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Abstract
We consider an economy in which the technology exhibits nonconvex-
ities due to fixed costs associated with production. Taking into account
the incentives for investment to decrease fixed costs, we characterize
the circumstances under which an underdeveloped economy can catch
up with the developing ones. We show that it is optimal to get rid of the
fixed costs inherent in production in finite time provided that the ini-
tial level of fixed costs are not too high and the technology for reducing
fixed costs is sufficiently efficient. Indeed, we obtain that even though
the income disparities may be very persistent and can be perceived as
poverty traps, economies with not very high initial fixed costs and suf-
ficiently efficient technology for reducing fixed costs would ultimately
converge to the same steady state level of per capita income.

1. Introduction

Consider an economy in which the technology exhibits nonconvexities due to fixed
costs associated with production. According to Dechert and Nishimura (1983) and its
extensions (e.g., Mitra and Ray 1984; Kamihigashi and Roy 2007; Hung, Le Van, and
Michel 2009; Akao, Kamihigashi, and Nishimura 2011), such an economy can fall into
a poverty trap if its initial capital or income falls short of the fixed cost inherent in
production. However, to what extent these analyses are robust to the considerations of
incentives for investment to decrease the fixed costs in production, still remains unan-
swered: Can such an underdeveloped economy eventually catch up with the developing
ones if endowed with a technology to reduce the fixed costs? If so, how and how long
will it take? If not, why not? To account for these seminal questions we consider a non-
classical optimal growth model which takes the incentives for investment to decrease
fixed costs explicitly into account.

Fixed costs associated with production stem mainly from the lack of core infrastruc-
ture such as road, rail, power supply, telecommunications, irrigation, sanitation, and
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poor access to productive assets. In particular, the lack of infrastructure and the exter-
nalities arising from them have been shown to play a primary role for possible lock-ins
to underdevelopment or poverty (see Rosegrant et al. 2006). For instance, in Ethiopia,
the average road density is 27 km/1000 km2, and the mean travel time to the near-
est main output market is about 7 hours. Grain prices received at the farm gate are
30%–70% less than the market prices in the nearby main markets and about 50%–60%
of potential revenue is lost due to inaccurate price information (see, for the details,
Demeke et al. 2004; Hanjra, Ferede, and Gutta 2009). Yoshino (2008), for example,
stresses that the average number of days per year for which the firms experience disrup-
tions in electricity has an adverse effect on development in sub-Saharan Africa. These
facts (see World Bank 1994, for a broad survey of the effects of the lack of infrastructure)
further highlight the essence of the present analysis to a greater extent.

In this paper, we analyze the optimal growth strategy of such economies in which
the fixed costs associated with production due to lack of infrastructure entail a threshold
level of capital stock above which the capital stock turns out to be productive. However,
in contrast with the earlier optimal growth models with nonconvex technology (see
Azariadis and Stachurski 2005, for a recent survey), this threshold level of capital stock
induced by the lack of infrastructure is not assumed to be exogenous and fixed. Indeed,
we put the emphasis on the ability to reduce fixed costs in production and characterize
the circumstances under which an underdeveloped economy can catch up with the
developing ones.

We show that if it turns out to be optimal not to devote any resource to reduce the
fixed costs at a certain period, then it will never be optimal to do so from that period
onwards. However, if it turns out to be optimal to decrease the fixed costs in production
at one period, then the accumulated capital stock will exceed the level of fixed costs
sooner or later. Indeed, under mild conditions on the efficiency of the infrastructure
technology and the initial level of fixed costs, we prove that it is optimal to get rid of
the fixed costs inherent in production at a finite period of time so that the economy
will converge to a positive steady state level of physical capital independent of its initial
level. Put differently, we show how the threshold dynamics prediction of the nonclassical
optimal growth models (e.g., Dechert and Nishimura 1983) can be overturned by taking
into account the incentives to reduce the threshold level of capital stock stemming from
the fixed costs associated with production. We indicate that even though the income
disparities may be very persistent and can be perceived as poverty traps, all economies
with not very high initial fixed costs and sufficiently efficient technology to reduce them
would ultimately converge to the same steady state level of per capita income.

On empirical grounds, our results provide a link between the recent estimates of
Kremer, Onatski, and Stock (2001) and that of Quah (1996, 1997). Quah’s results have
supported a bimodal distribution of per capita income across countries. On the con-
trary, Kremer et al. (2001) and Jones (1997) have questioned the robustness of the lower
peak in output and argued that the long-run income distribution is unimodal but the bi-
modality appears during the transition. Moreover, Feyrer (2008) has noted that the twin
peaked income distribution in Quah (1996, 1997) appear to be driven by twin peaks in
productivity and has argued empirically that the low peak in productivity may be a tran-
sitory phenomenon (see also Azariadis and Stachurski 2004; Kraay and Raddatz 2007).
Actually, the delicacy in this controversy regarding the bimodal income distribution
reduces to produce the mechanisms under which the twin-peaked transitional dynam-
ics eventually converge to a “mass point in the cross-section distribution” (see Quah
2001). In this respect, our analysis fulfills this need by putting forward the incentives
to reduce the fixed costs associated with production in an optimal growth model with
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nonconvex technology and suggests that the dynamic interaction between capital accu-
mulation and fixed costs that impede productivity may act in the long run to eliminate
the low peak in productivity.

The rest of the paper is organized as follows. Section 2 describes the model and
Section 3 provides the dynamic properties of optimal paths. Section 4 concludes.

2. Model

We consider an optimal growth model which takes into account the incentives for in-
vestment to decrease fixed costs in production explicitly. At each date t ∈ Z+, a single
good is produced according to the technology,

f̃ (kt | k̄t ) =
{

f (kt − k̄t ), if kt ≥ k̄t ,

0, if kt < k̄t ,
(1)

in which the labor input is supposed to be constant and normalized to 1. Here k̄t is
the threshold level of capital stock that represents the fixed cost in production due
to corruption or the lack of infrastructure which may include roads, power, irrigation,
or energy, and kt is the stock of physical capital at the beginning of period t. The de-
preciation rate is δ ∈ (0, 1). At each period current output must be divided between
current consumption, c t , gross investment in physical capital, it , and the expenditures
for reducing the fixed costs of production (i.e., investment on infrastructure), mt . The
infrastructure technology is given by a function ϕ so that k̄t+1 = k̄t − ϕ(mt ).

In this economy, the social utility is represented by
∑+∞

t=0 β t u(c t ), where β ∈ (0, 1)
is the discount factor. The optimal growth problem can then be formalized as follows:

max
{ct ,mt ,kt+1,k̄t+1}∞

t=0

∞∑
t=0

β t u(c t ), (P)

subject to

∀t, c t + mt + it ≤ f̃ (kt , k̄t ),

kt+1 = it + (1 − δ)kt ,

k̄t+1 = k̄t − ϕ (mt ) ,

c t ≥ 0, mt ≥ 0, kt ≥ 0, k̄t ≥ 0,

k̄0 > 0, k0 > 0 ar e given.

We maintain the following assumptions throughout the paper.

ASSUMPTION 1: u : R+ → R+ is twice continuously differentiable and satisfies u(0) = 0,

u′ > 0, u′′ < 0, u′(0) = +∞.

ASSUMPTION 2: f : R+ → R+ is twice continuously differentiable and satisfies f (0) = 0,

f ′ > 0, f ′′ < 0, f ′(0) = +∞, limx→+∞ f ′(x) < δ.

ASSUMPTION 3: ϕ : R+ → R+ is twice continuously differentiable and satisfies ϕ(0) = 0,

ϕ′ > 0, ϕ′′ < 0, ϕ′(0) > 1.

ASSUMPTION 4: k0 
= k̄0.
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Note from Assumption 2 that when k 
= k̄, f̃ ′
k = − f̃ ′

k̄
. Let g(x) = ϕ−1(x), ∀x ≥ 0.

Problem P is actually equivalent to

max
{ct ,kt+1,k̄t+1}∞t=0

∞∑
t=0

β t u (c t ) , (P ′)

subject to

c t + kt+1 + g(k̄t − k̄t+1) ≤ f̃ (kt , k̄t ) + (1 − δ)kt ,

0 ≤ k̄t+1 ≤ k̄t ,

kt ≥ 0, c t ≥ 0,

k̄0 > 0, k0 > 0 ar e given.

We adopt the following standard definitions and notations. An infinite sequence {xt }∞t=0
will be denoted by x . We say that the sequences c , k, k̄ are feasible from k0 and k̄0 if they
satisfy the constraints of Problem P ′. A stationary path is a constant path. A capital stock
k ≥ 0 and a fixed cost k̄ ≥ 0 constitute a steady state if the associated stationary path is
optimal.

3. Properties of Optimal Paths

In this section, we present various preliminary results on the properties of optimal paths
that will prove to be useful in presenting our main result.

PROPOSITION 1: For any (k0, k̄0), there exists an optimal path (c, k, k̄) which satisfies

∀t, 0 ≤ kt ≤ M = max[k0, k̃], 0 ≤ c t ≤ f (M),

where f (k̃) = δk̃.

Proof: See, e.g., Le Van and Morhaim (2002), Theorem 1. �

LEMMA 1: An optimal path (c, k, k̄) from (k0, k̄0) satisfies

∀t, c t > 0, kt > 0. (2)

Proof: Since u is strictly increasing the feasible consumption path (0, 0, . . . , 0 . . .) cannot
be optimal. Indeed, the path (c, k, k̄) defined by

k̄t = k̄0, kt = 0, c t = 0,∀t ≥ 1,

c0 = f̃ (k0, k̄0) + (1 − δ)k0 > 0,

is feasible and the utility obtained with this sequence is strictly positive. Hence, there
exists some t such that ct > 0. Without loss of generality, assume c0 = 0 and c1 > 0. We
have k1 > 0 and c1 + k2 + g(k̄1 − k̄2) = f̃ (k1, k̄1) + (1 − δ)k1.

Consider first that k1 > k̄1. Choose some ε > 0 such that k1 − ε > k̄1 ≥ 0 and f (k1 −
ε − k̄1) + (1 − δ)(k1 − ε) − g(k̄1 − k̄2) − k2 > 0. Define sequences (c ′, k′) by

c ′
0 = ε, c ′

1 = f (k1 − ε − k̄1) + (1 − δ) (k1 − ε) − g(k̄1 − k̄2) − k2,

and

∀t ≥ 2, c ′
t = c t , k ′

t = kt .
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These sequences are feasible from (k0, k̄0). We obtain that

�(ε) =
∞∑

t=0

β t u(c ′
t ) −

∞∑
t=0

β t u(c t )

= u(c ′
0) + βu(c ′

1) − u(c0) − βu(c1)

≥ ε

[
u′(c ′

0) − βu′(c ′
1)

(
f (k1 − k̄1) − f (k1 − ε − k̄1)

ε
+ (1 − δ)

)]
.

Note that limε→0 u′(c ′
0) = +∞ and limε→0 u′(c ′

1)( f (k1−k̄1)− f (k1−ε−k̄1)
ε

+ (1 − δ)) < +∞.

Hence, �(ε) > 0 when ε is small enough, a contradiction.
Consider now that k1 ≤ k̄1. We have k1 > 0 and

(c0 + ε) + (k1 − ε) + g(k̄0 − k̄1) = f̃ (k0, k̄0) + (1 − δ)k0

(c1 − (1 − δ)ε) + k2 + g(k̄1 − k̄2) = f̃ (k1 − ε, k̄1) + (1 − δ)(k1 − ε)

since 0 = f̃ (k1 − ε, k̄1) = f̃ (k1, k̄1). Then

�(ε) = u(ε) − u(0) + β[u(c1 − (1 − δ)ε) − u(c1)

≥ u′(ε)ε − βu′(c1 − (1 − δ)ε)(1 − δ)ε.

We obtain �(ε)/ε > 0 when ε is small enough.
Now we claim that k1 > 0. Assume on the contrary that k1 = 0. In this case, we have

kt = 0, c t = 0 and mt = 0 so that k̄t = k̄1,∀t ≥ 1. Moreover, k̄1 = k̄0 as utility is increasing
in consumption. Choose some ε > 0 such that c0 − ε > 0. Consider sequences (c ′, k′)
where

c ′
0 = c0 − ε, k ′

1 = ε, c ′
1 = f̃ (k ′

1, k̄1) + (1 − δ)ε,

and

∀t ≥ 2, c ′
t = c t , k ′

t = kt .

We compute that

� (ε) = u (c0 − ε) + βu
(
c ′

1

) − u (c0)

≥ ε

[
βu ((1 − δ)ε)

ε
− u′ (c0 − ε)

]
.

As ε → 0, we have βu((1−δ)ε)
ε

→ +∞ and −u′(c0 − ε) → −u′(c0) > −∞. This implies
that �(ε) > 0 when ε is small enough, a contradiction. We have proved that if c0 > 0
then c1 > 0 and k1 > 0. By induction, we have c t > 0, kt > 0, ∀t. �

Recall that k0 
= k̄0. The following lemma shows that the level of the capital stock
will never be equal to the fixed cost of production along the optimal path.

LEMMA 2: Let (c, k, k̄) be an optimal path from (k0, k̄0).We have kt+1 
= k̄t+1,∀t.

Proof: Assume k1 = k̄1. We have

c0 + k1 + m0 = f̃ (k0, k̄0) + (1 − δ)k0,

c1 + k2 + m1 = f̃ (k1, k̄1) + (1 − δ)k1 = (1 − δ)k1,

where c0 > 0 by Lemma 1.
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Consider the sequences (c ′, k′) defined as follows:

c ′
0 = c0 − ε,

k ′
1 = k1 + ε,

c ′
1 = f̃ (k1 + ε, k̄1) + (1 − δ) (k1 + ε) − k2 − m1,

and ∀t ≥ 2, c ′
t = c t , k ′

t = kt .

(c′, k′, k̄) is also feasible from (k0, k̄0). We compute

�(ε) =
∞∑

t=0

β t u(c ′
t ) −

∞∑
t=0

β t u(c t )

= u(c0 − ε) + βu(c ′
1) − u(c0) − βu(c1)

≥ ε

[
−u′ (c0 − ε) + βu′ (c ′

1

) (
f (ε)
ε

+ (1 − δ)
)]

.

As limε→0[−u′(c0 − ε) + βu′(c ′
1)( f (ε)

ε
+ (1 − δ))] = +∞, we obtain a contradiction.

Hence, k1 
= k̄1. �

LEMMA 3: Let (c, k, k̄) be an optimal path from (k0, k̄0). If k̄T = k̄T+1 then k̄T = k̄T+t ,

∀t ≥ 0.

Proof: Assume without loss of generality that k̄1 = k̄0 > 0. We have m0 = 0 and

∀t, c t + kt+1 + g(k̄t − k̄t+1) = f̃ (kt , k̄t ) + (1 − δ)kt .

Suppose on the contrary that k̄3 ≤ k̄2 < k̄1. Note that an optimal solution to P ′ must also
be optimal over any finite period. Consider the following three-period optimization
problem for a given initial condition (k0, k̄0) and terminal condition (k3, k̄3):

max
{k1,k2,y1,y2}

u( f̃ (k0 − k̄0) + (1 − δ)k0 − k1 − g(k̄0 − y1))

+βu( f̃ (k1 − y1) + (1 − δ)k1 − k2 − g(y1 − y2))

+β2u( f̃ (k2 − y2) + (1 − δ)k2 − k3 − g(y2 − k̄3))

subject to

y1 − k̄0 ≤ 0,

y2 − y1 ≤ 0,

k̄3 − y2 ≤ 0,

k1 ≥ 0,

k2 ≥ 0.

The Lagrangian associated with this optimization problem can be written as

L = u( f̃ (k0, k̄0) + (1 − δ)k0 − k1 − g(k̄0 − y1))

+βu( f̃ (k1, y1) + (1 − δ)k1 − k2 − g(y1 − y2))

+β2u( f̃ (k2, y2) + (1 − δ)k2 − k3 − g(y2 − k̄3))

−λ1(y1 − k̄0) − λ2(y2 − y1) − λ3(k̄3 − y2) + μ1k1 + μ2k2.
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Note that k1 = 0 implies c1 = 0, k2 = 0 and k2 = 0 furthermore implies c2 = 0, which
are impossible. We have already proved that k1 > 0, k2 > 0 so that μ1 = 0 and μ2 = 0.

Moreover, we know that k1 
= k̄1 and k2 
= k̄2 (by Lemma 2). Accordingly, the first-order
conditions of optimality reveal that

u′(c0) = βu′(c1)
[

f̃ ′
k(k1, k̄1) + 1 − δ

]
, (3)

βu′(c1) = β2u′(c2)
[

f̃ ′
k(k2, k̄2) + 1 − δ

]
, (4)

u′(c0)g ′(k̄0 − k̄1) = βu′(c1)
[− f̃ ′

k̄(k1, k̄1) + g ′(k̄1 − k̄2)
] + λ1 − λ2, (5)

βu′(c1)g ′(k̄1 − k̄2) = β2u′(c2)
[− f̃ ′

k̄(k2, k̄2) + g ′(k̄2 − k̄3)
] + λ2 − λ3, (6)

where

λ1 ≥ 0, λ1(k̄1 − k̄0) = 0,

λ2 ≥ 0, λ2(k̄2 − k̄1) = 0,

λ3 ≥ 0, λ3(k̄3 − k̄2) = 0.

By means of (3) and (5), we obtain that

f̃ ′
k(k1, k̄0) + 1 − δ = 1

g ′(0)

[
f̃ ′

k(k1, k̄0) + g ′(k̄1 − k̄2) + (λ1 − λ2)
]
.

Since g is increasing, it is immediate that

λ2 − λ1

g ′ (0)
=

(
1

g ′ (0)
− 1

)
f̃ ′

k(k1, k̄0) + g ′(k̄1 − k̄2)
g ′(0)

− (1 − δ)

≥
(

1
g ′ (0)

− 1
)

f̃ ′
k(k1, k̄0) + δ.

As k̄3 ≤ k̄2 < k̄1, we get λ2 = 0 so that

0 ≥ −λ1

g ′ (0)
≥

(
1

g ′ (0)
− 1

)
f̃ ′

k(k1, k̄0) + δ > 0

leads to a contradiction. �

We have shown that if it is optimal not to devote any resources to reduce the fixed
cost at a certain time period, then it will always be optimal not to do so from that period
onwards. We will now demonstrate that if it is optimal to decrease the fixed cost in
production at some period then the accumulated capital stock should exceed the level
of fixed cost sooner or later. Put differently, if there is no incentive to make the capital
stock larger than the fixed cost in production then there will be no investment to reduce
the fixed cost at all.

LEMMA 4: Let (c, k, k̄) be an optimal path from (k0, k̄0). If k̄T > k̄T+1 then we cannot have
kt < k̄t , ∀t ≥ T.

Proof: Let k̄T > k̄T+1. We have mT > 0. Suppose on the contrary kt < k̄t , ∀t ≥ T,so that

ct + kt+1 + mt = (1 − δ)kt , ∀t ≥ T.
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Consider (c ′, k, k̄′) that depart from (c, k, k̄) only by letting c ′
T = cT + mT > cT , and

m ′
T = 0 so that k̄ ′

T+1 = k̄T . Note that

kT+1 < (1 − δ)kT < (1 − δ)k̄T < k̄T ,

and accordingly,

k̄ ′
T+1 > k̄T+1.

Hence, (c ′, k, k̄′) is a feasible path from (k0, k̄0). However, as u(.) is strictly increasing,
(c ′, k, k̄′) provides a higher social utility, a contradiction. �

We now show that the fixed costs in production will monotonically converge to
k̄ ≥ 0 within a finite period of time.

PROPOSITION 2: Let (c, k, k̄) be an optimal path from (k0, k̄0). Assume k̄t+1 > 0,∀t ≥ 0.

Then there exists T such that k̄T = k̄T+t ,∀t ≥ 0.

Proof: Suppose the statement of the proposition is false. Then, by Lemma 3, we have
k̄t > k̄t+1,∀t . Since k̄0 > k̄1, by Lemma 4, there exists t0 such that kt0 > k̄t0 . Similarly, k̄t0 >

k̄t0+1 implies that there exists t1 > t0 such that kt1 > k̄t1 . Then there exists a subsequence
{tυ} such that ktυ+1 > k̄tυ+1 > 0 and k̄tυ > k̄tυ+1 > k̄tυ+2. By (3) and (5), we have

g ′ (k̄tυ − k̄tυ+1
) = f ′ (ktυ+1 − k̄tυ+1

) + g ′ (k̄tυ+1 − k̄tυ+2
)

f ′ (ktυ+1 − k̄tυ+1
) + 1 − δ

. (7)

Define xtυ = f ′(ktυ+1 − k̄tυ+1), ytυ = g ′(k̄tυ − k̄tυ+1), and note that

ytυ+1 = g ′(k̄tυ+1 − k̄tυ+2) → g ′(0).

By (7), we obtain

xtυ (ytυ − 1) = ytυ+1 − (1 − δ) ytυ .

Noting that

0 ≤ xtυ → δg ′ (0)
g ′ (0) − 1

< 0

raises a contradiction to the existence of a subsequence {tυ} such that ktυ+1 > k̄tυ+1 > 0
and k̄tυ > k̄tυ+1 > k̄tυ+2. �

In accordance with Proposition 2, for t ≥ T, the Problem P ′ can be recast as

max
{ct ,kt+1}∞t=0

∞∑
t=0

β t u(c t ), (P ′′)

subject to

∀t, c t + kt+1 ≤ f̃ (kt , k̄) + (1 − δ)kt

kt ≥ 0, c t ≥ 0,

k̄T = k̄ ≥ 0,

k0 = kT > 0, given.
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In what follows our aim is to prove that it is indeed optimal to get rid of the fixed costs
inherent in production at a finite period of time so that k̄ = 0, and that the capital stock
converges to a steady state level ks where f ′(ks ) + (1 − δ) = 1

β
.

To do so, let us first define k̂(a) in accordance with

f ′(k̂ (a) − a) = max
k>k̄0

f (k − a)
k

= f (k̂ (a) − a)

k̂ (a)
.

We will now show that k̂(.) is increasing.

LEMMA 5:

(i) The function k̂(.) is increasing.

(ii) For any a > 0, we have a < k̂(a).

(iii) k̂(k̄) ≤ k̂(k̄0).

Proof:

(i) k̂(a) solves k = f (k−a)
f ′(k−a) = z(k − a), for k ≥ a. We have z ′(k − a) =

1 − f (k−a) f ′′(k−a)
f ′(k−a) f ′(k−a) > 1, by the strict concavity of f. When a increases, the

graph of z(k − a) shifts to the right and k̂(a) increases.

(ii) We have f ′(k̂(a) − a) < f ′(0) = f ′(a − a). This implies k̂(a) > a.

(iii) Since k̄ ≤ k̄0, we have k̂(k̄) ≤ k̂(k̄0). �

Let k∗ be defined by

f ′(k∗ − k̄) + 1 − δ = 1
β

.

Actually, k∗ = ks + k̄. Define c∗ as

c∗ = f (k∗ − k̄) + (1 − δ) k∗ − k∗

= f (k∗ − k̄) − δk∗

= f (ks ) − δ
(
ks + k̄

)
.

ASSUMPTION 5: f (ks ) − δ(ks + k̄0) > 0.

LEMMA 6: Under Assumption 5, we have c∗ > 0.

Proof: It is immediate from k̄ ≤ k̄0. �

We want to prove that the threshold will be exhausted in finite time. We pro-
ceed in two steps. Step 1 consists of proving that (k∗, k̄) is an optimal steady state
(Lemma 7 below). This requires the assumption that the fixed costs in production is not
too large (Assumption 6 below). Step 2 is to prove that actually the steady state k̄ is zero
(Proposition 3).

ASSUMPTION 6: k̂(k̄0) < ks .
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LEMMA 7: (k∗, k̄) is an optimal steady state.

Proof: Let

F (kt , k̄) =
{

f (kt − k̄), if kt ≥ k̂(k̄),

kt f ′(k̂(k̄) − k̄), if kt < k̂(k̄).

Note that F (kt , k̄) is strictly increasing, concave and differentiable. Consider the follow-
ing optimization problem:

max
{kt+1}∞t=0

∞∑
t=0

β t u(F (kt , k̄) + (1 − δ)kt − kt+1) (Q)

subject to

∀t, 0 ≤ kt+1 ≤ F (kt , k̄) + (1 − δ)kt ,

kt ≥ 0,

k̄ ≥ 0, k0 > 0 ar e given.

By construction, it is immediate that k∗ is an optimal steady state of Problem Q.
Let (k, k̄) be a feasible path from (k∗, k̄0) for the original problem P ′. Recall that

Assumption 6 implies k̂(k̄0) < ks + k̄ = k∗.
We have

c0 + k1 + g(k̄0 − k̄1) ≤ f̃ (k∗, k̄0) + (1 − δ)k0,

c1 + k2 + g(k̄1 − k̄2) ≤ f̃ (k1, k̄1) + (1 − δ)k1,

...

c t + kt+1 + g(k̄t − k̄t+1) ≤ f̃ (kt , k̄t ) + (1 − δ)kt ,

...

so that

c0 + k1 ≤ f̃ (k∗, k̄) + (1 − δ)k0 ≤ F (k∗, k̄) + (1 − δ)k0,

c1 + k2 ≤ f̃ (k1, k̄) + (1 − δ)k1 ≤ F (k1, k̄) + (1 − δ)k1,

...

c t + kt+1 ≤ f̃ (kt , k̄) + (1 − δ)kt ≤ F (kt , k̄) + (1 − δ)kt ,

...

since k̄0 ≥ k̄1 ≥ · · · ≥ k̄. Hence, the sequence (c, k) is feasible from k∗ in Problem Q with
the convex technology represented by the production function F . Moreover, knowing
that k∗ is an optimal steady state of Problem Q, we have

∞∑
t=0

β t u(c∗) ≥
∞∑

t=0

β t u(c t ).
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Since the set of sequences that is feasible from (k∗, k̄) for the problem P ′ is a subset of
the corresponding one for the Problem Q, we can conclude that (k∗, k̄) is an optimal
steady state for the original problem P ′ with the technology f̃ . �

Now we will present our main result. The threshold will be exhausted in a finite
period of time provided that the technology to reduce the fixed costs is sufficiently
efficient (g ′(0) < 1, by Assumption 3) and the initial level of fixed costs is not too large
(k̂(k̄0) < ks , by Assumption 6).

The idea of the proof is as follows. We suppose that the optimal steady state
threshold k̄ is strictly positive. We construct a feasible sequence (c , k, k̄) starting from
k0 = k∗, k̄0 = k̄. Since k̄ > 0, to diminish the threshold by a small amount, say ε, in
any period t ≥ 1, the economy invests g(ε) in period 0. The consumption in period
0 becomes smaller than the steady state consumption, but the consumptions in other
periods become higher. This proves that the consumer will be better off. That is a con-
tradiction. The steady state threshold must be zero.

PROPOSITION 3: k̄ = 0, i.e., the threshold will be exhausted in finite time.

Proof: First observe that k̄ < k∗. The optimal steady state consumption is

c∗ = f (k∗ − k̄) − δk∗.

It is strictly positive under Assumption 5. Assume k̄ > 0. Then we can choose 0 < ε <

k̄, g(ε) < c∗. Define the sequence (c, k, k̄) by

k̄0 = k̄, k̄t = k̄ − ε, ∀t ≥ 1,

kt = k∗, ∀t ≥ 0,

c0 = f (k∗ − k̄) − δk∗ − g(ε),

c t = f (k∗ − k̄t ) − δk∗ = f (k∗ − k̄ + ε) − δk∗, ∀t ≥ 1.

Observe c0 = c∗ − g(ε) > 0, c t > c∗ > 0,∀t ≥ 1. One can easily check that the sequence
(c, k, k̄) is feasible. Let

�(ε) =
∞∑

t=0

β t u(c t ) −
∞∑

t=0

β t u(c∗).

We have

�(ε) = u( f (k∗ − k̄) − δk∗ − g(ε)) + β

1 − β
u( f (k∗ − k̄ + ε) − δk∗)

−u( f (k∗ − k̄) − δk∗) − β

1 − β
u( f (k∗ − k̄) − δk∗)

that implies

�(ε) ≥ u′ ( f (k∗ − k̄) − δk∗ − g(ε)
)

(−g(ε))

+ β

1 − β
u′( f (k∗ − k̄ + ε) − δk∗)( f (k∗ − k̄ + ε) − f (k∗ − k̄)).



990 Journal of Public Economic Theory

Hence,

�(ε)
ε

≥ − g(ε)
ε

u′( f (k∗ − k̄) − δk∗ − g(ε))

+ β

1 − β
u′( f (k∗ − k̄ + ε) − δk∗)

(
f (k∗ − k̄ + ε) − f (k∗ − k̄)

ε

)
.

Let ε → 0. Then, note that

lim
ε→0

�(ε)
ε

≥ u′(c∗)
[
−g ′(0) + β

1 − β
f ′(k∗ − k̄)

]

= u′(c∗)
[
−g ′(0) + 1 + βδ

1 − β

]

> u′(c∗)
βδ

1 − β
>0, since g ′(0)<1.

Thus, �(ε) > 0 for ε small enough contradicting the optimality of the steady state. We
conclude that k̄ = 0. �

We have proved that the threshold disappears within a finite period of time.

THEOREM 1: The optimal path (k, k̄) from (k0, k̄0) ≥ 0 converges to (ks , 0).

Proof: By Proposition 3, the problem P ′ actually reduces to the standard Ramsey
model. �

REMARK 1: In our model three assumptions are crucial for the fixed costs to disappear in finite
time. The first one is the efficiency of the technology for reducing the fixed costs which is ϕ′(0) > 1.
The two other assumptions, Assumptions 5 and 6, impose that the initial fixed costs are not very
high. Actually, they give an upper bound to these initial fixed costs which is the same given the pro-
duction technology. The economies which have the same technology of production and satisfy all our
assumptions will eventually converge to the same steady state. Their technologies for reducing the
fixed costs and their initial fixed costs may differ but they must satisfy the three crucial assumptions
mentioned above.

4. Conclusion

We have considered an underdeveloped economy with nonconvexities in technology
due to a wide variety of factors that induce fixed costs in production. We have proved
that such an economy can avoid a poverty trap and catch up with the developing
economies if its initial level of fixed costs are not too large and its technology for reduc-
ing the fixed cost is sufficiently efficient. We have shown that even though the income
disparities may be very persistent and can be perceived as poverty traps, all economies
with not very high initial fixed costs and sufficiently efficient technology to reduce fixed
costs would ultimately converge to the same steady state level of per capita income. This
induces a unimodal cross country income distribution where bimodality would appear
during the transition.

The results in the present paper suggest that the aid policies aiming to help un-
derdeveloped economies escape from a poverty trap should take into account not only
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the level of fixed costs inherent in production but also the efficiency of the technology
to reduce them. Accordingly, apart from its size, the composition of the financial aids
among the reduction of fixed costs, improving the technology for reducing these fixed
costs, and fostering the accumulation of physical capital turn out to be crucial.
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