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Abstract—Among different components of urban mobility,
urban freight transport is usually considered as the least sus-
tainable. Limited traffic infrastructures and increasing demands
in dense urban regions lead to frequent delivery runs with smaller
freight vehicles. This increases the traffic in urban areas and has
negative impacts upon the quality of life in urban populations.
Data driven optimizations are essential to better utilize existing
urban transport infrastructures and to reduce the negative effects
of freight deliveries for the cities. However, there is limited work
and data driven research on urban delivery areas and freight
transportation networks. In this paper, we collect and analyse
data on urban freight deliveries and parking areas towards
an optimized urban freight transportation system. Using a new
check-in based mobile parking system for freight vehicles, we aim
to understand and optimize freight distribution processes. We
explore the relationship between areas’ availability patterns and
underlying traffic behaviour in order to understand the trends
in urban freight transport. By applying the detected patterns
we predict the availabilities of loading/unloading areas, and thus
open up new possibilities for delivery route planning and better
managing of freight transport infrastructures.

Index Terms—urban freight transport, smart mobility, smart
cities, parking availability prediction

I. INTRODUCTION

Today, more than a half of the worlds population lives in

cities and urban areas. This number is expected to rise to

5 billion by 2030 [1] which puts intense pressure on city

resources and infrastructures. High population densities in

urban environments are responsible for increasing consump-

tion of goods and services that often need to be delivered

from the less crowded city periphery. However, the traffic

infrastructures and the possibilities for their extension in dense

urban environments are limited, and thus deliveries tend to be

made in smaller loads and frequent trips which additionally in-

creases the traffic in already crowded urban grids of streets [2].

This also results in generating noise and pollutant emissions,

increasing congestion and posing a threat to the safety of road

users [3]. The social and economic concentration of resources

in cities poses a strong need for efficient and sustainable

freight distribution processes. In this context, mobile data

management and analytics arise as a means to achieve more

efficient freight distribution systems, without the need for large

investments or sophisticated technologies. In this paper, we are

taking the first step towards such a solution by analysing and

predicting usage of urban freight transport infrastructure over

data collected by a new mobile application developed for this

purpose.

The provision of on-street and off-street loading/unloading

areas designated for the freight vehicles has been recognized as

the most effective infrastructure measure for optimising last-

mile delivery operations and improving mobility conditions

in urban areas [3]. Nevertheless, with the increasing urban

population, urban transport demands are becoming difficult

to absorb due to limitations of the urban environments. The

loading1 areas are becoming over-occupied and can not meet

high transport demands, and allocating new spaces for logistics

activities is not possible in already dense urban environments.

Therefore, the pervasive information and communication tech-

nologies naturally arise as a means to improve circulation of

the freight vehicles at the loading areas.

This paper analyzes data from a new mobile crowdsourcing

system that allows deliverers to check-in at the designated

loading area, and thus provide real-time occupancy informa-

tion. The mobile application has been released as a part of

Barcelona’s sustainable urban mobility plan. We focus on

exploratory analysis of the check-in dataset collected from the

system in order to detect temporal and spatio-temporal patterns

in urban freight transport. Discovered patterns allow us to de-

tect hot spots in the city, as well as morning and evening rush

hours for individual loading areas. By applying the detected

patterns we develop several availability prediction models for

the loading areas in the city. In particular, we propose linear

regression (LR) based models to incorporate both the historical

delivery trends for the specific area and the current availability

patterns for that specific day to better estimate the current

availability. Our LR-based forecasting models can successfully

predict available parking spaces in next 15-30 minutes. Our

work naturally opens up new possibilities for delivery route

planning and better managing of parking spaces and freight

transport infrastructure.

The contributions of this work are summarized as follows:

1We use ”loading” in short while referring to both loading and unloading
activities.
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• We model trends in urban freight transport by analysing

temporal availability of loading areas.

• We explore the relationships between an area’s availabil-

ity patterns and underlying traffic behaviour and loca-

tions.

• We collected a novel dataset via a new mobile check-

in application, that reflects the usage of urban freight

transport infrastructure for the city of Barcelona. We

present exploratory statistics that give insights about the

use of loading areas by delivery vehicles.

• We propose a methodology for predicting the number of

unoccupied parking spaces at loading areas. We propose

clustering of similar areas to overcome the problem of

sparse data and harmonization of online and historical

data enhancing the previous state-of-art.

• We present extensive experimental evaluation over

Barcelona data that confirms the efficiency and accuracy

of the proposed approach.

The rest of this paper is organized as follows. In the next

section, we give a description of the urban freight transport

network in the city of Barcelona. In Section III, we describe

the details and some statistics about the collected data. In

Section IV, we show how to estimate the real-life availability

of loading areas. Afterwards, in Section V we compute areas’

historical availability profiles and explore obtained temporal

and spatio-temporal patterns. In Section VI, we apply the

findings and propose new models for availability prediction. In

Section VII we report the experimental evaluation. In Section

VIII we give a brief overview of the related work. Finally, we

conclude our work in Section IX.

II. BARCELONA’S URBAN FREIGHT TRANSPORT SCHEME

Freight requires dedicated urban spaces, such as loading

areas. Insufficient delivery spaces transfer delivery activities

on traffic lanes and pavements, which leads to congestions and

traffic accidents. Therefore, the city of Barcelona, as well as

many other European cities, has adopted land use planning

and infrastructure measures for achieving a more efficient

integration of urban freight in the urban transport system.

In 2015 Barcelona city authorities launched a new scheme

for urban freight transport which prescribes the obligatory

usage of newly regulated areas for delivery operations, locally

known as areaDUM (Distribuci Urbana de Mercaderies in

Catalan). Roughly 9,000 parking spaces across 2,000 areas

have been designated for the freight transport purposes, while

an estimated 45,000 parking manoeuvres take place in these

zones each day. In other to improve the road network and

parking capacity, different parking regulations have been in-

troduced for each of the loading areas. For example, some

of the lateral road lanes are devoted to traffic during peak

hours, deliveries during off peak hours, and residential parking

during the night [4]. Additionally, different parking time limits

have been prescribed for the different areas. The parking

enforcement unit was formed to ensure compliance of these

parking regulations to facilitate availability of the loading areas

for freight vehicles.

Fig. 1. Total number of check-ins per each day of the observed period between
January 1st, 2016 and May 23rd, 2016

In order to facilitate and regulate the usage of loading

areas, and to improve the circulation of vehicles, the city of

Barcelona introduced a novel parking management solution

based on mobile technologies. In order to use the designated

areas, deliverers need to check-in with their vehicle’s regis-

tration plate number using either mobile application or SMS

service. In addition, the mobile application, available for both

Android and iPhone devices, helps deliverers in managing their

parking operations. The application informs deliverers about

the time remaining for parking and also includes a system of

warnings to help them avoid fines. The new service aims to

offer more availability of spaces and, in the future, recommend

the areas in which deliverers are most likely to find parking

in specific time ranges.

III. AREADUM DATASET

In this section, we introduce the areaDUM check-in dataset,

and give some basic characteristics of it. To the best of our

knowledge, this is the first dataset crowdsourced from citizens

and private and professional deliverers that reflects the usage of

the urban freight infrastructure. The dataset consists of 49,172

users, i.e. deliverers, 1,990 loading areas and 3,014,610 check-

ins over the period between January 1st, 2016 and May 23rd,

2016. Each check-in consists of the ID of the deliverer who

made the check-in, her vehicle’s plate number (anonymised),

the loading area to which the check-in was made, geographic

coordinates, and a timestamp. Each of the loading areas in

the dataset is geocoded, and deliverers could check in only if

they were in the vicinity of the corresponding area. Therefore,

the check-ins’ geographic coordinates are introduced only

to confirm their validity. Further, the number of authorized

parking spaces for each of the loading areas is known from

the dataset. There are total 8,491 parking spaces across 1,990

loading areas, while the average number of parking spaces per

loading area is 4.27.

In spite of the large amount of check-ins, the collected

data is still sparse, as it is the case for most ICT based

data collection and smart city applications. The new system

based on mobile technologies (mobile application and SMS

service) was recently introduced to replace the old parking

discs. However, the two systems coexisted for a short period of

time allowing users to adapt to the new system. Nevertheless,
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Fig. 2. Distribution of check-ins among loading areas

during the observed time period, the estimated percentage of

deliverers using the new system has grown to around 60%.

This trend could be seen in Figure 1 where we plotted the

total number of check-ins per each day of the observed period.

Also notice the occasional valleys in the plot which represent

holidays and weekends when the delivery operations were kept

to minimum. However, in order to further address the issue

of data sparsity, we have to look at the distribution of these

check-ins among the loading areas. As we will see in the next

section, not all of the areas have the same turnover, and thus

some of them stand out with a lower number of check-ins in

the dataset. Figure 2 depicts such unequal distribution of data

among different loading areas. Each bar in the plot indicates

the number of areas with the certain amount of check-ins

(plotted on the horizontal axis). From the plot we can see

there are almost 200 areas with less than 500 check-ins (∼3.49

check-ins per day). Usage of these areas is harder to predict

due to sparseness of collected information, and thus one needs

to put an extra effort to deal with the data sparsity.

IV. PARKING AVAILABILITY ESTIMATION

The new service aims to eliminate congestions at loading

areas and balance the total amount of traffic in urban freight

network. The first step towards achieving these goals is under-

standing how the parking availability changes over time and

designing a prediction algorithm which can help deliverers in

planning their delivery routes. Therefore, we study how to

compute and predict real-life availabilities of loading areas.

We start by formally defining the availability of loading area

as the total number of unoccupied parking spaces.

Definition IV.1 (Availability of loading area). Availability
of loading area â(di, tj) is the total number of unoccupied
parking spaces at area di at time tj . Formally,

â(di, tj) = cdi
− o(di, tj) (1)

where cdi
is the capacity of area di (i.e. total number of

parking spaces), and o(di, tj) is the total number of occupied
parking spaces at area di at time tj .

Therefore, if we want to compute the real-life availability

of a loading area di, we need to know the total number of

occupied spaces o(di, tj). However, since not all deliverers

have adopted the new system based on mobile technologies,

Fig. 3. Occupancy data collected in field work

this information cannot be inferred directly from the check-

in dataset. Additionally, authorized emergency vehicles (e.g.

police cars, fire trucks, ambulances, etc.) and vehicles with

disabled parking permits can be legally parked at loading areas

without checking in. Finally, the parking spaces can be also

occupied by illegal parkers.

Definition IV.2 (Occupancy of loading area). Occupancy of
loading area o(di, tj) is the total number of occupied parking
spaces at area di at time tj . Formally,

o(di, tj) = o+c (di, tj)+o−c (di, tj)+oa(di, tj)+oi(di, tj) (2)

where o+c (di, tj), o−c (di, tj), oa(di, tj) and oi(di, tj) stand
for the total number of parking spaces occupied by checked-
in commercial vehicles, not checked in commercial vehicles,
authorized vehicles and illegal parkers, respectively.

In order to estimate the real-life availability and occupancy

of loading areas, Barcelona City Council conducted a field

research where parking behaviours in a representative sample

of loading areas have been observed. The collected data is

reported in Figure 3. 73.1% of parking spaces were occupied

by commercial vehicles, 14.7% by authorized vehicles and

12.2% by illegal parkers. Additionally, notice that the ratio

between checked in and not checked in commercial vehicles

depends on the system’s adoption rate (p) which slowly

increases with time (Figure 1). Therefore, when estimating

and predicting real-life availability we will simulate different

lifespan stages of the new system by adjusting adoption rates.

Definition IV.3 (System adoption rate). We define the system
adoption rate p(di, tj) at loading area di at time tj as the
ratio

p(di, tj) =
o+c (di, tj)

o+c (di, tj) + o−c (di, tj)
(3)

However, we will assume that this ratio is the same for all
the di and tj . Hence, we will denote this universal quantity
simply by p.

Using the above definitions and results from conducted field

research we can estimate availability of loading areas. Since

the total number of checked in commercial vehicles o+c (di, tj)
is directly observable from the check-in dataset, we use it to
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express other occupancy variables. Using (3) we can express

the total number of not checked in commercial vehicles as

follows

o−c (di, tj) =
o+c (di, tj)(1− p)

p
(4)

Similarly, using the statistical result reported in Figure 3 we

can express the total number of parking spaces occupied by

authorized and illegal vehicles as follows

oa(di, tj) + oi(di, tj) =
0.269

0.731
(o+c (di, tj) + o−c (di, tj)) (5)

After we substitute o−c (di, tj) in (5) with the right side of (4)

we get

oa(di, tj) + oi(di, tj) =
0.368

p
o+c (di, tj) (6)

Finally, by using (4) and (6) in (1) we obtain the availability

estimation formula

â(di, tj) = cdi
− 1.368

p
o+c (di, tj) (7)

In the next section we employ the derived formula in order

to obtain the areas’ historical availability profiles that reflect

the trends in urban freight transport network.

V. HISTORICAL AVAILABILITY PROFILES

In this section, we study temporal delivery trends by com-

puting individual historical availability profiles for each of the

areas. The historical availability profile (HAP) of a loading

area consists of the mean of the area’s parking availability as

a function of time. However, before computing the profiles,

first we need to take a closer look at the dataset and analyse

the periodicity of the underlying process in order to choose

the appropriate duration of the profiles and the size of the

discretisation bin.

A. Seasonality analysis

We treat the data as time series and analyse the autocorre-

lation functions (ACF) for each of the loading areas. Initially,

we sample the time-stamped data by accumulating the number

of check-ins over 1-minute sampling period. In Figure 4 we

plot ACF of an example time series recovered by sampling

the data from the loading area located in La Rambla, one of

Fig. 4. ACF of the time series recovered for the example loading area located
in La Rambla street

Fig. 5. Average ACF

the most popular streets in Barcelona. The plot reveals the

periodicities (seasonality) of vehicle arrivals at the observed

area. The AFC exhibits three significant peaks at lags of 31,

10,188 and 1,394 minutes. The largest peak occurs at lag of

31 minutes which indicates the strongest correlation caused by

the present parking regulations. More specifically, for the most

of the loading areas, including the observed one, maximum

allowed stay time is 30 minutes. Further, the areas are very

often fully occupied and thus deliverers need to wait for a

parking space. Therefore, the strong 31-minute periodicity

suggest that deliverers tend to stay at the area for the maximum

allowed time, whereupon the newly freed parking space is

immediately taken by another vehicle. The second largest

peak occurs at lag of 10,188 minutes, i.e. 7.075 days, and

indicates weakly seasonality of the process. The third peak

at lag of 1,394 minutes, i.e. 23.23 hours, indicates daily

seasonality, while the rest of the peaks in Figure 4 represent

its harmonics. Due to the seasonal nature of the urban freight

demand and the established urban delivery routines, daily and

weakly periodicities in the dataset have been expected a priori.

For example, shops, bars and restaurants are replenished daily

and weekly with stocks of fresh and dry food, and other retail

goods. Finally, the discovered periodicities can be observed

more clearly in Figure 5 where we average the ACFs computed

for all 1,990 loading areas.

B. Constructing HAPs

For most of the loading areas, parking is permitted only

during daytime, i.e. from 08:00 to 20:00. We refer to this

period as operating cycle. Therefore, when constructing HAPs

we compute the parking availability only for the operating

cycles, assuming that for rest of the time all parking spaces

are available. In other words, we split the time domain into a

number of operating (daily) cycles.

Definition V.1 (Operating cycle). Operating cycle is time
period in which parking at loading area is permitted.

Definition V.2 (Historical availability profile (HAP)). Histor-
ical availability profile of a loading area di consists of the
mean of the area’s parking availability as a function of time,

ĥ(di, tj) =

∑m
k=1 âk(di, tj)

m
(8)
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Fig. 6. 12-hour (a) and 5-day (b) HAPs for example loading area located in
La Rambla street

where m is the number of operating cycles for which parking
availability is collected.

Since time is discrete we need to compute the parking

availability for each time point of the operating cycle. How-

ever, in order to capture the previously discovered periodicities

we use 15-minute discretisation bin. To put it differently, we

first sample the time-stamped check-in data by accumulating

the number of checked in vehicles over 15-minute sampling

period. Thereafter, we compute the parking availability using

(7) for each 15-minute time slot. Finally, HAPs are obtained

by averaging computed availabilities using (8). For example,

in Figure 6a a 12-hour HAP for previously observed loading

area in La Rambla street is obtained by computing the average

availability for each of the 15-minute time slot within 12-

hour operating cycle (from 08:00 to 20:00) over the 20-week

monitoring period. Similarly, in Figure 6b we obtained a 5-

day (weekly) HAP for the same area and operating cycle

by computing averages for each of the 384 time slots in

5-day window. The computed availability patterns depend

significantly on the area’s location and the surrounding urban

environment. For example, the observed area in La Rambla

street is located next to the famous market place La Boqueria,

one of the Barcelona’s foremost tourist landmarks. The market

has a very diverse selection of goods, mostly fresh food that

needs to be replenished very frequently to avoid out-of-stock

position. The 12-hour HAP plotted in Figure 6a reflects the

high turnover of deliveries throughout a whole day. However,

notice that the mornings and evenings are less busy due to the

lower trading volumes and, consequently, lower replenishment

needs. Further, the popular visit times (12:00 - 14:00 and

16:00 - 19:00) are reflected in the plot as the busiest delivery

periods. The subtle availability increase in the short period

between 14:00 and 16:00 most likely reflects the lunch break

and end of the first delivery shift. As we will see later in this

section, this increase is common for all loading areas and can

be observed more clearly in the global HAP aggregated for all

Fig. 7. 12-hour (a) and 5-day (b) global HAPs

loading areas. The weekly HAP plotted in Figure 6b reveals

very similar usage trends across all weekdays. As we expected,

morning hours on Mondays are slightly busier than on the rest

of the days due to the regular weekly stock replenishments.

As we previously noted, the usage trends depend on the

loading areas, and thus we can observe different patterns in

the different areas. However, instead of analysing each of

the loading areas individually, we will take a look at the

aggregated HAP computed by averaging the individual HAPs

across all 1,990 loading areas. Such global view on availability

fluctuations will give us a better understanding of the global

mobility and delivery trends in the city of Barcelona. However,

we noticed from the dataset that the parking availability at

the particular loading area is closely correlated to the total

number of authorized parking spaces, i.e. capacity of the

area (plot is omitted to conserve space). Therefore, instead of

aggregating previously computed availabilities, we also take in

consideration the capacity of each of the areas and compute

relative availabilities, i.e. â(di, tj)/cdi . In Figure 7 we plot the

aggregated, i.e. global, 12-hour and 5-day HAPs. Recall from

Figure 2 that there a large number of less popular loading

areas with only couple of check-ins per day which explains

high availability percentages in the plot. Nevertheless, the plot

reveals two repeating valleys between 09:00 and 14:00, and

16:00 and 19:00, which corresponds to the first and second

(i.e. morning and afternoon) delivery shift. As expected, the

second delivery shift is significantly shorter and less busy.

Also notice that the second shift on Friday is less active than

on the other weekdays, most likely due to reduced working

hours in many workplaces in Barcelona. The shift change

period and late lunch break can be now observed more clearly

as a sudden 30% availability increase between 14:00 and

16:00. Also, notice that all of the weekdays have very similar

usage patterns. However, in Figure 7a relatively large standard

deviation (red area) indicates instability of the observed HAPs.

To put it differently, the individual HAPs significantly differ

one from another, especially in busy time intervals.
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Fig. 8. Loading areas clustered by normalised HAPs

C. HAP clustering

The geographic layout of the city of Barcelona is distin-

guished by its balanced mixture of residential, commercial

and touristic areas, and as such has a very strong influence on

the delivery operations and the underlying mobility patterns.

In order to understand them better, we group areas with

similar HAPs and then analyse the geographic layout of the

obtained clusters. We again normalise the individual HAPs

with respect to areas’ capacities (recall that we did the same in

Section V-B), and thereafter apply average-linkage hierarchical

clustering algorithm to partition loading areas based on their

daily usage trends. The algorithm starts with 1,990 clusters,

one for each area. The clusters are then sequentially combined

into larger clusters until all loading areas end up being in the

same cluster. At each step, the two clusters separated by the

shortest distance are combined. The cluster-to-cluster distance

is computed as the average pairwise Euclidean distance be-

tween 12-hour HAPs belonging to the areas in two different

clusters. Finally, the result of the clustering is illustrated in

Figure 8. We cut the obtained dendrogram into 6 clusters. The

very small standard deviations of per-cluster aggregated HAPs

indicate high intra-cluster similarities. On the other hand, the

aggregated HAPs exhibit very similar shapes with two valley

in morning and afternoon, however with the different magni-

tudes. Therefore, the clusters mainly differ from each other

by the usage intensity, i.e. the magnitude of the availability

rate. Consequently, we order the clusters based on the average

availability rate, i.e. from the least to the most occupied. The

first cluster with 363 loading areas is the least popular one.

This corresponds to the plot in Figure 1 where we noticed the

large number of less popular areas with only couple of check-

ins per day. Similarly, the sixth cluster is the smallest, but

the most popular one. It contains 16 most occupied loading

areas. In order to detect the busiest delivery areas in the city

(hotspots), in Figure 8 (right) we plotted location of each

area on the map of Barcelona. Additionally, we coloured the

markers based on their belonging clusters. The most popular

areas (coloured in darker reds) are located in the central and

the most developed part of the city. It is also interesting to

notice that most of these popular areas are spread across only

two districts - Ciutat Vella and Eixample, the most touristic

and developed one. On the other hand, the less busy loading

areas are located in the peripheral part of the city.

VI. AVAILABILITY PREDICTION

We focus next on the short-term prediction of loading area

availability. In particular, we are interested in predicting the

total number of available parking spaces in the next time slot,

i.e. 15-30 minutes ahead of time. This setup corresponds to

most of the delivery scenarios in Barcelona where parking

is planned on the fly, while all of the areas are reachable

within 30 minutes from any part of the city. Additionally,

for most of the loading areas maximum allowed parking time

is 30 minutes. The benefits of the availability prediction are

threefold: (1) it allows more accurate load balancing of loading

areas, (2) it assists city governments in mobility management

by providing information about expected delivery activity, and

(3) it opens up new possibilities for mobile services such as

delivery route planning. We compare several simple prediction

models, and establish them as baselines with which other

(more complex) models can be compared. We then present

a more advanced prediction techniques that combine both

historical and online availability data.

We denote by x(di, tj) a random variable representing the

true parking availability at loading area di at 15-minute time

slot tj of an operating cycle. Similarly, we denote by x̂(di, tj)
the predicted parking availability for time slot tj of the same

operating cycle.

A. Historical model

Historical prediction model (HM) x̂HM (di, tj) dynamically

constructs a HAP based on all observations until the current

time slot tj − 1, and returns the value at the corresponding

HAP’s time slot tj . More formally,

x̂HM (di, tj) = ĥ(di, tj) (9)

B. Last value model (LV)

Last value prediction model (LV) x̂LV (di, tj) predicts that

the availability at the current time slot tj−1 remains constant

as its last measured value â(di, tj − 1) for the next time slot

tj , i.e.

x̂LV (di, tj) = â(di, tj − 1) (10)
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C. Linear regression model (LR)

This model uses a mixture of the online data we acquire

from the application and past averages of the availability

data to train a linear regression model. The model formed

for estimation of availability at area di and timeslot tj ,

xLR(di, tj), is as follows

x̂LR(di, tj) = β1 â(di, tj−1) + β2 ĥ(di, tj) + γ (11)

This model incorporates both the historical model for the

specific area and the current availability patterns for that

specific day to better estimate the current availability.

The parameters are estimated for each parking area and for

each time slot using the previous data for the particular day.

The following matrix denotes the training matrix for LR model

for parking area :

Xdi,tj−1 =

⎡
⎢⎢⎢⎣

â(di, t1) ĥ(di, t2)

â(di, t2) ĥ(di, t3)
...

...

â(di, tj−2) ĥ(di, tj−1)

⎤
⎥⎥⎥⎦

Corresponsing ground truth vector for training is as follows:

Ydi,tj−1 =

⎡
⎢⎢⎢⎣

a(di, t2)
a(di, t3)

...

a(di, tj−1)

⎤
⎥⎥⎥⎦

where t1 time slot value corresponds to first time slot of the

operating cycle. We can find the parameters of the model using

regular solutions to linear regression problems such as least-

squares estimation.

Intercept value (γ) is also added to the model but from the

results of our data we have seen that a model without intercept

seems to decrease the estimation error.

One also notes that we have scarce data to estimate from

when tj is small, i.e. at the beginning of operating cycle.

This scarcity can cause unstable and unreliable results in the

estimation phase. To tackle this issue we have used the p-value

of the parameters to measure the significance of the relations

of the variables. We have chosen p = 0.05 as a threshold for

significance which is the value used generally in the literature.

According to the result of estimation if calculated significance

is less than the threshold we use the the historical model

estimate, x̂HM (di, tj), instead. In summary:

x̂LR(di, tj) =

{
x̂LR(di, tj), if p <= 0.05
x̂(di, tj), otherwise

(12)

D. Linear regression model with aggregated HAPs (LR-A)

Recall from Section III that for some of the loading areas we

have very few observed check-ins. The availability of these ar-

eas is harder to predict with the proposed models due to sparse-

ness of the observations. On the other hand, in Section V-C

we saw that loading areas can be efficiently clustered using

normalised HAPs, and thus less sparse aggregated HAP can

be obtained for each cluster. Therefore, in order to overcome

data sparsity issues, we propose to extend previously defined

LR model by aggregating historical availability information.

To put it differently, instead of using a single HAP of the

specific area, we cluster areas with similar HAPs and compute

aggregated representative HAP. Forecasts are then performed

by applying LR model with the corresponding representative

HAP to each loading area in the cluster, individually. As we

will see in the next section, in certain cases these grouped

models can avoid overfits, reduce the impact of outliers, and

successfully capture common trends.

We compute cluster representative HAP by averaging his-

torical availabilities across all loading areas contained in the

corresponding cluster, i.e.

ĥ(Ck, tj) =
1

|Ck|
∑

di∈Ck

ĥ(di, tj) (13)

where Ck stands for arbitrary cluster. The ground truth vector

Ydi,tj−1
remains the same, while the training matrix Xdi,tj−1

is updated as follows

Xdi,tj−1 =

⎡
⎢⎢⎢⎣

â(di, t1) ĥ(Ck, t2)

â(di, t2) ĥ(Ck, t3)
...

...

â(di, tj−2) ĥ(Ck, tj−1)

⎤
⎥⎥⎥⎦ , ∀di ∈ Ck

We experimented with different clustering algorithms and

similarity measures, and we found simple k-nearest neighbour

method (kNN) and cosine similarity to give accurate results.

Therefore, we compute the similarity between areas as follows

sim(di, dj) =

∑48
k=1 ĥ(di, tk)ĥ(dj , tk)√∑48

k=1 ĥ(di, tk)
2

√∑48
k=1 ĥ(dj , tk)

2

(14)

VII. EXPERIMENTAL EVALUATION

A. Experimental setup

Our simulations and experiments are based on real-world

check-in data introduced in Section III. In order to simulate

ground truth data we assume 100% adoption rate and estimate

the true availabilities using (7), i.e.

x(di, tj) = cdi − 1.368o+c (di, tj) (15)

However, we also generate the input data stream by sampling

the original data with respect to different adoption rates p.

In other words, each check-in from the original dataset is

randomly selected in the input stream with the probability

p. We use the generated input stream to predict the true

availability.

In order to estimate how accurately the prediction models

will perform in practice, we use time series cross-validation

strategy known as rolling forecasting origin [5]. With a rolling

forecasting origin, we create an initial window that contains

the first k data points as the first training set to estimate the

prediction model. We compute the error on the forecast for

the next data point k + 1, and then shift the window by one

data point. We repeat the procedure until no data point left.

In our case, we use k = 3360 data points, i.e. time slots, as
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Fig. 9. Example of rolling forecasting origin strategy

training set window. This corresponds to 70 operating cycles

and 80% of the whole dataset. In Figure 9 we further illustrate

the employed evaluation strategy.

Finally, we consider the mean squared error (MSE) between

the estimated and true availability as a performance measure

for the proposed models, i.e.

MSE(di) =
1

n− k − 1

n∑
j=k+1

(x̂(di, tj)− x(di, tj))
2 (16)

We have also considered looking at vacant parking space exis-

tence; a boolean variable checking if the model has correctly

identified the presence of at least one available parking space.

However, since users can make more confident decisions to

use a parking place based on the number of vacant places

(a higher number of vacant space increases the probability

of at least one vacant space by the time user has arrived at

the specific area) we have opted to use the mean square error

instead. Our methods have shown very high accuracy levels in

terms of estimation of vacant space existence and estimation

of exact vacant space size is more challenging when these two

performance criteria are compared.

B. Results

We evaluate the performance of the proposed predic-

tive models on five input streams sampled from the orig-

inal check-in dataset. The sampling was conducted us-

ing previously described simple random method with p ∈
{0.5, 0.6, 0.7, 0.8, 0.9}. This way, we simulate different adop-

tion stages of the new system in order to assess how the

adoption rate reflects on the performance of the models under

evaluation.

Figure 10 shows the MSE performance of the models for

different adoption rates. Here, the total MSE is aggregated

over all time slots in the test dataset. As expected, for all

Fig. 10. MSE performance for different adoption rates

models, the MSE decreases as the adoption rate increases. In

other words, the models perform better on less sparse input

streams. However, the performance increase is not the same for

all models. Notice that the MSE for the LV drops from 1.125
for p = 0.5 to 0.638 for p = 0.9 (43.29% accuracy increase).

On the other hand, the performance increase for the HM is less

significant, i.e. the MSE drops from 0.761 for p = 0.5 to 0.745
for p = 0.9 (2.10% accuracy increase). Also notice that the LV

outperforms the HM for p = 0.8 and p = 0.9. The LV relies

on the estimation of the current availability whose accuracy

strongly depends on the system’s adoption rate, i.e. sparsity

of input stream. This is not the case with the HM where the

estimated availabilities are aggregated for each time slot of the

operating cycle over the entire input stream. Finally, from the

plot it can be observed that the LR significantly outperforms

the other models for all input streams. In other words, the LR

is able to successfully combine online and historical prediction

approach, and outperform them both when applied separately.

Similar to the LV and HM, the accuracy of the LR increases

with the adoption rate, i.e. the MSE drops from 0.672 for

p = 0.5 to 0.576 for p = 0.9 (14.29% accuracy increase).

In addition to the total MSE, we also compute the MSE

for each of the 48 time slots of the operating cycle and study

how the prediction models perform with respect to different

times of day. In Figure 11 we plot the MSE per time slot

for different adoption rates p. All of the plots exhibit two

distinct peaks, of which the higher (left-hand) peak occurs

between time slot 5 and 25 (09:00 - 14:00) which corresponds

to morning delivery shift, and the lower (right-hand) peak

occurs between time slot 33 and 45 (16:00 - 19:00) which

corresponds to afternoon delivery shift. Notice that these

patterns are negatively correlated to the ones in Figure 7 where

we plotted relative availabilities against different time slots of

the operating cycle. This means that all of the models perform

slightly worse during busy periods when check-in patterns are

less stable. Since it is more difficult to find a parking space

during busy periods, deliverers tend to go from one loading

area to another in search for a parking space. Obviously, this

makes deliveries to some extent disorganized and thus harder

to predict.

Figure 11 also shows that at most times of day the LR

outperforms both LV and HM. However, the exception to

this can be observed at the beginning of the operating cycle

(time slots 1-10), i.e. in morning hours (08:00 - 10:00), for

all adoption rates p. The reason for this lies in the fact that

the LR relies on current trends which can be difficult to infer

at the start of a day when we have only few data points at

disposal. Recall from Section VI-C that we tackle this scarcity

problem by using p-values for the model parameters to test

the significance of the relation between the variables (i.e.

online and historical availability). If the p-value falls above

0.05 threshold, instead of using the trained LR model for

prediction, we use the HM model. As shown in Figure 12,

with this simple trick we managed to significantly improve

the initial performance of the LR model at the beginning of

the operating cycle.
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Fig. 11. MSE performance per time slots

As we discussed in the previous section, the performance

of the LR model can be further improved in certain cases

by grouping similar loading areas and computing aggregated

HAP (LR-A model). Recall from Section III that check-ins are

unequally distributed among loading areas, and thus for some

of the less popular areas in city’s periphery, the collected data

can be sparse and bursty. In these special cases, clustering and

aggregating arise as a means to reduce the noise and avoid

overfitting. We will demonstrate the performance of the LR-A

model on an isolated case depicted with Figure 13.

In Figure 13a we plot individual HAPs of 4 similar load-

ing areas grouped together using k-nearest neighbour (kNN)

method. Interestingly, the typical 2-valley shape is harder

to observe in these unsmooth plots. This suggests that data

recorded at these specific areas is quite noisy and bursty.

Additionally, we notice that the average number of check-ins

per day for the grouped areas is only 10.13. Therefore, instead

of building 4 individual models that might be vulnerable

to overfitting, we compute aggregated HAP and use it to

build a single, but more robust, prediction model. In Figure

13b we compare the performance of individual LR models

and aggregated LR-A model. The plot shows that LR-A

outperforms LR for all of the grouped areas. More precisely,

we reduce the MSE for 7.52% for area 8656, 6.65% for area

9463, 12.32% for area 9987, and 11.46% for area 10527.

VIII. RELATED WORK

In recent years, the mobility patterns in urban freight

networks have attracted a certain amount of attention in the

research community (e.g. [6]–[9]). However, obtaining data

which would allow a large scale study is often very difficult

(or impossible), mostly due to privacy issues. Therefore, many

studies relies on information gathered from surveys carried out

Fig. 12. MSE performance of the initial and adjusted LR model

among freight distributors (e.g. [10], [11]). In our paper, we

use real-life check-in dataset collected from the novel parking

regulation system based on mobile technologies.

We use historical availability profiles (HAPs) of the loading

areas in order to understand daily and weekly delivery trends.

The similar concepts can be often found in research works that

focus on analysis of human mobility patterns. For example,

Froehlich et al. [12] employ the concept of DayView to

study bicycle station usage from Barcelona’s shared bicycling

system. A DayView is calculated by averaging station data

that matches certain criteria into a 24 hour window, discretised

into five-minute bins (288 bins/day). Additionally, in order to

investigate how usage patterns are shared across stations and

geographically distributed in the city, Froehlich et al. cluster

stations based on their DayViews. They show that the spatial

layout of a city has a strong influence on the movement

patterns and social behaviours. A similar research has been

conducted in [13], where the DayViews are replaced with local

ActivityCycles computed for each station and day of a week.

Again, in order to get a spatial picture of the mobility pattern in

the city, these local ActivityCycles are paired with the stations

geo-coordinates and visualised on a heat map.

In [14] Xu et al. introduce an algorithm to construct the his-

torical availability profiles (HAP) by computing estimated val-

ues for the mean and the variance of true parking availability

for an arbitrary street block. The algorithm relies on PhonePark

system which is able to automatically detect parking events

using drivers’ mobile phones equipped with GPS and/or

accelerometer. Here, detected parking events correspond to

check-ins in our case. Additionally, since not all drivers are

equipped with PhonePark system, its market penetration ratio
is also considered in [14] (i.e. share of drivers with PhonePark

Fig. 13. MSE performance of LR and LR-A model
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enabled phones). Similarly, we use adoption rate in our work to

simulate different adoption stages of the new system. Finally,

while Xu et al. estimate the current availability of street blocks,

we focus on short-term availability prediction of loading areas

using obtained historical and current trends.

Several recent studies have investigated the problem of

predicting parking availability. In [15] and [16], a continuous-

time Markov model is built to predict the parking availability

in ad hoc networks. In [17], a recurrent neural network is em-

ployed to forecast the parking occupancy using data collected

from a wide network of parking sensors installed on-street

in the city of Santander, Spain. Similarly, Zheng et al. [18]

analyse the performance of different machine learning methods

(neural network, regression tree, support vector regression) in

predicting parking availability from the real-time car parking

information that has been collected and disseminated by the

City of San Francisco, USA and the City of Melbourne, Aus-

tralia. Additionally, they consider several feature sets consist of

past observations, time of day and day of week. In [19], Chen

et al. propose Generalized Additive Models for availability

prediction of shared bike and car parking lots in the city of

Dublin, Ireland. They consider even more features such as

time of day, time of year, day type, weather, temperature,

humidity and past occupancy observations. Some other studies

(e.g. [13], [20]) view the parking data as a one-dimensional

time series and explore the use of time series models such as

Autoregressive Integrated Moving Average (ARIMA).

IX. CONCLUSION

We first presented the characteristics of data collected by

a new parking system for urban freight deliverers which

has been released as a part of Barcelona’s sustainable urban

mobility plan. The system allows deliverers to check-in at

the designated loading areas using a mobile application, and

thus provide real-time occupancy information. The mobile

application eliminates the need for hardware based investments

or technologies such as sensor infrastructures for parking lots,

and provides more information about occupancy such as the

licence of the trucks in the parking area. We then presented an

exploratory analysis of the dataset in order to detect temporal

patterns in urban freight transport. Due to phased adoption

of the system and illegal parking practices, we had to collect

additional occupancy information from the field to estimate the

real availability of loading areas. We build individual historical

availability profiles (HAPs) for each parking area. We showed

that HAPs can provide valuable information about delivery

trends and can be efficiently used for detecting hotspots and

rush hours, as well as forecasting the future availability for

any specific area.

We successfully combined online and historical prediction

approach using simple linear regression which can outper-

form them both when applied separately. In other words,

the proposed model incorporates both the historical model

(i.e. HAP) for the specific loading area and the current

availability patterns for that specific day to better estimate

the current availability. The estimated availability values are

considered accurate enough to efficiently utilize a parking

area recommendation system in Barcelona according to the

city government. Parking availability forecasting opens up new

possibilities for delivery route planning and better managing

of freight transport infrastructures. The proposed prediction

models can be used for route planning and itinerary generation

for more effective urban freight transportation.
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