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Abstract. Most electromagnetic problems can be reduced to either integrating oscillatory integrals 
or summing up complex series. However, limits of the integrals and the series usually extend to 
infinity, and, in addition, they may be slowly convergent. Therefore numerically efficient techniques 
for evaluating the integrals or for calculating the sum of an infinite series have to be used to make 
the numerical solution feasible and attractive. In the literature there are a wide range of applications 
of such methods to various EM problems. In this paper our main aim is to critically examine the 
popular series transformation (acceleration) methods which are used in electromagnetic problems 
and to introduce a new acceleration technique for integrals involving Bessel functions and sinusoidal 
functions. 

1. Introduction 

Numerical techniques used in the solution of electro- 
magnetic problems require, in general, either evaluating 
oscillatory integrals over infinite domain or calculating 
the sums of infinite complex series. For example, the 
method of moments (MoM) in the spectral domain for 
two-dimensional geometry requires double-infinite inte- 
gration of complex highly oscillatory functions; the MoM 
in the spatial domain employs the spatial domain Green's 
functions, which are defined as the Hankel transform of 
the spectral domain Green's function; in the analysis of a 
periodic structure one needs to employ a periodic Green's 
function which has double infinite summations; or, in the 
analysis of a microstrip patch antenna via cavity model, 
the input impedance or field distribution are written in 
terms of an infinite sum of modes in the cavity. 

If the summations and integrals given in the examples 
above are evaluated by "brute force" as they appear in the 
problems, the corresponding methods could be compu- 
tationally very inefficient, rendering these problems im- 
practical. To overcome this computational burden, special 
acceleration techniques, also called transformation tech- 
niques, for both integrals and summations have been pro- 
posed and successfully employed. Since these techniques 
have been studied for specific problems and compared 
to only a few other techniques, the potentials of these 

Copyright 1995 by the American Geophysical Union. 

Paper number 95RS02060. 
0048-6604/95/95RS-02060508.00 

techniques with their advantages and disadvantages have 
not been examined entirely for electromagnetic problems. 
Hence the contributions of this paper are in (1) provid- 
ing the complete set of acceleration techniques used in 
the electromagnetic problems, (2) comparatively study- 
ing the acceleration techniques for integrals and series, 
and (3) introducing a new acceleration technique for in- 
tegrals involving Bessel functions and sinusoidal func- 
tions. The transformations given and compared in this 
paper are the Euler transformation [Hildebrand, 1974], 
Shanks' Transformation [Shanks, 1955; Singh and Singh, 
1991a], Wynn's • algorithm, the method of averages 
[Mosig and Gardiol, 1979], the Chebyshev-Toeplitz al- 
gorithm [Wimp, 1974; Singh and Singh, 1992b], the O 
algorithm [Brezinski, 1982; Singh and Singh, 1992a], the 
Poisson transformation [Papoulis, 1962], Ewald's trans- 
formation [Jordan et al., 1986] , Kummer's transforma- 
tion, and the method of exponentials. 

In section 2, the algorithms of the aforementioned trans- 
formation methods are presented, with examples when 
necessary. Numerical examples and the discussion of the 
methods are given in section 3. Finally, in section 4, 
conclusions about the transformation methods, with their 
advantages and disadvantages, are given. 

2. The Transformation Methods 

The principle of a series acceleration method is to trans- 
form a slowly convergent sequence, by using a linear or 
nonlinear mapping, to a new, faster converging sequence. 
Since there is not any universal algorithm which could 
work for every type of sequence, one should try differ- 
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ent algorithms to obtain the optimum result for the prob- 
lem under investigation. Hence the acceleration meth- 
ods used can be divided into two main groups: general 
methods and specific methods. A general transformation 
method can be applied to any sequence which can be 
obtained from an infinite series or an infinite oscillatory 
integral. Examples of such methods are the Euler trans- 
formation, Shanks' transformation, Wynn's c algorithm, 
the Chebyshev-Toeplitz algorithm, and the {D-algorithm. 
On the other hand, specific methods are derived by analyt- 
ically working on the kernel of a series or of an integral. 
Therefore they can be applied only on their own types, 
but they usually work better than the general methods. 
The Method of averages, the Method of exponentials, 
the Poisson transformation, Ewald's transformation, and 
Kummer's transformation are the examples. Since the 
partial sums of an infinite series are used in most of the 
transformation methods, it would be instructive to define 
them for an infinite series as follows: 

•ai -- a0 + al + a2 + a3 +.'' 
i=0 

An = a0 + a l + a2 + ... + an n = 0, 1,2,... (2) 

where Ar• denotes the partial sum of (1) for n termsß 

2.1. Euler's Transformation 

Euler's transformation can only be used for an alternat- 
ing series and the equation for the transformation can be 
given as [Hildebrand, 1974] 

k=0 

• fo-•Afo+• f0+.--+(-1) f0 
where (3) 

1 fk+r-• + 2 f•+r-2 

.... + 
(4) 

The convergence of Euler's transformation can be im- 
proved by adding some of the initial terms directly before 
the transformation. Note that increasing the number of 
previously added terms could improve the convergence. 
2.2. Shanks' Transformation 

The idea behind Shanks' transformation is that the par- 
tial sums of a sequence can be treated as a mathematical 

transient, and it gives an approximation to the base of the 
transient which is the result of the infinite summation. 
The kth order Shanks' transformation, e•, is defined in 
the following form [Shanks, 1955]' 

ß " A,•-I A,• 
ß .- AA,•_ 1 AA,• 
ß ß ß AA. 

ß o 

, 

...... 
(5) 

where Ar•'S are defined in (2) and AAr• - Ar•+l - Ar•. 
For a special case, k - 1, (5) becomes 

A•_ 1 A,• I •dJm- 1 • A• + 1A•- 1 -- A• (6) Bi,. = 1 1 = A.+i + A.-1- 2A. 
AAn_I AA• 

n- 1,2,-.. 

and it is known as Aitken's • process [Press et •., 1986]. 
•e iterated Shanks' transfo•ation perfo•s the Shanks' 
transfo•ation repeatedly until another transfo•ation 
becomes impossible and is given • [Sh•ks, 1955] 

B•,• - e•(A•), n•k 
- . (7) 
- . 

, 

Shanks' transfo•ation (5) is usually applied by increas- 
ing the order k continuously until a predefined conver- 
gence criterion is satisfied. The evaluation of the dete•i- 
nant in (5) is time consuming for higher orders, and it can 
be avoided by using the following transformation, called 
Wynn's c algorithm [Brezinski, 1982]' 

•+1 + _(,•) (, n,k- O, 1,... (8) 
•k -- Ck 

where n and k •e the indices for the te•s and the or- 

der of the transfo•afion, respectively, and only the even 
order transfo•afions •e used; the odd order ones •e in- 
termediate values. The importance ofWynn's e algorithm 
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stems from the fact that the evaluation of the determinant 

is reduced to a simple iterative equation. On the other 
hand, the e algorithm given in (8), which is called "nor- 
mal" form, has a disadvantage in that it may suffer from 
cancelation errors due to the computers arithmetic in the 
case of _(n+•) _• (n) e-k - e k ß The cancelation errors occur be- 
cause there is a subtraction process in the denominator of 
(8), and they can be avoided to some extent by using the 
progressive or particular rules of the algorithm [Brezinski, 
1991]. 

2.3. Method of Averages 

This technique is especially suitable in evaluating the 
integrals which have a special form of [Mosig and Gardiol, 
1979] 

I - f(•) cos(•p)d• (9) 

where the function f (•) is assumed to have the asymptotic 
form 

lim f(•) = C• • (10) 

In addition, the partial integrals are defined as 

I•m -- f(A) cos(•p)d• m - 1,2,-.., M 

where •,•'s are the successive zeros of the oscillatory 
function cos(•p). Then the transformation is given by 

I I I I 

i• • _ w,•I• + w,•+i/•n+l 1 - 1,2,-.., M - 1 - t m-1 2... M-/ W/m q- Wm+l ' ' ' 
(12) 

where 

w,• - (13) 

The value [•M is an approximation to the integral. This 
method can also be used in the integration of suitable 
Bessel functions whose asymptotic forms can be ex- 
pressed as sinusoidal functions. 

2.4. The (9 Algorithm 

The (9 Algorithm has been derived from the Wynn's • 
Algorithm, and it can be expressed as [Brezinski, 1982; 
Singh and Singh, 1992a] 

0(,•) _ •(,•+•) 
2k +2 -- "•2k 

['•2k+• 
+ 

[t•(n+2) 9t•(n+l ) (n ] '•2k+l -- •'•2k+l q- O2k)-I-1 
(14) 

1 o(•) _ a•(•+•) 
2k+l -- '"'2k- 1 q- (r,+l) 

O2• -- 2k 

n,k - O, 1,--- 

n-O, 1... 

where At, 's are the partial sums as defined in (2). 

2.5. The Chebyshev-Toeplitz Algorithm 

The Chebyshev-Toeplitz algorithm requires, first, one 
to transfer the partial sums to an intermediate series, t( r*)' s 
[Wimp, 1974]: 

t('*) t?) ('*+•) •+• - e• + 2e•tk -t•_)l n,k--O, 1... 
(15) 

t(o '*) - 

Then the final transformed series is obtained through 

T?) t? ) - n,k- 0, 1,2,.-- (16) 

where 

and 

rrk+l - 6rr• - rr•_• k - 1,2, 3,.-- (17) 
rr0- 1 rr• -3 

e•, - 1 , k-0 

e•, - 2 , k>0 

2.6. The Poisson Transformation 

The main idea behind the Poisson transformation is the 

reciprocal spreading property of the Fourier transforma- 
tion; that is, if a function has a narrower support in one 
domain, it would have a wider support in the other do- 
main. The Poisson transformation can be expressed as 
[Papoulis, 1962] 

I(t +.r) = 

1 o• 

• E exp(jnwot)F(nwo) 
271' 

w0- -•- (18) 

and can be applied to double series [Larnpe et al., 1985]. 
Here, the transformation of the following doubly infinite 
series, which appears as the Green's function of two- 
dimensional periodic structure [Michielssen, 1992], is 
given as an example: 

oo 

GP:47 r E exp(-J•ø'ffmn) expO'køRmn) 
(19) 
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where 

ko - kx& q- kyO q- kz •2 (20) 

titan -- rnD•S + (rnD• tann + nD•) •7 (21) 

(22) 

The Poisson transformation of (19) can be found by fol- 
lowing the method described by Lampe eta/. [ 1985] as 

where 

exp [_j•n . (17_ if)_ jkzmn Iz_ z,i] 
2jkzmnDzDy 

(23) 

'-stun m 
k p - k z •: + k•O (24) 
2•rm 2•rn 

• = + • (25) 
D• D u cot(•) 

2•n 

k•= Dr + k v (26) 

and D• and D v are the periodicity, and f• is the slant angle 
of the structure. Although (23) converges very fast for 
I z - z•l >> 0, it converges rather slowly when Iz - z•l m 
0, as "on-plane" case. To achieve faster convergence 
in this case, other transformation methods are applied 
[Michielssen, 1992; Jorgenson and Mittra, 1990], and 
given in the next two sections. 

2.7. Ewald's Transformation 

This is a very powerful transformation method utilizing 
the complementary error function [Jordan et al., 1986; 
Michielssen, 1992] and expressing the series given in (19) 
as a summation of two different doubly infinite series: 

Gp - G1 q- G2 

where G1 and G2 are given by 

) 1 • exp -jko- 
G1 = 8•r E R,,• ' 

••xp(+j•o•.)•rf• •,• + 

1 oo exp [jl•; n. (t7- 
y ß G2 = 4jDzDv kzmn 

• exp (•j •z - z• k? •) erfc j• • •z - z• E 
(28) 

and E is a constant which has to be selected to allow 

an approximately equal convergence rate for G• and G2. 
Note that the complement•y e•or function in G• and G2 
makes these series converge rapidly, which is a conse- 
quence of the fact that the complement• e•or function 
behaves asymptotically like exp (-z 2/z• as z • • 
for I•gxl < 3•/4. To compute the complement• e•or 
function efficiently, one can use the algorithm given by 
Gautschi [ 1970]. 

2.8. Kummer's •ansformation 

Kummer's transformation makes use of the fact that the 

rate of convergence of a series is governed by the asymp- 
totic form of that series. Assume that f. (n) is asymptotic 
to a function f(n); then Kummer's transformation gives 
[Lampe et al., 1985; Singh et al., 1990] 

= G1 + G2 (29) 

Usually, f, (n) is chosen in such a way that the last series 
in (29) has a known closed-form expression. However, 
one can also use the Poisson transformation over the last 

series if the closed-form expression is not known. Note 
that the first series in (29) converges rapidly since the 
asymptotic form is subtracted out. As an example, if 
Kummer's transformation is applied to the doubly infinite 
series given in (19), G1 and G2 are found in the following 
form: 

G1 = 4•' E exp -jko't7mn ß 

[ ] Rr•. - RM. (30) 

G2 -- 
oo exp [_j/•- 
Z 2j k•" D•, Dy ' 

exp [-jk?" (I z - z' I + E)] (31) 
where 

- v/l - - I+ - + (32) 
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and the constant E is chosen as in the Ewald's transfor- 

mation. Equation (31) can be thought of as the Poisson 
transformation for the off-plane case. It is also possible 
to perform additional acceleration on the first series by 
applying other transformation methods such as Wynn's e 
algorithm [Singh et al., 1990]. 

2.9. Method of Exponentials 

This method is primarily used in evaluating the integrals 
which have the following form [Chow et al., 1991; Aksun, 
1995]' 

oo H0 (2) (Az) 
I - f• z r• Jo (•z) F (z) dz sin(•z) 

cos (•z) 

(33) 

where F (z) approximated with complex exponentials by 
using the generalized pencil of function method [Hua and 
Sarkar, 1989] or Prony's method [Matpie, 1987]. Once 
the function F(z) is approximated by exponentials, the 
resultant integral will have the following form that can be 
evaluated analytically: 

N oo H0 (2) 

i_i•oai• x • Jo(•x) ß _ sin(•z) exp(-3iz)dz 
cos (•z) 

(34) 

•e integrals involving Bessel and sinusoidal functions 
•ise in a v•iety of problems in dectromagnetics such as 
the spatial and spectral domain analysis of plan•ly strati- 
fied media via MoM. Although the numerical integration 
is possible utilizing an appropriate acceleration technique 
discussed above, the end result will be independent of •, 
implying that for each • one needs to reintegrate (33). 
•is results in relatively l•ge computation time when 
comp•ed to the analytical evaluation in the method of 
exponentials for which the p•ameter • appe•s explicitly 
in the resulting expression. As an example, consider the 
following integral [Aksun, 1995] 

1 2) 
where G and G are the Green's functions in the spatial 

and spectral domain, respectively, and H0 © is the Han- 
kel function of second kind. The above integral cannot 
be evaluated analytically directly for the spectral domain 
Green's functions that are obtained easily for planarly 
stratified media. Therefore one can take the integral ana- 
lytically approximating the spectral domain Green's func- 
tion by complex exponentials. Then the resultant integral 

can be evaluated using the Sommerfeld identity 

exp(-jkr) J H? (kpp) exp (-jkz Izl) kpdkp 
(36) 

3. Results and Discussion 

In this section, some numerical examples are given and 
the transformations used here are summarized in Table 1. 

For all kinds of transformations, relative error is defined 
as 

9-S 
S 

(37) 

where $ and • are the results obtained from direct sum- 
mation calculated up to sufficient precision and transfor- 
mation method, respectively. In addition, a convergence 
criterion is also used to terminate the iterative transforma- 

tions and is defined as 

convergence - (38) 

where A• represents the kth level of any iterated trans- 
formation, and AN and AM are the last terms of the two 
consecutive iterations. The summation process is stopped 
when the convergence is less than a predefined number, 
•c. Note that the convergence checking must be performed 
several times to ensure proper convergence. 

3.1. Integration Involving Bessel Functions 

Acceleration of an integral involving a Bessel func- 
tion is considered here as an example for the application 
of the acceleration techniques discussed above. In the 
application of the series transformation methods to the in- 
tegral (39), one has to convert the integral into a sequence, 
which can be achieved by integrating each cycle of (39) 
separately and assigning them to the terms of the series. 

•o • x J1 (x)dx - 1 (39) 
For the purpose of comparison, the results, relative error 
versus number of terms, obtained from different accel- 
eration methods are given in Figures 1 and 2, and it is 
observed that the method of averages works better than 
the other techniques. However, the method of averages 
requires the asymptotic behavior of the integrand to de- 
termine the optimum weights; if the a in (13) is chosen 
improperly, its convergence could be worse. 

The next example is the calculation of the spatial do- 
main Green's functions for the vector and the scalar poten- 
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Table 1. Summary of the Transformations Used in the Examples 

Abbreviation Transformation Brief Explanation 

Euler Euler transformation 

Shanks 1 kth-order Shanks' transformation 

Shanks 2 kth-order iterated Shanks' 

transformation 

Wynn Wynn's e algorithm 

Averages Method of averages 

Theta 13 algorithm 

CT Chebyshev-Toeplitz algorithm 

Poisson Poisson transformation 

Ewald Ewald's transformation 

Kummer Kummer transformation 

Exponenti•s method of exponentials 

(3) and (4) are used 

The last term (depends on N) of the 
sequence obtained from (5) 

The first term of the last possible 
sequence (depends on N) 
obtained from (7) 

Implemented by using (8) 

Implemented by using (12) and (13) 

Implemented by using (14) 

Implemented by using (15) and (16) 

(23) is used 

(27) and (28) are used 

(30) and (31) are used 

(33) and (34) are used 

tials for a planarly layered medium whose parameters are 
er -- 4.0 and t = 0.02032 cm (thickness of the substrate). 
For this problem the method of averages, found to be the 
best method for the previous example, is compared to the 
method of exponentials and the results, the magnitude of 
the Green's functions versus distance and the CPU time 

measured on a SUN SPARC-5G versus the number of 

evaluation points p, are given in Figures 3 and 4, respec- 
tively. Since the Green's functions are usually used to find 
the field components through a convolution integral for a 
current distribution, it is necessary to evaluate the Green's 
functions for hundreds of p's. Moreover, the method of 

10 3 

10 ø 

10 -3 

10 '9 

10 '12 

10 -15 

x x Direct sum 

= -- Euler 

• Shanks2 
= -- Shanks1 

_ '- Averages 

3 8 13 
Number of terms 

Figure 1. Relative error versus number of terms for the integral 
(39). 

10 a 

10 ø 

10 -a 

• 10 '• 

10 -9 

10 -12 

10 -ls 

. e Wynn 
= -- Theta 

_ -' CT 

z 6 8 10 12 14 
Number of terms 

Figure 2. Relative error versus number of terms for the integral 
(39). 
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4.0 

2.0 

0.0 

-2.0 

-4.0 

-6.0 

-8.0 

-10.0 

, , 

Gqx (Averages) 
GAxx (Averages) 

• GAxx (Exponentials 
& - - • Gqx (Exponentials) 

-3.0 -2.0 -1.0 0.0 1.0 
Iog(k0*rho) 

Figure 3. Spatial domain dreen's functions evaluated through 
the method of averages and Method of Exponentials by using 
(35). 

averages requires numerical integration over each cycle of 
the oscillatory function to compute the partial sums. Con- 
sequently, the numerical integration over each cycle must 
be performed for every different p in the application of 
the method of averages. On the other hand, one needs to 
approximate the function to be integrated, apart from the 
kernel, in terms of complex exponentials; then applying 

lOO 

e-- 
o 

.g 

ro 10 

• GAxx (Exponentialsl 
ß - - ß Gqx (Averages) 

10 100 1'000 
Evaluation points 

Figure 4. CPU times versus evaluation points for the integral 
(35). 

an integral identity results in a function as a function of 
p explicitly. Therefore for each p it is enough to evaluate 
the resulting function. Figure 4 shows that the method of 
exponentials is faster than the method of averages in case 
one needs to evaluate the Green's functions over 30-40 

points for this specific geometry, and the improvement in 
the computation time becomes significant as the number 
of evaluation points increases. 

3.2. Free-Space Periodic Green's Functions 

In this section, acceleration of the infinite summa- 
tions that appear in the free-space Greens' functions is 
demonstrated. Assuming a one-dimensional case first, 
the Green's function for a one-dimensional periodic array 
of point sources located d units apart in the z direction 
can be written as [Mosig and Gardiol, 1979; Singh and 
Singh, 1990] 

1 • exp (-jkRr•) (40) 
where 

Rr•- [(x-xt)2+(y-yt)2+(z-md) 2]'/2 (41) 
The partial sums are obtained for z = !/ = 0.1,•, z = 
0.3,•, ,• = 1.0 m, and d = 0.6 m. Figure 5 demonstrates 
the results, relative error versus number of terms, obtained 
via some transformation techniques described in section 
2. 

Another example is the Green's function for one- 
dimensional line sources spaced d units apart along the z 

10 ø 

10 '2 

10 -• 

10 'e 

x ;-' Direct sum 

= = Shanks2 
½ Shanks1 

= Wynn 
ß -' Theta 

•.ci_ __ 

10 -1ø ................ 

Number of terms 

Figure 5. Relative error versus number of terms for the summa.. 
tion (40). 
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10 ø 

10 '1ø 
9 19 29 39 49 

Number of terms 

Figure 6. Relative error versus number of terms for the summa- 
tion (42). 

axis withthe reference source located at (z', y') 

G = E exp [-j (ks + 2m7r/d)(x- x/)] . ra=-oc j2dkyra 

exp (-jky,• lY- Ytl) (42) 
where 

• - •_ (• + 2•/•) • , •> (• + 2•/•) • 
+ < + ky m -- • -- , 

= 

and the chosen p•meters involved in the series •e: d = 
0.5A, x = 0.1A, A = lm, x t = yt = y= z t = 0, and 
k• - 0. The results •e shown in Figures 6 and 7, and 
it can be concluded that Wynn's e algorithm and Shanks' 
transformation work better that the other algorithms. 

Finally, the free-space periodic Green's function for 
the two-dimensional case will be investigated. •e trans- 
formations •e perfo•ed for a ne•ly on-plane case for 
the summation given in (19) in order to have reasonable 
convergence times for the Kummer and Poisson transfor- 
mations, which •e further accelerated by the Wynn's e 
algorithm. The results •e given in Figure 8 for A0 = 1.0 
m, kx = 3, ky = 2, Dx = Dy • 0.7A, and z = 0.004, 
and the numbers ne• the graphics show the relative er- 
rors at the cogesponding convergence rate. As a final 
comment, as z • 0, the time required for Ewald's trans- 
formation for the sine convergence rate does not change 

considerably, whereasthe other two methods slow down 
significantly. 

3.3. Quasi-Dynamic Green's Function 

The quasi-dynamic Green's function for an z directed 
electric dipole of unit strength located above a microstrip 
substrate can be written as follows [Chow eta/., 1991 ]: 

1 [exp (-jkoro) + Kexp (-jkorD') Gq0 ---- 47re0 'to rO / 

] + E K"-] ( K2- 1) exp(-jkr•r,) (43) 
n=l 

where 

and 

r/•' - V/p 2 + (z + z') 2 
rr• -- V/p 2 + (z + z t + 2nh) 2 

K __ 
l+Cr 

For the evaluation of the summation in (43), the parame- 
ters chosen are: p - 3 x 10-3 m, z - z / - 0, h - 10-3, 
er - 12.9 and h/Ao - 0.05. As pointed out by Chow 
et al. [1991], for this kind of geometry Gq0 needs ap- 
proximately 80 terms to ensure the desired convergence. 
However, as shown in Figure 9, the application of the 
acceleration techniques makes the same series converge 
in nine terms, which is better than the direct summation 
corresponding to 80 terms. 

= = Wynn I e Theta 

10 ø -- CT 

, 

ß _ 10 -2 

10 -a 
9 19 29 39 49 

Number of terms 

Figure 7. •Relative error versus number of terms for the summa- 
tion (42). 
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lOOO 

lOO 

lO 

= = Kummer I 

- = Poisson I NNx - 

3.5E-8 

2.2E-10 2.2E-10 

;-' ;-' "<' --• 1.1 E-• 

•o-' ' .... ;'•;-, ' .... ;'•;-• ' .... ;'& ' .... i'& ' .... 
Convergence 

Figure 8. CPU times versus convergence rate •c for different 
acceleration methods applied to (19). 

4. Conclusion 

Series transformation methods used in electromagnetic 
problems are studied and compared for some numerical 
examples in Electromagnetics. Among these transfor- 
mations, the Euler transformation can only be applied 
to alternating sequences; even then, other transformation 
methods may work better than the Euler transformation. 

Wynn's • algorithm seems to be working better when 
overall performance is considered and it is prefered over 
the direct application of higher-order Shanks' transfor- 
mation because it eliminates the calculation of the deter- 

minants in Shanks' transformation. Although there is an 
exception (see Figure 7), the 6} algorithm also gives good 
results in most cases. 

On the other hand, the user must be aware of caneelation 
errors which might occur in the iterative transformations 
such as Wynn's • algorithm. In the case of cancelation 
errors, the alternate forms of the algorithms should be used 
[Brezinski, 1991]. In addition, although the • algorithm 
works well for oscillatory sequences, it does not work for 
monotonic sequences. For monotonic sequences, one can 
use the p algorithm [Singh and Singh, 1991b]. 

For doubly infinite sums, Ewald's transformation per- 
forms much better than the others, and its power stems 
from expressing the summation in terms of the comple- 
mentary error functions. There are also general transfor- 
mation methods on double series, namely Streit's transfor- 
mation and Haccart's transformation [Brezinslo', 1991 ]. 

For the integrals involving Bessel and sinusoidal func- 
tions, the weighted averages or the method of exponentials 
can be chosen depending on the application. The method 
of exponentials is preferable if one needs to evaluate the 
integral for different values of a parameter because it re- 
sults in a closed-form expression as an explicit function 
of the parameter. 

Acknowledgments. This work is partially supported by NATO's 
Scientific Affairs Division in the framework of the Science for Stability 

program. 

10 -2 

10 's 

10 -14 

Direct sum Wynn 
Theta 
CT 

10_17 10 '2ø ' 
9 ' ' 2'9 ' ' ' 4•9 ' 69 

Number of terms 

Figure 9. Relative error versus number of terms for the summa- 
tion (43). 
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