f rom different halves o f  E~ (case 3)). 

The last statement is a straightforward consequence of  the relations f12 = fl~ = 1 
and f12 = 1 > fl~ and the existence of  a nondegenerate pairing in the spectral 
sequence. When H ~  = 0  one has f l2_f l~  = 0  if H2(E) is killed by d 3 and 

f12_ fl~ = 2 if it is killed by d 2. [] 

6.3.5. End of the proof 

By definition, 2d = fl ,  (E) - f t , .  According to Lemma 4.3.1, we have 2 dim ~ -  = 
b2(E ) - b~, where b 2 = dim H(con j , ,  H2(E; 71)/Tors). Therefore, 

2(d - dim ~ - )  = [(2 - fl~ - fl~) + (f12 _ / ~ ) ]  + [2 - (f122 - b2)]. 

The first term of  this expression is zero if H~(E) ~ 0 and 2 or 4 otherwise, see 6.3.4. 

Applying Lemma 3.1.1 to the exact sequences 
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0 --* Tors2 H2(E; 7/) --* H2(E; 7/) | 7//2 ~ (H2(E; 7/)/Tors) | Z/2 --, 0, 

0 --, H2(E; 2~) | Z/2 ~ Hz(E)  ~ 7/]2 --, 0 

f12-b2 is equal to 2 if w2(E) ~0 in H~(E) ,  and it is equal to 0 or - 2  gives that  2 2 

otherwise. The  combinat ion  2 2 //2 - b2 = 0 and w2(E) 4:0 in H2(E) is excluded by an 
addit ional  argument:  the intersection form on H~(E) is nondegenerate,  hence, 
wz(E), which generates Tors2 H2(E; 7//2) c H2(E), and an arbi t rary  element, which 
generates the quotient  H2(E)/(H2(E; 7/) | Z/2) and thus has a nonzero intersection 
with w2(E), must  either both  survive to H~(E) or both  disappear.  N o w  the l emma 
follows f rom Lemmas  6.3.3 and 6.3.4 and the (mod 2)-congruence 4.1.3(2). [] 

6.4. Proof of Proposition 6.2 

The relation bv2[E~] = w2(E) is given by L e m m a  5.3.1. 
Suppose that  bv2([C1] + " ' + [Cr]) = kw2(E), k ~ Z/2, is a relation other than 

bv2[E~ 1)] = 0 (mod  w2(E)) or bv2[E~ 2)] = 0 ( m o d  w2(E)). This means that  one of  the 
componen t s  C; involved in the relation, say C1, belongs to E~ ), and there is another  
componen t  of  E~ ~), say D, which does not belong to the relation. Then 
b v 2 ( C l - D )  is well defined, and, according to 5.3.2, b v 2 ( C ~ - D )  o bv2([Cl] + 
�9 . .  + [ C ~ ] ) = 1  and ( b v 2 ( C i - D ) ) 2 = 0 .  On the other hand,  w2(E) survives to 
H ~  (E), and, since w2 (E) is the characteristic class, one has bv2 (C1 - D ) o w2 (E) = 
(bv2(C~ - D)) 2 = 0. This contradicts  to bv2([Ci] + "  �9 ' + [G])  = kw2(E) and 

b v 2 ( C  l - D )  o bv2([C1] +"  " " + [C,.]) --- 1. 

7. Proof of  the main results 

Below, as in Section 2, E is a generalized real Enriques surface with nonempty  
real part ,  conj: E ~ E  is the real structure on E, and X is the double covering of  E 
with Enriques involution z: X--,X and two real structures t ~ t c2) determined by 

conj. 

7,1. Proof of Theorem 2.1.1. By the hypothesis,  the fundamenta l  class o f  X~ ) 
vanishes in H2(X). On the other  hand,  it is equal to the image o f  the fundamental  
class o f  E~ ) under the transfer  tr: H2(E) --*H2(X), whose kernel is generated by 
w2(E) (see L e m m a  4.2.1). Thus,  the half  E~ ) realizes either 0 or  w2(E) in H2(E). 
Since, according to L e m m a  5.3.1, the union ~ar'(l)"-" r-(2)~n realizes w2(E ) in H~(E), the 
ha l f  E ~  ~ realizes either, w2(E) or 0. In  any case at least one of  the two halves realizes 

zero in H ~  (E). 
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Suppose that there is a component C 1 C E~ 1) of  type V2k +1. Then, according to 
5.3.2, bv2[E~q o bv~[C~] = w~(Cl) = 1, i.e., bv2[E~ t)] :/: 0. Furthermore, by assump- 
tion there also is a component C2 c E(R 2). Then x = bv2(wl(C1) + (C~ - C2)) is well 
defined (see 5.3), and, due to 5.3.2, bv2[EtR 2~] o x = 1, i.e., also bv2[E(a 2)] :/: 0. This 
contradiction to the previous paragraph proves the first assertion. 

Let now each of the halves contain a nonorientable component C~ c E~ ) (which, 
due to the first statement, are of even genus). Pick some classes a~ ~HI(C~) 
with b v ~ 0 .  Then for both ( i , j ) = ( 1 , 2 )  and ( i , j ) = ( 2 , 1 )  one has 
bv2(ccj + ( C 1 -  C2)) ~ bv2[E~ )] = 1, which is also a contradiction. [] 

7.2. Proof of Theorems 2.1.2 and 2.1.3. Let ~ -  be the discriminant form of the 
sublattice of conj,-skew-invariant vectors in H2(E; 7/)/Tors. From Lemma 6.1 it 
follows that, under the hypotheses, d -  dim 9 - =  2 or 4. Since the dimension is 

nonnegative, d > 2. 
All the congruences are derived from x(ER) = a(E) + 2 Br ~ -  (rood 16) given 

by Lemma 4.1.3(1) (just like the other congruences known in topology of real 
algebraic manifolds, cf. [Kh3], [M], and [N1]). 

I f  d = 2, then ~ -  = 0 and Br ~ -  = 0. This gives the congruence. The fact that 
E~ is of  type I follows from Corollary 4.1.5. 

I f  d = 3 ,  then d i m ~ - = l .  Hence ~ - = ( + � 8 9  and B r ~ - =  +1.  
I f  d = 4 and z(ER) = tr(E) + 8 (mod 16), then Br N -  = 4 and dim ~ -  = 2. The (11,1  ) only such form is the one given by the (2 x 2)-matrix 1/2 (see Table 3); it 

is even and Corollary 4.1.5 applies to prove that Ea is of type I. [] 

7.3. Proof of Theorems 2.1.4 and 2.1.5. In addition to the lattice L = 
H2(E; 7/)/Tors with involution conj, ,  the eigenlattices L -+ of conj , ,  and their 
discriminant forms ~-+, let us consider the sublattice M '  of  L + generated by the 
classes s~ . . . . .  s~ e L  realized by the spherical components of ER (with some 

Table 3. Discriminant forms of even rank < 2 

Odd forms Even forms 

9 -  Br 9 -  9 -  Br 9 -  

<�89189 2 o o (o ,:) 
<�89189 o 1/2 o (l ,,:) 

1 l 4 
( - ~ ) ~ ( - ~ )  - 2  1/2 
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orientat ions) ,  and  denote  by N the o r thogona l  complement  o f  M '  in L +. Recall  that  

L and  all its sublat t ices are even, see 4.2.3. 

7.3.1. L E M M A .  I f  M '  is not primitive in L § then either Eu has a hal f{IS}  o f  

type I with l = 0 (mod  4), or Eu = kS, it is o f  type I, and k = 0 ( m o d  4). I f  all the k 
spherical components constitute one half o f  En and, besides, 9 - = 0  and 
rk N = k - 2, then k =- 0 ( m o d  8). 

Proof  Since se o sy = - 2 5 , j ,  nonpr imi t iveness  of  M '  means  that  there is an x e L 

such that  2x = s~ + . .  �9 + st, l > 0. (We simplify the no ta t ion  and assume that  the 

relat ion involves the first l components . )  Pick such a re la t ion with the smallest  

possible number  l of  components .  Then,  due to 6.2 and 6.3.4, either the first l 

spherical  componen t s  fo rm a ha l f  {IS} of  E R o f  type I, or  IS = Eu and E~ is o f  type 

I. Since l = - 2 x  2, the first par t  o f  the l emma follows f rom the fact that  L § is an 

even lattice. 4 

Suppose  that  all the spherical  componen t s  form together  one half  o f  Eu. As it 

follows f rom the first pa r t  of  the proof ,  no par t ia l  sum of  s~ . . . . .  sk is divisible by 

2 (as otherwise the co r respond ing  componen t s  would  form a half) ,  and the 

pr imit ive  hull M "  of  M '  in L + is genera ted  by M '  and an x e L  such that  

2x = s~ + �9 �9 �9 + sk. Thus, the d iscr iminant  form of  M "  is the nondegenera te  par t  of  

the restr ict ion o f  1 2 -5 (0~  + .  �9 + 02), 0j e Z / 2 ,  to 01 + "  ' �9 + Ok = 0 .  In  par t icular ,  

d im discr M "  = k - 2 and  discr M "  is an even form. I f  ~ = 0, then 9 § = 0 and L § 

is un imodular .  If, in addi t ion ,  r k N = k - 2 ,  then, since d i m d i s c r N =  

dim discr M "  = k - 2, the latt ice �89 is integral  and un imodular .  Besides, it is even, 

since so are d i s c r M "  and L § Hence,  k = - c r ( M ' ) = a ( � 8 9 2 4 7  

( m o d  8). [] 

7.3.2. L E M M A .  I f  M '  is primitive in L § and d i m d i s c r  M ' + d i m  9 -  > 

dim discr N, then either Ea has a half {IS}, or Ea = IS, where l # 0 and l =-2q(y) 

( m o d  4) for  some non trivial element y e 9 - .  If, in addition, l = k, dim ~ -  = 1, and 

rk N = k - 1, then k = Br 9 -  ( m o d  8). 

Remark. If  d im 9 -  = 1, then 9 -  conta ins  only one nontr iv ia l  element,  and  

1 ( m o d  L - )  for some element y e L - ,  2q(y)  = Br 9 -  ( m o d  8). In  all cases y = 5y_ 
and 2q(y)  = ~y_I 2 (mod  4). 

Proof  Denote  by M the pr imit ive  hull o f  L - ~ M '  in L. Since M and N are the 

o r thogona l  complements  of  each other  in the un imodu la r  even lat t ice L, their  

4Since the Chern classes have equivariant representatives (cf. 5.3.1), L § is even for any compact 
complex (and even quasicomplex) surface with real structure. 
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discriminant forms are anti-isometric. On the other hand, dim d i s c r M ' +  
dim ~ -  > dim discr N = dim discr M by the hypotheses, and, hence, L -  (9 M '  is 
not  primitive in L and the subgroup F '  c discr M '  (see 3.3.4) is nontrivial: for some 
l > 0 there exists an element y_ e L -  which represents a nonzero element 
y e d i s c r M '  so that the class s = � 8 9  belongs to L. Then 

A 

s~ + -. + st = s + c o n j .  s. Thus s~ + �9 �9 + sz vanishes in H(L) and therefore the 
element realized by the corresponding l spherical components  of  Ea in/-)(H2 (E, 7/)) 

is either 0 or w2. 
Due to 6.2 and 6.3.4, either these components  form a half  of  Ea, or Ea = IS and 

l = k. Furthermore,  2q(y) --- �89 ___ �89 + ' "  �9 + sl) 2 --- l (mod  2). 
I f  the additional assumptions hold, then discr M is an even discriminant form of  

dimension (k - 1). Therefore, as in 7.3.1, �89 is an integral even unimodular  lattice 

and k -- Br 9 -  --- a(�89 =- 0 (mod 8). [] 

In order to complete the proof, consider separately the different cases. 

7.3.3. The case E~ = kS  (Theorem 2.1.4). Comessatti-Severi inequality 
~(ER)<hl.~(E) gives d>3+h2 '~  Hence d > 3  and, if d = 3 ,  then ~r(E) = 

2 -  b2(E). In the latter case a calculation using 4.3.1 shows that L -  is a positive 
definite lattice of  rank 1 and L § is a negative definite lattice of  rank 2k - 1. Hence, 
dim 9 -  = 1 and Br 9 -  = 1. By 4.1.3, this implies that k = 1 (mod  4). This congru-  

ence excludes, in particular, the second choice ER = kS, k = 0 (mod  4) in Lemma 
7.3.1. The theorem follows now from 7.3.1 and 7.3.2, which cover the two 

possibilities for M '  and both give the same decomposit ion {4pS} ~ {(4q + 1)S} 

(with 1 = 4q + 1 in the latter case). [] 

7.3.4. The case ER = V2g LA kS  (Theorem 2.1.5). F rom Lemma 4.3.1(1) it follows 
that  rk L + = 2k + d - 2 and, hence, dim discr N < rk N = k + d - 2. I f  d = 0, then 
L + is a unimodutar  lattice and dim discr M ' >  dim discr N. Hence M '  cannot  be 

primitive and 7.3.1 applies. Corollary 4.1.5 gives the missing information: Ea is of  
type I. I f  d = 1, then dim 9 - =  1 and dim discr N < k -  1, and the statement 
follows f rom 7.3.1 and 7.3.2. The possibility "k = 0 (mod  4), E~ z) is o f  type I"  for 
k (~) = 0 arises f rom the case when M '  is not  primitive: then k = k  (2) must be 

divisible by 4. If  d --- 2, then ~ -  is one o f  the forms given in Table 3 . 9 -  = 0 is the 
exceptional case o f  Theorem 2.1.5 when k (2) may be trivial. (In fact, k {2) is trivial 

in this case since dim ~ -  = d - 2 and, according to Lemma 6.1, ER must  consist o f  
a single half.) In all the other cases 7.3.1 and 7.3.2 give all the values of  k (2) (mod  4) 

listed in Table 1. 
The remaining case d = 3, 6 = _+ 3 follows from Theorem 2.1.3, though, due to 

6.6 and 4.1.3, in this case dim 9 -  = 3, and one can also apply 7.3.2. 
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Finally, to distinguish between types I0 and Iw in (1) and (3) it suffices to notice 

that, under the hypotheses, wz(E) ~ 0 in H~(E) (see Lemma 6.3.3) and, hence, a 
half is of  type Io if and only if its fundamental class vanishes in H~(E), i.e., belongs 
to the kernel of  the intersection form. Using 5.3.2 one can see that the spherical half 
realizes w2(E); hence, it is of  type Iw. [] 

8. Construction 

8.1. General idea (see [DK1] for details) 

Let X be the K3-surface obtained as the double covering of Y = Cp ~ x Cp ~ 
branched over a non-singular bi-degree (4, 4) curve C c Y. Let s: Y---, Y be the 

Cartesian product of  the nontrivial involutions (u: v) ~ ( - u ;  v) of  the factors. I f  C 
is s-symmetric, s lifts to two different involutions on X, commuting with the deck 

translation d of  X ~ Y. If, besides, C contains no fixed points of  s, then exactly one 
of these two involutions, which we denote by ~, is fixed point free (see, e.g., [H] or 

[BPV]), and, hence, the orbit space E = X/z is an Enriques surface. 
Suppose that Y is equipped with a real structure conj r commuting with s and C 

is a real curve. Then s o conj r is another real structure on Y and C. We denote the 

real point sets of  these structures by Yg) and C~ ), i -- 1, 2 (i -- 1 corresponding to 
conj r )  and call them the halves of Y and C. The involutions conj r and s o conj r lift 
to four different commuting real structures (t (1), t (2) = r o t(1), d o to), and d o t(2)) on 

X, which, in turn, descend to two real structures on E, called the expositions of E. 

A choice of  an exposition is determined by a choice of  one of the two liftings t ~ 
t (2) of conj r  to X. 

We use for Y a quadric in Cp 3 real in respect to the standard complex 
conjugation involution and invariant in respect to the real symmetry s: C p 3 ~  Cp 3, 

(Xo: xl" x2: x3) ~ (Xo: xl: - x 2 :  -x3 ) .  Since the bi-degree of C is even, C~ ) sepa- 
rates Y~) into two parts with common boundary Cg); at least one of  them is 

non-empty unless Y~) is empty. The fixed point set X~ ) of  t (i) is the pull-back of one 

of  the parts. Thus, a choice o f  t ~ is equivalent to a choice of  one of the two parts 
of  Y~), and, since t (2) = z o t (~), the latter determines as well the part  of  y~2) whose 

pull-back is Fix t(2): as X~ ) and X~ ) are disjoint, the pull-back of a point of  

Y~)c~ Y~) is contained in exactly one of X~ ), X~ 2). (Note that in all the examples we 

use here Y~)c~ Y~) ~ JZ/.) 

The branch curve C ~ Y is constructed by perturbing the equation f = 0 of  a 

singular s-symmetric curve C e Y to f + eh = 0; here f and h are homogeneous real 
s-symmetric polynomials of  bi-degree (4, 4) and e is a small real parameter. All the 
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facts necessary to construct a perturbation and to control its topology can be found 
in [DK1, Sect. 4]. 

8.2. The distributions of 2 V~ [A kS 

It suffices to construct the distributions {aS} LA {2I,'1 U bS} and { V 1 U aS} II 
{VI [2 bS} with (a, b) = (1, 3), (2, 2) or (3, 1); the rest is constructed in [DK1]. Let 
Y be the ellipsoid given by Xo 2 = x? + x22 + x32 and C = C1 w r where (~l and C2 are 
cut on Y by x~ = 0 and 2(x2 2 - x 3  2) =x0  2 respectively (see Figure 2(a), which 
represents the two halves of YR and C. The two black dots in each figure are the 
fixed points of the restriction of s to the corresponding half.) To perturb (~ take for 
h the equation of a bi-degree (4, 4) s-symmetric real curve which intersects the two 
real halves of C~ at eight points (the ramification points); all these point~ must be 
outside of the ovals of C2 and different from the fixed points of s. Then, under a 
proper choice of the sign of e, the portions of the real part of Cj which are either 
inside the ovals of C2 or between pairs of the ramification points double, and the 
rest of 2~ disappears (see, e.g., Figure 2(b), corresponding to {3S} LI {2V~ U S}; to 
obtain the other distributions note that one or both the ovals surrounding the fixed 
points can be moved to the 'left hand' half, and the pair of small ovals can be 
moved to the 'right hand' half). If the exposition is chosen so that X~ ) covers the 
interior of the two ovals surrounding the fixed points of s, then these two ovals 
produce the V~ components of ER; the other pairs of symmetric ovals produce 
spheres. 

8.3. The distributions of 2V2 II kS 

The distributions constructed here are { I/2 II aS} L3 { V2 II bS} for all (a, b) 
except (0, 0), (4, 0), (2, 2), and (0, 4). (The first exception is found in [DK1], the 
others, in [N2], see the remark at the end of 2.2.) Let Y be the hyperboloid 
X 0 2 =  2 2 = x, + x z - x ~  and C (~luC2, where Ci and C2 are given, respectively, by 
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x~ 2 = 0 and ( 2 X  3 - -  X2) 2 = G(Xo 2 + X 2) for some small real e > 0 (see Figure 3(a)). The 
perturbative term h (see 8.1) is chosen so that its zero set does not intersect the right 
half of Ci and intersects its left half at 4(a - 1) points, a = 1, 2, 3, close to the fixed 
points of s. Under a proper choice of the sign of  the perturbation, the right half of 
C~ doubles and the ramification points generate 2(a - 1) ovals which do not contain 
the fixed points of  s (Figure 3(b)). The exposition is chosen so that the two strips 
containing the fixed points of s in y~2) are covered by X~2); they produce the 
components 112 of E~. Thus we obtain the distributions {V2 II aS} I~ {1"2 II bS} 
with a = 1, 2, 3 and b = 1. To construct surfaces with b = 0, we replace C2 with the 
curve given by ( 2 x  3 - -  x 2 )  2 = e(Xo 2 - -  x ~ ) ;  its right hand half is empty. 

8.4. The distributions of V3 I ~ 1I] [J kS  

We construct the distributions {V3 t_l V1 I laS}  U {bS} and {V 3 IAaS} IA 
{V~ LABS} with 1 _<a + b  _<4 and a > 1; the rest is found in [DK1]. Start with a 
quartic Q c Rp 2 with (k + 1) real components, 1 _< k -< 3, obtained by perturbing 
the union of  two conics (see Figure 4, where k = 3). Pick an oval O (the lowest one 
in Figure 4) and denote by L the double tangent to O and by Lb, 0 -< b -< k, another 
tangent, which together with L separates O in Rp 2 from b other ovals of Q. 

We use the following technical result, proved at the end of this section. 

8.4.1. LEMMA. The union L kJ L b c a n  be perturbed to an irreducible conic K 
which is still tangent to 0 at three points, has no other real intersection points with Q, 
and such that 0 is in the outer part of  the oval of K. 

Let K be the conic given by the lemma. Consider the double cover Y of the 
projective plane branched over K. Denote by g the deck translation involution, by 
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/~ its fixed point set (which projects to K), and by Q the pull-back of Q. Due to 
(cf. 8.1), each of Y, Q and/(" has two real halves. 17~) is the hyperboloid shown in 
Figure 5: Q~) has a component 0 (the pull-back of O) with three nondegenerate 
double points i n / ~ )  and (k - b) pairs of symmetric ovals. The other half 17~2) is an 
ellipsoid in which Q~2~ has b pairs of ovals disjoint from/~2). Now ( Y, s) is obtained 
from (I 7, s-) by the following real g-symmetric birational transformation: blow up the 
singular points of Q and then blow down the transforms of k and the two 
generatrices Gj, 6;2 of I? through the singular point of Q whose image in Rp2 is close 
to the tangency point of Lb and O. Let C be the transform of Q (Figure 6). Clearly, 
C~) consists of a large oval 0 (the transform of O) surrounding (k - b) pairs of 
symmetric ovals and three isolated double points: the image of/r fixed under s, and 
the image of G~, G2, symmetric to each other. The other half consists of b pairs of 
ovals and an isolated double point, the image of/~. All the ovals but O are not nested 
and do not surround the singular points of t~. Finally, perturb (~ to a nonsingular 
symmetric curve C (see 4.3.1 in [DK1]); the fixed double point, which produces the 
1/'1 component of Ea, can be made to pop up in either side, and the two symmetric 
double points may either form a pair of symmetric ovals or disappear. Thus, we 
obtain { V3 U V~ k] (k - b + f)S} El {bS} and { V3 I_1 (k - b + 6)S} LI { Vl kJ bS} with 
6 = 0 , 1 .  

Proof of  Lemma 8.4.1. Given an imaginary point u s Q, define an involution Pu 
of a Zariski open subset of the symmetric power S3Q in the following way: for a 
generic triple (x~, x2, x3) e S 3 Q  there is a unique conic through u, fi, x~, x2, x3; it 
intersects Q at three more points y~, Y2, Y3, and we let pu(X~, x2, x3) = (y~, Y2, Y3). 
Clearly, the above conic is tangent to Q at Xl, x2, x3 if and only if (Xl, x2, x3) is a 
fixed point of p,. 

Denote by a~, a2, a3 the three tangency points of L u Lb and Q, and by v one of 
the two imaginary intersection points of L~ and Q. Then the graph Fv of Pv 
intersects the diagonal A c S3Q X S3Q at a = (a~, a2, a3) x (al, a2, a3) transver- 
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sally. (Note that S3Q is smooth at this point.) Indeed, let p~,p: be the two 
projections S3Q • S3Q---* S3Q, and let ei be some real generators of the tangent 
spaces TaiQ, which we regard as basis vectors of  T~,a2.~)S3Q. Then T~A is 
spanned by p*ei + p * e  i, i = 1, 2, 3, and T, Fo is spanned by p*e~+ ~tip*e~, 
i = 1, 2, 3, with some real ~i < 0. (To see that, one can move one point at a time; 
then the conic is still reducible, and it is easy to estimate the tangent vectors.) Thus, 
for any other point v' close to v the graph of Po, also has a unique (and hence real) 
intersection point with A close to a, i.e., there is a real conic K through v' tangent 
to Q at three real points close to a~, a2, a3. If  the line (v'~') is not tangent to Q, this 
conic is irreducible. Finally, to control the topology (actually, to choose one of  the 
two possible real directions of the perturbation), just note that K has no real 
intersection points with (v'~'); hence, this line lies outside of the oval of  K, and if 
v' is chosen so that (v'g') intersects O at two real points, then O is also out- 
side. F2 

Remark. The involution p, is similar to that in [GH, Sect. 7], where it is used 
for a similar purpose. It also seems possible to apply Shustin's approach [Sh]. 

Appendix A. Kalinin's intersection form 

A.1. The local case 

Kalinin's spectral sequence and, in particular, Viro homomorphisms admit an 
obvious relative version. We make use of  such a version to do some calculations in 
a neighborhood of the fixed point set. Then, in the next subsection, we apply the 
result obtained to prove Theorem 5.2.3. 

A.I . I .  LEMMA. Let v be an m-dimensional vector bundle over a finite cell 
complex F, and let T and aT be the associated disk and sphere bundles, respectively, 
supplied with the antipodal involution. Then the homology filtration .~* associated 
with Kalinin's spectral sequence of (T, aT) is given by .~-m+p = w(v)-~c~H>r(F), 
where w(v) = 1 + wl (v) + w2(v) +" �9 " is the total Stiefel- Whitney class of v. 

Proof. Given a topological space Y with involution c: Y ~ Y and an integer k, 
0 < k < ~ ,  denote by Y, the twisted product 

(A.1 .2)  Yk = r" • Sk/{(y,s) ~(cy, gs)}, 

where g: S k ~ S  k is the antipodal involution on the standard sphere S k. It is clear 
(see, e.g., [D]) that T k and (aT)k are, respectively, the disk and the sphere bundles 
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associated with v | ~/over Fk = F x ~pk, where q is the tautological linear bundle 
over ~pk. Let hi e Hi (~p  k) be the generators. (We let hi = 0 for i < 0 or i > k.) 
According to [D], a sufficient condition for a class Z x;, xi ~ H~ (F), to belong to ~q 
is that the image of Ex i |  in Hq_~(Tq, STq) under the inclusion map 
H,(Fq) ~H, (Tq ,  OTq) should vanish. (In [D] the absolute case is considered, but 
the proof transfers literally to the relative case.) The inclusion map H,(Fq)--* 
H,(Tq,~Tq) is equal to the composition of the multiplication by Wm(V| 
E Wg(V)| ~ - i  and Thorn isomorphism, and spelling out the product wm(v | ~)n 
E xi | hq_ 1 - i and taking into account the coefficients of those of hj which are not 
identically zero in H ,  (~pq) shows that the above sufficient condition is equivalent 
to w(v) c~E xi ~ H>q_m(F ), i.e., E xi ~ w(v)-l nH>_q_m(F). A priori, the subgroup 
obtained is only a portion of ~q,  but comparing the dimensions shows that, in fact, 
these two subgroups coincide. [] 

A.1.3. COROLLARY. Let F, v, T, and 8T be as in Lemma A.I.1, and let 
th: Hq+m(T, ST) --*Hq(F) be the Thorn isomorphism. Then for any class a ~ Hq(F) 
one has bvq+m(w-l(v) ~a)  = th -1 a. 

Proof The result is actually proved for the case when F is a q-dimensional 
polyhedron with Hq(F)= 2/2, and a is the generator of Hq(F): in this case 
w-l (v)na  is the only nontrivial element in ~-q+m, th -~a  is the only nontrivial 
element in Hq+,,(T, ST), and bvq+ m :~q+m_. Hq+,n(T, OT) is an isomorphism. In 
general, one can find a singular q-dimensional polyhedron f :  P ~ F  with Hq(P) 
generated by a single element [P] so that a = f ,  [P]. The result follows then from the 
naturality of bv,  and th. [] 

A.2. Proof of Theorem 5.2.3 

A.2.1. LEMMA. Let Y, c, and F be as above. Denote by Dr:  H*(Y) -* H , ( Y )  
and OF: H*(F) ~ H,(F)  the PoinearO duality maps in Y and F respectively, and by 
Dc : H*(F) ~ H,(F)  the map ct ~-~ ~ n(w-l(v) n[F]).  Then: 

(1) Dc induces isomorphisms ~U-p-* ~P; 
(2) given x ~ ~pp, one has bvN-p(D ~l bvp x) = D~lx mod ~u-p-  i. 

Proof. From the naturality of Kalinin's spectral sequence and Corollary A. 1.3 
it follows that the only nontrivial element of ~-N is w-~(v) n[F] and, hence, 
[Y] =bVN(W-~(v) c~[F]). Thus, Dc is the multiplication by the generator of ~-N; 
hence, it maps ~N-p to ~P. Furthermore, Dc is an isomorphism (as compositio.n of 
Poincar6 duality and multiplication by an invertible element), and comparing the 
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dimensions shows that so is its restriction t o  ~ N _ p - " ' ~  p. (Recall 
dim ~'~N-p - -dim ~ P  due to 5.2.2 and duality between H *  and H~ .) 

It follows that Dc bvN-q(D~, 1 bvq x)E O~p, and one has: 

that 

bvp(Dc bvN-P(D r I bvp x)) = D,~ l bvp x n[Y]  = bvp x; 

since Ker bVp = ~P+~, this gives D c bvN-p(D{ 1 bvp x ) -  x mod ~P+~ [] 

Proof of  Theorem 5.2.3. By the definition, w(v) n (a o b) = D7 la n b e ~N-p n 
~ q c , ~  p+q-N, and a direct calculation using Lemma A.2.1(2) shows that 
bvp+q_N(Dcla rib) = D r  t bvp a nbvq b = bvp a o bvq b. [] 

Mention also the following immediate consequence of A.I.1 and A.1.3: 

A.2.2. PROPOSITION. Let Y, c, F, and v be as in Theorem 5.2.3. Pick a 
component Fi c F of  dimension (N - m), and denote by in~: Fi ~ Y the inclusion. Then 
6r~ q ('~ H ,  (Fi) c w -  I(V)O H>_q_ m(Fi), and for any class a ~ ~ q  one has in!i bvq a = 
[w(v) ha]q_ m IFi, where in ! is the inverse Hopf  homomorphism and [']q-m stands for the 
(q -m)-dimensional component of  a nonhomogeneous homology class. 

Proof. The first statement follows from the naturality of the filtration and 
Lemma A.I.1 applied to VlF r To prove the second one just note that inl is the 
composition of the relativization homomorphism Hq(Y)-- ,Hq(Ti,  OTi) and Thom 
isomorphism nq(Ti,  t~Ti)--* Hq _m(Fi ), and apply Corollary A.2.1. [] 

Appendix B. 'Generalized Enriques surfaces' with w2(E) = 0 

In this section we assume that E satisfies all the axioms of generalized Enriques 
surfaces (see 1.2) except the requirement w2(E) ~ 0, i.e., E is the orbit space of a 
generalized K3-surface X by a fixed point free holomorphic involution z: X ~ X, 
and w2(E) = 0. These surfaces are closely related to symmetric curves of bi-degree 
(4k + 2, 4k + 2) on real quadrics (cf. Introduction). We only state the results, 
parallel to those of Section 2; proofs are found in [DK2]. (The proofs require some 
properties of  the action of the Steenrod algebra in Kalinin's spectral sequence, 
which are also studied in [DK2].) 

As in the case w2 ~ 0, the components of Ea may be of one of the types Sg, Vg, 
or"Tg (see 1.3). Note that ER has no components of type V2g+~, as for such a 
component C~ one would have [Ci] 2 = 1. We say that ER or E~ ) is of type I if its 
fundamental class belongs to the image of Tors2 Hz(E; Z) in H2(E). 
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B.I.I. THEOREM (cf. Theorem 2.1.2). l f  Er is nonorientable, then ER consists 
o f  a single hal f  and the restriction Xr --* Er o f  the projection X --* E is the orientation 
double covering (i.e., there is no components o f  type Tg). Besides, E is an ( M -  d)-  
surface, d > 2, and 

(1) t f d = 2 ,  then x(E~.~) =tr(E)  (mod 16) and E a is o f  type I; 
(2) t f d =  3, then z(Ea) -= rr(E) _+2 (mod 16); 
(3) / f d  = 4 and ;((ER) -- rr(E) + 8 (mod 16), then E.~ is o f  type L 

B.1.2. THEOREM (cf. Theorems 2.1.2 and 2.1.3). I r E  is an ( M - d ) - s u r f a c e  
with orientable real part and either E r is trivially covered by X r (i.e., there is no 
components o f  type Tx) or E R consists o f  a single half, then d > 2 and 

(1) ( f d  = 2, then z(Ea) - a ( E )  (mod 16) and Er is o f  type I; 
(2) t f d =  3, then z(E.~) - a ( E )  + 2  (mod 16); 
(3) t f d = 4  and z(E.~) =tr(E)  + 8  (mod 16), then E r is o f  type I. 

B.1.3. THEOREM (cf. Theorem 2.1.4). Let E be an ( M - 3 ) - s u r f a c e  with 
ER = k S .  Then E a = {4pS} II {(4q + I)S}, both the halves being nonempty unless 

k = l  (roodS). 

B. 1.4. THEOREM (cf. Theorem 2.1.5). Let ER = Tg t l  kS .  Suppose that E is an 

( M  - d)-surface and z(E.q) = tr(E) + 26 (mod 16). Then for  the values o f (d ,  6) listed 
in Table 1 in 2.1 one has Ea = { V2g r, I k~X)S} ~ {k(2)S), where k (2) (mod 4) takes one 

o f  the values given in the table;furthermore, k ~2) ~ 0 with the possible exception o f  the 
case d = 2, 6 = O, Er is o f  type I. Besides, there are the following additional prohibitions: 

(1) t f d  = 0, then both the halves (as well as Er itself) are o f  type I; 
(2) t f d  = 0, then kCt)vaO unless k - 0  (mod 8); 
(3) t f d  = 1 and k "~ = O, then either k - 6 (mod 8), or k - 0 (mod 4) and E~ :) is 

o f  type I. 
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Added in proof. The proof of Theorem 2.1.4 has a gap: in 7.3.2 one needs to eliminate 
the case k = l with both E~ ) and E~ 2) nonempty. It is eliminated by the following 

-~t)  + conj,  x lemma: i f  ER is orientable, both the halves are nonempty, and It: r ] = x with 
x ~ H, (E), then x 2 = 0 mod 2. (This implies that if in 7.3.2 both the halves are 
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n o n e m p t y  the  r e l a t i o n  [E~ i>] = x + c o n j ,  x h o l d s  n o t  on ly  in t t 2 ( E )  b u t  a lso  in 

H 2 ( E ;  Z)  a n d ,  hence ,  sl + "  ' " + s~ c a n  be  t a k e n  to  r e p r e s e n t  o n e  o f  the  ha lves . )  T o  

p r o v e  the  l e m m a  a p p l y  the  P o n t r j a g i n  square :  P [E~  ~)] = 2 P ( x )  + 2 (x  ,-~ c o n j ,  x). T h e n  

p ick  a n  s e H 2 ( E ;  Z) so  t h a t  [En] = s  + c o n j ,  s:  such  a n  e l e m e n t  exis ts  in H2(E)  

as w 2 v a n i s h e s  in H 2 = H ~ ,  a n d  it l ifts to  H2(E;  2~) since,  d u e  to  the  A r n o l ' d  

l e m m a ,  s 2 = s o [ E a ] - s o c o n j , s = 0 m o d 2 .  D u e  to the  A r n o l ' d  l e m m a  

a g a i n ,  x o c o n j ,  x = x o ( 1 + c o n j . ) s  = (x + c o n j .  x)  o s = s o [E(ai)]. T h u s ,  x o c o n j .  x 
= ! I ' E ( I ) 1 2  e q u a l s  �89 + c o n j ,  s) o [E~ )] = l [En]  o [E~ l,] ~_t ~ J  r e d u c e d  m o d  2 a n d  2x  2 m o d  4 

e q u a l s  2 P ( x )  = P [ E ~  )] - [E~)] = = 0. 
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