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Abstract. It is well known that the infinitesimal generator underlying
a multi-dimensional Markov chain with a relatively large reachable state
space can be represented compactly on a computer in the form of a block
matrix in which each nonzero block is expressed as a sum of Kronecker
products of smaller matrices. Nevertheless, solution vectors used in the
analysis of such Kronecker-based Markovian representations still require
memory proportional to the size of the reachable state space, and this
becomes a bigger problem as the number of dimensions increases. The
current paper shows that it is possible to use the hierarchical Tucker
decomposition (HTD) to store the solution vectors during Kronecker-
based Markovian analysis relatively compactly and still carry out the
basic operation of vector-matrix multiplication in Kronecker form rel-
atively efficiently. Numerical experiments on two different problems of
varying sizes indicate that larger memory savings are obtained with the
HTD approach as the number of dimensions increases.

Keywords: Markov chains + Kronecker products - Hierarchical Tucker
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1 Introduction

Modelling and analysis of multi-dimensional Markov chains (MC) on high end
desk-top computers is an area of research with ongoing interest. When a discrete-
event dynamic system is composed of interacting subsystems, it may be possi-
ble to provide a state-based mathematical model for its behaviour as a multi-
dimensional MC with each dimension of the MC representing a different sub-
system and a number of events that trigger state changes at certain transition
rates. In this kind of model, subsystems can change state locally by themselves,
that is, independently of states the other subsystems are in, or they can change
state synchronously with some or all the other subsystems depending on their
local states. The state space of such a model is therefore determined by the
combination of states the subsystems can be in under the operational semantics
of the system. Hence, a subset of the Cartesian product of the subsystem state
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spaces forms the so called reachable state space. Usually not all states from the
Cartesian product are reachable because synchronized transitions prohibit some
specific combinations of subsystem states to be reachable [3,6]. It is important
to be able to represent this reachable state space and the transitions among its
states compactly and then analyse the steady-state or transient behaviour of the
underlying system as accurately and as efficiently as possible.

When the reachable state space at hand is relatively large but finite, the
infinitesimal generator underlying the MC can be represented as a block matrix
in which each nonzero block is expressed as a sum of Kronecker products of
smaller rectangular matrices [7]. This is the form of the Kronecker representa-
tion in hierarchical Markovian models [3], where rectangularity of the smaller
matrices is possible due to the product state space of the modelled system being
larger than its reachable state space [9]. When the product state space is equal
to the reachable state space, the smaller matrices turn out to be square as in
stochastic automata networks [19,20].

For Kronecker-based Markovian representations, analysis methods employ
vector-Kronecker product multiplication as the basic operation [21]. Therein,
the challenge is to perform this operation in as little of memory and as fast as
possible. When the factors in the Kronecker product terms are relatively dense,
the operation can be performed efficiently by the shuffle algorithm [10]. When
the factors are relatively sparse, it may be more efficient to obtain nonzeros of the
generator in Kronecker form on the fly and multiply them with corresponding
elements of the vector [6]. Recently, the shuffle algorithm has been modified so
that relevant elements of the vector are multiplied with submatrices of factors
in which zero rows and columns are omitted [8]. This approach is shown to
avoid unnecessary floating-point operations (flops) that evaluate to zero during
the course of the multiplication and possibly reduces the amount of memory
used. In many cases, a smaller number of flops than the shuffle algorithm and
the algorithm that generates nonzeros on the fly is possible. Nevertheless, the
memory allocated for the vectors in all mentioned algorithms is still proportional
to the size of the reachable state space, and this size increases rapidly with the
number of dimensions.

The current paper takes a different approach and attempts to reduce the
amount of memory allocated to solution vectors in Kronecker-based Markovian
analysis by using the hierarchical Tucker decomposition (HTD) [14,15]. HTD
is originally conceived in the context of providing a compact approximate rep-
resentation for dense multi-dimensional data [12] in a manner similar to the
tensor-train decomposition [18], but is somewhat more suitable to our require-
ments in that the decomposition is available through a tree data structure with
logarithmic depth in the number of dimensions. Both decompositions have the
special feature of possessing approximation errors that can be user controlled,
and hence, approximations accurate to machine precision are computable using
them. Clearly, with such decompositions it is always possible to trade quality of
approximation for compactness of representation, and how compact the solution
vector in HTD format remains throughout the solution process is an interesting
question to investigate. The tensor train decomposition has been applied in [13]
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to approximate the solution vector for models where the product space is reach-
able using an alternating least squares approach. HTD has, to the best of our
knowledge, not been applied to structured Markov chains yet.

Here, we show that a compact solution vector in HTD format can be multi-
plied with a sum of Kronecker products to yield another compact solution vector
in HTD format. In doing this, we note that the multiplication of the compact
solution vector in HTD format with a Kronecker product term does not increase
the memory requirements of the compact vector, but the addition of two compact
vectors does, which necessitates some kind of truncation, hence, approximation,
to be introduced to the addition operation only. Then, starting from an initial
solution, the compact vector in HTD format is iteratively multiplied with the
uniformized generator matrix of a given MC in Kronecker form until a predeter-
mined stopping criterion is met. Indeed, we are interested in observing how the
memory requirements of the compact solution vector in HTD format changes
over the course of iterations due to the sequence of multiply, add, and truncate
operations in each iteration, together with the average time it takes to perform
the iteration and the influence of the approximation error on the quality of the
solution. The same numerical experiment is performed with a flat solution vector
as long as the reachable state space size using the modified shuffle algorithm. The
two approaches are compared for their memory and timing requirements, lead-
ing us to the conclusion that compact vectors in HTD format become relatively
more memory efficient as the number of dimensions increases.

In passing to the organization of the paper, we remark that compact repre-
sentations for solution vectors in Markovian analysis have also been considered
from the perspective of binary decision diagrams [5,16]. The proposed compact
structures therein have not been time-wise competitive, whereas the approach
investigated in this paper seems to be a step forward. The organization of the
paper is as follows. In Sect. 2, we provide background information on HTD and
the related algorithms that are be used in our Kronecker setting. In Sect. 3,
we discuss implementation issues associated with using HTD within the NSolve
package of the Abstract Petri Net Notation (APNN) toolbox [1,2]. In Sect. 4,
we present results of numerical experiments on two different problems of varying
sizes and having transitions that take place at different time scales. Section5
concludes the paper.

2 Compact Vectors in Kronecker Setting

Let us consider a d-dimensional Markovian system, where S;, denotes the state
space of the hth (h = 1,...,d) component in the d-dimensional MC, and assume
that Sj are defined on consecutive nonnegative integers starting from 0. We
denote the reachable state space of the system by & C x‘}leSh, where xz:lSh
is the product state space. Now, let S() = xzzlS}(f), where S,(f) is a partition of
Sy, in the form of consecutive integers for i = 1,...,J. Then SM ... . 8 is a
Cartesian product partitioning of S if S = U/, 8™ and S® NSV =0 for i # j
and i,57=1,...,J [9].
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The infinitesimal generator Q underlying the MC can be viewed as a (J x J)
block matrix induced by the Cartesian product partitioning of S as in [7,9]

QL . QD)
Q=| : .
QWh .. QW)

Block (i,7) of Q fori,5 =1,...,J is given by

QUi) — {Zkelc(m) Q)+ QY if i=j,

1‘7 j .
Zke)c(w') Q;(f 2 otherwise,

where

d
QY @Al @ =-Y 3 au@ansafel
h=1

J=1 kekcti)

® is the Kronecker product operator, ay is the rate associated with continuous-
time transition k, K(»7) is the set of transitions in block (i,7), e represents a
column vector of ones, diag(a) denotes the diagonal matrix with the entries of
vector a along its diagonal, and Q(m ) is the submatrix of the transition matrix

Qj,» whose row and column state spaces are S,(LZ) and S,(Lj ), respectively [3]. In
practice, the matrices Qg are sparse [7] and held in sparse row format since
the nonzeros in each of its rows indicate the possible transitions from the state
with that row index. The advantage of partitioning the reachable state space is
the elimination of unreachable states from the set of rows and columns of the
generator to avoid unnecessary flops due to unreachable states. We also remark
that the continuous-time transition rate of a Kronecker product term, «y, can
be eliminated by scaling one factor in the term with that rate.

To simplify the discussion and the notation, we consider the multiplication
of a single block of Q from the left with a (sub)vector, and therefore, omit the
indices (4, j) and write the index k associated with the transition as a superscript
in parentheses above the matrices forming the block. Hence, we concentrate on

the operation
xS @al

k=1h=1

~

where Q;Lk) is a (mp, X ny) matrix, implying ®Z:1 Q(k) isa (Hh 1 My X Hh 1 1)
matrix, and x is a (Hi:l my, X 1) vector. K is equal to the number of terms in
the sum, i.e., K" | if we consider block (i, j). Observe that this is the operation
that takes place when each block of a block matrix in Kronecker form such as Q
gets multiplied on the left by an iteration subvector. In fact, the same subvector
multiplies all blocks in a row of the matrix in Kronecker form.
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To be consistent with the literature, we consider in the following multiplica-

tions of Kronecker products ®ﬁ:1A§LI€)
tion in the usual matrix-vector form

K d
y = Z < A;lk)> X,
h=1

k=1

with column vector x and their summa-

where A;Lk) is the transpose of ng) and of size (nj, x my,). In particular, we are
interested in its implementation as

d
y(l) =0, x(k) . <® A%k)) X, y(k+1) — y(k) +x®  for k= 1,.... K,
h=1

and y := y(K+1 where 0 is a column vector of 0’s. Now, we turn to the HTD
format.

2.1 HTD Format

Assuming without loss of generality that d is a power of 2, the (HZ:1 mp X 1)
vector x in (orthogonalized) HTD format can be expressed as

x:(U1®--~®Ud)c,

where U, for h = 1,...,d are (my X r5,) orthogonal basis matrices for the
different dimensions in the model and

d

cey

c=B12® - ®Bg_1,4) - (B1,.. . 42® Bd/2+1,“.,d)B1,.

is a (HZ:1 rp X 1) vector in the form of a product of log, d matrices each of
which except the last is a Kronecker product of a number of transfer matrices
B; related to each other as in the full binary tree of Fig. 1. The transfer matrix

Bi2sasers
(r123475678 % 1)

Biosa Bsgrs

(r12734 X 7123.4) (rs5,6778 X 75.6,7.8)

Blf_? B:SA BB.(i B7-8

(r172 X 112) (r3ra X 134) (15716 X 75,6) (r7rs X 1738)

U, U, U; Uy Us Us Uy Us
(my x r1) | [(ma x 1a) (ma x r3)| | (my x 14) (ms X r5)| |(mg x 16) (mr x 7)) | | (mg x 13)

Fig. 1. Matrices forming x in HTD format for d = 8.
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B, is of size (ry,ry, xr¢) with the node index ¢ defined as ¢ := ¢;,t,, and ry, 4 =1
since By 4 is at the root of the tree [14, pp. 5-6].

The (d — 1) intermediate nodes of the binary tree in Fig. 1 store the transfer
matrices B; and its leaves store the basis matrices Uy, so that each intermediate
node has two children. In orthogonalized HTD format of x, one can also conceive
of orthogonal basis matrices U; = (U, ® Uy, )By, at intermediate nodes with 7
columns that relate the orthogonal basis matrices Uy, and Uy, for the two chil-
dren of transfer matrix B; with the transfer matrix itself. In fact, the orthogonal
matrix U; has in its columns the singular vectors associated with the largest r;
singular values [11, pp. 76-79] of the matrix obtained by taking index t as row
index, the remaining indices in order as column index of the d-dimensional data
at hand (i.e., with a slight abuse of notation, x(¢, {1,...,d} —t)). Hence, we have
the concepts of “hierarchy of matricizations” and “higher-order singular value
decomposition (HOSVD)”, and r; is the rank of the truncated HOSVD. More
detailed information regarding this can be found in [12,14]. We remark that B;
may also be viewed as a 3-dimensional array of size (ry, X, X ;) having as many
indices in each of its three dimensions as the number of columns in the matrices
in its two children and itself, respectively. The number of transfer matrices in
the Ith factor forming c is the Kronecker product of 29829~ transfer matrices
forl =1,...,logyd — 1. In fact, c is a product of Kronecker products, and so is
X, but neither has to be formed explicitly.

When d is not a power of 2, it is still useful to keep the tree in a balanced
form, for instance, as in Fig. 2 for which

x=((U;®U2)B12)®U3®Us ® Us)(B123 ®By5)B123,4,5-

Biosas

(7‘1.2.3 a5 X 1)

Bias Bys
(r1273 X 1123) (rams X 145)

B2 U; U, U;
(ryra X r12) (mg x r3) (mag x 14) (ms x 15)

U, U,
(my x ) | | (mg x 1)

Fig. 2. Matrices forming x in HTD format for d = 5.

Assuming that rp.x = maxy(ry) and mpax = max(my,..., my), memory
requirement for matrices in the binary tree associated with HTD format is
bounded by dmmaxTmax at the leaves, 72, at the root, and (d — 2)r3 . at
other intermediate nodes, thus, totally dmmaxmmax + (d — 2)r3 . +72... In the
next subsection, we show how a particular rank-1 vector can be represented in

HTD format.
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2.2 Uniform Distribution in HTD Format

Let x = e/m be the (m x 1) uniform distribution vector, where m = Hi:l mp,.
Then x may be represented in HTD format with all matrices having rank-1
for which the basis matrices given by U, = e//my, are of size (my x 1) for

h =1,...,d and the transfer matrices given by
B, — (szl vmp)/m if t corresponds to root
1 otherwise

are (1x1). Note that memory taken up by flat representation of x is m nonzeros,
whereas that with HTD format is d — 1 + ZZZI my, nonzeros since the (d — 1)
transfer matrices are all scalars equal to 1 except the one corresponding to the
root. In passing to the multiplication of a compact vector with a Kronecker
product, we remark that each basis matrix Uy for the uniform distribution
has only a single column and that column is unit 2-norm, implying all U, are
orthogonal.

2.3 Multiplication of Vector in HTD Format with Kronecker
Product

Assuming that x is in HTD format with orthogonal basis matrices U and
transfer matrices B; forming vector c, the operation

d d
xF) = <® A;f”) x is equivalent to performing x*) := <® Aﬁf)Uh> c
h=1 h=1

since x = (®{_,Uy)c. Hence, the only thing that needs to be done to carry out
the computation of x*) in HTD format is to multiply the (n; x m;,) Kronecker
factor Agk) with the corresponding (mj, x r5,) orthogonal basis matrix Uy, for
h=1,...,d. Clearly, the (n; x rp,) product matrix A;Lk)Uh need not be orthog-

onal. But this does not pose much of a problem, since x*) can be transformed
into orthogonalized HTD format if the need arises by computing the QR decom-
position [11, pp. 246-250] of Aik)Uh = U,R,, for h = 1,...,d, propagating
the triangular factors Ry into the transfer matrices, and orthogonalizing the
updated transfer matrices at intermediate nodes in a similar manner up to the
root as in Algorithm 1 in [14, p. 12]. However, the situation is not as good for
the addition of two compact vectors.

2.4 Addition of Two Vectors in HTD Format and Truncation

Addition of two matrices Y and X with given singular value decompositions
(SVDs) [11, pp. 76-79]

Y =UyZyVL and X =UxEIxV%

results in
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Y + X := (Uy Ux) <EY 2x> (Vy Vx)©.

Here, v, ¥x are diagonal matrices of singular values, whereas Uy, Ux and
Vv, Vx are orthogonal matrices of left and right singular (row) vectors asso-
ciated with matrices Y, X, respectively. SVD is a rank revealing factorization
in that the number of nonzero singular values of a matrix corresponds to its
column rank. This implies that the sum (Y + X) has a rank equal to the sum
of the ranks of the two matrices that are added.

The situation for the sum y**1 of the two vectors y(*) and x*) in HTD for-
mat is no different if one replaces the SVD with HOSVD. This is conveniently
illustrated for d = 4 by Fig.5 in [14, p. 11]. For the following steps performing
the addition and representing the resulting vector in HTD format, we exploit the
algorithms presented in [14]. Among three alternative approaches that have been
investigated therein for computing y, the best seems to be to multiply, add and
then truncate K times as demonstrated in Fig. 11 of [14]. This approach is coded
in Algorithm 7 of [14, p. 23] which works by calling Algorithm 3 that takes care of
the reduced Gramians computations of a compact vector in non-orthogonalized
HTD format. Recall that the compact vector x(¥) obtained after multiplication
does not need to be in orthogonal HTD format even though x might have been.
Once Algorithm 3 is executed, Algorithm 7 takes over and computes the trun-
cated HOSVD for the sum of two vectors y*) and x(*) in HTD format with-
out initial orthogonalization. The output y**t1) of Algorithm 7 is a truncated
compact vector in orthogonalized HTD format and this operation is repeated
K times until y is obtained. The number of flops executed by Algorithm 7 is
O(dK?r2, .. (Nmaz + 72,00 + KTmaz)), where nyax = max(ny, ..., ng). The signif-
icance of this algorithm is that one can impose an accuracy of € on the truncated
HOSVD by choosing rank r; in node ¢ based on dropping the smallest singular
values whose squared sum is less than or equal to €2/(2d — 3) [14, pp. 18-19]. This
is a very nice result but also implies that the truncation leads to an approximate
solution vector.

2.5 Computing the 2-Norm of a Vector in HTD Format

Normally, it is more relevant to compute the maximum (i.e., infinity) norm of
a solution vector in probabilistic analysis even though all norms are known to
be equivalent [11, pp. 68-70]. However, the computation of the maximum value
(in magnitude) of the elements of a compact vector requires being able to know
which indexed value is the largest and also its value, which seems to be costly
for a compact vector in HTD format. Therefore, we consider the computation of
the 2-norm of vector y given by ||y|l2 = ¥Ty.

Fortunately, ||y||2 can be obtained using Algorithm 2 in [14, p. 14], which
computes inner products of two compact vectors in HTD format. Here, the only
difference is that the two vectors are the same vector y. The algorithm starts
from the leaves of the binary tree and moves towards the root, requiring the same
sequence of operations in the first part of the computation of reduced Gramians
in Algorithm 3 in [14, p. 17]. But, this has already been discussed in the previous
subsection.
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Now, we can move to implementation issues regarding compact solution vec-
tors in HTD format for Kronecker-based Markovian representations.

3 Implementation Issues

The implementation is done within the NSolve package of the APNN Toolbox
[1,2]. The binary tree data structure accompanying the HTD format is allocated
at the outset depending on the value of d. It is stored in the form of an array of
tree nodes from root to leaves level by level so that accessing the children of a
parent node or the parent of a child node becomes relatively easy. In a tree node t,
there are pointers to matrices U; for leaves and B; for intermediate nodes which
we have seen and accounted for before, but also pointers to matrices R; and, as
we explain shortly, (2 x 2) block matrices M; and G; for each node. Since we
expect solution vectors to be dense, the matrices in the compact representation
are stored as full matrices including those corresponding to the blocks of My
and G;. The nonzero elements of the full matrices are kept in a one-dimensional
real array so that relevant LAPACK methods available at [17] can be called
without having to copy vectors. We choose to store transposes of the matrices
representing the compact solution vector in row sparse format (meaning they are
stored by columns) so that relevant LAPACK methods can be called without
having to transpose the input matrices.

The multiplication of the sparse Kronecker factors A,(Lbk)

basis matrices Uy, in x(¥) := (®i:1 Aglk)Uh) c is implemented using straight-

with the orthogonal

forward sparse matrix-vector multiplication. After the compact vector x(¥) is
computed, the tree nodes of y(¥) are visited and its respective fields are updated
so that we have y**1 at hand. Efficient computation of the reduced Gramian
matrices G; as in Algorithm 3 of [14, p. 17] for y*+1 requires exploiting the
block structure of the new transfer matrices B; whose blocks are already available
in the corresponding tree nodes of y(*+t1) after the addition operation. Clearly,
there is no need to generate block matrices (or a cubic blocks as in Fig. 5 of [14,
p. 11]) with these blocks explicitly. We prefer to store M, and G; as (2 X 2)
block matrices because of the add a term and then truncate approach followed.
Let us next elaborate on this.

Assuming that r,(y*)) and r;(x(*)) denote the ranks of matrices in compact
representations of the two vectors that are summed up in node ¢, M; and Gy
become (¢ (y*)r (x®)) x 7, (y*))r,(x*))) matrices, where the first diagonal
block is (r;(y ™)) x r,(y*))) and the second diagonal block is (r;(x*)) x r,(x(*))).
Then the computation My := U7 Uy for leaf nodes can be formulated in (2 x 2)
block manner as

M = (UNHT(UY) fori,j=1,2,

where Ugl) and U§2) denote basis matrices of y*) and x*) at leaf node ¢,
respectively. This computation requires multiplying two full matrices for which
the DGEMM routine of LAPACK may be used. On the other hand, the computation
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M; = B (M;, ® M, )B; for intermediate nodes can be formulated from the
bottom of the tree to the root in (2 x 2) block manner as

M= BT (M @ ME)(BYY) for i, = 1,2,

where Bgl) and B§2) denote transfer matrices of y*) and x*) at node ¢, respec-
tively.

Similarly, we have reduced Gramian computations, but in opposite direction
from root to leaves, that can be formulated in (2 x 2) block manner for ¢, 5 = 1,2

as G,(f’j ) .= 1 when ¢ corresponds to root; otherwise,
G = (B )" M @ GI)BY)

and (4,9) (@) (4,9) (6,9)\ R (4)
Gtid = (Bt;zl,g)T(Mt:J ® Gy )Bt]l 3

where BE 5.3 and Bg 1) 5 are transfer matrices B ) of y®) organized respectively
as (7, (y(k))rt(y(k)) x 7, (y*)) and (ry, (y(k))rt(y(k)) x 7, (y*))) matrices and
Bt?273 and Bt:1)73 are transfer matrices Bt2 of x(*) organized respectively as
(7, (xFN) 7y (xF)) x 1, (xF))) and (rg, (xF))r(xF)) x 7y, (xF))) matrices. Such
matrices are called matricizations of the given matrix (in this case, the transfer
matrix Bgl) or BEZ) along specific dimensions), and therefore, represent different
organizations of the same data. We remark that the off-diagonal blocks of M,
and G; respectively satisfy the relationships Mﬁ” ) = (ng’i))T and Ggi’j )
(ng “))T  Therefore, only one off-diagonal block for these two matrices in each
node needs to be computed. The computation of the three blocks of M; and
G; requires multiplications using DGEMM with matricizations and contraction of
multi-dimensional data involving Bil) matrices for ¢ = 1,2 as discussed in [14,
pp. 9-10, 12-13]. We use two auxiliary vectors of length maxy, ¢, ¢(r, 7, 7¢) tO
implement these operations. The disadvantage of not storing M, and G, as (2x2)
block matrices is that longer auxiliary vectors would need to be allocated.
Truncation of a compact vector requires QR and singular value decomposi-
tions [11, pp. 76-79, 246-250] as in Algorithm 7 of [14, p. 23] to be performed. In
order to compute these decompositions, DGEQRF and DGESDD routines of LAPACK
are used. Since we expect input matrices to be dense, we do not call routines
expecting sparse matrices. For a leaf node t, the (m; x (r4(y®) 4 ry(x*))))
input matrix U; maybe obtained by concatenating the matrices Ugl) and U,EQ)
corresponding to y*) and x(¥) | respectively. Since the input matrix is also an out-
put matrix, the upper-triangular factor R; of the QR decomposition is returned
from DGEQRF in the upper-triangular part of the input matrix in which the lower-
triangular part has the Householder reflections amounting to the orthogonal fac-
tor Q;. After Ry is obtained, R;G;R} needs to be formed. To this end, we first
transform the block matrix G; to a dense matrix (with a single block) and mul-
tiply this new matrix held as a one-dimensional array from left and right using
the DTRMM routine of LAPACK. Note that DTRMM does not accept a trapezoid
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R;; however, this case can be handled by multiplying triangular and rectangular
parts of R; separately using DTRMM and DGEMM. Hence, there is no need to copy
the output of DGEQRF to another matrix including R;. Once RthR? is formed,
it needs to be decomposed for its singular values and vectors. To this end, we
prefer to use the DGESDD routine over the DGESVD routine since it is said to be
faster [17]. We remark that this routine computes singular values through the
symmetric eigenvalue decomposition, and the singular vectors are truncated at a
certain number or possibly by omitting some corresponding to the smaller singu-
lar values based on an error tolerance. S; ends up being the matrix holding the
7 singular vectors. Then the orthogonal basis matrix U; = Q;S; is computed
using the DORMQR routine. In order to avoid storing S;, we prefer to update R;
with ST as in the htucker package [15].

The same sequence of operations are carried out level by level from the par-
ents of the leaves to the top of the tree excluding the root. The product ST Ry
is computed using DTRMM (also possibly with an additional call to DGEMM when
R, is trapezoid) and stored in the matrix that was allocated for R,. Note that

SR, = (Fgl) F§2)) is an (ry x (14 (y®) + 74 (x*)))) matrix with the two blocks
Fgl) for I = 1,2, where r; is the rank of node ¢ after truncation. Then for a non-
leaf node ¢, the QR factorization of Zle(Fg) ®F§?)B§i) needs to be computed.
This computation requires multiplications using DGEMM with matricizations of
multi-dimensional data involving Bgi) matrices for ¢ = 1,2 as discussed in [14,
pp. 9-10]. Finally, the transfer matrix B; = Q:S; is computed using DORMQR.

4 Results of Numerical Experiments

In this section, we consider two example models that have been used as bench-
marks in [4]. The first is an availability model with d subsystems in which
different time scales occur. Each subsystem models a processing node with 2
processors, one acting as a cold spare, a bus and two memory modules. Time to
failure is exponentially distributed with rate 5 x 10~* for processors, 4 x 10™4
for buses and 10~ for memory modules. Components are repaired by a global
repair facility with preemptive priority such that components from subsystem
1 have the highest priority and components from subsystem d have the least
priority. Furthermore, the repair of the bus has priority over the repair of the
processor which has priority over the repair of the memory module. The repair
times of components are exponentially distributed. The repair rates of a proces-
sor, a bus, and a memory from subsystem 1 are given respectively as 1, 2, and 4.
The same rates for other subsystems are given respectively as 0.1, 0.2, and 0.4.
For this model, the reachable state space is equal to the product state space and
contains 12% states. We consider availability models with d = 3,4,5,6,7, 8.

The second example is a model of a polling system of two servers serving cus-
tomers from d finite capacity queues, which are cyclically visited by the servers.
Customers arrive to the system according to a Poisson process with rate 1.5
and are distributed with queue specific probabilities among the queues each of
which is assumed to have a capacity of 10. If a server visits a nonempty queue,
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it serves one customer and then travels to the next queue. On the other hand, a
server arriving at an empty queue, skips the queue and travels to the next queue.
Service and travelling times of servers are exponentially distributed respectively
with rates 1 and 10. Each subsystem in the model describes one queue, and the
J partitions of the reachable state space for this model are defined according
to the number of servers serving customers at a queue or travelling to the next
queue. For each subsystem we obtain 62 states partitioned into 3 subsets. The
reachable state space of the complete model has J = (d‘gl) partitions, and we
consider polling system models with d = 3,4,5,6,7.

Table 1. Properties of availability and polling models

Availability Polling

S| J S|
1,728 6 | 25,443
20,736 10 | 479,886

248,832 15| 8,065,860

2,985,984 |21 125,839,395
35,831,808 |28]1,863,521,121
429,981,696

| O | U= W
el

The goal of this paper is to compare the memory and timing requirements for
a vector-matrix product computation using the full vector and the HTD format
approaches. Furthermore, we have to evaluate the accuracy of the computation
if truncation is performed in the HTD format. Therefore, we consider in the
following iteration steps of the Power method. This is not the most efficient
solution method for steady-state analysis, but similar iteration steps can be
applied in more advanced iterative techniques and they can be directly used in
uniformization for transient analysis. For each model, the solution vector 7r(i*)
at iteration ¢t is multiplied with

P:=1+ AQ, where A:=0.999/ max |gs,s ],
se

starting with the uniform distribution in 7(?), so that we have
wlt) .= z=DP  for it =1,2,... maxit

with the associated error vector e(®) := 7(i) — £(t=1) Note that e(¥) =
An(=1Q, the scaled residual vector corresponding to the previous itera-
tion vector. Here, maxit is the maximum number of iterations and we set
maxit := 1,000. The numerical experiments are performed on an an Intel Core
i7 Quad-Core 3.6 GHz processor with 32 GB of main memory.

Table 2 contains the results for the availability model. Time is in seconds and
Memory indicates the number of allocated real array elements. For the chosen
truncation accuracy of € € [1072,1077], the norm of the final error vector is
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the same for the full and HTD representations. Due to the reduced memory
requirements of the vector, the compact representation results even in smaller
iteration times when d increases. It should be mentioned that the model is not
symmetric due to the priority repair strategy but, as it is common in availability
models, the probability distribution becomes unbalanced because repair rates
are higher than failure rates.

Table 2. Numerical results for availability models

Full Compact
d | Time Memory ||e®it)||, | ¢ Time Memory ||e™%)||,
3 0 5391 5x1077 1077 1 2,102 7x 1077
1078 1 2,298 5x 1077
107% 2 3,400 5x 1077
4 0 62,598 3x107% | 10707 3 2,809 2x107°
1078 4 4,107 3x107°
107° 6 6,938 3x 1076
5 2 747,132 1x107° | 1077 6 3,719 9x 1076
9

5,327 1x107°
107 13 9,278 1x107°
6 38 8,958,897 3x 107 | 1077 13 6,756 3x107°
1078 18 9,398 3x107°
107 28 14,120 3x107°
71 513 107,496,741 T7x107° | 1077 15 6,726 7x 1075
1078 28 10,381 7x 1075
107% 43 16,150 7x107°
8 16,329 1,289,946,786 2x107% | 1077 22 9,078 9x107°
1078 37 12,340 9x107°
107° 66 26,041 3x107¢

The situation is more ambiguous for the polling example whose results are
given in Table 3. For the larger configurations, we obtain savings in memory by
several orders of magnitude even with the smallest truncation accuracy of e.
Time-wise the conventional approach is faster for small configurations, but it is
outperformed by the compact representation for larger state spaces (i.e. d = 6),
if € is not too small. The largest configuration with d = 7 can only be analysed
with the compact vector representation.

In Fig. 3 the ranks of the different matrices forming the HTD are shown for a
truncation accuracy of e = 10~ 7. It can be seen that the ranks remain moderate.
The matrices are fairly dense such that a sparse storage of the matrices for the
vector representation is not necessary which can be seen in Fig. 4.
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Table 3. Numerical results for polling models

Full ‘ Compact
Time Memory e |, | e Time Memory |[|e™)||,
3 0 82,599 4x107% | 1077 50 49,297 4 x 1076

1078 83 72,281 4 x107°
107° 108 89,257 4x107°
4 5 1,496,563 5x107% | 1077 285 143436 5x10°°
1078 1,175 397,349 5x10°¢
107° 3,272 774,834 5x107°
5| 103 24,791,966 5x 107 | 1077 409 221,850 5x 1076
1078 2,522 800,742 5x10°°
1079 10,951 2,136,401 5 x 10°°
61,896 383,988,648 3x107° | 1077 254 177,534 3 x 1076
107% 2,448 883,360 3 x 107
107° 19,423 3,564,320 3 x 107°
7| nj/a 5,661,610,381 n/a 1077 196 217,254 3x10°°
107% 1,831 900,220 2x107°
107 21,668 5,037,050 2x107°

200 400 600 800 1000
it
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(b) Transfer matrices

Fig. 3. Ranks of basis and transfer matrices forming 7", availability d = 8 (Color
figure online)



274 P. Buchholz et al.

1 u b
1
» _Si u,
208 U ' 1
= 3
$06 | Ys 1
s u
° 5
g 04 U, ]
Soal| — Y
=z 02 ug b
O L L L L L
200 400 600 800 1000

it

(a) Basis matrices

L ﬁ — Bu23ase7s Sy |
€a Bi23a o
_g 0.8 B [ )
5 56,78
S 06 Bis ]
A
e 04 Bss b
c —— By
5] f
=02 T T L ; q
0 . . . . .
200 400 600 800 1000

it

(b) Transfer matrices

Fig. 4. Densities of basis and transfer matrices forming ("), availability d = 8 (Color
figure online)

5 Conclusion

We present in this paper a compact representation for the iteration vector of
large structured Markov models which has been adopted from numerical analy-
sis where the techniques have been developed in the recent years. It is shown that
this vector representation can be combined naturally with a hierarchical Kro-
necker representation of generator matrices of structured Markov models. The
basic step of iterative numerical algorithms to compute transient or steady-state
solutions can be conveniently combined with the compact vector representation.
Our first examples indicate that in contrast to previously tried compact repre-
sentations for the vector (e.g., [5,16]), the new approach is memory and also
relatively time efficient such that it bears the potential to increase the size of
solvable models on a given computer significantly.

There are several things to be done. In particular, more experiments are
necessary to confirm our results. The vector-matrix multiplications have to be
embedded in more advanced solution techniques like projection or multi-level
solution techniques. However, this can be easily done with the available software
environment,.
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