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Hard-core Yukawa model for two-dimensional charge-stabilized colloids

R. Asgari,1 B. Davoudi,1,2 and B. Tanatar3
1(IPM) Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5531, Tehran, Iran

2Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
3Department of Physics, Bilkent University, Bilkent, Ankara, Turkey

~Received 18 April 2001; revised manuscript received 29 May 2001; published 25 September 2001!

The hypernetted chain and Percus-Yevick approximations are used to study the phase diagram of a simple
hard-core Yukawa model of charge-stabilized colloidal particles in a two-dimensional system. We calculate the
static structure factor and the pair distribution function over a wide range of parameters. Using static correla-
tion functions, we present an estimate for the liquid-solid phase diagram for a wide range of parameters.
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I. INTRODUCTION

Systems composed of small particles with sizes of ten
nanometers dispersed in solvents are known as colloidal
pensions@1#. With increasing interest in the properties
complex fluids and their various thermodynamic phases,
loidal systems have been the subject of vast experime
and theoretical investigations@2,3#.

Two-dimensional~2D! colloids are of special interest fo
several reasons. First, colloidal systems can be real
rather easily experimentally, as in air-water interfaces or
tween two parallel glass plates, and advances in meas
ment techniques such as digital video microscopy brou
about a wealth of information on these systems@4–8#. Sec-
ond, the nature of the melting of 2D crystals is different th
their 3D counterparts, making them a subject of intense
oretical and experimental investigation@9–11#. Colloidal
suspensions in the fluid phase may crystallize as their den
increases or the range of interaction changes. The exist
of a glassy phase@12# and re-entrant melting@13,14# are
examples of various motivating derives behind some of
recent work. The possibilities of photonic band-gap str
tures made out of colloidal crystals promise interesting
plications@15#.

In this work, we first use the hypernetted-chain~HNC!
and Percus-Yevick~PY! approximations for a compariso
between the two approaches for the pure hard-core pote
~PHCP! as a model for a colloidal system. It is well know
that the simple HNC approximation, which omits elementa
diagrams, gives a good description of the large interpart
distance behavior. On the other hand, the PY approxima
yields better results for short interparticle distances@16–18#.
In the next step, we employ the widely used hypernett
chain approximation to study liquid state correlation fun
tions and freezing transition of charge-stabilized colloid
particles in two dimensions interacting via the hard-co
Yukawa potential~HCYP!. Our basic aim is to test how we
the HNC method models the static properties of a colloi
system. Similar calculations@19# in three dimensions re
sulted in a good agreement between the predictions of H
theory and Monte Carlo simulations. To this end, we cal
late the pair-correlation function and the static structure f
tor for a range of densities and temperatures. We discuss
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results in comparison to other theoretical approaches
available experiments.

II. MODEL AND THEORY

A. Hard-core Yukawa model

In this section, we introduce a model of two-dimension
charged colloidal particles. We consider colloidal partic
trapped in a surface energy well at an air-water interfa
modeled by a hard-core interaction and a Yukawa interac
@4#. The pair potentialV(r ) between the colloidal particles i
given by

V~r !5H ` for r ,s

l
exp@2k~r 2s!#

r
for r .s,

~1!

wherel is the strength of the interaction,s is the hard-core
radius, andk is the inverse of the Debye screening length
the colloidal system. The PHCP without the Yukawa tail
obtained by settingl50. The form of the interaction poten
tial between charge-stabilized colloids is different from th
between charged colloidal particles, as inferred from the
cent experiments of Marcus and Rice@7,8#. The role of long-
range forces in colloidal systems was been emphasized
Noro et al. @20#.

B. HNC and PY formalisms

Given the above potential to describe interactions
tween charged colloidal particles, the evaluation of corre
tion functions reduces to a problem in classical liquid st
theory @21#. One of the basic quantities of interest is th
pair-distribution function, defined by

g~ ur2r 8u!5K (
i51

N

(
jÞ i

N

d~r2r i!d~r 82r j!L /r2, ~2!

where r is the density of the liquid. The pair-distributio
function gives the probability of finding a particle atr 8 when
we fix another particle atr. Other relevant quantities are th
pair-correlation functionh(r )5g(r )21, and the static struc
ture factor defined by
©2001 The American Physical Society06-1



n

n

m

he
rm

n-

ve

he

ca
oi
qs
c-
by

de

ur
to
r
n-

N
m
en
at
or
t

th
k
t

an
ir-
e

In

re
g

ity
of
the
d-
ply
e of
r-
atic
rst

R. ASGARI, B. DAVOUDI, AND B. TANATAR PHYSICAL REVIEW E 64 041406
S~q!511rE drh~r !exp~ iq•r !. ~3!

The pair-correlation function for a simple, isotropic fluid ca
be decomposed using the Ornstein-Zernike relation@21,22#

h~r !5C~r !1rE dr8C~ ur2r 8u!h~r 8!, ~4!

whereC(r ) is called the direct correlation function, and ca
be related to the structure factor through

S~q!51/@12rC~q!#. ~5!

A closure relation betweenh(r ) and C(r ) is needed to
supplement the Ornstein-Zernike relation. There are so
closure relations betweenh(r ) and C(r ). In the following
we use the well-known HNC and PY approximations. In t
HNC approximation, the closure relation takes the fo
@21,22#

C~r !5exp@2bV~r !1Y~r !#212Y~r !, ~6!

where V(r ) is the interparticle pair potential, and by co
structionY(r )5h(r )2C(r ). b51/(kBT) is the inverse tem-
perature. On the other hand, the PY closure relation is gi
by @21#

C~r !5~e2bV(r )21!@Y~r !11#. ~7!

A self-consistent solution of Eq.~4!, ~6!, or ~7! gives infor-
mation about the correlations in the liquid state within t
HNC or PY schemes.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the results of our numeri
calculation of HNC and PY equations for a system of coll
dal particles interacting with HCYP. We have solved E
~4!, ~6! or Eq. ~7! for HNC and PY approximations, respe
tively. One can find solutions for this set of equations
numerical iteration, taking the potential defined in Eq.~1! as
input. We have obtained correlation functions for a wi
range of values of the densityr* 5s2r, screening length
ks, and inverse temperaturebl. More specifically, we have
calculated the pair-correlation function, the static struct
factor, and a direct correlation function which is related
the effective potential. We have then used the Hansen-Ve
@23# criterion to estimate the phase line for liquid-solid tra
sition.

As a comparison, first, we compare the results of the H
and PY approximations. To show the differences, we co
pare the results for two extreme regions: low and high d
sities. In Fig. 1, we show the pair-distribution function
r* 50.4 and 0.8 within the HNC and PY approximations f
a PHCP. One can see that the differences between the
approaches increase with increasing density. It is evident
we have a sharp peak inr 5s, and the height of the pea
increases as we increase the density. This means tha
probability of finding a particle atr 5s when we fix a par-
04140
e

n

l
-
.

e

let

C
-
-

wo
at

the

ticle in the origin increases with increasing density. One c
observe a long-range oscillatory behavior in the pa
distribution function, which is a sign of a liquid-solid phas
transition.

Using Eq.~3!, one can find the static structure factor.
Fig. 2 we depict the static structure factor atr* 50.4 and 0.8
within the HNC and PY approximations for a PHCP. The
is a peak aroundk52p/s which increases with increasin
density. A sharp peak in the structure factor atk52p/s
produces a long-range oscillatory behavior with a periodic
s in the pair-distribution function, which is a signature
long-range order or of the solid phase. Furthermore,
height of this peak is very important in predicting the liqui
solid phase transition. The Hansen-Verlet criterion sim
states that the phase transition takes place when the valu
the first peak inS(k) reaches a special constant. It is inte
esting that the difference between the values of the st
structure factors within the two approximations near the fi

FIG. 1. The pair-distribution function for PHCP in terms ofrs
at r50.4 and 0.8 within the HNC and PY approximations.

FIG. 2. The static structure factor for PHCP in terms ofks at
r50.4 and 0.8 within the HNC and PY approximations.
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peak is small. This small difference allows the use of HN
results to be reasonable to predict the liquid-solid phase t
sition for a PHCP. We used the recent results of Web
Marx, and Binder@9#, for the density at which the phas
transition takes place, to determine the height of this pea
our results. This value in our results is aboutSmax>3.5, cor-
responding tor* 50.89 within the HNC approximation.

We now report the results for the HCYP within the HN
approximation. The static structure factor is shown in Fig
at fixed bl54 andks54 for different values ofr* . We
observe that with increasing density the peak structure in
static structure factor increases. Again, the increasing p
height of the static structure factor shows a tendency tow
the formation of a solid phase. We also can observe
there is a shift in the position of the peak, which means in
high density regime the hard-core part of the potentia
dominant compared to the Yukawa part, and the position
the peak shifts to the position for the hard-core one.

We observe the same behavior by fixingks andr* and
changingbl, or by fixingbl andr* and changingks. The
above argument shows that, by changing the strength
range of the Yukawa part or the temperature, one can re
the phase transition point. The results atr* 50.3 andbl
580 for different values ofks, and atr* 50.4 andbl54
for different valuesks, are depicted in Figs. 4 and 5.

It is evident from Fig. 4 that the position of the peak
different from the high density limit, which implies, for low
density limit, that the Yukawa part makes the major con
bution to the liquid-solid phase transition. The position of t
peak also supplies some information about periodicity in
pair-distribution function. Generally, the position of the pe
near the phase transition point for the HCYP only depe
on the value of the density, and is insensitive to other par
eters.

In Fig. 6 we show the pair-distribution function at fixe
bl54 andks54, and different values ofr* . It is interest-
ing to note that we have a shift towardr 5s as we increase
the density, which again means that the hard-core part m

FIG. 3. The static structure factor in terms ofks at bl54,
ks54, and different values ofr.
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the major contribution to the high density limit. It is clea
that the period of the oscillations also changes as the den
increases.

It is possible to study the evolution of the first peak in t
static structure factor when the physical quantities change
extract some useful information about the liquid-solid pha
transition. In Fig. 7, we show the variation of this peak
terms ofbl for a set of densitiesr* 50.3, 0.4, 0.5, 0.6, and
0.7 atks54. It is clear from the figure that the Yukawa pa
is important only for low density, and that it is the source
the liquid-solid phase transition in the low density region.
is interesting thatbl, at which the phase transition take
place, also shifts to the right very rapidly with decreasi
density, because the mean distance between the two par
increases with reducing density, and the effect of
Yukawa interaction decreases exponentially as the mean
tance increases.

FIG. 4. The static structure factor in terms ofks at r* 50.3,
bl580, and different values ofks.

FIG. 5. The static structure factor in terms ofks at r* 50.4,
ks54, and different values ofbl.
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In Fig. 8 we show the variation of the first peak in term
of bl at r50.4 andks54, 6, and 7. It is observed that wit
increasingks, the curvesSmax tend toward a constant, whic
means that hard-core part again has the major effect on
system in this region; we can thus observe the phase tra
tion with changing density.

From the previous figures and using the Hansen-Ve
criterion, we can obtain the liquid-solid phase transition lin
In Fig. 9 we depict the phase line for different values ofks.
It is interesting to note that all phase separation lines t
toward the same point in the high density limit, which
reasonable. Another important point is that with increas
ks the phase line tends toward the liner* 50.89. This line
is equivalent to the liquid-solid phase transition line for
pure hard-core potential.

The phase diagram of colloidal systems in two dime
sions is of particular interest, because of the subtleties

FIG. 6. The pair distribution function in terms ofr /s at
bl54 andks54 and different value ofr* .

FIG. 7. The value of the first peak in the static structure facto
terms ofbl at ks54 andr50.4, 0.5, 0.6, and 0.7.
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freezing or melting transitions. Bladon and Frankel@10#, us-
ing an attractive square-well potential, found a first ord
melting transition where the system goes into a liquid ph
from a crystal phase. However, molecular dynamics@24#
simulations and recent experiments@25# showed solid-to-
hexatic and hexatic-to-liquid phase transitions if there was
attractive part to the colloidal potential. In an earlier wo
Löwen@26# did not find a hexatic phase in a Yukawa syste
It appears that the way in which the form of the interacti
potential influences the possible phases in 2D colloidal s
tems is not entirely clear. Issues such as attractive or re
sive natures, hard or soft cores, and the long range part o
potential remain to be systematically investigated. In o
analysis, we used the Hansen-Verlet criterion to determ
the liquid-solid freezing transition, which seems consist
with available results.

n

FIG. 8. The value of the first peak in the static structure facto
terms ofbl at r50.4 andks54, 6, and 7.

FIG. 9. The liquid-solid phase line transition atks54, 6, and 7.
The dashed line represents the liquid-solid phase transition line
the PHCP.
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In summary, in this paper we have used HNC theory
study correlation functions of a 2D hard-core Yukawa flu
as a model for colloidal systems. We have investigated
effect of the Yukawa tail in the model potential by compa
ing our results with those for a purely hard-core potent
The reliability of our correlation functions at small distanc
were tested against the PY approximation. Using
Hansen-Verlet criterion, which uses the value of the fi
peak in the static structure factor, we obtained a phase
gram showing the liquid-solid transition.
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